diff --git a/Code/ExecClassif.py b/Code/MonoMutliViewClassifiers/ExecClassif.py similarity index 62% rename from Code/ExecClassif.py rename to Code/MonoMutliViewClassifiers/ExecClassif.py index dab41d2a8884f06ad89ef53c16c7501cbdb145fa..2a02e7dd843b3ac8a000ce9012cb3cf91a0479b8 100644 --- a/Code/ExecClassif.py +++ b/Code/MonoMutliViewClassifiers/ExecClassif.py @@ -11,6 +11,8 @@ import logging from joblib import Parallel, delayed from ResultAnalysis import resultAnalysis import numpy as np +import MonoviewClassifiers + parser = argparse.ArgumentParser( description='This file is used to benchmark the accuracies fo multiple classification algorithm on multiview data.', @@ -62,12 +64,26 @@ groupRF = parser.add_argument_group('Random Forest arguments') groupRF.add_argument('--CL_RF_trees', metavar='STRING', action='store', help='GridSearch: Determine the trees', default='25 75 125 175') -groupSVC = parser.add_argument_group('SVC arguments') -groupSVC.add_argument('--CL_SVC_kernel', metavar='STRING', action='store', help='GridSearch : Kernels used', - default='linear') -groupSVC.add_argument('--CL_SVC_C', metavar='STRING', action='store', help='GridSearch : Penalty parameters used', +groupSVMLinear = parser.add_argument_group('Linear SVM arguments') +groupSVMLinear.add_argument('--CL_SVML_C', metavar='STRING', action='store', help='GridSearch : Penalty parameters used', default='1:10:100:1000') +groupSVMRBF = parser.add_argument_group('SVW-RBF arguments') +groupSVMRBF.add_argument('--CL_SVMR_C', metavar='STRING', action='store', help='GridSearch : Penalty parameters used', + default='1:10:100:1000') + +groupSVMPoly = parser.add_argument_group('Poly SVM arguments') +groupSVMPoly.add_argument('--CL_SVMP_C', metavar='STRING', action='store', help='GridSearch : Penalty parameters used', + default='1:10:100:1000') +groupSVMPoly.add_argument('--CL_SVMP_deg', metavar='STRING', action='store', help='GridSearch : Degree parameters used', + default='1:2:5:10') + +groupAdaboost = parser.add_argument_group('Adaboost arguments') +groupAdaboost.add_argument('--CL_Ada_n_est', metavar='STRING', action='store', help='GridSearch : Penalty parameters used', + default='1:10:100:1000') +groupAdaboost.add_argument('--CL_Ada_b_est', metavar='STRING', action='store', help='GridSearch : Degree parameters used', + default='DecisionTreeClassifier') + groupRF = parser.add_argument_group('Decision Trees arguments') groupRF.add_argument('--CL_DT_depth', metavar='STRING', action='store', help='GridSearch: Determine max depth for Decision Trees', default='1:3:5:7') @@ -90,8 +106,9 @@ groupMumbo.add_argument('--MU_types', metavar='STRING', action='store', groupMumbo.add_argument('--MU_config', metavar='STRING', action='store', nargs='+', help='Configuration for the monoview classifier in Mumbo', default=['3:1.0', '3:1.0', '3:1.0','3:1.0']) -groupMumbo.add_argument('--MU_iter', metavar='INT', action='store', - help='Number of iterations in Mumbos learning process', type=int, default=5) +groupMumbo.add_argument('--MU_iter', metavar='INT', action='store', nargs=3, + help='Max number of iteration, min number of iteration, convergence threshold', type=float, + default=[1000, 300, 0.0005]) groupFusion = parser.add_argument_group('Fusion arguments') groupFusion.add_argument('--FU_types', metavar='STRING', action='store', @@ -151,16 +168,17 @@ if args.CL_type.split(":")==["Benchmark"]: for fusionModulesName, fusionModule in zip(fusionModulesNames, fusionModules)] fusionMethods = dict((fusionModulesName, [subclass.__name__ for subclass in fusionClasse.__subclasses__() ]) for fusionModulesName, fusionClasse in zip(fusionModulesNames, fusionClasses)) - fusionMonoviewClassifiers = [name for _, name, isPackage in - pkgutil.iter_modules(['Multiview/Fusion/Methods/MonoviewClassifiers']) - if not isPackage ] + allMonoviewAlgos = [name for _, name, isPackage in + pkgutil.iter_modules(['MonoviewClassifiers']) + if not isPackage] + fusionMonoviewClassifiers = allMonoviewAlgos allFusionAlgos = {"Methods": fusionMethods, "Classifiers": fusionMonoviewClassifiers} allMumboAlgos = [name for _, name, isPackage in pkgutil.iter_modules(['Multiview/Mumbo/Classifiers']) if not isPackage and not name in ["SubSampling", "ModifiedMulticlass", "Kover"]] allMultiviewAlgos = {"Fusion": allFusionAlgos, "Mumbo": allMumboAlgos} - allMonoviewAlgos = [key[15:] for key in dir(Monoview.ClassifMonoView) if key[:15] == "MonoviewClassif"] benchmark = {"Monoview": allMonoviewAlgos, "Multiview" : allMultiviewAlgos} + if "Multiview" in args.CL_type.strip(":"): benchmark["Multiview"] = {} if "Mumbo" in args.CL_algos_multiview.split(":"): @@ -178,138 +196,98 @@ if "Multiview" in args.CL_type.strip(":"): if "Monoview" in args.CL_type.strip(":"): benchmark["Monoview"] = args.CL_algos_monoview.split(":") + classifierTable = "a" fusionClassifierConfig = "a" fusionMethodConfig = "a" mumboNB_ITER = 2 mumboClassifierConfig = "a" mumboclassifierNames = "a" -RandomForestKWARGS = {"classifier__n_estimators":map(int, args.CL_RF_trees.split())} -SVCKWARGS = {"classifier__kernel":args.CL_SVC_kernel.split(":"), "classifier__C":map(int,args.CL_SVC_C.split(":"))} -DecisionTreeKWARGS = {"classifier__max_depth":map(int,args.CL_DT_depth.split(":"))} -SGDKWARGS = {"classifier__alpha" : map(float,args.CL_SGD_alpha.split(":")), "classifier__loss":args.CL_SGD_loss.split(":"), - "classifier__penalty":args.CL_SGD_penalty.split(":")} -KNNKWARGS = {"classifier__n_neighbors": map(float,args.CL_KNN_neigh.split(":"))} - - -argumentDictionaries = {"Monoview":{}, "Multiview":[]} -# if benchmark["Monoview"]: -# for view in args.views.split(":"): -# argumentDictionaries["Monoview"][str(view)] = [] -# for classifier in benchmark["Monoview"]: -# arguments = {classifier+"KWARGS": globals()[classifier+"KWARGS"], "feat":view, "fileFeat": args.fileFeat, -# "fileCL": args.fileCL, "fileCLD": args.fileCLD, "CL_type": classifier, -# classifier+"KWARGS": globals()[classifier+"KWARGS"]} -# argumentDictionaries["Monoview"][str(view)].append(arguments) -# -# bestClassifiers = [] -# bestClassifiersConfigs = [] -# for viewIndex, viewArguments in enumerate(argumentDictionaries["Monoview"].values()): -# resultsMonoview = Parallel(n_jobs=nbCores)( -# delayed(ExecMonoview)(DATASET.get("View"+str(viewIndex)).value, DATASET.get("labels").value, args.name, -# args.CL_split, args.CL_nbFolds, 1, args.type, args.pathF, gridSearch=True, -# **arguments) -# for arguments in viewArguments) -# accuracies = [result[1] for result in resultsMonoview] -# classifiersNames = [result[0] for result in resultsMonoview] -# classifiersConfigs = [result[2] for result in resultsMonoview] -# bestClassifiers.append(classifiersNames[np.argmax(np.array(accuracies))]) -# bestClassifiersConfigs.append(classifiersConfigs[np.argmax(np.array(accuracies))]) -bestClassifiers = ["DecisionTree", "DecisionTree", "DecisionTree", "DecisionTree"] -bestClassifiersConfigs = [["1"],["1"],["1"],["1"]] + +RandomForestKWARGS = {"0":map(int, args.CL_RF_trees.split())} +SVMLinearKWARGS = {"0":map(int, args.CL_SVML_C.split(":"))} +SVMRBFKWARGS = {"0":map(int, args.CL_SVMR_C.split(":"))} +SVMPolyKWARGS = {"0":map(int, args.CL_SVMP_C.split(":")), '1':map(int, args.CL_SVMP_deg.split(":"))} +DecisionTreeKWARGS = {"0":map(int, args.CL_DT_depth.split(":"))} +SGDKWARGS = {"0": map(float, args.CL_SGD_alpha.split(":")), "1":args.CL_SGD_loss.split(":"), + "2": args.CL_SGD_penalty.split(":")} +KNNKWARGS = {"0": map(float, args.CL_KNN_neigh.split(":"))} +AdaboostKWARGS = {"0": args.CL_Ada_n_est.split(":"), "1": args.CL_Ada_b_est.split(":")} + + +argumentDictionaries = {"Monoview": {}, "Multiview": []} +if benchmark["Monoview"]: + for view in args.views.split(":"): + argumentDictionaries["Monoview"][str(view)] = [] + for classifier in benchmark["Monoview"]: + + arguments = {classifier+"KWARGS": globals()[classifier+"KWARGS"], "feat":view, "fileFeat": args.fileFeat, + "fileCL": args.fileCL, "fileCLD": args.fileCLD, "CL_type": classifier} + + argumentDictionaries["Monoview"][str(view)].append(arguments) +bestClassifiers = [] +bestClassifiersConfigs = [] +for viewIndex, viewArguments in enumerate(argumentDictionaries["Monoview"].values()): + resultsMonoview = Parallel(n_jobs=nbCores)( + delayed(ExecMonoview)(DATASET.get("View"+str(viewIndex)).value, DATASET.get("labels").value, args.name, + args.CL_split, args.CL_nbFolds, 1, args.type, args.pathF, gridSearch=True, + **arguments) + for arguments in viewArguments) + + accuracies = [result[1] for result in resultsMonoview] + classifiersNames = [result[0] for result in resultsMonoview] + classifiersConfigs = [result[2] for result in resultsMonoview] + bestClassifiers.append(classifiersNames[np.argmax(np.array(accuracies))]) + bestClassifiersConfigs.append(classifiersConfigs[np.argmax(np.array(accuracies))]) +# bestClassifiers = ["DecisionTree", "DecisionTree", "DecisionTree", "DecisionTree"] +# bestClassifiersConfigs = [["1"],["1"],["1"],["1"]] + if benchmark["Multiview"]: + if benchmark["Multiview"]["Mumbo"]: + for classifier in benchmark["Multiview"]["Mumbo"]: + arguments = {"CL_type": "Mumbo", + "views": args.views.split(":"), + "NB_VIEW": len(args.views.split(":")), + "NB_CLASS": len(args.CL_classes.split(":")), + "LABELS_NAMES": args.CL_classes.split(":"), + "MumboKWARGS": {"classifiersNames": ["DecisionTree", "DecisionTree", "DecisionTree", + "DecisionTree"], + "maxIter":int(args.MU_iter[0]), "minIter":int(args.MU_iter[1]), + "threshold":args.MU_iter[2]}} + argumentDictionaries["Multiview"].append(arguments) if benchmark["Multiview"]["Fusion"]: if benchmark["Multiview"]["Fusion"]["Methods"]["LateFusion"] and benchmark["Multiview"]["Fusion"]["Classifiers"]: for method in benchmark["Multiview"]["Fusion"]["Methods"]["LateFusion"]: - arguments = {"CL_type": "Fusion", - "views": args.views.split(":"), - "NB_VIEW": len(args.views.split(":")), - "NB_CLASS": len(args.CL_classes.split(":")), - "LABELS_NAMES": args.CL_classes.split(":"), - "FusionKWARGS": {"fusionType":"LateFusion", "fusionMethod":method, - "classifiersNames": bestClassifiers, - "classifiersConfigs": bestClassifiersConfigs, - 'fusionMethodConfig': fusionMethodConfig}, - "MumboKWARGS":""} - argumentDictionaries["Multiview"].append(arguments) + arguments = {"CL_type": "Fusion", + "views": args.views.split(":"), + "NB_VIEW": len(args.views.split(":")), + "NB_CLASS": len(args.CL_classes.split(":")), + "LABELS_NAMES": args.CL_classes.split(":"), + "FusionKWARGS": {"fusionType":"LateFusion", "fusionMethod":method, + "classifiersNames": bestClassifiers, + "classifiersConfigs": bestClassifiersConfigs, + 'fusionMethodConfig': fusionMethodConfig}} + argumentDictionaries["Multiview"].append(arguments) if benchmark["Multiview"]["Fusion"]["Methods"]["EarlyFusion"] and benchmark["Multiview"]["Fusion"]["Classifiers"]: for method in benchmark["Multiview"]["Fusion"]["Methods"]["EarlyFusion"]: for classifier in benchmark["Multiview"]["Fusion"]["Classifiers"]: arguments = {"CL_type": "Fusion", - "views": args.views.split(":"), - "NB_VIEW": len(args.views.split(":")), - "NB_CLASS": len(args.CL_classes.split(":")), - "LABELS_NAMES": args.CL_classes.split(":"), - "FusionKWARGS": {"fusionType":"EarlyFusion", "fusionMethod":method, - "classifiersNames": classifier, - "classifiersConfigs": fusionClassifierConfig, - 'fusionMethodConfig': fusionMethodConfig}, - "MumboKWARGS":""} + "views": args.views.split(":"), + "NB_VIEW": len(args.views.split(":")), + "NB_CLASS": len(args.CL_classes.split(":")), + "LABELS_NAMES": args.CL_classes.split(":"), + "FusionKWARGS": {"fusionType":"EarlyFusion", "fusionMethod":method, + "classifiersNames": classifier, + "classifiersConfigs": fusionClassifierConfig, + 'fusionMethodConfig': fusionMethodConfig}} argumentDictionaries["Multiview"].append(arguments) - if benchmark["Multiview"]["Mumbo"]: - #for classifier in benchmark["Multiview"]["Mumbo"]: - for i in range(int(np.power(len(args.views.split(":")), len(benchmark["Multiview"]["Mumbo"])))): - arguments = {"CL_type": "Mumbo", - "views": args.views.split(":"), - "NB_VIEW": len(args.views.split(":")), - "NB_CLASS": len(args.CL_classes.split(":")), - "LABELS_NAMES": args.CL_classes.split(":"), - "MumboKWARGS": {"classifiersConfigs": mumboClassifierConfig,"NB_ITER": mumboNB_ITER, - "classifiersNames": ["DecisionTree", "DecisionTree", "DecisionTree", "DecisionTree"]}, - "FusionKWARGS": ""} - argumentDictionaries["Multiview"].append(arguments) resultsMultiview = Parallel(n_jobs=nbCores)( delayed(ExecMultiview)(DATASET, args.name, args.CL_split, args.CL_nbFolds, 1, args.type, args.pathF, LABELS_DICTIONARY, gridSearch=True, **arguments) for arguments in argumentDictionaries["Multiview"]) -# for classifierType, argumentsList in argumentDictionaries.iteritems(): -# executionMethod = globals()["Exec"+classifierType] -# results[classifierType] = Parallel(n_jobs=args.CL_cores)(delayed(executionMethod) -# (args.name, args.CL_split,args.CL_nbFolds, 1, args.type, -# args.pathF, **arguments) -# for arguments in argumentsList) resultAnalysis(benchmark, results) print len(argumentDictionaries["Multiview"]), len(argumentDictionaries["Monoview"]) - -# views = args.views.split(":") -# dataBaseType = args.type -# NB_VIEW = len(views) -# mumboClassifierConfig = [argument.split(':') for argument in args.MU_config] -# -# LEARNING_RATE = args.CL_split -# nbFolds = args.CL_nbFolds -# NB_CLASS = args.CL_nb_class -# LABELS_NAMES = args.CL_classes.split(":") -# mumboclassifierNames = args.MU_type.split(':') -# mumboNB_ITER = args.MU_iter -# NB_CORES = args.CL_cores -# fusionClassifierNames = args.FU_cl_names.split(":") -# fusionClassifierConfig = [argument.split(':') for argument in args.FU_cl_config] -# fusionMethodConfig = [argument.split(':') for argument in args.FU_method_config] -# FusionKWARGS = {"fusionType":args.FU_type, "fusionMethod":args.FU_method, -# "monoviewClassifiersNames":fusionClassifierNames, "monoviewClassifiersConfigs":fusionClassifierConfig, -# 'fusionMethodConfig':fusionMethodConfig} -# MumboKWARGS = {"classifiersConfigs":mumboClassifierConfig, "NB_ITER":mumboNB_ITER, "classifiersNames":mumboclassifierNames} -# directory = os.path.dirname(os.path.abspath(__file__)) + "/Results/" -# logFileName = time.strftime("%Y%m%d-%H%M%S") + "-CMultiV-" + args.CL_type + "-" + "_".join(views) + "-" + args.name + \ -# "-LOG" -# logFile = directory + logFileName -# if os.path.isfile(logFile + ".log"): -# for i in range(1, 20): -# testFileName = logFileName + "-" + str(i) + ".log" -# if not (os.path.isfile(directory + testFileName)): -# logfile = directory + testFileName -# break -# else: -# logFile += ".log" -# logging.basicConfig(format='%(asctime)s %(levelname)s: %(message)s', filename=logFile, level=logging.DEBUG, -# filemode='w') -# if args.log: -# logging.getLogger().addHandler(logging.StreamHandler()) -# -# ExecMultiview(views, dataBaseType, args, NB_VIEW, LEARNING_RATE, nbFolds, NB_CLASS, LABELS_NAMES, NB_CORES, -# MumboKWARGS, FusionKWARGS) \ No newline at end of file diff --git a/Code/FeatExtraction/DBCrawl.py b/Code/MonoMutliViewClassifiers/FeatExtraction/DBCrawl.py similarity index 100% rename from Code/FeatExtraction/DBCrawl.py rename to Code/MonoMutliViewClassifiers/FeatExtraction/DBCrawl.py diff --git a/Code/FeatExtraction/ExecFeatExtraction.py b/Code/MonoMutliViewClassifiers/FeatExtraction/ExecFeatExtraction.py similarity index 100% rename from Code/FeatExtraction/ExecFeatExtraction.py rename to Code/MonoMutliViewClassifiers/FeatExtraction/ExecFeatExtraction.py diff --git a/Code/FeatExtraction/ExecFeatParaOpt.py b/Code/MonoMutliViewClassifiers/FeatExtraction/ExecFeatParaOpt.py similarity index 100% rename from Code/FeatExtraction/ExecFeatParaOpt.py rename to Code/MonoMutliViewClassifiers/FeatExtraction/ExecFeatParaOpt.py diff --git a/Code/FeatExtraction/FeatExtraction.py b/Code/MonoMutliViewClassifiers/FeatExtraction/FeatExtraction.py similarity index 100% rename from Code/FeatExtraction/FeatExtraction.py rename to Code/MonoMutliViewClassifiers/FeatExtraction/FeatExtraction.py diff --git a/Code/FeatExtraction/FeatParaOpt.py b/Code/MonoMutliViewClassifiers/FeatExtraction/FeatParaOpt.py similarity index 100% rename from Code/FeatExtraction/FeatParaOpt.py rename to Code/MonoMutliViewClassifiers/FeatExtraction/FeatParaOpt.py diff --git a/Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-ClassLabels-Description.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-ClassLabels-Description.csv similarity index 100% rename from Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-ClassLabels-Description.csv rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-ClassLabels-Description.csv diff --git a/Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-ClassLabels.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-ClassLabels.csv similarity index 100% rename from Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-ClassLabels.csv rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-ClassLabels.csv diff --git a/Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-HOG-CellDimension_5-nbOrientaions_8-nbClusters_20-Maxiter_100.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-HOG-CellDimension_5-nbOrientaions_8-nbClusters_20-Maxiter_100.csv similarity index 100% rename from Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-HOG-CellDimension_5-nbOrientaions_8-nbClusters_20-Maxiter_100.csv rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-HOG-CellDimension_5-nbOrientaions_8-nbClusters_20-Maxiter_100.csv diff --git a/Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-HSV-Bins_[16,16,16]-Norm_Distr.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-HSV-Bins_[16,16,16]-Norm_Distr.csv similarity index 100% rename from Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-HSV-Bins_[16,16,16]-Norm_Distr.csv rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-HSV-Bins_[16,16,16]-Norm_Distr.csv diff --git a/Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-RGB-Bins_16-MaxCI_256-Norm_Distr.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-RGB-Bins_16-MaxCI_256-Norm_Distr.csv similarity index 100% rename from Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-RGB-Bins_16-MaxCI_256-Norm_Distr.csv rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-RGB-Bins_16-MaxCI_256-Norm_Distr.csv diff --git a/Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-RGB_HSV_SIFT_SURF_HOG-LOG.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-RGB_HSV_SIFT_SURF_HOG-LOG.log similarity index 100% rename from Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-RGB_HSV_SIFT_SURF_HOG-LOG.log rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-RGB_HSV_SIFT_SURF_HOG-LOG.log diff --git a/Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-SIFT-Cluster_35-Norm_Distr.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-SIFT-Cluster_35-Norm_Distr.csv similarity index 100% rename from Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-SIFT-Cluster_35-Norm_Distr.csv rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-SIFT-Cluster_35-Norm_Distr.csv diff --git a/Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-SURF-Cluster_30-Norm_Distr.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-SURF-Cluster_30-Norm_Distr.csv similarity index 100% rename from Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-SURF-Cluster_30-Norm_Distr.csv rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-SURF-Cluster_30-Norm_Distr.csv diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-FeatParaOpt-HOG.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-FeatParaOpt-HOG.csv similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-FeatParaOpt-HOG.csv rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-FeatParaOpt-HOG.csv diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-Feature_HOG-Parameter_HOG_Cluster-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-Feature_HOG-Parameter_HOG_Cluster-ClassTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-Feature_HOG-Parameter_HOG_Cluster-ClassTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-Feature_HOG-Parameter_HOG_Cluster-ClassTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-Feature_HOG-Parameter_HOG_Cluster-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-Feature_HOG-Parameter_HOG_Cluster-FeatExtTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-Feature_HOG-Parameter_HOG_Cluster-FeatExtTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-Feature_HOG-Parameter_HOG_Cluster-FeatExtTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-Feature_HOG-Parameter_HOG_Cluster-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-Feature_HOG-Parameter_HOG_Cluster-TotalTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-Feature_HOG-Parameter_HOG_Cluster-TotalTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-Feature_HOG-Parameter_HOG_Cluster-TotalTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_22-FPO-Caltech-HOG-HOG_Cluster-LOG.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_22-FPO-Caltech-HOG-HOG_Cluster-LOG.log similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_22-FPO-Caltech-HOG-HOG_Cluster-LOG.log rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_22-FPO-Caltech-HOG-HOG_Cluster-LOG.log diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_22-FPO-Caltech-HOG-HOG_Cluster.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_22-FPO-Caltech-HOG-HOG_Cluster.csv similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_22-FPO-Caltech-HOG-HOG_Cluster.csv rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_22-FPO-Caltech-HOG-HOG_Cluster.csv diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-ClassTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-ClassTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-ClassTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-FeatExtTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-FeatExtTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-FeatExtTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-TotalTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-TotalTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-TotalTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-ClassTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-ClassTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-ClassTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-FeatExtTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-FeatExtTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-FeatExtTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-LOG.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-LOG.log similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-LOG.log rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-LOG.log diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-TotalTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-TotalTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-TotalTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster.csv similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster.csv rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster.csv diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-ClassTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-ClassTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-ClassTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-FeatExtTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-FeatExtTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-FeatExtTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-LOG.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-LOG.log similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-LOG.log rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-LOG.log diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-TotalTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-TotalTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-TotalTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins.csv similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins.csv rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins.csv diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-1.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-1.csv similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-1.csv rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-1.csv diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-ClassTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-ClassTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-ClassTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-FeatExtTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-FeatExtTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-FeatExtTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-LOG-1.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-LOG-1.log similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-LOG-1.log rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-LOG-1.log diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-TotalTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-TotalTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-TotalTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-1.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-1.csv similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-1.csv rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-1.csv diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-ClassTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-ClassTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-ClassTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-FeatExtTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-FeatExtTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-FeatExtTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-LOG-1.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-LOG-1.log similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-LOG-1.log rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-LOG-1.log diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-TotalTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-TotalTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-TotalTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-ClassTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-ClassTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-ClassTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-FeatExtTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-FeatExtTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-FeatExtTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-LOG.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-LOG.log similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-LOG.log rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-LOG.log diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-TotalTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-TotalTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-TotalTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins.csv similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins.csv rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins.csv diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-1.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-1.csv similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-1.csv rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-1.csv diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-ClassTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-ClassTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-ClassTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-FeatExtTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-FeatExtTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-FeatExtTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-LOG.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-LOG.log similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-LOG.log rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-LOG.log diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-TotalTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-TotalTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-TotalTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-ClassTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-ClassTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-ClassTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-FeatExtTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-FeatExtTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-FeatExtTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-LOG.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-LOG.log similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-LOG.log rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-LOG.log diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-TotalTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-TotalTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-TotalTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins.csv similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins.csv rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins.csv diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-ClassTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-ClassTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-ClassTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-FeatExtTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-FeatExtTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-FeatExtTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-LOG.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-LOG.log similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-LOG.log rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-LOG.log diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-TotalTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-TotalTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-TotalTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins.csv similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins.csv rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins.csv diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-1.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-1.csv similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-1.csv rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-1.csv diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-ClassTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-ClassTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-ClassTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-FeatExtTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-FeatExtTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-FeatExtTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-LOG-1.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-LOG-1.log similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-LOG-1.log rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-LOG-1.log diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-TotalTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-TotalTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-TotalTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_01_24-RGB-ClassificationTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_01_24-RGB-ClassificationTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_01_24-RGB-ClassificationTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_01_24-RGB-ClassificationTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_01_24-RGB-FeatExtractTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_01_24-RGB-FeatExtractTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_01_24-RGB-FeatExtractTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_01_24-RGB-FeatExtractTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_01_24-RGB-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_01_24-RGB-TotalTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_01_24-RGB-TotalTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_01_24-RGB-TotalTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_03_14-Results-RGB.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_03_14-Results-RGB.csv similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_03_14-Results-RGB.csv rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_03_14-Results-RGB.csv diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/Console-Output.txt b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/Console-Output.txt similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/Console-Output.txt rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/Console-Output.txt diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_CI-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_CI-ClassTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_CI-ClassTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_CI-ClassTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_CI-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_CI-FeatExtTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_CI-FeatExtTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_CI-FeatExtTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_CI-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_CI-TotalTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_CI-TotalTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_CI-TotalTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_MaxCI-LOG.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_MaxCI-LOG.log similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_MaxCI-LOG.log rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_MaxCI-LOG.log diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_MaxCI.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_MaxCI.csv similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_MaxCI.csv rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_MaxCI.csv diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-ClassTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-ClassTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-ClassTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-FeatExtTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-FeatExtTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-FeatExtTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-LOG.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-LOG.log similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-LOG.log rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-LOG.log diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-TotalTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-TotalTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-TotalTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster.csv similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster.csv rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster.csv diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-1.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-1.csv similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-1.csv rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-1.csv diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-ClassTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-ClassTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-ClassTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-FeatExtTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-FeatExtTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-FeatExtTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-LOG-1.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-LOG-1.log similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-LOG-1.log rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-LOG-1.log diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-TotalTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-TotalTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-TotalTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-ClassTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-ClassTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-ClassTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-FeatExtTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-FeatExtTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-FeatExtTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-LOG.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-LOG.log similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-LOG.log rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-LOG.log diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-TotalTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-TotalTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-TotalTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster.csv similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster.csv rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster.csv diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-1.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-1.csv similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-1.csv rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-1.csv diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-ClassTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-ClassTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-ClassTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-FeatExtTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-FeatExtTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-FeatExtTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-LOG-1.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-LOG-1.log similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-LOG-1.log rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-LOG-1.log diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-TotalTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-TotalTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-TotalTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/2016_01_28-Results-SURF.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/2016_01_28-Results-SURF.csv similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/2016_01_28-Results-SURF.csv rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/2016_01_28-Results-SURF.csv diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/Console-Output.txt b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/Console-Output.txt similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/Console-Output.txt rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/Console-Output.txt diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/ScoreClassificationTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/ScoreClassificationTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/ScoreClassificationTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/ScoreClassificationTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/ScoreFeatExtractionTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/ScoreFeatExtractionTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/ScoreFeatExtractionTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/ScoreFeatExtractionTime.png diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/ScoreTotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/ScoreTotalTime.png similarity index 100% rename from Code/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/ScoreTotalTime.png rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/ScoreTotalTime.png diff --git a/Code/FeatExtraction/__init__.py b/Code/MonoMutliViewClassifiers/FeatExtraction/__init__.py similarity index 100% rename from Code/FeatExtraction/__init__.py rename to Code/MonoMutliViewClassifiers/FeatExtraction/__init__.py diff --git a/Code/FeatExtraction/hog_extraction.py b/Code/MonoMutliViewClassifiers/FeatExtraction/hog_extraction.py similarity index 100% rename from Code/FeatExtraction/hog_extraction.py rename to Code/MonoMutliViewClassifiers/FeatExtraction/hog_extraction.py diff --git a/Code/FeatExtraction/hog_extraction_parallelized.py b/Code/MonoMutliViewClassifiers/FeatExtraction/hog_extraction_parallelized.py similarity index 100% rename from Code/FeatExtraction/hog_extraction_parallelized.py rename to Code/MonoMutliViewClassifiers/FeatExtraction/hog_extraction_parallelized.py diff --git a/Code/Monoview/ClassifMonoView.py b/Code/MonoMutliViewClassifiers/Monoview/ClassifMonoView.py similarity index 90% rename from Code/Monoview/ClassifMonoView.py rename to Code/MonoMutliViewClassifiers/Monoview/ClassifMonoView.py index d5b246b16a546f69a97b160f32d75edd38bba8cd..ebbad0fcd72787b41e9f3a9ea5638b50ecc6b832 100644 --- a/Code/Monoview/ClassifMonoView.py +++ b/Code/MonoMutliViewClassifiers/Monoview/ClassifMonoView.py @@ -168,16 +168,27 @@ def MonoviewClassifRandomForest(X_train, y_train, nbFolds=4, nbCores=1, **kwargs return description, rf_detector -def MonoviewClassifSVC(X_train, y_train, nbFolds=4, nbCores=1, **kwargs): - pipeline_SVC = Pipeline([('classifier', sklearn.svm.SVC())]) - param_SVC = kwargs +def MonoviewClassifSVMLinear(X_train, y_train, nbFolds=4, nbCores=1, **kwargs): + pipeline_SVMLinear = Pipeline([('classifier', sklearn.svm.SVC())]) + param_SVMLinear = kwargs - grid_SVC = GridSearchCV(pipeline_SVC, param_grid=param_SVC, refit=True, n_jobs=nbCores, scoring='accuracy', + grid_SVMLinear = GridSearchCV(pipeline_SVMLinear, param_grid=param_SVMLinear, refit=True, n_jobs=nbCores, scoring='accuracy', cv=nbFolds) - SVC_detector = grid_SVC.fit(X_train, y_train) - desc_params = [SVC_detector.best_params_["classifier__C"], SVC_detector.best_params_["classifier__kernel"]] + SVMLinear_detector = grid_SVMLinear.fit(X_train, y_train) + desc_params = [SVMLinear_detector.best_params_["classifier__C"]] description = "Classif_" + "SVC" + "-" + "CV_" + str(nbFolds) + "-" + "-".join(map(str,desc_params)) - return description, SVC_detector + return description, SVMLinear_detector + +def MonoviewClassifSVMRBF(X_train, y_train, nbFolds=4, nbCores=1, **kwargs): + pipeline_SVMRBF = Pipeline([('classifier', sklearn.svm.SVC())]) + param_SVMRBF = kwargs + + grid_SVMRBF = GridSearchCV(pipeline_SVMRBF, param_grid=param_SVMRBF, refit=True, n_jobs=nbCores, scoring='accuracy', + cv=nbFolds) + SVMRBF_detector = grid_SVMRBF.fit(X_train, y_train) + desc_params = [SVMRBF_detector.best_params_["classifier__C"]] + description = "Classif_" + "SVC" + "-" + "CV_" + str(nbFolds) + "-" + "-".join(map(str,desc_params)) + return description, SVMRBF_detector def MonoviewClassifDecisionTree(X_train, y_train, nbFolds=4, nbCores=1, **kwargs): diff --git a/Code/Monoview/ExecClassifMonoView.py b/Code/MonoMutliViewClassifiers/Monoview/ExecClassifMonoView.py similarity index 62% rename from Code/Monoview/ExecClassifMonoView.py rename to Code/MonoMutliViewClassifiers/Monoview/ExecClassifMonoView.py index 04a271e7ea188ee11d08703307e8e5bc7a401f7c..55d4e86f2ecd52fb2e0e7d4e9ef304a09608d554 100644 --- a/Code/Monoview/ExecClassifMonoView.py +++ b/Code/MonoMutliViewClassifiers/Monoview/ExecClassifMonoView.py @@ -19,7 +19,7 @@ import h5py # Import own modules import ClassifMonoView # Functions for classification import ExportResults # Functions to render results - +import MonoviewClassifiers # Author-Info __author__ = "Nikolas Huelsmann, Baptiste BAUVIN" @@ -58,10 +58,10 @@ def ExecMonoview(X, Y, name, learningRate, nbFolds, nbCores, databaseType, path, logging.debug("Start:\t Classification") - classifierFunction = getattr(ClassifMonoView, "MonoviewClassif"+CL_type) + classifierModule = getattr(MonoviewClassifiers, CL_type) + classifierFunction = getattr(classifierModule, "fit_gridsearch") - cl_desc, cl_res = classifierFunction(X_train, y_train, nbFolds=nbFolds, nbCores=nbCores, - **classifierKWARGS) + cl_desc, cl_res = classifierFunction(X_train, y_train, nbFolds=nbFolds, nbCores=nbCores,**classifierKWARGS) t_end = time.time() - t_start # Add result to Results DF @@ -91,37 +91,38 @@ def ExecMonoview(X, Y, name, learningRate, nbFolds, nbCores, databaseType, path, #Accuracy classification score accuracy_score = ExportResults.accuracy_score(y_test, y_test_pred) - - # Classification Report with Precision, Recall, F1 , Support - logging.debug("Info:\t Classification report:") - filename = datetime.datetime.now().strftime("%Y_%m_%d") + "-CMV-" + name + "-" + feat + "-Report" - logging.debug("\n" + str(metrics.classification_report(y_test, y_test_pred, labels = range(0,len(classLabelsDesc.name)), target_names=classLabelsNamesList))) - scores_df = ExportResults.classification_report_df(directory, filename, y_test, y_test_pred, range(0, len(classLabelsDesc.name)), classLabelsNamesList) - - # Create some useful statistcs - logging.debug("Info:\t Statistics:") - filename = datetime.datetime.now().strftime("%Y_%m_%d") + "-CMV-" + name + "-" + feat + "-Stats" - stats_df = ExportResults.classification_stats(directory, filename, scores_df, accuracy_score) - logging.debug("\n" + stats_df.to_string()) - - # Confusion Matrix - logging.debug("Info:\t Calculate Confusionmatrix") - filename = datetime.datetime.now().strftime("%Y_%m_%d") + "-CMV-" + name + "-" + feat + "-ConfMatrix" - df_conf_norm = ExportResults.confusion_matrix_df(directory, filename, y_test, y_test_pred, classLabelsNamesList) - filename = datetime.datetime.now().strftime("%Y_%m_%d") + "-CMV-" + name + "-" + feat + "-ConfMatrixImg" - ExportResults.plot_confusion_matrix(directory, filename, df_conf_norm) - - logging.debug("Done:\t Statistic Results") - - - # Plot Result - logging.debug("Start:\t Plot Result") - np_score = ExportResults.calcScorePerClass(y_test, cl_res.predict(X_test).astype(int)) - ### directory and filename the same as CSV Export - filename = datetime.datetime.now().strftime("%Y_%m_%d") + "-CMV-" + name + "-" + feat + "-Score" - ExportResults.showResults(directory, filename, name, feat, np_score) - logging.debug("Done:\t Plot Result") - return [CL_type, accuracy_score, cl_desc] + logging.info("Accuracy :" +str(accuracy_score)) + + # # Classification Report with Precision, Recall, F1 , Support + # logging.debug("Info:\t Classification report:") + # filename = datetime.datetime.now().strftime("%Y_%m_%d") + "-CMV-" + name + "-" + feat + "-Report" + # logging.debug("\n" + str(metrics.classification_report(y_test, y_test_pred, labels = range(0,len(classLabelsDesc.name)), target_names=classLabelsNamesList))) + # scores_df = ExportResults.classification_report_df(directory, filename, y_test, y_test_pred, range(0, len(classLabelsDesc.name)), classLabelsNamesList) + # + # # Create some useful statistcs + # logging.debug("Info:\t Statistics:") + # filename = datetime.datetime.now().strftime("%Y_%m_%d") + "-CMV-" + name + "-" + feat + "-Stats" + # stats_df = ExportResults.classification_stats(directory, filename, scores_df, accuracy_score) + # logging.debug("\n" + stats_df.to_string()) + # + # # Confusion Matrix + # logging.debug("Info:\t Calculate Confusionmatrix") + # filename = datetime.datetime.now().strftime("%Y_%m_%d") + "-CMV-" + name + "-" + feat + "-ConfMatrix" + # df_conf_norm = ExportResults.confusion_matrix_df(directory, filename, y_test, y_test_pred, classLabelsNamesList) + # filename = datetime.datetime.now().strftime("%Y_%m_%d") + "-CMV-" + name + "-" + feat + "-ConfMatrixImg" + # ExportResults.plot_confusion_matrix(directory, filename, df_conf_norm) + # + # logging.debug("Done:\t Statistic Results") + # + # + # # Plot Result + # logging.debug("Start:\t Plot Result") + # np_score = ExportResults.calcScorePerClass(y_test, cl_res.predict(X_test).astype(int)) + # ### directory and filename the same as CSV Export + # filename = datetime.datetime.now().strftime("%Y_%m_%d") + "-CMV-" + name + "-" + feat + "-Score" + # ExportResults.showResults(directory, filename, name, feat, np_score) + # logging.debug("Done:\t Plot Result") + # return [CL_type, accuracy_score, cl_desc] if __name__=='__main__': @@ -131,7 +132,7 @@ if __name__=='__main__': groupStandard = parser.add_argument_group('Standard arguments') groupStandard.add_argument('-log', action='store_true', help='Use option to activate Logging to Console') - groupStandard.add_argument('--type', metavar='STRING', action='store', help='Type of Dataset', default="hdf5") + groupStandard.add_argument('--type', metavar='STRING', action='store', help='Type of Dataset', default=".hdf5") groupStandard.add_argument('--name', metavar='STRING', action='store', help='Name of Database (default: %(default)s)', default='DB') groupStandard.add_argument('--feat', metavar='STRING', action='store', help='Name of Feature for Classification (default: %(default)s)', default='RGB') groupStandard.add_argument('--pathF', metavar='STRING', action='store', help='Path to the views (default: %(default)s)', default='Results-FeatExtr/') @@ -147,34 +148,39 @@ if __name__=='__main__': groupClass.add_argument('--CL_split', metavar='FLOAT', action='store', help='Split ratio for train and test', type=float, default=0.9) - groupRF = parser.add_argument_group('Random Forest arguments') - groupRF.add_argument('--CL_RF_trees', metavar='STRING', action='store', help='GridSearch: Determine the trees', default='25 75 125 175') - - groupSVC = parser.add_argument_group('SVC arguments') - groupSVC.add_argument('--CL_SVC_kernel', metavar='STRING', action='store', help='GridSearch : Kernels used', default='linear') - groupSVC.add_argument('--CL_SVC_C', metavar='STRING', action='store', help='GridSearch : Penalty parameters used', default='1:10:100:1000') + groupClassifier = parser.add_argument_group('Classifier Config') + groupClassifier.add_argument('--CL_config', metavar='STRING', nargs="+", action='store', help='GridSearch: Determine the trees', default=['25:75:125:175']) - groupRF = parser.add_argument_group('Decision Trees arguments') - groupRF.add_argument('--CL_DT_depth', metavar='STRING', action='store', help='GridSearch: Determine max depth for Decision Trees', default='1:3:5:7') - - groupSGD = parser.add_argument_group('SGD arguments') - groupSGD.add_argument('--CL_SGD_alpha', metavar='STRING', action='store', help='GridSearch: Determine alpha for SGDClassifier', default='0.1:0.2:0.5:0.9') - groupSGD.add_argument('--CL_SGD_loss', metavar='STRING', action='store', help='GridSearch: Determine loss for SGDClassifier', default='log') - groupSGD.add_argument('--CL_SGD_penalty', metavar='STRING', action='store', help='GridSearch: Determine penalty for SGDClassifier', default='l2') + # groupSVMLinear = parser.add_argument_group('SVC arguments') + # groupSVMLinear.add_argument('--CL_SVML_C', metavar='STRING', action='store', help='GridSearch : Penalty parameters used', default='1:10:100:1000') + # + # groupSVMRBF = parser.add_argument_group('SVC arguments') + # groupSVMRBF.add_argument('--CL_SVMR_C', metavar='STRING', action='store', help='GridSearch : Penalty parameters used', default='1:10:100:1000') + # + # groupRF = parser.add_argument_group('Decision Trees arguments') + # groupRF.add_argument('--CL_DT_depth', metavar='STRING', action='store', help='GridSearch: Determine max depth for Decision Trees', default='1:3:5:7') + # + # groupSGD = parser.add_argument_group('SGD') + # groupSGD.add_argument('--CL_SGD_alpha', metavar='STRING', action='store', help='GridSearch: Determine alpha for SGDClassifier', default='0.1:0.2:0.5:0.9') + # groupSGD.add_argument('--CL_SGD_loss', metavar='STRING', action='store', help='GridSearch: Determine loss for SGDClassifier', default='log') + # groupSGD.add_argument('--CL_SGD_penalty', metavar='STRING', action='store', help='GridSearch: Determine penalty for SGDClassifier', default='l2') args = parser.parse_args() - RandomForestKWARGS = {"classifier__n_estimators":map(int, args.CL_RF_trees.split())} - SVCKWARGS = {"classifier__kernel":args.CL_SVC_kernel.split(":"), "classifier__C":map(int,args.CL_SVC_C.split(":"))} - DecisionTreeKWARGS = {"classifier__max_depth":map(int,args.CL_DT_depth.split(":"))} - SGDKWARGS = {"classifier__alpha" : map(float,args.CL_SGD_alpha.split(":")), "classifier__loss":args.CL_SGD_loss.split(":"), - "classifier__penalty":args.CL_SGD_penalty.split(":")} + + # RandomForestKWARGS = {"classifier__n_estimators":map(int, args.CL_RF_trees.split())} + # SVMLinearKWARGS = {"classifier__C":map(int,args.CL_SVML_C.split(":"))} + # SVMRBFKWARGS = {"classifier__C":map(int,args.CL_SVMR_C.split(":"))} + # DecisionTreeKWARGS = {"classifier__max_depth":map(int,args.CL_DT_depth.split(":"))} + # SGDKWARGS = {"classifier__alpha" : map(float,args.CL_SGD_alpha.split(":")), "classifier__loss":args.CL_SGD_loss.split(":"), + # "classifier__penalty":args.CL_SGD_penalty.split(":")} + classifierKWARGS = dict((key, value) for key, value in enumerate([arg.split(":") for arg in args.CL_config])) ### Main Programm # Configure Logger directory = os.path.dirname(os.path.abspath(__file__)) + "/Results-ClassMonoView/" - logfilename= datetime.datetime.now().strftime("%Y_%m_%d") + "-CMV-" + args.name + "-" + args.feat + "-LOG" + logfilename = datetime.datetime.now().strftime("%Y_%m_%d") + "-CMV-" + args.name + "-" + args.feat + "-LOG" logfile = directory + logfilename if os.path.isfile(logfile + ".log"): for i in range(1,20): @@ -194,7 +200,7 @@ if __name__=='__main__': # Read the features logging.debug("Start:\t Read " + args.type + " Files") - if args.databaseType == ".csv": + if args.type == ".csv": X = np.genfromtxt(args.pathF + args.fileFeat, delimiter=';') Y = np.genfromtxt(args.pathF + args.fileCL, delimiter=';') elif args.type == ".hdf5": @@ -206,7 +212,6 @@ if __name__=='__main__': logging.debug("Info:\t Shape of Feature:" + str(X.shape) + ", Length of classLabels vector:" + str(Y.shape)) logging.debug("Done:\t Read CSV Files") - arguments = {"RandomForestKWARGS": RandomForestKWARGS, "SVCKWARGS": SVCKWARGS, - "DecisionTreeKWARGS": DecisionTreeKWARGS, "SGDKWARGS": SGDKWARGS, "feat":args.feat, - "fileFeat": args.fileFeat, "fileCL": args.fileCL, "fileCLD": args.fileCLD, "CL_type": args.CL_type} + arguments = {args.CL_type+"KWARGS": classifierKWARGS, "feat":args.feat,"fileFeat": args.fileFeat, + "fileCL": args.fileCL, "fileCLD": args.fileCLD, "CL_type": args.CL_type} ExecMonoview(X, Y, args.name, args.CL_split, args.CL_CV, args.CL_Cores, args.type, args.pathF, **arguments) diff --git a/Code/Monoview/ExecPlot.py b/Code/MonoMutliViewClassifiers/Monoview/ExecPlot.py similarity index 100% rename from Code/Monoview/ExecPlot.py rename to Code/MonoMutliViewClassifiers/Monoview/ExecPlot.py diff --git a/Code/Monoview/ExportResults.py b/Code/MonoMutliViewClassifiers/Monoview/ExportResults.py similarity index 100% rename from Code/Monoview/ExportResults.py rename to Code/MonoMutliViewClassifiers/Monoview/ExportResults.py diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-1.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-1.log similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-1.log rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-1.log diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-2.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-2.log similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-2.log rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-2.log diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-3.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-3.log similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-3.log rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-3.log diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-4.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-4.log similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-4.log rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-4.log diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-5.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-5.log similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-5.log rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-5.log diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-6.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-6.log similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-6.log rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-6.log diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-7.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-7.log similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-7.log rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-7.log diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG.log similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG.log rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG.log diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-1.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-1.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-1.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-2.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-2.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-2.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-3.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-3.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-3.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-4.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-4.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-4.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-5.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-5.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-5.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-1.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-1.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-1.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-10.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-10.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-10.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-11.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-11.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-11.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-12.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-12.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-12.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-13.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-13.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-13.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-14.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-14.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-14.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-14.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-15.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-15.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-15.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-15.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-16.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-16.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-16.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-16.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-17.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-17.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-17.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-17.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-18.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-18.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-18.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-18.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-19.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-19.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-19.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-19.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-2.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-2.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-2.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-3.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-3.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-3.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-4.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-4.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-4.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-5.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-5.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-5.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-6.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-6.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-6.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-7.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-7.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-7.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-8.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-8.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-8.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-9.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-9.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-9.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-1.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-1.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-1.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-10.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-10.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-10.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-10.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-11.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-11.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-11.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-11.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-12.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-12.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-12.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-12.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-13.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-13.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-13.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-13.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-14.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-14.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-14.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-14.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-15.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-15.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-15.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-15.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-16.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-16.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-16.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-16.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-17.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-17.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-17.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-17.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-18.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-18.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-18.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-18.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-19.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-19.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-19.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-19.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-2.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-2.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-2.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-3.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-3.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-3.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-4.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-4.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-4.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-5.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-5.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-5.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-6.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-6.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-6.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-7.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-7.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-7.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-8.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-8.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-8.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-8.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-9.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-9.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-9.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-9.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-1.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-1.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-1.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-10.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-10.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-10.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-11.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-11.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-11.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-12.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-12.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-12.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-13.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-13.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-13.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-14.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-14.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-14.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-14.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-15.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-15.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-15.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-15.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-16.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-16.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-16.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-16.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-17.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-17.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-17.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-17.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-18.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-18.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-18.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-18.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-19.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-19.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-19.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-19.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-2.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-2.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-2.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-3.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-3.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-3.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-4.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-4.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-4.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-5.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-5.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-5.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-6.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-6.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-6.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-7.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-7.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-7.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-8.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-8.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-8.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-9.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-9.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-9.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-1.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-1.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-1.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-10.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-10.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-10.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-10.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-11.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-11.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-11.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-11.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-12.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-12.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-12.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-12.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-13.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-13.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-13.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-13.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-14.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-14.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-14.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-14.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-15.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-15.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-15.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-15.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-16.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-16.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-16.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-16.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-17.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-17.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-17.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-17.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-18.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-18.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-18.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-18.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-19.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-19.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-19.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-19.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-2.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-2.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-2.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-3.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-3.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-3.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-4.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-4.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-4.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-5.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-5.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-5.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-6.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-6.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-6.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-7.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-7.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-7.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-8.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-8.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-8.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-8.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-9.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-9.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-9.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-9.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-1.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-1.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-1.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-10.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-10.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-10.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-11.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-11.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-11.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-12.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-12.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-12.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-13.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-13.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-13.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-14.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-14.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-14.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-14.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-15.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-15.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-15.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-15.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-16.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-16.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-16.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-16.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-17.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-17.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-17.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-17.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-18.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-18.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-18.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-18.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-19.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-19.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-19.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-19.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-2.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-2.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-2.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-3.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-3.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-3.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-4.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-4.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-4.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-5.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-5.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-5.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-6.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-6.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-6.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-7.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-7.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-7.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-8.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-8.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-8.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-9.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-9.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-9.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-1.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-1.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-1.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-10.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-10.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-10.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-11.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-11.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-11.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-12.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-12.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-12.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-13.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-13.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-13.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-14.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-14.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-14.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-14.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-15.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-15.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-15.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-15.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-16.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-16.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-16.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-16.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-17.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-17.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-17.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-17.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-18.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-18.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-18.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-18.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-19.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-19.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-19.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-19.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-2.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-2.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-2.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-3.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-3.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-3.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-4.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-4.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-4.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-5.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-5.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-5.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-6.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-6.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-6.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-7.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-7.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-7.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-8.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-8.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-8.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-9.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-9.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-9.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-1.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-1.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-1.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-10.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-10.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-10.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-10.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-11.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-11.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-11.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-11.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-12.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-12.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-12.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-12.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-13.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-13.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-13.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-13.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-14.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-14.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-14.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-14.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-15.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-15.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-15.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-15.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-16.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-16.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-16.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-16.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-17.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-17.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-17.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-17.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-18.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-18.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-18.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-18.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-19.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-19.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-19.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-19.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-2.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-2.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-2.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-3.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-3.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-3.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-4.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-4.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-4.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-5.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-5.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-5.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-6.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-6.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-6.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-7.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-7.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-7.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-8.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-8.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-8.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-8.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-9.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-9.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-9.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-9.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-1.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-1.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-1.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-10.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-10.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-10.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-11.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-11.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-11.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-12.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-12.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-12.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-13.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-13.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-13.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-14.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-14.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-14.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-14.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-15.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-15.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-15.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-15.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-16.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-16.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-16.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-16.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-17.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-17.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-17.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-17.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-18.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-18.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-18.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-18.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-19.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-19.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-19.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-19.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-2.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-2.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-2.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-3.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-3.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-3.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-4.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-4.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-4.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-5.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-5.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-5.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-6.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-6.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-6.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-7.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-7.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-7.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-8.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-8.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-8.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-9.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-9.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-9.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-1.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-1.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-1.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-10.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-10.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-10.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-10.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-11.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-11.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-11.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-11.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-12.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-12.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-12.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-12.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-13.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-13.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-13.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-13.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-14.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-14.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-14.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-14.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-15.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-15.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-15.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-15.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-16.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-16.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-16.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-16.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-17.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-17.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-17.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-17.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-18.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-18.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-18.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-18.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-19.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-19.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-19.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-19.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-2.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-2.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-2.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-3.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-3.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-3.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-4.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-4.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-4.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-5.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-5.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-5.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-6.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-6.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-6.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-7.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-7.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-7.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-8.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-8.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-8.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-8.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-9.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-9.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-9.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-9.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-1.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-1.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-1.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-10.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-10.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-10.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-11.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-11.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-11.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-12.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-12.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-12.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-13.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-13.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-13.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-14.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-14.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-14.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-14.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-15.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-15.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-15.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-15.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-16.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-16.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-16.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-16.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-17.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-17.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-17.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-17.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-18.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-18.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-18.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-18.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-19.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-19.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-19.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-19.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-2.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-2.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-2.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-3.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-3.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-3.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-4.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-4.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-4.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-5.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-5.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-5.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-6.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-6.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-6.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-7.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-7.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-7.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-8.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-8.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-8.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-9.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-9.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-9.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-1.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-1.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-1.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-2.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-2.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-2.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-3.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-3.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-3.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-4.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-4.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-4.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-5.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-5.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-5.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-6.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-6.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-6.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-7.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-7.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-7.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-8.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-8.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-8.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-1.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-1.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-1.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-10.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-10.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-10.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-11.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-11.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-11.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-12.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-12.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-12.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-13.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-13.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-13.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-14.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-14.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-14.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-14.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-15.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-15.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-15.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-15.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-16.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-16.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-16.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-16.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-17.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-17.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-17.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-17.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-18.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-18.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-18.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-18.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-19.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-19.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-19.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-19.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-2.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-2.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-2.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-3.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-3.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-3.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-4.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-4.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-4.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-5.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-5.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-5.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-6.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-6.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-6.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-7.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-7.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-7.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-8.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-8.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-8.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-9.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-9.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-9.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-1.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-1.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-1.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-10.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-10.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-10.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-10.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-11.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-11.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-11.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-11.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-12.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-12.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-12.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-12.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-13.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-13.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-13.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-13.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-14.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-14.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-14.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-14.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-15.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-15.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-15.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-15.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-16.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-16.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-16.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-16.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-17.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-17.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-17.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-17.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-18.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-18.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-18.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-18.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-19.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-19.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-19.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-19.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-2.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-2.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-2.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-3.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-3.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-3.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-4.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-4.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-4.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-5.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-5.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-5.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-6.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-6.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-6.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-7.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-7.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-7.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-8.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-8.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-8.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-8.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-9.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-9.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-9.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-9.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-1.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-1.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-1.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-10.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-10.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-10.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-11.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-11.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-11.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-12.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-12.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-12.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-13.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-13.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-13.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-14.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-14.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-14.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-14.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-15.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-15.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-15.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-15.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-16.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-16.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-16.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-16.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-17.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-17.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-17.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-17.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-18.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-18.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-18.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-18.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-19.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-19.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-19.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-19.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-2.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-2.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-2.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-3.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-3.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-3.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-4.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-4.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-4.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-5.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-5.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-5.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-6.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-6.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-6.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-7.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-7.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-7.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-8.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-8.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-8.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-9.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-9.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-9.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-1.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-1.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-1.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-10.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-10.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-10.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-10.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-11.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-11.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-11.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-11.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-12.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-12.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-12.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-12.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-13.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-13.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-13.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-13.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-14.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-14.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-14.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-14.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-15.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-15.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-15.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-15.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-16.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-16.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-16.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-16.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-17.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-17.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-17.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-17.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-18.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-18.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-18.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-18.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-19.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-19.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-19.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-19.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-2.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-2.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-2.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-3.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-3.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-3.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-4.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-4.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-4.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-5.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-5.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-5.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-6.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-6.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-6.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-7.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-7.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-7.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-8.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-8.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-8.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-8.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-9.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-9.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-9.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-9.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-1.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-1.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-1.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-10.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-10.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-10.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-11.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-11.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-11.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-12.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-12.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-12.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-13.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-13.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-13.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-14.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-14.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-14.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-14.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-15.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-15.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-15.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-15.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-16.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-16.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-16.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-16.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-17.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-17.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-17.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-17.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-18.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-18.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-18.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-18.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-19.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-19.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-19.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-19.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-2.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-2.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-2.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-3.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-3.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-3.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-4.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-4.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-4.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-5.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-5.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-5.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-6.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-6.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-6.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-7.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-7.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-7.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-8.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-8.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-8.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-9.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-9.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-9.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-1.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-1.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-1.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-2.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-2.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-2.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-3.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-3.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-3.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-4.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-4.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-4.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-5.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-5.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-5.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-6.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-6.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-6.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-7.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-7.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-7.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-1.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-1.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-1.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-10.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-10.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-10.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-11.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-11.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-11.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-12.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-12.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-12.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-13.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-13.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-13.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-14.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-14.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-14.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-14.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-15.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-15.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-15.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-15.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-16.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-16.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-16.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-16.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-17.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-17.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-17.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-17.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-18.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-18.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-18.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-18.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-19.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-19.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-19.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-19.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-2.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-2.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-2.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-3.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-3.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-3.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-4.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-4.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-4.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-5.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-5.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-5.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-6.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-6.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-6.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-7.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-7.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-7.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-8.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-8.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-8.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-9.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-9.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-9.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-1.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-1.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-1.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-10.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-10.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-10.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-10.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-11.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-11.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-11.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-11.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-12.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-12.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-12.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-12.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-13.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-13.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-13.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-13.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-14.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-14.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-14.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-14.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-15.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-15.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-15.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-15.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-16.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-16.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-16.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-16.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-17.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-17.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-17.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-17.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-18.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-18.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-18.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-18.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-19.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-19.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-19.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-19.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-2.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-2.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-2.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-3.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-3.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-3.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-4.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-4.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-4.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-5.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-5.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-5.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-6.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-6.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-6.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-7.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-7.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-7.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-8.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-8.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-8.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-8.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-9.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-9.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-9.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-9.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-1.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-1.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-1.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-10.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-10.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-10.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-11.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-11.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-11.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-12.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-12.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-12.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-13.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-13.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-13.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-14.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-14.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-14.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-14.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-15.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-15.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-15.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-15.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-16.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-16.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-16.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-16.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-17.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-17.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-17.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-17.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-18.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-18.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-18.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-18.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-19.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-19.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-19.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-19.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-2.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-2.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-2.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-3.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-3.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-3.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-4.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-4.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-4.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-5.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-5.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-5.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-6.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-6.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-6.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-7.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-7.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-7.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-8.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-8.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-8.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-9.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-9.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-9.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-1.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-1.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-1.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-10.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-10.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-10.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-10.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-11.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-11.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-11.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-11.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-12.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-12.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-12.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-12.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-13.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-13.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-13.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-13.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-14.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-14.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-14.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-14.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-15.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-15.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-15.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-15.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-16.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-16.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-16.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-16.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-17.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-17.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-17.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-17.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-18.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-18.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-18.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-18.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-19.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-19.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-19.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-19.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-2.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-2.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-2.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-3.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-3.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-3.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-4.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-4.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-4.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-5.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-5.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-5.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-6.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-6.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-6.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-7.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-7.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-7.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-8.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-8.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-8.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-8.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-9.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-9.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-9.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-9.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-1.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-1.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-1.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-10.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-10.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-10.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-11.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-11.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-11.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-12.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-12.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-12.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-13.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-13.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-13.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-14.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-14.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-14.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-14.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-15.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-15.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-15.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-15.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-16.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-16.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-16.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-16.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-17.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-17.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-17.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-17.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-18.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-18.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-18.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-18.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-19.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-19.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-19.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-19.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-2.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-2.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-2.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-3.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-3.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-3.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-4.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-4.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-4.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-5.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-5.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-5.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-6.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-6.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-6.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-7.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-7.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-7.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-8.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-8.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-8.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-9.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-9.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-9.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-1.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-1.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-1.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-2.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-2.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-2.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-3.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-3.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-3.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-4.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-4.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-4.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-1.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-1.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-1.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-2.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-2.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-2.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-3.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-3.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-3.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-4.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-4.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-4.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-1.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-1.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-1.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-2.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-2.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-2.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-3.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-3.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-3.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-4.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-4.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-4.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-1.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-1.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-1.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-2.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-2.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-2.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-3.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-3.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-3.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-4.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-4.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-4.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-1.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-1.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-1.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-2.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-2.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-2.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-3.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-3.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-3.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-4.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-4.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-4.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-1.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-1.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-1.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-2.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-2.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-2.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-3.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-3.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-3.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-4.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-4.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-4.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-1.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-1.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-1.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-2.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-2.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-2.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-3.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-3.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-3.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-4.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-4.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-4.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-1.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-1.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-1.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-2.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-2.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-2.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-3.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-3.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-3.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-4.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-4.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-4.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-1.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-1.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-1.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-2.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-2.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-2.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-3.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-3.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-3.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-4.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-4.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-4.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-1.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-1.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-1.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-2.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-2.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-2.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-3.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-3.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-3.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-4.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-4.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-4.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-1.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-1.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-1.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-2.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-2.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-2.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-3.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-3.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-3.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-4.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-4.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-4.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-5.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-5.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-5.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-1.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-1.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-1.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-2.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-2.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-2.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-3.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-3.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-3.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-4.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-4.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-4.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-5.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-5.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-5.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-1.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-1.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-1.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-2.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-2.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-2.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-3.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-3.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-3.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-4.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-4.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-4.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-5.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-5.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-5.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-1.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-1.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-1.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-2.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-2.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-2.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-3.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-3.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-3.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-4.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-4.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-4.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-5.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-5.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-5.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-1.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-1.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-1.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-2.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-2.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-2.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-3.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-3.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-3.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-4.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-4.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-4.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-5.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-5.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-5.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-1.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-1.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-1.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-2.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-2.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-2.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-3.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-3.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-3.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-4.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-4.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-4.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-1.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-1.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-1.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-2.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-2.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-2.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-3.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-3.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-3.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-4.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-4.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-4.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-1.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-1.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-1.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-2.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-2.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-2.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-3.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-3.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-3.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-4.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-4.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-4.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-1.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-1.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-1.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-2.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-2.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-2.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-3.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-3.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-3.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-4.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-4.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-4.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score.png diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-1.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-1.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-1.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-2.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-2.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-2.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-3.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-3.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-3.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-4.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-4.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-4.csv diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats.csv diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-DB-RGB-LOG-1.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-DB-RGB-LOG-1.log new file mode 100644 index 0000000000000000000000000000000000000000..e0257febb4eea9d80de959b9f56d9ee37e3b0283 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-DB-RGB-LOG-1.log @@ -0,0 +1 @@ +2016-08-24 15:07:02,885 DEBUG: Start: Read hdf5 Files diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-DB-RGB-LOG-2.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-DB-RGB-LOG-2.log new file mode 100644 index 0000000000000000000000000000000000000000..16ce3c6ff27d49df2f13392ff31334c8f8be78de --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-DB-RGB-LOG-2.log @@ -0,0 +1 @@ +2016-08-24 15:07:32,272 DEBUG: Start: Read hdf5 Files diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-DB-RGB-LOG-3.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-DB-RGB-LOG-3.log new file mode 100644 index 0000000000000000000000000000000000000000..3f44f8ec4d6215d6cc98cdc63d2014c797b071ae --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-DB-RGB-LOG-3.log @@ -0,0 +1 @@ +2016-08-24 15:07:49,531 DEBUG: Start: Read .hdf5 Files diff --git a/Code/Multiview/Results/20160819-202408-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-DB-RGB-LOG.log similarity index 100% rename from Code/Multiview/Results/20160819-202408-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-DB-RGB-LOG.log diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-1.csv new file mode 100644 index 0000000000000000000000000000000000000000..b49e4ceecad081b72c1104cdd30b0860a83f580f --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-1.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.480769230769;0.0555555555556;0.371428571429 +Oui;0.173076923077;0.0;0.128571428571 +All;0.653846153846;0.0555555555556;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-2.csv new file mode 100644 index 0000000000000000000000000000000000000000..7811e2b37acc3f0c8517b8abd614471f4f6ec9b5 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-2.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.32;0.45;0.357142857143 +Oui;0.16;0.1;0.142857142857 +All;0.48;0.55;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-3.csv new file mode 100644 index 0000000000000000000000000000000000000000..0a117a045dbc907db424d81684ded940b8e9f499 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-3.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.357142857143;0.571428571429;0.4 +Oui;0.0892857142857;0.142857142857;0.1 +All;0.446428571429;0.714285714286;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-4.csv new file mode 100644 index 0000000000000000000000000000000000000000..b49e4ceecad081b72c1104cdd30b0860a83f580f --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-4.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.480769230769;0.0555555555556;0.371428571429 +Oui;0.173076923077;0.0;0.128571428571 +All;0.653846153846;0.0555555555556;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-5.csv new file mode 100644 index 0000000000000000000000000000000000000000..f70390db443b7a85f3d416224918e7c79665ea94 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-5.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.5;0.0;0.342857142857 +Oui;0.208333333333;0.0454545454545;0.157142857143 +All;0.708333333333;0.0454545454545;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-6.csv new file mode 100644 index 0000000000000000000000000000000000000000..97b4c4751689911396d377a1e1f0d8e7d257c97d --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-6.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.375;0.272727272727;0.342857142857 +Oui;0.1875;0.0909090909091;0.157142857143 +All;0.5625;0.363636363636;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-7.csv new file mode 100644 index 0000000000000000000000000000000000000000..3f01737c60e8b0a36c27175553c8c0eb5abfc584 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-7.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.34;0.4;0.357142857143 +Oui;0.12;0.2;0.142857142857 +All;0.46;0.6;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-8.csv new file mode 100644 index 0000000000000000000000000000000000000000..bec1991ecc62288962a7bb3584452393c48d16f6 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-8.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.46;0.1;0.357142857143 +Oui;0.14;0.15;0.142857142857 +All;0.6;0.25;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-9.csv new file mode 100644 index 0000000000000000000000000000000000000000..a1ebf0595614fb1080995c8b426071a80d4817ce --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-9.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.5;;0.385714285714 +Oui;0.148148148148;;0.114285714286 +All;0.648148148148;;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix.csv new file mode 100644 index 0000000000000000000000000000000000000000..51fe732559e04a6e8b994257a29ccb58ddf7d953 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.5;;0.328571428571 +Oui;0.260869565217;;0.171428571429 +All;0.760869565217;;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-1.png new file mode 100644 index 0000000000000000000000000000000000000000..95867d748c5f288493d1a13871d8d4936627f5fc Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-1.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-2.png new file mode 100644 index 0000000000000000000000000000000000000000..4c6259ff70eef00631aafdaf30be4c1ad041d540 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-2.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-3.png new file mode 100644 index 0000000000000000000000000000000000000000..362fa12b3dd593a77bc504bf9e5262568f1c8918 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-3.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-4.png new file mode 100644 index 0000000000000000000000000000000000000000..95867d748c5f288493d1a13871d8d4936627f5fc Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-4.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-5.png new file mode 100644 index 0000000000000000000000000000000000000000..e98fd01af94dbe1711ab4d6872568022657a3389 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-5.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-6.png new file mode 100644 index 0000000000000000000000000000000000000000..734c7048130c5b40a144b4fe6f80a1f91813b400 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-6.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-7.png new file mode 100644 index 0000000000000000000000000000000000000000..2df8fc953bd12faa85adddacf1715398ce3ae146 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-7.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-8.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-8.png new file mode 100644 index 0000000000000000000000000000000000000000..16a85b62953c7e03e808cbf31b6d945c757e336f Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-8.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-9.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-9.png new file mode 100644 index 0000000000000000000000000000000000000000..0cd8b91c5f3c636e468fcad9ad7dd6738ab90983 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-9.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg.png new file mode 100644 index 0000000000000000000000000000000000000000..7f34e09c5226e17590b72be6ab8d51dc4c423d86 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-1.csv new file mode 100644 index 0000000000000000000000000000000000000000..503753c45787c680fbc1d7d161ba0d4092fc5de3 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-1.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.735294117647;0.961538461538;0.833333333333;26.0 +Oui;0.0;0.0;0.0;9.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-2.csv new file mode 100644 index 0000000000000000000000000000000000000000..fdf64d7bd238f3cba2ef7baac9cd16d7fe6eb320 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-2.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.666666666667;0.64;0.65306122449;25.0 +Oui;0.181818181818;0.2;0.190476190476;10.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-3.csv new file mode 100644 index 0000000000000000000000000000000000000000..c9f208436c33745baed8c7293dc719597b0c244a --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-3.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.8;0.714285714286;0.754716981132;28.0 +Oui;0.2;0.285714285714;0.235294117647;7.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-4.csv new file mode 100644 index 0000000000000000000000000000000000000000..503753c45787c680fbc1d7d161ba0d4092fc5de3 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-4.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.735294117647;0.961538461538;0.833333333333;26.0 +Oui;0.0;0.0;0.0;9.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-5.csv new file mode 100644 index 0000000000000000000000000000000000000000..0346c934bf6cae9a0648e5eebf800bc37cb85d1e --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-5.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.705882352941;1.0;0.827586206897;24.0 +Oui;1.0;0.0909090909091;0.166666666667;11.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-6.csv new file mode 100644 index 0000000000000000000000000000000000000000..14eb2cf07864d0b6936848759c2628e47533e8fa --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-6.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.666666666667;0.75;0.705882352941;24.0 +Oui;0.25;0.181818181818;0.210526315789;11.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-7.csv new file mode 100644 index 0000000000000000000000000000000000000000..10addb29da2e932eeea95cbfbd515e74e49375ea --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-7.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.739130434783;0.68;0.708333333333;25.0 +Oui;0.333333333333;0.4;0.363636363636;10.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-8.csv new file mode 100644 index 0000000000000000000000000000000000000000..090b022a44d0f2b10b5f04f599b89f0e8a0ad269 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-8.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.766666666667;0.92;0.836363636364;25.0 +Oui;0.6;0.3;0.4;10.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-9.csv new file mode 100644 index 0000000000000000000000000000000000000000..24b0ae770f55783c9f6a7077dcf9d9bf637f402b --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-9.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.771428571429;1.0;0.870967741935;27.0 +Oui;0.0;0.0;0.0;8.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report.csv new file mode 100644 index 0000000000000000000000000000000000000000..65942d65303e134789f2ef5e59e68acbbbb20e89 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.657142857143;1.0;0.793103448276;23.0 +Oui;0.0;0.0;0.0;12.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-1.png new file mode 100644 index 0000000000000000000000000000000000000000..9b3d4ca8b53656d55202f602a41b0fdbba6c610e Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-1.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-2.png new file mode 100644 index 0000000000000000000000000000000000000000..5fe905c6357ae0412cb4c780c85815e7a4bcdee6 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-2.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-3.png new file mode 100644 index 0000000000000000000000000000000000000000..f505eef6b575bd177c2d3a7041c57b73fae632d7 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-3.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-4.png new file mode 100644 index 0000000000000000000000000000000000000000..16d6a1ffcbf1b1033dc9c8ef8408c0fb3a1a4e22 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-4.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-5.png new file mode 100644 index 0000000000000000000000000000000000000000..db1c2e58921296acbe6016eed3617991171842b8 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-5.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-6.png new file mode 100644 index 0000000000000000000000000000000000000000..2303641bf0e1e927dcfa695a099bf424bd848549 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-6.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-7.png new file mode 100644 index 0000000000000000000000000000000000000000..36e419858af0ea61e57cc030513464c02f6b8574 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-7.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-8.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-8.png new file mode 100644 index 0000000000000000000000000000000000000000..abe53dcdd226db2769369e0a95b929ad2fbe5b8d Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-8.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-9.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-9.png new file mode 100644 index 0000000000000000000000000000000000000000..61d5c7690d46b99f0bbeb4ab54a8faa6000576be Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-9.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score.png new file mode 100644 index 0000000000000000000000000000000000000000..23722959a153adee8c0f6e47059aaf1beca02f00 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-1.csv new file mode 100644 index 0000000000000000000000000000000000000000..ed7e4d7689e5cdf56f0ccc7d1f8bb5718f236e5b --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-1.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.714285714286 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.5 +4;Mean of F1-Score of top 10 classes by F1-Score;0.41666666666666663 +5;Mean of F1-Score of top 20 classes by F1-Score;0.41666666666666663 +6;Mean of F1-Score of top 30 classes by F1-Score;0.41666666666666663 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-2.csv new file mode 100644 index 0000000000000000000000000000000000000000..1c2dbd1ed3d5e7aa0ba1c89d2ba57f3e19bfd640 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-2.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.514285714286 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.42176870748299317 +5;Mean of F1-Score of top 20 classes by F1-Score;0.42176870748299317 +6;Mean of F1-Score of top 30 classes by F1-Score;0.42176870748299317 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-3.csv new file mode 100644 index 0000000000000000000000000000000000000000..43b035de3d0a086c09a1629d5ac058af32eb9da5 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-3.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.628571428571 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.4950055493895672 +5;Mean of F1-Score of top 20 classes by F1-Score;0.4950055493895672 +6;Mean of F1-Score of top 30 classes by F1-Score;0.4950055493895672 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-4.csv new file mode 100644 index 0000000000000000000000000000000000000000..ed7e4d7689e5cdf56f0ccc7d1f8bb5718f236e5b --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-4.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.714285714286 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.5 +4;Mean of F1-Score of top 10 classes by F1-Score;0.41666666666666663 +5;Mean of F1-Score of top 20 classes by F1-Score;0.41666666666666663 +6;Mean of F1-Score of top 30 classes by F1-Score;0.41666666666666663 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-5.csv new file mode 100644 index 0000000000000000000000000000000000000000..bf6df6d6a7cb9b98a969c35f65c070ccd3412063 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-5.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.714285714286 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.49712643678160917 +5;Mean of F1-Score of top 20 classes by F1-Score;0.49712643678160917 +6;Mean of F1-Score of top 30 classes by F1-Score;0.49712643678160917 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-6.csv new file mode 100644 index 0000000000000000000000000000000000000000..d62c8a0ec75abd7daf79968d389a15a0e536dd06 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-6.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.571428571429 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.4582043343653251 +5;Mean of F1-Score of top 20 classes by F1-Score;0.4582043343653251 +6;Mean of F1-Score of top 30 classes by F1-Score;0.4582043343653251 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-7.csv new file mode 100644 index 0000000000000000000000000000000000000000..81997a605bbe046bca245ba499134b1116344c3b --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-7.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.6 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.5359848484848485 +5;Mean of F1-Score of top 20 classes by F1-Score;0.5359848484848485 +6;Mean of F1-Score of top 30 classes by F1-Score;0.5359848484848485 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-8.csv new file mode 100644 index 0000000000000000000000000000000000000000..afae0799dcfdb3579306c4fc670f38b76ec3d91b --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-8.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.742857142857 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.6181818181818182 +5;Mean of F1-Score of top 20 classes by F1-Score;0.6181818181818182 +6;Mean of F1-Score of top 30 classes by F1-Score;0.6181818181818182 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-9.csv new file mode 100644 index 0000000000000000000000000000000000000000..69922632bbd248d18b1b00a3ab99d7757879e62a --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-9.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.771428571429 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.5 +4;Mean of F1-Score of top 10 classes by F1-Score;0.435483870967742 +5;Mean of F1-Score of top 20 classes by F1-Score;0.435483870967742 +6;Mean of F1-Score of top 30 classes by F1-Score;0.435483870967742 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats.csv new file mode 100644 index 0000000000000000000000000000000000000000..cfd6be913a6c4de93236cf47f6d3a2b531615b5a --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.657142857143 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.5 +4;Mean of F1-Score of top 10 classes by F1-Score;0.39655172413793105 +5;Mean of F1-Score of top 20 classes by F1-Score;0.39655172413793105 +6;Mean of F1-Score of top 30 classes by F1-Score;0.39655172413793105 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-1.csv new file mode 100644 index 0000000000000000000000000000000000000000..695d8c1ea27038b160edd191d34248fee6914547 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-1.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.5;;0.357142857143 +Oui;0.2;;0.142857142857 +All;0.7;;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-2.csv new file mode 100644 index 0000000000000000000000000000000000000000..c37d7e485cc7ddf323cd5b821ca5723a81483d1a --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-2.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.5;;0.342857142857 +Oui;0.229166666667;;0.157142857143 +All;0.729166666667;;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-3.csv new file mode 100644 index 0000000000000000000000000000000000000000..304fcfb669d7f78240f8a8c0d6fe583fd6fa1fb3 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-3.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.5;0.0;0.4 +Oui;0.0714285714286;0.214285714286;0.1 +All;0.571428571429;0.214285714286;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-4.csv new file mode 100644 index 0000000000000000000000000000000000000000..ef2cbd67e6a98cce4e354b9bf69666eb440126b8 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-4.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.0714285714286;1.71428571429;0.4 +Oui;0.0;0.5;0.1 +All;0.0714285714286;2.21428571429;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-5.csv new file mode 100644 index 0000000000000000000000000000000000000000..8a9c04e6f30d41ca6d393c29f0a6cf6cbd5c4725 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-5.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.433333333333;0.4;0.428571428571 +Oui;0.0333333333333;0.3;0.0714285714286 +All;0.466666666667;0.7;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-6.csv new file mode 100644 index 0000000000000000000000000000000000000000..d7ed7a70e08e5256bfe653c244aade9ec2fc0985 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-6.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.407407407407;0.3125;0.385714285714 +Oui;0.0925925925926;0.1875;0.114285714286 +All;0.5;0.5;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-7.csv new file mode 100644 index 0000000000000000000000000000000000000000..51fe732559e04a6e8b994257a29ccb58ddf7d953 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-7.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.5;;0.328571428571 +Oui;0.260869565217;;0.171428571429 +All;0.760869565217;;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix.csv new file mode 100644 index 0000000000000000000000000000000000000000..08010776bdba6fb15a25cfbe6c67aa0d9f544994 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.5;0.0;0.3 +Oui;0.047619047619;0.428571428571;0.2 +All;0.547619047619;0.428571428571;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-1.png new file mode 100644 index 0000000000000000000000000000000000000000..dee01ca35e6efd2352e1df0540d6c19a1833a3d7 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-1.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-2.png new file mode 100644 index 0000000000000000000000000000000000000000..67961b566905b77656562a4a9b3f8dbcda7de94e Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-2.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-3.png new file mode 100644 index 0000000000000000000000000000000000000000..e838f4c158579748455665db9999df9df8a5d72d Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-3.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-4.png new file mode 100644 index 0000000000000000000000000000000000000000..0e15f883fbb7cf274b087dcf88c816615c4fe7d0 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-4.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-5.png new file mode 100644 index 0000000000000000000000000000000000000000..ccaa268b77d1d8a0396d4d948d37b21ca5a1f400 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-5.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-6.png new file mode 100644 index 0000000000000000000000000000000000000000..5a9e32a2fbc2758f328f0224ebd57598d416d9bf Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-6.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-7.png new file mode 100644 index 0000000000000000000000000000000000000000..7f34e09c5226e17590b72be6ab8d51dc4c423d86 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-7.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg.png new file mode 100644 index 0000000000000000000000000000000000000000..989bc0956f360233ffe01b8fa1621721e3695e9e Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-1.csv new file mode 100644 index 0000000000000000000000000000000000000000..e4303ee3cde40960f928ba80668fd30ed42da210 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-1.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.714285714286;1.0;0.833333333333;25.0 +Oui;0.0;0.0;0.0;10.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-2.csv new file mode 100644 index 0000000000000000000000000000000000000000..45417716354c392e85f7f1960ac02a701a0b7df6 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-2.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.685714285714;1.0;0.813559322034;24.0 +Oui;0.0;0.0;0.0;11.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-3.csv new file mode 100644 index 0000000000000000000000000000000000000000..17ba1f5a9e4eb020d79ff2b3582b49b426c3f7ab --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-3.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.875;1.0;0.933333333333;28.0 +Oui;1.0;0.428571428571;0.6;7.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-4.csv new file mode 100644 index 0000000000000000000000000000000000000000..28ebc0f98c943519125e52c31dc0c19290790694 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-4.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;1.0;0.142857142857;0.25;28.0 +Oui;0.225806451613;1.0;0.368421052632;7.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-5.csv new file mode 100644 index 0000000000000000000000000000000000000000..e9f4be6ff854a6f29bfd88672a9a2c936cfea95e --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-5.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.928571428571;0.866666666667;0.896551724138;30.0 +Oui;0.428571428571;0.6;0.5;5.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-6.csv new file mode 100644 index 0000000000000000000000000000000000000000..2b667c599d73da80fad654c55bdb117c450a0769 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-6.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.814814814815;0.814814814815;0.814814814815;27.0 +Oui;0.375;0.375;0.375;8.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-7.csv new file mode 100644 index 0000000000000000000000000000000000000000..65942d65303e134789f2ef5e59e68acbbbb20e89 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-7.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.657142857143;1.0;0.793103448276;23.0 +Oui;0.0;0.0;0.0;12.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report.csv new file mode 100644 index 0000000000000000000000000000000000000000..ced61b510ad73b9d2effe5d8d8c20c33fb4361f3 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.913043478261;1.0;0.954545454545;21.0 +Oui;1.0;0.857142857143;0.923076923077;14.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-1.png new file mode 100644 index 0000000000000000000000000000000000000000..be7eb045cacddd65fcc1c567f91467661beb1cfa Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-1.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-2.png new file mode 100644 index 0000000000000000000000000000000000000000..be7eb045cacddd65fcc1c567f91467661beb1cfa Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-2.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-3.png new file mode 100644 index 0000000000000000000000000000000000000000..7129a16a35918c60634896635c930857306e21b9 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-3.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-4.png new file mode 100644 index 0000000000000000000000000000000000000000..eb40660a59145d3397b0199e5a0ae9668dc12d6d Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-4.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-5.png new file mode 100644 index 0000000000000000000000000000000000000000..10abfd9f8a04e66f7a2b9cf1fefd20b85cf3f953 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-5.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-6.png new file mode 100644 index 0000000000000000000000000000000000000000..28a5c3bbb83137d721bccef38f4fa8d8b8331b4c Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-6.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-7.png new file mode 100644 index 0000000000000000000000000000000000000000..51bed9516aede380626b14b301f91d598d12e170 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-7.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score.png new file mode 100644 index 0000000000000000000000000000000000000000..d3f04355fac49b80720e195936602062c0389548 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-1.csv new file mode 100644 index 0000000000000000000000000000000000000000..ed7e4d7689e5cdf56f0ccc7d1f8bb5718f236e5b --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-1.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.714285714286 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.5 +4;Mean of F1-Score of top 10 classes by F1-Score;0.41666666666666663 +5;Mean of F1-Score of top 20 classes by F1-Score;0.41666666666666663 +6;Mean of F1-Score of top 30 classes by F1-Score;0.41666666666666663 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-2.csv new file mode 100644 index 0000000000000000000000000000000000000000..fb3b57b1ad14692b305fb2473f3d50e46bee21e3 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-2.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.685714285714 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.5 +4;Mean of F1-Score of top 10 classes by F1-Score;0.4067796610169492 +5;Mean of F1-Score of top 20 classes by F1-Score;0.4067796610169492 +6;Mean of F1-Score of top 30 classes by F1-Score;0.4067796610169492 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-3.csv new file mode 100644 index 0000000000000000000000000000000000000000..12e7af6ddbed4b11d59b32f43d3a4c8865b4ff2f --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-3.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.885714285714 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.7666666666666666 +5;Mean of F1-Score of top 20 classes by F1-Score;0.7666666666666666 +6;Mean of F1-Score of top 30 classes by F1-Score;0.7666666666666666 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-4.csv new file mode 100644 index 0000000000000000000000000000000000000000..27f52192acc9aa81a5cec395d640060199f8f626 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-4.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.314285714286 +1;Top 10 classes by F1-Score;['Oui', 'Non'] +2;Worst 10 classes by F1-Score;['Non', 'Oui'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.3092105263157895 +5;Mean of F1-Score of top 20 classes by F1-Score;0.3092105263157895 +6;Mean of F1-Score of top 30 classes by F1-Score;0.3092105263157895 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-5.csv new file mode 100644 index 0000000000000000000000000000000000000000..410f8862a8cedf20702b4af831b1fdb58cde37a1 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-5.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.828571428571 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.6982758620689655 +5;Mean of F1-Score of top 20 classes by F1-Score;0.6982758620689655 +6;Mean of F1-Score of top 30 classes by F1-Score;0.6982758620689655 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-6.csv new file mode 100644 index 0000000000000000000000000000000000000000..af2aaa26e7d17e7acda19b322818cacd99eccc7e --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-6.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.714285714286 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.5949074074074074 +5;Mean of F1-Score of top 20 classes by F1-Score;0.5949074074074074 +6;Mean of F1-Score of top 30 classes by F1-Score;0.5949074074074074 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-7.csv new file mode 100644 index 0000000000000000000000000000000000000000..cfd6be913a6c4de93236cf47f6d3a2b531615b5a --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-7.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.657142857143 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.5 +4;Mean of F1-Score of top 10 classes by F1-Score;0.39655172413793105 +5;Mean of F1-Score of top 20 classes by F1-Score;0.39655172413793105 +6;Mean of F1-Score of top 30 classes by F1-Score;0.39655172413793105 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats.csv new file mode 100644 index 0000000000000000000000000000000000000000..272496167e1e24075fa66e2099291317698900cc --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.942857142857 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.9388111888111887 +5;Mean of F1-Score of top 20 classes by F1-Score;0.9388111888111887 +6;Mean of F1-Score of top 30 classes by F1-Score;0.9388111888111887 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-1.csv new file mode 100644 index 0000000000000000000000000000000000000000..a13e82013d4bc4028b34eaf4c851cbab423d25af --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-1.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.458333333333;0.0909090909091;0.342857142857 +Oui;0.0625;0.363636363636;0.157142857143 +All;0.520833333333;0.454545454545;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-10.csv new file mode 100644 index 0000000000000000000000000000000000000000..23380cfc5073633692eb40f48025b685ae064317 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-10.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.431034482759;0.333333333333;0.414285714286 +Oui;0.0172413793103;0.416666666667;0.0857142857143 +All;0.448275862069;0.75;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-11.csv new file mode 100644 index 0000000000000000000000000000000000000000..ec20de4efaf3f600e1cc1b3865c0fb858033fb75 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-11.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.451612903226;0.375;0.442857142857 +Oui;0.0161290322581;0.375;0.0571428571429 +All;0.467741935484;0.75;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-12.csv new file mode 100644 index 0000000000000000000000000000000000000000..0d9e7845f15bf58b2de9d7e8a6d8a1e16d65f10a --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-12.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.454545454545;0.0769230769231;0.314285714286 +Oui;0.0681818181818;0.384615384615;0.185714285714 +All;0.522727272727;0.461538461538;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-13.csv new file mode 100644 index 0000000000000000000000000000000000000000..29d473564b4ef2a4ef2ee25e78b7e03147c6c8d3 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-13.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.466666666667;0.2;0.428571428571 +Oui;0.0166666666667;0.4;0.0714285714286 +All;0.483333333333;0.6;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-14.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-14.csv new file mode 100644 index 0000000000000000000000000000000000000000..edbbae5e38e30da3a62c280d7d534d476bf4ea83 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-14.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.410714285714;0.357142857143;0.4 +Oui;0.0;0.5;0.1 +All;0.410714285714;0.857142857143;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-15.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-15.csv new file mode 100644 index 0000000000000000000000000000000000000000..9027b6bee8aa2cd827bd2a3cd0d8f7d2f2b938ea --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-15.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.428571428571;0.285714285714;0.4 +Oui;0.0357142857143;0.357142857143;0.1 +All;0.464285714286;0.642857142857;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-16.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-16.csv new file mode 100644 index 0000000000000000000000000000000000000000..07d5e7884f01ffd0c0c18da8da2d7c8fd2ac7b11 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-16.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.4;0.25;0.357142857143 +Oui;0.04;0.4;0.142857142857 +All;0.44;0.65;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-17.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-17.csv new file mode 100644 index 0000000000000000000000000000000000000000..404ee277f48024b4312829f833befc1bb67fe946 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-17.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.333333333333;0.5625;0.385714285714 +Oui;0.0;0.5;0.114285714286 +All;0.333333333333;1.0625;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-18.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-18.csv new file mode 100644 index 0000000000000000000000000000000000000000..ee02a26ec68dc7cb641d9bed27750a3e9e395f92 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-18.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.5;0.0;0.342857142857 +Oui;0.125;0.227272727273;0.157142857143 +All;0.625;0.227272727273;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-19.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-19.csv new file mode 100644 index 0000000000000000000000000000000000000000..c51a2c8d9a1d48bda2a8e738298e152b365d9776 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-19.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.46;0.1;0.357142857143 +Oui;0.06;0.35;0.142857142857 +All;0.52;0.45;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-2.csv new file mode 100644 index 0000000000000000000000000000000000000000..9ed7a7043f93e58b5a7d9242ac10fbab8dee29e9 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-2.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.388888888889;0.375;0.385714285714 +Oui;0.0;0.5;0.114285714286 +All;0.388888888889;0.875;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-3.csv new file mode 100644 index 0000000000000000000000000000000000000000..b4e876287ff165f5f2669843b066a5383a4222e3 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-3.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.42;0.2;0.357142857143 +Oui;0.06;0.35;0.142857142857 +All;0.48;0.55;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-4.csv new file mode 100644 index 0000000000000000000000000000000000000000..36ebd26cd387fe75520739feb118a72180f46b3a --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-4.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.434782608696;0.125;0.328571428571 +Oui;0.0217391304348;0.458333333333;0.171428571429 +All;0.45652173913;0.583333333333;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-5.csv new file mode 100644 index 0000000000000000000000000000000000000000..c9f17b950638543d6964e9c02569144154028ccb --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-5.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.48275862069;0.0833333333333;0.414285714286 +Oui;0.0172413793103;0.416666666667;0.0857142857143 +All;0.5;0.5;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-6.csv new file mode 100644 index 0000000000000000000000000000000000000000..f8e2fee8dcc02e4bebd5d9351934b96f7e849da8 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-6.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.461538461538;0.111111111111;0.371428571429 +Oui;0.0192307692308;0.444444444444;0.128571428571 +All;0.480769230769;0.555555555556;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-7.csv new file mode 100644 index 0000000000000000000000000000000000000000..4f94059629f45a0832a8a0b00a216b6027d9633b --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-7.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.392857142857;0.428571428571;0.4 +Oui;0.0357142857143;0.357142857143;0.1 +All;0.428571428571;0.785714285714;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-8.csv new file mode 100644 index 0000000000000000000000000000000000000000..6318ac7da86366341906458791c56f2fdad5a163 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-8.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.395833333333;0.227272727273;0.342857142857 +Oui;0.0416666666667;0.409090909091;0.157142857143 +All;0.4375;0.636363636364;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-9.csv new file mode 100644 index 0000000000000000000000000000000000000000..21de79aeb1138621c72d5dbef49383b512e7ae7b --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-9.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.466666666667;0.2;0.428571428571 +Oui;0.0;0.5;0.0714285714286 +All;0.466666666667;0.7;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix.csv new file mode 100644 index 0000000000000000000000000000000000000000..009955c92ba8f8ee6a8ad978c8caef9afb4e1374 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.434782608696;0.125;0.328571428571 +Oui;0.0434782608696;0.416666666667;0.171428571429 +All;0.478260869565;0.541666666667;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-1.png new file mode 100644 index 0000000000000000000000000000000000000000..76f119810a7be29e5895a1e8794e320352709a27 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-1.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-10.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-10.png new file mode 100644 index 0000000000000000000000000000000000000000..da7c336fc63e14a8444957f5be51610287fa9a95 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-10.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-11.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-11.png new file mode 100644 index 0000000000000000000000000000000000000000..0ac43bae37c7e9b4fcaae775effdb751955c5a47 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-11.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-12.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-12.png new file mode 100644 index 0000000000000000000000000000000000000000..5564a0fc986b1a1867edd8f2bf6858e629e508d7 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-12.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-13.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-13.png new file mode 100644 index 0000000000000000000000000000000000000000..df463cef976349d8b9874eddf9ff35fb3527f2a6 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-13.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-14.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-14.png new file mode 100644 index 0000000000000000000000000000000000000000..b35446f9fbef95f3bc02699e5792220ddc3b4e7e Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-14.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-15.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-15.png new file mode 100644 index 0000000000000000000000000000000000000000..3148ac2fbb1227128d7e92f50c1220b8a2ca5fc5 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-15.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-16.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-16.png new file mode 100644 index 0000000000000000000000000000000000000000..6aa0167942a86beee973547cfa5bb37b86514a4c Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-16.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-17.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-17.png new file mode 100644 index 0000000000000000000000000000000000000000..29ac74b8b30bb35ff10b44ea8e57b40c634eddff Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-17.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-18.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-18.png new file mode 100644 index 0000000000000000000000000000000000000000..2fc670e23d41fc70f454543e5b43cec06f508529 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-18.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-19.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-19.png new file mode 100644 index 0000000000000000000000000000000000000000..75d3d637b6e91d17e5b7395967ccd0788c64514c Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-19.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-2.png new file mode 100644 index 0000000000000000000000000000000000000000..2493f05f554528086372b24a76b59adade37934b Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-2.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-3.png new file mode 100644 index 0000000000000000000000000000000000000000..115004bfaa4c758cd6c3873bface46e3fa820884 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-3.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-4.png new file mode 100644 index 0000000000000000000000000000000000000000..74b18add63a30703eb4d5d10c6ae00aa502df597 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-4.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-5.png new file mode 100644 index 0000000000000000000000000000000000000000..5c6475e588201412661962ab5257d14234be9c2c Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-5.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-6.png new file mode 100644 index 0000000000000000000000000000000000000000..4e3b3e022a3c8a41e3c9ca5d741166b27631ae6c Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-6.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-7.png new file mode 100644 index 0000000000000000000000000000000000000000..e4cce092e7451335f182580fe5a36d67e673f627 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-7.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-8.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-8.png new file mode 100644 index 0000000000000000000000000000000000000000..73c45541410910a8b168428155ac5aaa0dca4c9e Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-8.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-9.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-9.png new file mode 100644 index 0000000000000000000000000000000000000000..23e75750e53a107e8e4acda679a58bd060eabdab Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-9.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg.png new file mode 100644 index 0000000000000000000000000000000000000000..da0b3d6187fdf3e9a0085b4f77d14b3351704302 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-1.csv new file mode 100644 index 0000000000000000000000000000000000000000..74f9c36665c8d1f3507f9b3ac7cae2a30a7ff6c5 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-1.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.88;0.916666666667;0.897959183673;24.0 +Oui;0.8;0.727272727273;0.761904761905;11.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-10.csv new file mode 100644 index 0000000000000000000000000000000000000000..7631d9b2b2bb781d916e159d274c194156dcc6be --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-10.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.961538461538;0.862068965517;0.909090909091;29.0 +Oui;0.555555555556;0.833333333333;0.666666666667;6.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-11.csv new file mode 100644 index 0000000000000000000000000000000000000000..7b48ff8a58cdc5029dda4ff0c7dfe3b620227a3b --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-11.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.965517241379;0.903225806452;0.933333333333;31.0 +Oui;0.5;0.75;0.6;4.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-12.csv new file mode 100644 index 0000000000000000000000000000000000000000..be9df8428460c0a8559b1d554c87990628e03dae --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-12.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.869565217391;0.909090909091;0.888888888889;22.0 +Oui;0.833333333333;0.769230769231;0.8;13.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-13.csv new file mode 100644 index 0000000000000000000000000000000000000000..c3f18cfb3c60f93abada7709861a6f06eaaf1db2 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-13.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.965517241379;0.933333333333;0.949152542373;30.0 +Oui;0.666666666667;0.8;0.727272727273;5.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-14.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-14.csv new file mode 100644 index 0000000000000000000000000000000000000000..35e7487dd6b021685e02a6754296294747c017ca --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-14.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;1.0;0.821428571429;0.901960784314;28.0 +Oui;0.583333333333;1.0;0.736842105263;7.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-15.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-15.csv new file mode 100644 index 0000000000000000000000000000000000000000..2df5c48211c8fcc17607f72a292050779d760565 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-15.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.923076923077;0.857142857143;0.888888888889;28.0 +Oui;0.555555555556;0.714285714286;0.625;7.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-16.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-16.csv new file mode 100644 index 0000000000000000000000000000000000000000..5ef118cded6d14c8c669b8d1a799619c8b182e53 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-16.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.909090909091;0.8;0.851063829787;25.0 +Oui;0.615384615385;0.8;0.695652173913;10.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-17.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-17.csv new file mode 100644 index 0000000000000000000000000000000000000000..beccc795d69dd5188c62eadd8a4d3621a89593b4 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-17.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;1.0;0.666666666667;0.8;27.0 +Oui;0.470588235294;1.0;0.64;8.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-18.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-18.csv new file mode 100644 index 0000000000000000000000000000000000000000..0393ff01ca5e62eab216b51c49bd956de24d204b --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-18.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.8;1.0;0.888888888889;24.0 +Oui;1.0;0.454545454545;0.625;11.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-19.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-19.csv new file mode 100644 index 0000000000000000000000000000000000000000..c69fbb723a838acc77db10c76adfef1753e647a7 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-19.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.884615384615;0.92;0.901960784314;25.0 +Oui;0.777777777778;0.7;0.736842105263;10.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-2.csv new file mode 100644 index 0000000000000000000000000000000000000000..fd464cb942e6c43696d9697e278d8a998857a83e --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-2.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;1.0;0.777777777778;0.875;27.0 +Oui;0.571428571429;1.0;0.727272727273;8.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-3.csv new file mode 100644 index 0000000000000000000000000000000000000000..cfd175bbbe327ca6c950e968b0f85a3703c6c970 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-3.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.875;0.84;0.857142857143;25.0 +Oui;0.636363636364;0.7;0.666666666667;10.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-4.csv new file mode 100644 index 0000000000000000000000000000000000000000..522017d9d7a98c46b215094007861edbd399adad --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-4.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.952380952381;0.869565217391;0.909090909091;23.0 +Oui;0.785714285714;0.916666666667;0.846153846154;12.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-5.csv new file mode 100644 index 0000000000000000000000000000000000000000..0f196e3ed4f315bdeb15c1731783999f3877e01d --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-5.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.965517241379;0.965517241379;0.965517241379;29.0 +Oui;0.833333333333;0.833333333333;0.833333333333;6.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-6.csv new file mode 100644 index 0000000000000000000000000000000000000000..ef6721d13e6cf43f3d1ceae257ba3c91ad83432a --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-6.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.96;0.923076923077;0.941176470588;26.0 +Oui;0.8;0.888888888889;0.842105263158;9.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-7.csv new file mode 100644 index 0000000000000000000000000000000000000000..dcc5229c8324f9fad965b29c1f485c6295fbaed7 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-7.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.916666666667;0.785714285714;0.846153846154;28.0 +Oui;0.454545454545;0.714285714286;0.555555555556;7.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-8.csv new file mode 100644 index 0000000000000000000000000000000000000000..ca285c7857103dc919a70d369c25d6c1ef689cd7 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-8.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.904761904762;0.791666666667;0.844444444444;24.0 +Oui;0.642857142857;0.818181818182;0.72;11.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-9.csv new file mode 100644 index 0000000000000000000000000000000000000000..0bcd130e8f5bb4e9e4b6698dd8e10d8e054cb8b6 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-9.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;1.0;0.933333333333;0.965517241379;30.0 +Oui;0.714285714286;1.0;0.833333333333;5.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report.csv new file mode 100644 index 0000000000000000000000000000000000000000..0142b0662c335665ec81afce87f0cb36cedb1b73 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.909090909091;0.869565217391;0.888888888889;23.0 +Oui;0.769230769231;0.833333333333;0.8;12.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-1.png new file mode 100644 index 0000000000000000000000000000000000000000..5937a2720ad9db37ad93697890ad397f6980fb1e Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-1.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-10.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-10.png new file mode 100644 index 0000000000000000000000000000000000000000..f733c0d8e70ef171f39af8a286abc48a721ce818 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-10.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-11.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-11.png new file mode 100644 index 0000000000000000000000000000000000000000..48d59207e3e8ae9c31601897f1e65f56708d15d6 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-11.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-12.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-12.png new file mode 100644 index 0000000000000000000000000000000000000000..2f3bf47936a562ea76a6c31d204b1d0fe37d1020 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-12.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-13.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-13.png new file mode 100644 index 0000000000000000000000000000000000000000..687f2f1b5ec1395e05790b52d176ade976fd7b0a Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-13.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-14.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-14.png new file mode 100644 index 0000000000000000000000000000000000000000..0c9e91b82ee8046bd3148130b71ce3b7c94f2077 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-14.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-15.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-15.png new file mode 100644 index 0000000000000000000000000000000000000000..c86b30fdaf8ae4a73ea2d0af4d685ed498bdc978 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-15.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-16.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-16.png new file mode 100644 index 0000000000000000000000000000000000000000..ce9614e2ca666c5ce282d6f8587298b46ef05fce Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-16.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-17.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-17.png new file mode 100644 index 0000000000000000000000000000000000000000..c6ae1b7389a2f1a59d2f5e9dfbb99674a0db6bf5 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-17.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-18.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-18.png new file mode 100644 index 0000000000000000000000000000000000000000..5dcb3f6c0cf1b82a6d8b48a40aaa5054eacbb32c Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-18.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-19.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-19.png new file mode 100644 index 0000000000000000000000000000000000000000..24ce33c713d4f2fe7447c47f579ca42358424fcc Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-19.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-2.png new file mode 100644 index 0000000000000000000000000000000000000000..52a027d3fe396f3376b1314834c2aeb9868884f2 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-2.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-3.png new file mode 100644 index 0000000000000000000000000000000000000000..9c48ff3bb2c4c07e8b449a6e8eacdd7309f8d177 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-3.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-4.png new file mode 100644 index 0000000000000000000000000000000000000000..5cc847011e10edb0181d88aa265359aa85d553ee Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-4.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-5.png new file mode 100644 index 0000000000000000000000000000000000000000..9de5d2626d347abe8816be4a8847e15c9a3b18fb Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-5.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-6.png new file mode 100644 index 0000000000000000000000000000000000000000..77e39f16e9f9c8f73b7d70b1a26c4d1bf0c091b6 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-6.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-7.png new file mode 100644 index 0000000000000000000000000000000000000000..9eb502861399c60ece3a54aaf962e0a9b1cc2919 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-7.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-8.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-8.png new file mode 100644 index 0000000000000000000000000000000000000000..c1cf5eb2c38444dddd5cf81e6159cbf9b2bbd741 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-8.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-9.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-9.png new file mode 100644 index 0000000000000000000000000000000000000000..6dcac17745f4dd9b697547131937677ab3171be8 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-9.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score.png new file mode 100644 index 0000000000000000000000000000000000000000..e41995a331fc90eb3bf1a8cb12c32e71b5252537 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-1.csv new file mode 100644 index 0000000000000000000000000000000000000000..81f0fd88b0e07eb1521dd38aaaed284428b69154 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-1.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.857142857143 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.8299319727891157 +5;Mean of F1-Score of top 20 classes by F1-Score;0.8299319727891157 +6;Mean of F1-Score of top 30 classes by F1-Score;0.8299319727891157 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-10.csv new file mode 100644 index 0000000000000000000000000000000000000000..133d2853fe84235749540a3b5fd5fe79544ca6e3 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-10.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.857142857143 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.7878787878787878 +5;Mean of F1-Score of top 20 classes by F1-Score;0.7878787878787878 +6;Mean of F1-Score of top 30 classes by F1-Score;0.7878787878787878 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-11.csv new file mode 100644 index 0000000000000000000000000000000000000000..12e7af6ddbed4b11d59b32f43d3a4c8865b4ff2f --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-11.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.885714285714 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.7666666666666666 +5;Mean of F1-Score of top 20 classes by F1-Score;0.7666666666666666 +6;Mean of F1-Score of top 30 classes by F1-Score;0.7666666666666666 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-12.csv new file mode 100644 index 0000000000000000000000000000000000000000..bf63027079c9e6ed9c224c804ba841815a777019 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-12.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.857142857143 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.8444444444444446 +5;Mean of F1-Score of top 20 classes by F1-Score;0.8444444444444446 +6;Mean of F1-Score of top 30 classes by F1-Score;0.8444444444444446 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-13.csv new file mode 100644 index 0000000000000000000000000000000000000000..b08246526eae3ac7b06dd90c9959eb8ceed4b2bd --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-13.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.914285714286 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.8382126348228043 +5;Mean of F1-Score of top 20 classes by F1-Score;0.8382126348228043 +6;Mean of F1-Score of top 30 classes by F1-Score;0.8382126348228043 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-14.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-14.csv new file mode 100644 index 0000000000000000000000000000000000000000..9f142c0de6e22e6cd7864cd8143892a566415238 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-14.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.857142857143 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.8194014447884417 +5;Mean of F1-Score of top 20 classes by F1-Score;0.8194014447884417 +6;Mean of F1-Score of top 30 classes by F1-Score;0.8194014447884417 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-15.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-15.csv new file mode 100644 index 0000000000000000000000000000000000000000..441e24d82bfd8fcbd7603222f4afffc074aae6a8 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-15.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.828571428571 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.7569444444444445 +5;Mean of F1-Score of top 20 classes by F1-Score;0.7569444444444445 +6;Mean of F1-Score of top 30 classes by F1-Score;0.7569444444444445 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-16.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-16.csv new file mode 100644 index 0000000000000000000000000000000000000000..43c2dad0215d3aec1a753dace55ad721099a81f1 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-16.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.8 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.7733580018501388 +5;Mean of F1-Score of top 20 classes by F1-Score;0.7733580018501388 +6;Mean of F1-Score of top 30 classes by F1-Score;0.7733580018501388 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-17.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-17.csv new file mode 100644 index 0000000000000000000000000000000000000000..211b411f9024e8944367f307ebfda63dffe72e87 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-17.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.742857142857 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.72 +5;Mean of F1-Score of top 20 classes by F1-Score;0.72 +6;Mean of F1-Score of top 30 classes by F1-Score;0.72 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-18.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-18.csv new file mode 100644 index 0000000000000000000000000000000000000000..11c46e226a09844b0539edbac395bc8a69bb7678 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-18.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.828571428571 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.7569444444444444 +5;Mean of F1-Score of top 20 classes by F1-Score;0.7569444444444444 +6;Mean of F1-Score of top 30 classes by F1-Score;0.7569444444444444 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-19.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-19.csv new file mode 100644 index 0000000000000000000000000000000000000000..9f142c0de6e22e6cd7864cd8143892a566415238 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-19.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.857142857143 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.8194014447884417 +5;Mean of F1-Score of top 20 classes by F1-Score;0.8194014447884417 +6;Mean of F1-Score of top 30 classes by F1-Score;0.8194014447884417 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-2.csv new file mode 100644 index 0000000000000000000000000000000000000000..5dbd75e8eeae421b1288f1f9c9488f5bb6b7a8e7 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-2.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.828571428571 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.8011363636363638 +5;Mean of F1-Score of top 20 classes by F1-Score;0.8011363636363638 +6;Mean of F1-Score of top 30 classes by F1-Score;0.8011363636363638 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-3.csv new file mode 100644 index 0000000000000000000000000000000000000000..4d47e5bf6e3be8f048844078df8e7edbae440e6c --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-3.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.8 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.7619047619047619 +5;Mean of F1-Score of top 20 classes by F1-Score;0.7619047619047619 +6;Mean of F1-Score of top 30 classes by F1-Score;0.7619047619047619 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-4.csv new file mode 100644 index 0000000000000000000000000000000000000000..c557de1fde12557b9cee63b431a8e200e4b91c6d --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-4.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.885714285714 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.8776223776223775 +5;Mean of F1-Score of top 20 classes by F1-Score;0.8776223776223775 +6;Mean of F1-Score of top 30 classes by F1-Score;0.8776223776223775 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-5.csv new file mode 100644 index 0000000000000000000000000000000000000000..2e90b7ca5db6776b5d1027cc769b3d2dbac165d4 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-5.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.942857142857 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.8994252873563219 +5;Mean of F1-Score of top 20 classes by F1-Score;0.8994252873563219 +6;Mean of F1-Score of top 30 classes by F1-Score;0.8994252873563219 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-6.csv new file mode 100644 index 0000000000000000000000000000000000000000..9ac22152452ec94987ca805187a4c2f8f862781e --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-6.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.914285714286 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.8916408668730651 +5;Mean of F1-Score of top 20 classes by F1-Score;0.8916408668730651 +6;Mean of F1-Score of top 30 classes by F1-Score;0.8916408668730651 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-7.csv new file mode 100644 index 0000000000000000000000000000000000000000..bb35623c7590a57be471437e7943a59d5e280cd3 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-7.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.771428571429 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.7008547008547008 +5;Mean of F1-Score of top 20 classes by F1-Score;0.7008547008547008 +6;Mean of F1-Score of top 30 classes by F1-Score;0.7008547008547008 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-8.csv new file mode 100644 index 0000000000000000000000000000000000000000..2711eacadd16eb1e304d7fc3daf26ef296a3e358 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-8.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.8 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.7822222222222223 +5;Mean of F1-Score of top 20 classes by F1-Score;0.7822222222222223 +6;Mean of F1-Score of top 30 classes by F1-Score;0.7822222222222223 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-9.csv new file mode 100644 index 0000000000000000000000000000000000000000..3cfd0b1093e29b9e5ed35159ff005fc201b27b54 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-9.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.942857142857 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.8994252873563218 +5;Mean of F1-Score of top 20 classes by F1-Score;0.8994252873563218 +6;Mean of F1-Score of top 30 classes by F1-Score;0.8994252873563218 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats.csv new file mode 100644 index 0000000000000000000000000000000000000000..bf63027079c9e6ed9c224c804ba841815a777019 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.857142857143 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.8444444444444446 +5;Mean of F1-Score of top 20 classes by F1-Score;0.8444444444444446 +6;Mean of F1-Score of top 30 classes by F1-Score;0.8444444444444446 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-1.csv new file mode 100644 index 0000000000000000000000000000000000000000..3ab1dc38f544b13d936afd8fe27f546a7033fe19 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-1.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.481481481481;0.0625;0.385714285714 +Oui;0.0185185185185;0.4375;0.114285714286 +All;0.5;0.5;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-10.csv new file mode 100644 index 0000000000000000000000000000000000000000..8d80fe427ba3e44d247c20f236580e22586c59ee --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-10.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.452380952381;0.0714285714286;0.3 +Oui;0.166666666667;0.25;0.2 +All;0.619047619048;0.321428571429;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-11.csv new file mode 100644 index 0000000000000000000000000000000000000000..509b1a446399752858d72adf6347857fb1fb4f1e --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-11.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.452380952381;0.0714285714286;0.3 +Oui;0.0714285714286;0.392857142857;0.2 +All;0.52380952381;0.464285714286;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-12.csv new file mode 100644 index 0000000000000000000000000000000000000000..16efe97dfd003fd91da5b905a1a2707efc616cc6 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-12.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.413793103448;0.416666666667;0.414285714286 +Oui;0.0344827586207;0.333333333333;0.0857142857143 +All;0.448275862069;0.75;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-13.csv new file mode 100644 index 0000000000000000000000000000000000000000..1505ccf21f297b87b821c1a15f5028e8a1ef52e5 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-13.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.5;;0.4 +Oui;0.125;;0.1 +All;0.625;;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-2.csv new file mode 100644 index 0000000000000000000000000000000000000000..fdf750bb84309731544fce5b647c834daa7b1393 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-2.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.48275862069;0.0833333333333;0.414285714286 +Oui;0.0344827586207;0.333333333333;0.0857142857143 +All;0.51724137931;0.416666666667;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-3.csv new file mode 100644 index 0000000000000000000000000000000000000000..67a20bf2ffb93e88aa2c6f6fd264da272f6f5f26 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-3.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.3;0.5;0.357142857143 +Oui;0.0;0.5;0.142857142857 +All;0.3;1.0;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-4.csv new file mode 100644 index 0000000000000000000000000000000000000000..f344179c74f918b33587f0fa94b688f130c034e6 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-4.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.366666666667;0.8;0.428571428571 +Oui;0.0333333333333;0.3;0.0714285714286 +All;0.4;1.1;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-5.csv new file mode 100644 index 0000000000000000000000000000000000000000..695d8c1ea27038b160edd191d34248fee6914547 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-5.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.5;;0.357142857143 +Oui;0.2;;0.142857142857 +All;0.7;;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-6.csv new file mode 100644 index 0000000000000000000000000000000000000000..18266185abe75df98dfdb5e9f78f6b5d83b3b778 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-6.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.4375;0.136363636364;0.342857142857 +Oui;0.0833333333333;0.318181818182;0.157142857143 +All;0.520833333333;0.454545454545;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-7.csv new file mode 100644 index 0000000000000000000000000000000000000000..509a2121879107caa846a71bdd59d1712166a711 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-7.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.46;0.1;0.357142857143 +Oui;0.08;0.3;0.142857142857 +All;0.54;0.4;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-8.csv new file mode 100644 index 0000000000000000000000000000000000000000..e42443f515a5360406fa680c2c1e39294889a5da --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-8.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.462962962963;0.125;0.385714285714 +Oui;0.0925925925926;0.1875;0.114285714286 +All;0.555555555556;0.3125;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-9.csv new file mode 100644 index 0000000000000000000000000000000000000000..853c41ef620431f636bb8dcc6cf38b8ae8cd0411 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-9.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.480769230769;0.0555555555556;0.371428571429 +Oui;0.0384615384615;0.388888888889;0.128571428571 +All;0.519230769231;0.444444444444;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix.csv new file mode 100644 index 0000000000000000000000000000000000000000..af24be5be866970246b0b81a5392d2226f19b355 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.458333333333;0.0909090909091;0.342857142857 +Oui;0.104166666667;0.272727272727;0.157142857143 +All;0.5625;0.363636363636;0.5 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-1.png new file mode 100644 index 0000000000000000000000000000000000000000..5d94d7a9c8c9780958f5ab529a52853e0f2f3fc3 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-1.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-10.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-10.png new file mode 100644 index 0000000000000000000000000000000000000000..199af8fa2fe160d7afb8f1b2a543de7a411dac31 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-10.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-11.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-11.png new file mode 100644 index 0000000000000000000000000000000000000000..726881add70a8e83e8bcf6377732d5a1c25ae07f Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-11.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-12.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-12.png new file mode 100644 index 0000000000000000000000000000000000000000..2c8f71aedc02712b6b877caa6a587da00148de6b Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-12.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-13.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-13.png new file mode 100644 index 0000000000000000000000000000000000000000..ed86fe352af2b6c26a8cc50558c7845a51dc7587 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-13.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-2.png new file mode 100644 index 0000000000000000000000000000000000000000..14f6c8fa91a0de3182720ba85d6a892a12cff2fb Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-2.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-3.png new file mode 100644 index 0000000000000000000000000000000000000000..00214c78080d713a5b05264a9e09c2402af98693 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-3.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-4.png new file mode 100644 index 0000000000000000000000000000000000000000..2e320c9a4ab949b4a293b859843b5baaf7251eb3 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-4.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-5.png new file mode 100644 index 0000000000000000000000000000000000000000..dee01ca35e6efd2352e1df0540d6c19a1833a3d7 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-5.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-6.png new file mode 100644 index 0000000000000000000000000000000000000000..417890386c43873fce0a4935b5bbc6300ce33011 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-6.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-7.png new file mode 100644 index 0000000000000000000000000000000000000000..dfa65db25f95cafa4cf07b2abe74d3f1686cbbef Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-7.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-8.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-8.png new file mode 100644 index 0000000000000000000000000000000000000000..c66ffa64dda34c1ffd1df5a8d2f320b5c8645c76 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-8.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-9.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-9.png new file mode 100644 index 0000000000000000000000000000000000000000..890af83ce89d3ab091538bbcd44c5ce60c74dc9a Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-9.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg.png new file mode 100644 index 0000000000000000000000000000000000000000..e2f11e6e50cf2226de9232b1a107136d292e7fb7 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-1.csv new file mode 100644 index 0000000000000000000000000000000000000000..008f483dc0d9ed963620139200d4b3dfe57af384 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-1.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.962962962963;0.962962962963;0.962962962963;27.0 +Oui;0.875;0.875;0.875;8.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-10.csv new file mode 100644 index 0000000000000000000000000000000000000000..9aa800e23a11edefbd3370808519a9e2cf877ec4 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-10.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.730769230769;0.904761904762;0.808510638298;21.0 +Oui;0.777777777778;0.5;0.608695652174;14.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-11.csv new file mode 100644 index 0000000000000000000000000000000000000000..32a7cebc47269c6fdf4f246c39fd8d864e0a3d6a --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-11.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.863636363636;0.904761904762;0.883720930233;21.0 +Oui;0.846153846154;0.785714285714;0.814814814815;14.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-12.csv new file mode 100644 index 0000000000000000000000000000000000000000..4a541b09a2b603195a4e569c13303c0f4f71496d --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-12.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.923076923077;0.827586206897;0.872727272727;29.0 +Oui;0.444444444444;0.666666666667;0.533333333333;6.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-13.csv new file mode 100644 index 0000000000000000000000000000000000000000..4862ada00e16640bc4d5e18abbd9a183dcdfcdaa --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-13.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.8;1.0;0.888888888889;28.0 +Oui;0.0;0.0;0.0;7.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-2.csv new file mode 100644 index 0000000000000000000000000000000000000000..7c4aceed80e52013685bba10b28c5753411fc1f1 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-2.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.933333333333;0.965517241379;0.949152542373;29.0 +Oui;0.8;0.666666666667;0.727272727273;6.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-3.csv new file mode 100644 index 0000000000000000000000000000000000000000..ab5467376f7391553f91ecbe60634350a9a5aece --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-3.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;1.0;0.6;0.75;25.0 +Oui;0.5;1.0;0.666666666667;10.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-4.csv new file mode 100644 index 0000000000000000000000000000000000000000..bcf9e3bf58efe96a66f9a6a11892d848e998c397 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-4.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.916666666667;0.733333333333;0.814814814815;30.0 +Oui;0.272727272727;0.6;0.375;5.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-5.csv new file mode 100644 index 0000000000000000000000000000000000000000..e4303ee3cde40960f928ba80668fd30ed42da210 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-5.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.714285714286;1.0;0.833333333333;25.0 +Oui;0.0;0.0;0.0;10.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-6.csv new file mode 100644 index 0000000000000000000000000000000000000000..8f3d332ebe9f5b64c51f9e94a0fb53d9167c71c4 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-6.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.84;0.875;0.857142857143;24.0 +Oui;0.7;0.636363636364;0.666666666667;11.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-7.csv new file mode 100644 index 0000000000000000000000000000000000000000..9f28f5f8f35b3f9d90dace8edb271de4da6d4871 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-7.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.851851851852;0.92;0.884615384615;25.0 +Oui;0.75;0.6;0.666666666667;10.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-8.csv new file mode 100644 index 0000000000000000000000000000000000000000..a7efd348cdedf1d979077992e25a89543fc4c0f2 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-8.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.833333333333;0.925925925926;0.877192982456;27.0 +Oui;0.6;0.375;0.461538461538;8.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-9.csv new file mode 100644 index 0000000000000000000000000000000000000000..24ffa0fc33d7218b929d84d5e09c3443ab6c0c99 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-9.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.925925925926;0.961538461538;0.943396226415;26.0 +Oui;0.875;0.777777777778;0.823529411765;9.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report.csv new file mode 100644 index 0000000000000000000000000000000000000000..d74decdbb6765f562440122a9a24892c69cfbcbf --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.814814814815;0.916666666667;0.862745098039;24.0 +Oui;0.75;0.545454545455;0.631578947368;11.0 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-1.png new file mode 100644 index 0000000000000000000000000000000000000000..9dc5c6aa0f992c5f153707bd83b494896e7e8c51 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-1.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-10.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-10.png new file mode 100644 index 0000000000000000000000000000000000000000..949d2e0992e263537ab209749db7473c94d76891 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-10.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-11.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-11.png new file mode 100644 index 0000000000000000000000000000000000000000..0e251d65a94bdb492f87901ade6b357315b58be3 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-11.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-12.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-12.png new file mode 100644 index 0000000000000000000000000000000000000000..1718a959cd811209d1d438e5f418c65acf7afddc Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-12.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-13.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-13.png new file mode 100644 index 0000000000000000000000000000000000000000..d98c1c9f4f8af9a85a3dfdb45b41e8e8293a671a Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-13.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-2.png new file mode 100644 index 0000000000000000000000000000000000000000..24ced04f4f030932d44a41abd10997c9f8400321 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-2.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-3.png new file mode 100644 index 0000000000000000000000000000000000000000..76124ecb8856974ea76f40aebdf0ccfb4445db61 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-3.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-4.png new file mode 100644 index 0000000000000000000000000000000000000000..677c3c4c646948cae6f930a3e77b790164b055ce Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-4.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-5.png new file mode 100644 index 0000000000000000000000000000000000000000..e2f98b96c1009bfb5cd8274a96632f8d13fa871b Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-5.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-6.png new file mode 100644 index 0000000000000000000000000000000000000000..c90c24054ca37d3d097880ce776bbb9d0d7eada6 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-6.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-7.png new file mode 100644 index 0000000000000000000000000000000000000000..a88d551eb0697f47f509cb302462f183f22aa12e Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-7.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-8.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-8.png new file mode 100644 index 0000000000000000000000000000000000000000..f4bb3bcf3e35b8cb803f5480b233504ae341a251 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-8.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-9.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-9.png new file mode 100644 index 0000000000000000000000000000000000000000..db43b7a9f4bb3d948e7bd9387edb497cfdfe3637 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-9.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score.png new file mode 100644 index 0000000000000000000000000000000000000000..8948c676dddf0cc8f598c4e5b877e20872c2e85c Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score.png differ diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-1.csv new file mode 100644 index 0000000000000000000000000000000000000000..8ac6cb3bdebd6c7ac8697bd10799ee2a54cd21b3 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-1.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.942857142857 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.9189814814814814 +5;Mean of F1-Score of top 20 classes by F1-Score;0.9189814814814814 +6;Mean of F1-Score of top 30 classes by F1-Score;0.9189814814814814 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-10.csv new file mode 100644 index 0000000000000000000000000000000000000000..a3cebc6081af51288a719fb22e2559fc25e901fe --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-10.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.742857142857 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.7086031452358927 +5;Mean of F1-Score of top 20 classes by F1-Score;0.7086031452358927 +6;Mean of F1-Score of top 30 classes by F1-Score;0.7086031452358927 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-11.csv new file mode 100644 index 0000000000000000000000000000000000000000..cd13999012acd2ec54283845347f06e74ab1a735 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-11.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.857142857143 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.8492678725236864 +5;Mean of F1-Score of top 20 classes by F1-Score;0.8492678725236864 +6;Mean of F1-Score of top 30 classes by F1-Score;0.8492678725236864 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-12.csv new file mode 100644 index 0000000000000000000000000000000000000000..cadf36d58e74289ab5f1487f493680ed50dda497 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-12.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.8 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.703030303030303 +5;Mean of F1-Score of top 20 classes by F1-Score;0.703030303030303 +6;Mean of F1-Score of top 30 classes by F1-Score;0.703030303030303 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-13.csv new file mode 100644 index 0000000000000000000000000000000000000000..32d51bf0a55837676b1e74f5f640d863e1b08895 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-13.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.8 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.5 +4;Mean of F1-Score of top 10 classes by F1-Score;0.4444444444444445 +5;Mean of F1-Score of top 20 classes by F1-Score;0.4444444444444445 +6;Mean of F1-Score of top 30 classes by F1-Score;0.4444444444444445 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-2.csv new file mode 100644 index 0000000000000000000000000000000000000000..b08246526eae3ac7b06dd90c9959eb8ceed4b2bd --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-2.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.914285714286 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.8382126348228043 +5;Mean of F1-Score of top 20 classes by F1-Score;0.8382126348228043 +6;Mean of F1-Score of top 30 classes by F1-Score;0.8382126348228043 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-3.csv new file mode 100644 index 0000000000000000000000000000000000000000..6084f669bac7ad1259e74ef61a4cf8593ea8cb3c --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-3.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.714285714286 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.7083333333333333 +5;Mean of F1-Score of top 20 classes by F1-Score;0.7083333333333333 +6;Mean of F1-Score of top 30 classes by F1-Score;0.7083333333333333 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-4.csv new file mode 100644 index 0000000000000000000000000000000000000000..e0b61f246c06bd747366654c1261701d562f5484 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-4.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.714285714286 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.5949074074074073 +5;Mean of F1-Score of top 20 classes by F1-Score;0.5949074074074073 +6;Mean of F1-Score of top 30 classes by F1-Score;0.5949074074074073 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-5.csv new file mode 100644 index 0000000000000000000000000000000000000000..ed7e4d7689e5cdf56f0ccc7d1f8bb5718f236e5b --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-5.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.714285714286 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.5 +4;Mean of F1-Score of top 10 classes by F1-Score;0.41666666666666663 +5;Mean of F1-Score of top 20 classes by F1-Score;0.41666666666666663 +6;Mean of F1-Score of top 30 classes by F1-Score;0.41666666666666663 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-6.csv new file mode 100644 index 0000000000000000000000000000000000000000..4d47e5bf6e3be8f048844078df8e7edbae440e6c --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-6.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.8 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.7619047619047619 +5;Mean of F1-Score of top 20 classes by F1-Score;0.7619047619047619 +6;Mean of F1-Score of top 30 classes by F1-Score;0.7619047619047619 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-7.csv new file mode 100644 index 0000000000000000000000000000000000000000..e0555824ca01d3107bb9fe860c222a925c504c54 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-7.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.828571428571 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.7756410256410255 +5;Mean of F1-Score of top 20 classes by F1-Score;0.7756410256410255 +6;Mean of F1-Score of top 30 classes by F1-Score;0.7756410256410255 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-8.csv new file mode 100644 index 0000000000000000000000000000000000000000..b5d750fca3497c96dadd4f4e68f72cb00cc1abe7 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-8.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.8 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.6693657219973009 +5;Mean of F1-Score of top 20 classes by F1-Score;0.6693657219973009 +6;Mean of F1-Score of top 30 classes by F1-Score;0.6693657219973009 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-9.csv new file mode 100644 index 0000000000000000000000000000000000000000..b80ac1fdbface94e7feb55290ab3eda20a70a7be --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-9.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.914285714286 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.8834628190899001 +5;Mean of F1-Score of top 20 classes by F1-Score;0.8834628190899001 +6;Mean of F1-Score of top 30 classes by F1-Score;0.8834628190899001 diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats.csv new file mode 100644 index 0000000000000000000000000000000000000000..aaf58c084a76e2e4543327f1f0c84a39e253a6d6 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.8 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.7471620227038183 +5;Mean of F1-Score of top 20 classes by F1-Score;0.7471620227038183 +6;Mean of F1-Score of top 30 classes by F1-Score;0.7471620227038183 diff --git a/Code/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-ConfMatrix.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-ConfMatrix.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-ConfMatrix.csv diff --git a/Code/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-ConfMatrixImg.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-ConfMatrixImg.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-ConfMatrixImg.png diff --git a/Code/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-LOG.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-LOG.log similarity index 100% rename from Code/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-LOG.log rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-LOG.log diff --git a/Code/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-Report.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-Report.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-Report.csv diff --git a/Code/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-Score.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-Score.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-Score.png diff --git a/Code/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-Stats.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-Stats.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-Stats.csv diff --git a/Code/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG.csv diff --git a/Code/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-ConfMatrix.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-ConfMatrix.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-ConfMatrix.csv diff --git a/Code/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-ConfMatrixImg.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-ConfMatrixImg.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-ConfMatrixImg.png diff --git a/Code/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-LOG.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-LOG.log similarity index 100% rename from Code/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-LOG.log rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-LOG.log diff --git a/Code/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-Report.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-Report.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-Report.csv diff --git a/Code/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-Score.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-Score.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-Score.png diff --git a/Code/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-Stats.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-Stats.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-Stats.csv diff --git a/Code/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV.csv diff --git a/Code/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrix.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrix.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrix.csv diff --git a/Code/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrixImg.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrixImg.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrixImg.png diff --git a/Code/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-LOG.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-LOG.log similarity index 100% rename from Code/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-LOG.log rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-LOG.log diff --git a/Code/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Report.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Report.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Report.csv diff --git a/Code/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Score.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Score.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Score.png diff --git a/Code/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Stats.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Stats.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Stats.csv diff --git a/Code/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB.csv diff --git a/Code/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrix.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrix.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrix.csv diff --git a/Code/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrixImg.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrixImg.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrixImg.png diff --git a/Code/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-LOG.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-LOG.log similarity index 100% rename from Code/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-LOG.log rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-LOG.log diff --git a/Code/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Report.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Report.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Report.csv diff --git a/Code/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Score.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Score.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Score.png diff --git a/Code/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Stats.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Stats.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Stats.csv diff --git a/Code/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB.csv diff --git a/Code/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-ConfMatrix.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-ConfMatrix.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-ConfMatrix.csv diff --git a/Code/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-ConfMatrixImg.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-ConfMatrixImg.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-ConfMatrixImg.png diff --git a/Code/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-LOG.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-LOG.log similarity index 100% rename from Code/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-LOG.log rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-LOG.log diff --git a/Code/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-Report.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-Report.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-Report.csv diff --git a/Code/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-Score.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-Score.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-Score.png diff --git a/Code/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-Stats.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-Stats.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-Stats.csv diff --git a/Code/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT.csv diff --git a/Code/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-ConfMatrix.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-ConfMatrix.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-ConfMatrix.csv diff --git a/Code/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-ConfMatrixImg.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-ConfMatrixImg.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-ConfMatrixImg.png diff --git a/Code/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-LOG.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-LOG.log similarity index 100% rename from Code/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-LOG.log rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-LOG.log diff --git a/Code/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-Report.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-Report.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-Report.csv diff --git a/Code/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-Score.png similarity index 100% rename from Code/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-Score.png rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-Score.png diff --git a/Code/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-Stats.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-Stats.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-Stats.csv diff --git a/Code/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF.csv similarity index 100% rename from Code/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF.csv rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF.csv diff --git a/Code/Monoview/__init__.py b/Code/MonoMutliViewClassifiers/Monoview/__init__.py similarity index 100% rename from Code/Monoview/__init__.py rename to Code/MonoMutliViewClassifiers/Monoview/__init__.py diff --git a/Code/Monoview/run.py b/Code/MonoMutliViewClassifiers/Monoview/run.py similarity index 100% rename from Code/Monoview/run.py rename to Code/MonoMutliViewClassifiers/Monoview/run.py diff --git a/Code/MonoMutliViewClassifiers/MonoviewClassifiers/Adaboost.py b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/Adaboost.py new file mode 100644 index 0000000000000000000000000000000000000000..d1c45281a2105e7c5b16d1d8d91cda5d84c000a8 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/Adaboost.py @@ -0,0 +1,28 @@ +from sklearn.ensemble import AdaBoostClassifier +from sklearn.pipeline import Pipeline +from sklearn.grid_search import GridSearchCV +from sklearn.tree import DecisionTreeClassifier + + +def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs): + num_estimators = int(kwargs['0']) + base_estimators = int(kwargs['1']) + classifier = AdaBoostClassifier(n_estimators=num_estimators, base_estimator=base_estimators) + classifier.fit(DATASET, CLASS_LABELS) + return classifier + + +def fit_gridsearch(X_train, y_train, nbFolds=4, nbCores=1, **kwargs): + + pipeline = Pipeline([('classifier', AdaBoostClassifier())]) + param= {"classifier__n_estimators": map(int, kwargs['0']), + "classifier__base_estimator": [DecisionTreeClassifier() for arg in kwargs["1"]]} + grid = GridSearchCV(pipeline,param_grid=param,refit=True,n_jobs=nbCores,scoring='accuracy',cv=nbFolds) + detector = grid.fit(X_train, y_train) + desc_estimators = [detector.best_params_["classifier__n_estimators"]] + description = "Classif_" + "RF" + "-" + "CV_" + str(nbFolds) + "-" + "Trees_" + str(map(str,desc_estimators)) + return description, detector + + +def getConfig(config): + return "\n\t\t- Adaboost with num_esimators : "+config[0]+", base_estimators : "+config[1] \ No newline at end of file diff --git a/Code/MonoMutliViewClassifiers/MonoviewClassifiers/DecisionTree.py b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/DecisionTree.py new file mode 100644 index 0000000000000000000000000000000000000000..8fe4de8daf27ffa9bcf7e4f4c33fd5d665ee03b7 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/DecisionTree.py @@ -0,0 +1,26 @@ +from sklearn.tree import DecisionTreeClassifier +from sklearn.pipeline import Pipeline # Pipelining in classification +from sklearn.grid_search import GridSearchCV + + +def fit(DATASET, CLASS_LABELS, NB_CORES=1, **kwargs): + maxDepth = int(kwargs['0']) + classifier = DecisionTreeClassifier(max_depth=maxDepth) + classifier.fit(DATASET, CLASS_LABELS) + return classifier + + +def fit_gridsearch(X_train, y_train, nbFolds=4, nbCores=1, **kwargs): + pipeline_DT = Pipeline([('classifier', DecisionTreeClassifier())]) + param_DT = {"classifier__max_depth":map(int, kwargs['0'])} + + grid_DT = GridSearchCV(pipeline_DT, param_grid=param_DT, refit=True, n_jobs=nbCores, scoring='accuracy', + cv=nbFolds) + DT_detector = grid_DT.fit(X_train, y_train) + desc_params = [DT_detector.best_params_["classifier__max_depth"]] + description = "Classif_" + "DT" + "-" + "CV_" + str(nbFolds) + "-" + "-".join(map(str,desc_params)) + return description, DT_detector + + +def getConfig(config): + return "\n\t\t- Decision Tree with max_depth : "+config[0] \ No newline at end of file diff --git a/Code/MonoMutliViewClassifiers/MonoviewClassifiers/KNN.py b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/KNN.py new file mode 100644 index 0000000000000000000000000000000000000000..ae03c3555610b793ef54c94baa157ba3df1df32e --- /dev/null +++ b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/KNN.py @@ -0,0 +1,26 @@ +from sklearn.neighbors import KNeighborsClassifier +from sklearn.pipeline import Pipeline # Pipelining in classification +from sklearn.grid_search import GridSearchCV + + +def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs): + nNeighbors = int(kwargs['0']) + classifier = KNeighborsClassifier(n_neighbors=nNeighbors) + classifier.fit(DATASET, CLASS_LABELS) + return classifier + + +def fit_gridsearch(X_train, y_train, nbFolds=4, nbCores=1, **kwargs): + pipeline_KNN = Pipeline([('classifier', KNeighborsClassifier())]) + param_KNN = {"classifier__n_neighbors": map(int, kwargs['0'])} + grid_KNN = GridSearchCV(pipeline_KNN, param_grid=param_KNN, refit=True, n_jobs=nbCores, scoring='accuracy', + cv=nbFolds) + KNN_detector = grid_KNN.fit(X_train, y_train) + desc_params = [KNN_detector.best_params_["classifier__n_neighbors"]] + description = "Classif_" + "Lasso" + "-" + "CV_" + str(nbFolds) + "-" + "-".join(map(str,desc_params)) + return description, KNN_detector + + + +def getConfig(config): + return "\n\t\t- K nearest Neighbors with n_neighbors: "+config[0] \ No newline at end of file diff --git a/Code/MonoMutliViewClassifiers/MonoviewClassifiers/RandomForest.py b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/RandomForest.py new file mode 100644 index 0000000000000000000000000000000000000000..968d83d2f66abec190c9dcf0510b36e148d1cd0e --- /dev/null +++ b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/RandomForest.py @@ -0,0 +1,46 @@ +from sklearn.ensemble import RandomForestClassifier +from sklearn.pipeline import Pipeline +from sklearn.grid_search import GridSearchCV + + +def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs): + num_estimators = int(kwargs['0']) + maxDepth = int(kwargs['1']) + classifier = RandomForestClassifier(n_estimators=num_estimators, max_depth=maxDepth, n_jobs=NB_CORES) + classifier.fit(DATASET, CLASS_LABELS) + return classifier + + +def fit_gridsearch(X_train, y_train, nbFolds=4, nbCores=1, **kwargs): + + # PipeLine with RandomForest classifier + pipeline_rf = Pipeline([('classifier', RandomForestClassifier())]) + + # Parameters for GridSearch: Number of Trees + # can be extended with: oob_score, min_samples_leaf, max_features + param_rf = {"classifier__n_estimators": map(int, kwargs['0'])} + + # pipeline: Gridsearch avec le pipeline comme estimator + # param: pour obtenir le meilleur model il va essayer tous les possiblites + # refit: pour utiliser le meilleur model apres girdsearch + # n_jobs: Nombre de CPU (Mon ordi a des problemes avec -1 (Bug Python 2.7 sur Windows)) + # scoring: scoring... + # cv: Nombre de K-Folds pour CV + grid_rf = GridSearchCV( + pipeline_rf, + param_grid=param_rf, + refit=True, + n_jobs=nbCores, + scoring='accuracy', + cv=nbFolds, + ) + + rf_detector = grid_rf.fit(X_train, y_train) + + desc_estimators = [rf_detector.best_params_["classifier__n_estimators"]] + description = "Classif_" + "RF" + "-" + "CV_" + str(nbFolds) + "-" + "Trees_" + str(map(str,desc_estimators)) + return description, rf_detector + + +def getConfig(config): + return "\n\t\t- Random Forest with num_esimators : "+config[0]+", max_depth : "+config[1] \ No newline at end of file diff --git a/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SGD.py b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SGD.py new file mode 100644 index 0000000000000000000000000000000000000000..3a2bc27f097a3503fa09a4ac4ad34255dcd2da11 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SGD.py @@ -0,0 +1,32 @@ +from sklearn.linear_model import SGDClassifier +from sklearn.pipeline import Pipeline # Pipelining in classification +from sklearn.grid_search import GridSearchCV + + +def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs): + loss = kwargs['0'] + penalty = kwargs['1'] + try: + alpha = int(kwargs['2']) + except: + alpha = 0.15 + classifier = SGDClassifier(loss=loss, penalty=penalty, alpha=alpha) + classifier.fit(DATASET, CLASS_LABELS) + return classifier + + +def fit_gridsearch(X_train, y_train, nbFolds=4, nbCores=1, **kwargs): + pipeline_SGD = Pipeline([('classifier', SGDClassifier())]) + param_SGD = {"classifier__loss": kwargs['1'], "classifier__penalty": kwargs['2'], + "classifier__alpha": map(float, kwargs['0'])} + grid_SGD = GridSearchCV(pipeline_SGD, param_grid=param_SGD, refit=True, n_jobs=nbCores, scoring='accuracy', + cv=nbFolds) + SGD_detector = grid_SGD.fit(X_train, y_train) + desc_params = [SGD_detector.best_params_["classifier__loss"], SGD_detector.best_params_["classifier__penalty"], + SGD_detector.best_params_["classifier__alpha"]] + description = "Classif_" + "Lasso" + "-" + "CV_" + str(nbFolds) + "-" + "-".join(map(str,desc_params)) + return description, SGD_detector + + +def getConfig(config): + return "\n\t\t- SGDClassifier with loss : "+config[0]+", penalty : "+config[1] \ No newline at end of file diff --git a/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SVMLinear.py b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SVMLinear.py new file mode 100644 index 0000000000000000000000000000000000000000..568badb41da2130e116459ba4123d47b3430befa --- /dev/null +++ b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SVMLinear.py @@ -0,0 +1,25 @@ +from sklearn.svm import SVC +from sklearn.pipeline import Pipeline # Pipelining in classification +from sklearn.grid_search import GridSearchCV + + +def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs): + C = int(kwargs['0']) + classifier = SVC(C=C, kernel='linear', probability=True) + classifier.fit(DATASET, CLASS_LABELS) + return classifier + + +def fit_gridsearch(X_train, y_train, nbFolds=4, nbCores=1, **kwargs): + pipeline_SVMLinear = Pipeline([('classifier', SVC(kernel="linear"))]) + param_SVMLinear = {"classifier__C": map(int, kwargs['0'])} + grid_SVMLinear = GridSearchCV(pipeline_SVMLinear, param_grid=param_SVMLinear, refit=True, n_jobs=nbCores, scoring='accuracy', + cv=nbFolds) + SVMLinear_detector = grid_SVMLinear.fit(X_train, y_train) + desc_params = [SVMLinear_detector.best_params_["classifier__C"]] + description = "Classif_" + "SVC" + "-" + "CV_" + str(nbFolds) + "-" + "-".join(map(str,desc_params)) + return description, SVMLinear_detector + + +def getConfig(config): + return "\n\t\t- SVM with C : "+config[0]+", kernel : "+config[1] \ No newline at end of file diff --git a/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SVMPoly.py b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SVMPoly.py new file mode 100644 index 0000000000000000000000000000000000000000..9f43f0b9417e7defb873a384b25d4a676f15b50f --- /dev/null +++ b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SVMPoly.py @@ -0,0 +1,26 @@ +from sklearn.svm import SVC +from sklearn.pipeline import Pipeline # Pipelining in classification +from sklearn.grid_search import GridSearchCV + + +def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs): + C = int(kwargs['0']) + degree = int(kwargs['1']) + classifier = SVC(C=C, kernel='poly', degree=degree, probability=True) + classifier.fit(DATASET, CLASS_LABELS) + return classifier + + +def fit_gridsearch(X_train, y_train, nbFolds=4, nbCores=1, **kwargs): + pipeline_SVMLinear = Pipeline([('classifier', SVC(kernel="linear"))]) + param_SVMLinear = {"classifier__C": map(int, kwargs['0']), "classifier__degree": map(int, kwargs["1"])} + grid_SVMLinear = GridSearchCV(pipeline_SVMLinear, param_grid=param_SVMLinear, refit=True, n_jobs=nbCores, scoring='accuracy', + cv=nbFolds) + SVMLinear_detector = grid_SVMLinear.fit(X_train, y_train) + desc_params = [SVMLinear_detector.best_params_["classifier__C"], SVMLinear_detector.best_params_["classifier__degree"]] + description = "Classif_" + "SVC" + "-" + "CV_" + str(nbFolds) + "-" + "-".join(map(str,desc_params)) + return description, SVMLinear_detector + + +def getConfig(config): + return "\n\t\t- SVM with C : "+config[0]+", kernel : "+config[1] \ No newline at end of file diff --git a/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SVMRBF.py b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SVMRBF.py new file mode 100644 index 0000000000000000000000000000000000000000..202cc076a9a92223b92626334d38f2ae67515c64 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SVMRBF.py @@ -0,0 +1,25 @@ +from sklearn.svm import SVC +from sklearn.pipeline import Pipeline # Pipelining in classification +from sklearn.grid_search import GridSearchCV + + +def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs): + C = int(kwargs['0']) + classifier = SVC(C=C, kernel='rbf', probability=True) + classifier.fit(DATASET, CLASS_LABELS) + return classifier + + +def fit_gridsearch(X_train, y_train, nbFolds=4, nbCores=1, **kwargs): + pipeline_SVMRBF = Pipeline([('classifier', SVC(kernel="rbf"))]) + param_SVMRBF = {"classifier__C": map(int, kwargs['0'])} + grid_SVMRBF = GridSearchCV(pipeline_SVMRBF, param_grid=param_SVMRBF, refit=True, n_jobs=nbCores, scoring='accuracy', + cv=nbFolds) + SVMRBF_detector = grid_SVMRBF.fit(X_train, y_train) + desc_params = [SVMRBF_detector.best_params_["classifier__C"]] + description = "Classif_" + "SVC" + "-" + "CV_" + str(nbFolds) + "-" + "-".join(map(str,desc_params)) + return description, SVMRBF_detector + + +def getConfig(config): + return "\n\t\t- SVM with C : "+config[0]+", kernel : "+config[1] \ No newline at end of file diff --git a/Code/Multiview/Fusion/Methods/MonoviewClassifiers/__init__.py b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/__init__.py similarity index 100% rename from Code/Multiview/Fusion/Methods/MonoviewClassifiers/__init__.py rename to Code/MonoMutliViewClassifiers/MonoviewClassifiers/__init__.py diff --git a/Code/Multiview/ExecMultiview.py b/Code/MonoMutliViewClassifiers/Multiview/ExecMultiview.py similarity index 93% rename from Code/Multiview/ExecMultiview.py rename to Code/MonoMutliViewClassifiers/Multiview/ExecMultiview.py index ebc61a5bf3b3ddb37c202cc2eff975ccd8aa8310..cffd6f0199454f50c0e589ba7b48216a020aba20 100644 --- a/Code/Multiview/ExecMultiview.py +++ b/Code/MonoMutliViewClassifiers/Multiview/ExecMultiview.py @@ -15,6 +15,7 @@ import logging import time + def ExecMultiview(DATASET, name, learningRate, nbFolds, nbCores, databaseType, path, LABELS_DICTIONARY, gridSearch=False, **kwargs): datasetLength = DATASET.get("Metadata").attrs["datasetLength"] @@ -26,8 +27,7 @@ def ExecMultiview(DATASET, name, learningRate, nbFolds, nbCores, databaseType, p views = kwargs["views"] NB_VIEW = kwargs["NB_VIEW"] LABELS_NAMES = kwargs["LABELS_NAMES"] - MumboKWARGS = kwargs["MumboKWARGS"] - FusionKWARGS = kwargs["FusionKWARGS"] + classificationKWARGS = kwargs[CL_type+"KWARGS"] t_start = time.time() logging.info("### Main Programm for Multiview Classification") @@ -78,8 +78,8 @@ def ExecMultiview(DATASET, name, learningRate, nbFolds, nbCores, databaseType, p if gridSearch: logging.info("Start:\t Gridsearching best settings for monoview classifiers") - bestSettings = classifierGridSearch(DATASET, initKWARGS["classifiersNames"]) - initKWARGS["classifiersConfigs"] = bestSettings + bestSettings = classifierGridSearch(DATASET, classificationKWARGS["classifiersNames"]) + classificationKWARGS["classifiersConfigs"] = bestSettings logging.info("Done:\t Gridsearching best settings for monoview classifiers") # Begin Classification @@ -89,7 +89,7 @@ def ExecMultiview(DATASET, name, learningRate, nbFolds, nbCores, databaseType, p logging.info("\tStart:\t Fold number " + str(foldIdx + 1)) trainIndices = [index for index in range(datasetLength) if index not in fold] DATASET_LENGTH = len(trainIndices) - classifier = classifierClass(NB_VIEW, DATASET_LENGTH, DATASET.get("labels").value, NB_CORES=nbCores, **initKWARGS) + classifier = classifierClass(NB_VIEW, DATASET_LENGTH, DATASET.get("labels").value, NB_CORES=nbCores, **classificationKWARGS) classifier.fit_hdf5(DATASET, trainIndices=trainIndices) kFoldClassifier.append(classifier) @@ -149,6 +149,9 @@ if __name__=='__main__': parser = argparse.ArgumentParser( description='This file is used to classifiy multiview data thanks to three methods : Fusion (early & late), Multiview Machines, Mumbo.', formatter_class=argparse.ArgumentDefaultsHelpFormatter) + # create the top-level parser + + groupStandard = parser.add_argument_group('Standard arguments') groupStandard.add_argument('-log', action='store_true', help='Use option to activate Logging to Console') @@ -183,12 +186,14 @@ if __name__=='__main__': help='Determine which monoview classifier to use with Mumbo', default='DecisionTree:DecisionTree:DecisionTree:DecisionTree') groupMumbo.add_argument('--MU_config', metavar='STRING', action='store', nargs='+', - help='Configuration for the monoview classifier in Mumbo', default=['1:0.02', '1:0.018', '1:0.1', + help='Configuration for the monoview classifier in Mumbo', default=['1:0.02', '1:0.018', + '1:0.1', '2:0.09']) - groupMumbo.add_argument('--MU_iter', metavar='INT', action='store', - help='Number of iterations in Mumbos learning process', type=int, default=5) + groupMumbo.add_argument('--MU_iter', metavar='INT', action='store', nargs=3, + help='Max number of iteration, min number of iteration, convergeance threshold', type=float, + default=[1000,300,0.0005]) - groupFusion = parser.add_argument_group('Fusion arguments') + groupFusion = parser.add_argument_group('Fusion', "poulet") groupFusion.add_argument('--FU_type', metavar='STRING', action='store', help='Determine which type of fusion to use', default='LateFusion') groupFusion.add_argument('--FU_method', metavar='STRING', action='store', @@ -201,8 +206,9 @@ if __name__=='__main__': groupFusion.add_argument('--FU_cl_config', metavar='STRING', action='store', nargs='+', help='Configuration for the monoview classifiers used', default=['3:4', 'log:l2', '10:linear', '4']) - + print parser args = parser.parse_args() + print args views = args.views.split(":") dataBaseType = args.type NB_VIEW = len(views) @@ -213,7 +219,6 @@ if __name__=='__main__': NB_CLASS = args.CL_nb_class LABELS_NAMES = args.CL_classes.split(":") mumboclassifierNames = args.MU_type.split(':') - mumboNB_ITER = args.MU_iter NB_CORES = args.CL_cores fusionClassifierNames = args.FU_cl_names.split(":") fusionClassifierConfig = [argument.split(':') for argument in args.FU_cl_config] @@ -221,7 +226,9 @@ if __name__=='__main__': FusionKWARGS = {"fusionType":args.FU_type, "fusionMethod":args.FU_method, "classifiersNames":fusionClassifierNames, "classifiersConfigs":fusionClassifierConfig, 'fusionMethodConfig':fusionMethodConfig} - MumboKWARGS = {"classifiersConfigs":mumboClassifierConfig, "NB_ITER":mumboNB_ITER, "classifiersNames":mumboclassifierNames} + MumboKWARGS = {"classifiersConfigs":mumboClassifierConfig, + "classifiersNames":mumboclassifierNames, "maxIter":int(args.MU_iter[0]), + "minIter":int(args.MU_iter[1]), "threshold":args.MU_iter[2]} dir = os.path.dirname(os.path.abspath(__file__)) + "/Results/" logFileName = time.strftime("%Y%m%d-%H%M%S") + "-CMultiV-" + args.CL_type + "-" + "_".join(views) + "-" + args.name + \ "-LOG" @@ -252,10 +259,10 @@ if __name__=='__main__': DATASET, LABELS_DICTIONARY = getDatabase(views, args.pathF, args.name, NB_CLASS, LABELS_NAMES) logging.info("Info:\t Labels used: " + ", ".join(LABELS_DICTIONARY.values())) - logging.info("Info:\t Length of dataset:" + str(DATASET.get("Metadata").attrs["datasetlength"])) + logging.info("Info:\t Length of dataset:" + str(DATASET.get("Metadata").attrs["datasetLength"])) ExecMultiview(DATASET, args.name, args.CL_split, args.CL_nbFolds, args.CL_cores, args.type, args.pathF, - LABELS_DICTIONARY, gridSearch=True, **arguments) + LABELS_DICTIONARY, gridSearch=False, **arguments) diff --git a/Code/Multiview/Fusion/Fusion.py b/Code/MonoMutliViewClassifiers/Multiview/Fusion/Fusion.py similarity index 100% rename from Code/Multiview/Fusion/Fusion.py rename to Code/MonoMutliViewClassifiers/Multiview/Fusion/Fusion.py diff --git a/Code/Multiview/Fusion/Methods/EarlyFusion.py b/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/EarlyFusion.py similarity index 97% rename from Code/Multiview/Fusion/Methods/EarlyFusion.py rename to Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/EarlyFusion.py index 761d1b4ce61953577e68ba4b48a0289cc33eaa97..dd86041d22dc90f66908ac26afe2805b2154812d 100644 --- a/Code/Multiview/Fusion/Methods/EarlyFusion.py +++ b/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/EarlyFusion.py @@ -1,10 +1,10 @@ #!/usr/bin/env python # -*- encoding: utf-8 -import MonoviewClassifiers - import numpy as np +import MonoviewClassifiers + class EarlyFusionClassifier(object): def __init__(self, monoviewClassifiersNames, monoviewClassifiersConfigs, NB_CORES=1): @@ -56,7 +56,7 @@ class WeightedLinear(EarlyFusionClassifier): def getConfig(self, fusionMethodConfig ,monoviewClassifiersNames, monoviewClassifiersConfigs): configString = "with weighted concatenation, using weights : "+", ".join(map(str, self.weights))+\ " with monoview classifier : " - monoviewClassifierModule = getattr(MonoviewClassifiers, monoviewClassifiersNames[0]) + monoviewClassifierModule = getattr(poulet, monoviewClassifiersNames[0]) configString += monoviewClassifierModule.getConfig(monoviewClassifiersConfigs[0]) return configString diff --git a/Code/Multiview/Fusion/Methods/LateFusion.py b/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/LateFusion.py similarity index 99% rename from Code/Multiview/Fusion/Methods/LateFusion.py rename to Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/LateFusion.py index 962f51b07e8af4c32b6ec5e5f4ffc95908456238..9222d7339935418485a66e4c55ad1dbd04042474 100644 --- a/Code/Multiview/Fusion/Methods/LateFusion.py +++ b/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/LateFusion.py @@ -2,11 +2,11 @@ # -*- encoding: utf-8 import numpy as np -import sys -from sklearn.svm import SVC +from joblib import Parallel, delayed from sklearn.multiclass import OneVsOneClassifier +from sklearn.svm import SVC + import MonoviewClassifiers -from joblib import Parallel, delayed # Our method in multiclass classification will be One-vs-One or One-vs-All diff --git a/Code/Multiview/Fusion/Methods/__init__.py b/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/__init__.py similarity index 100% rename from Code/Multiview/Fusion/Methods/__init__.py rename to Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/__init__.py diff --git a/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/poulet/__init__.py b/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/poulet/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..9bbd76fbbcd47eb690b8c69a78695d7ef7ab1660 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/poulet/__init__.py @@ -0,0 +1,7 @@ +import os +for module in os.listdir(os.path.dirname(os.path.realpath(__file__))): + if module == '__init__.py' or module[-3:] != '.py': + continue + __import__(module[:-3], locals(), globals()) +del module +del os \ No newline at end of file diff --git a/Code/Multiview/Fusion/__init__.py b/Code/MonoMutliViewClassifiers/Multiview/Fusion/__init__.py similarity index 100% rename from Code/Multiview/Fusion/__init__.py rename to Code/MonoMutliViewClassifiers/Multiview/Fusion/__init__.py diff --git a/Code/Multiview/Fusion/analyzeResults.py b/Code/MonoMutliViewClassifiers/Multiview/Fusion/analyzeResults.py similarity index 100% rename from Code/Multiview/Fusion/analyzeResults.py rename to Code/MonoMutliViewClassifiers/Multiview/Fusion/analyzeResults.py diff --git a/Code/Multiview/GetMultiviewDb.py b/Code/MonoMutliViewClassifiers/Multiview/GetMultiviewDb.py similarity index 99% rename from Code/Multiview/GetMultiviewDb.py rename to Code/MonoMutliViewClassifiers/Multiview/GetMultiviewDb.py index 8a9dfa82e61ea17cdd3152f2068f277d19fbe749..b839496fd441750d60f60d2eb9550905973acf8c 100644 --- a/Code/Multiview/GetMultiviewDb.py +++ b/Code/MonoMutliViewClassifiers/Multiview/GetMultiviewDb.py @@ -145,7 +145,6 @@ def getKFoldIndices(nbFolds, CLASS_LABELS, NB_CLASS, learningIndices): for foldIndex, fold in enumerate(nbTrainingExamples): trainingExamplesIndices.append([]) while fold != [0 for i in range(NB_CLASS)]: - print fold index = random.randint(0, len(learningIndices)-1) if learningIndices[index] not in usedIndices: isUseFull, fold = isUseful(fold, learningIndices[index], CLASS_LABELS, labelDict) @@ -327,7 +326,7 @@ def getMultiOmicDBcsv(features, path, name, NB_CLASS, LABELS_NAMES): rnaseqData = np.genfromtxt(path+"matching_rnaseq.csv", delimiter=',') rnaseqDset = datasetFile.create_dataset("View2", rnaseqData.shape) rnaseqDset[...] = rnaseqData - rnaseqDset.attrs["name"]="RANSeq" + rnaseqDset.attrs["name"]="RNASeq" logging.debug("Done:\t Getting RNASeq Data") logging.debug("Start:\t Getting Clinical Data") @@ -376,7 +375,7 @@ def getModifiedMultiOmicDBcsv(features, path, name, NB_CLASS, LABELS_NAMES): rnaseqData = np.genfromtxt(path+"matching_rnaseq.csv", delimiter=',') rnaseqDset = datasetFile.create_dataset("View2", rnaseqData.shape) rnaseqDset[...] = rnaseqData - rnaseqDset.attrs["name"]="RANSeq_" + rnaseqDset.attrs["name"]="RNASeq_" logging.debug("Done:\t Getting RNASeq Data") logging.debug("Start:\t Getting Clinical Data") diff --git a/Code/Multiview/Mumbo/Classifiers/DecisionTree.py b/Code/MonoMutliViewClassifiers/Multiview/Mumbo/Classifiers/DecisionTree.py similarity index 95% rename from Code/Multiview/Mumbo/Classifiers/DecisionTree.py rename to Code/MonoMutliViewClassifiers/Multiview/Mumbo/Classifiers/DecisionTree.py index 8a087b766d0604627a265367799ff0a6cb69b5cf..2981081de25a515c7055d3f12155f37c3eea0df9 100644 --- a/Code/Multiview/Mumbo/Classifiers/DecisionTree.py +++ b/Code/MonoMutliViewClassifiers/Multiview/Mumbo/Classifiers/DecisionTree.py @@ -3,6 +3,7 @@ from sklearn.metrics import precision_recall_fscore_support, accuracy_score import numpy as np from ModifiedMulticlass import OneVsRestClassifier from SubSampling import subSample +import logging # Add weights def DecisionTree(data, labels, arg, weights): @@ -105,8 +106,11 @@ def getBestSetting(bestSettings, bestResults): diffTo52 = 100.0 bestSettingsIndex = 0 for resultIndex, result in enumerate(bestResults): - if abs(52.5-result)<diffTo52: + if abs(0.55-result) < diffTo52: + diffTo52 = abs(0.55-result) + bestResult = result bestSettingsIndex = resultIndex + logging.debug("\t\tInfo:\t Best Reslut : "+str(result)) return map(lambda p: round(p, 4), bestSettings[bestSettingsIndex]) -# return map(round(,4), bestSettings[bestSettingsIndex]) \ No newline at end of file + # return map(round(,4), bestSettings[bestSettingsIndex]) \ No newline at end of file diff --git a/Code/Multiview/Mumbo/Classifiers/Kover.py b/Code/MonoMutliViewClassifiers/Multiview/Mumbo/Classifiers/Kover.py similarity index 100% rename from Code/Multiview/Mumbo/Classifiers/Kover.py rename to Code/MonoMutliViewClassifiers/Multiview/Mumbo/Classifiers/Kover.py diff --git a/Code/Multiview/Mumbo/Classifiers/ModifiedMulticlass.py b/Code/MonoMutliViewClassifiers/Multiview/Mumbo/Classifiers/ModifiedMulticlass.py similarity index 100% rename from Code/Multiview/Mumbo/Classifiers/ModifiedMulticlass.py rename to Code/MonoMutliViewClassifiers/Multiview/Mumbo/Classifiers/ModifiedMulticlass.py diff --git a/Code/Multiview/Mumbo/Classifiers/SubSampling.py b/Code/MonoMutliViewClassifiers/Multiview/Mumbo/Classifiers/SubSampling.py similarity index 100% rename from Code/Multiview/Mumbo/Classifiers/SubSampling.py rename to Code/MonoMutliViewClassifiers/Multiview/Mumbo/Classifiers/SubSampling.py diff --git a/Code/Multiview/Mumbo/Classifiers/__init__.py b/Code/MonoMutliViewClassifiers/Multiview/Mumbo/Classifiers/__init__.py similarity index 100% rename from Code/Multiview/Mumbo/Classifiers/__init__.py rename to Code/MonoMutliViewClassifiers/Multiview/Mumbo/Classifiers/__init__.py diff --git a/Code/Multiview/Mumbo/Mumbo.py b/Code/MonoMutliViewClassifiers/Multiview/Mumbo/Mumbo.py similarity index 84% rename from Code/Multiview/Mumbo/Mumbo.py rename to Code/MonoMutliViewClassifiers/Multiview/Mumbo/Mumbo.py index 912d6ebab17eb2160e0c69ec9d179bdbe808d900..20e1e9613077937c0a8a463ad91213812156a843 100644 --- a/Code/Multiview/Mumbo/Mumbo.py +++ b/Code/MonoMutliViewClassifiers/Multiview/Mumbo/Mumbo.py @@ -2,7 +2,10 @@ import numpy as np import math from joblib import Parallel, delayed from Classifiers import * +import time import logging +import matplotlib.pyplot as plt +from sklearn.metrics import accuracy_score # Data shape : ((Views, Examples, Corrdinates)) @@ -23,8 +26,7 @@ def trainWeakClassifier(classifierName, monoviewDataset, CLASS_LABELS, weights = computeWeights(DATASET_LENGTH, iterIndex, viewIndice, CLASS_LABELS, costMatrices) classifierModule = globals()[classifierName] # Permet d'appeler une fonction avec une string classifierMethod = getattr(classifierModule, classifierName) - classifier, classes, isBad, pTr = classifierMethod(monoviewDataset, CLASS_LABELS, classifier_config, weights) - averageAccuracy = np.mean(pTr) + classifier, classes, isBad, averageAccuracy = classifierMethod(monoviewDataset, CLASS_LABELS, classifier_config, weights) logging.debug("\t\t\tView " + str(viewIndice) + " : " + str(averageAccuracy)) return classifier, classes, isBad, averageAccuracy @@ -33,18 +35,19 @@ def trainWeakClassifier_hdf5(classifierName, monoviewDataset, CLASS_LABELS, DATA weights = computeWeights(DATASET_LENGTH, iterIndex, viewIndice, CLASS_LABELS, costMatrices) classifierModule = globals()[classifierName] # Permet d'appeler une fonction avec une string classifierMethod = getattr(classifierModule, classifierName) - classifier, classes, isBad, pTr = classifierMethod(monoviewDataset, CLASS_LABELS, classifier_config, weights) - averageAccuracy = np.mean(pTr) + classifier, classes, isBad, averageAccuracy = classifierMethod(monoviewDataset, CLASS_LABELS, classifier_config, weights) logging.debug("\t\t\tView " + str(viewIndice) + " : " + str(averageAccuracy)) return classifier, classes, isBad, averageAccuracy def gridSearch_hdf5(DATASET, classifiersNames): bestSettings = [] for classifierIndex, classifierName in enumerate(classifiersNames): + logging.debug("\tStart:\t Gridsearch for "+classifierName+" on "+DATASET.get("View"+str(classifierIndex)).attrs["name"]) classifierModule = globals()[classifierName] # Permet d'appeler une fonction avec une string classifierMethod = getattr(classifierModule, "gridSearch") bestSettings.append(classifierMethod(DATASET.get("View"+str(classifierIndex))[...], DATASET.get("labels")[...])) + logging.debug("\tDone:\t Gridsearch for "+classifierName) return bestSettings @@ -54,43 +57,45 @@ def gridSearch_hdf5(DATASET, classifiersNames): class Mumbo: def __init__(self, NB_VIEW, DATASET_LENGTH, CLASS_LABELS, NB_CORES=1,**kwargs): - self.nbIter = kwargs["NB_ITER"] + self.maxIter = kwargs["maxIter"] + self.minIter = kwargs["minIter"] + self.threshold = kwargs["threshold"] self.classifiersNames = kwargs["classifiersNames"] self.classifiersConfigs = kwargs["classifiersConfigs"] nbClass = len(set(CLASS_LABELS)) - self.nbIter = kwargs["NB_ITER"] self.costMatrices = np.array([ - np.array([ - np.array([ - np.array([1 if CLASS_LABELS[exampleIndice] != classe - else -(nbClass - 1) - for classe in range(nbClass) - ]) for exampleIndice in range(DATASET_LENGTH) - ]) for viewIndice in range(NB_VIEW)]) - if iteration == 0 - else np.zeros((NB_VIEW, DATASET_LENGTH, nbClass)) - for iteration in range(self.nbIter + 1) - ]) + np.array([ + np.array([ + np.array([1 if CLASS_LABELS[exampleIndice] != classe + else -(nbClass - 1) + for classe in range(nbClass) + ]) for exampleIndice in range(DATASET_LENGTH) + ]) for viewIndice in range(NB_VIEW)]) + if iteration == 0 + else np.zeros((NB_VIEW, DATASET_LENGTH, nbClass)) + for iteration in range(self.maxIter + 1) + ]) self.generalCostMatrix = np.array([ np.array([ np.array([1 if CLASS_LABELS[exampleIndice] != classe else -(nbClass - 1) for classe in range(nbClass) ]) for exampleIndice in range(DATASET_LENGTH) - ]) for iteration in range(self.nbIter) + ]) for iteration in range(self.maxIter) ]) - self.fs = np.zeros((self.nbIter, NB_VIEW, DATASET_LENGTH, nbClass)) - self.ds = np.zeros((self.nbIter, NB_VIEW, DATASET_LENGTH)) - self.edges = np.zeros((self.nbIter, NB_VIEW)) - self.alphas = np.zeros((self.nbIter, NB_VIEW)) - self.predictions = np.zeros((self.nbIter, NB_VIEW, DATASET_LENGTH)) - self.generalAlphas = np.zeros(self.nbIter) - self.generalFs = np.zeros((self.nbIter, DATASET_LENGTH, nbClass)) + self.fs = np.zeros((self.maxIter, NB_VIEW, DATASET_LENGTH, nbClass)) + self.ds = np.zeros((self.maxIter, NB_VIEW, DATASET_LENGTH)) + self.edges = np.zeros((self.maxIter, NB_VIEW)) + self.alphas = np.zeros((self.maxIter, NB_VIEW)) + self.predictions = np.zeros((self.maxIter, NB_VIEW, DATASET_LENGTH)) + self.generalAlphas = np.zeros(self.maxIter) + self.generalFs = np.zeros((self.maxIter, DATASET_LENGTH, nbClass)) self.nbCores = NB_CORES self.iterIndex = 0 self.bestClassifiers = [] - self.bestViews = np.zeros(self.nbIter, dtype=int) - self.averageAccuracies = np.zeros((self.nbIter, NB_VIEW)) + self.bestViews = np.zeros(self.maxIter, dtype=int) + self.averageAccuracies = np.zeros((self.maxIter, NB_VIEW)) + self.iterAccuracies = np.zeros(self.maxIter) # costMatrices = np.array([ # np.array([ # np.array([ @@ -134,17 +139,23 @@ class Mumbo: # predictions, generalAlphas, generalFs = initialize(NB_CLASS, NB_VIEW, # NB_ITER, DATASET_LENGTH, # LABELS[trainIndices]) - bestViews = np.zeros(self.nbIter) + bestViews = np.zeros(self.maxIter) bestClassifiers = [] # Learning + isStabilized=False self.iterIndex = 0 - for i in range(self.nbIter): + while not isStabilized or self.iterIndex >= self.maxIter: + if self.iterIndex > self.minIter: + coeffs = np.polyfit(np.log(np.arange(self.iterIndex)+0.00001), self.iterAccuracies[:self.iterIndex], 1) + if coeffs[0]/self.iterIndex < self.threshold: + isStabilized = True + logging.debug('\t\tStart:\t Iteration ' + str(self.iterIndex + 1)) classifiers, predictedLabels, areBad = self.trainWeakClassifiers_hdf5(DATASET, trainIndices, NB_CLASS, DATASET_LENGTH, NB_VIEW) if areBad.all(): - logging.warning("All bad for iteration " + str(self.iterIndex)) + logging.warning("WARNING:\tAll bad for iteration " + str(self.iterIndex)) self.predictions[self.iterIndex] = predictedLabels @@ -169,6 +180,10 @@ class Mumbo: self.bestClassifiers.append(classifiers[bestView]) self.updateGeneralFs(DATASET_LENGTH, NB_CLASS, bestView) self.updateGeneralCostMatrix(DATASET_LENGTH, NB_CLASS,LABELS) + predictedLabels = self.predict_hdf5(DATASET, usedIndices=trainIndices) + accuracy = accuracy_score(DATASET.get("labels")[trainIndices], predictedLabels) + self.iterAccuracies[self.iterIndex] = accuracy + self.iterIndex += 1 # finalFs = computeFinalFs(DATASET_LENGTH, NB_CLASS, generalAlphas, predictions, bestViews, LABELS, NB_ITER) @@ -184,7 +199,7 @@ class Mumbo: for labelIndex, exampleIndex in enumerate(usedIndices): votes = np.zeros(NB_CLASS) for classifier, alpha, view in zip(self.bestClassifiers, self.alphas, self.bestViews): - data = DATASET["/View"+str(int(view))+"/matrix"][exampleIndex, :] + data = DATASET["/View"+str(int(view))][exampleIndex, :] votes[int(classifier.predict(np.array([data])))] += alpha[view] predictedLabels[labelIndex] = np.argmax(votes) else: @@ -204,10 +219,10 @@ class Mumbo: classifiersNames = self.classifiersNames iterIndex = self.iterIndex trainedClassifiersAndLabels = Parallel(n_jobs=NB_JOBS)( - delayed(trainWeakClassifier)(classifiersNames[viewIndice], DATASET[viewIndice], CLASS_LABELS, - DATASET_LENGTH, viewIndice, classifiersConfigs[viewIndice], iterIndex, - costMatrices) - for viewIndice in range(NB_VIEW)) + delayed(trainWeakClassifier)(classifiersNames[viewIndice], DATASET[viewIndice], CLASS_LABELS, + DATASET_LENGTH, viewIndice, classifiersConfigs[viewIndice], iterIndex, + costMatrices) + for viewIndice in range(NB_VIEW)) for viewIndex, (classifier, labelsArray, isBad, averageAccuracy) in enumerate(trainedClassifiersAndLabels): self.averageAccuracies[self.iterIndex, viewIndex] = averageAccuracy @@ -217,7 +232,7 @@ class Mumbo: return np.array(trainedClassifiers), np.array(labelsMatrix), np.array(areBad) def trainWeakClassifiers_hdf5(self, DATASET, trainIndices, NB_CLASS, - DATASET_LENGTH, NB_VIEW): + DATASET_LENGTH, NB_VIEW): trainedClassifiers = [] labelsMatrix = [] areBad = [] @@ -230,13 +245,13 @@ class Mumbo: classifiersNames = self.classifiersNames iterIndex = self.iterIndex trainedClassifiersAndLabels = Parallel(n_jobs=NB_JOBS)( - delayed(trainWeakClassifier_hdf5)(classifiersNames[viewIndex], - DATASET.get("View"+str(viewIndex))[trainIndices, :], - DATASET.get("labels")[trainIndices], - DATASET_LENGTH, - viewIndex, classifiersConfigs[viewIndex], - DATASET.get("View"+str(viewIndex)).attrs["name"], iterIndex, costMatrices) - for viewIndex in range(NB_VIEW)) + delayed(trainWeakClassifier_hdf5)(classifiersNames[viewIndex], + DATASET.get("View"+str(viewIndex))[trainIndices, :], + DATASET.get("labels")[trainIndices], + DATASET_LENGTH, + viewIndex, classifiersConfigs[viewIndex], + DATASET.get("View"+str(viewIndex)).attrs["name"], iterIndex, costMatrices) + for viewIndex in range(NB_VIEW)) for viewIndex, (classifier, labelsArray, isBad, averageAccuracy) in enumerate(trainedClassifiersAndLabels): self.averageAccuracies[self.iterIndex, viewIndex] = averageAccuracy @@ -250,11 +265,11 @@ class Mumbo: costMatrix = self.costMatrices[self.iterIndex, viewIndex] # return np.sum(np.array([np.sum(predictionMatrix*costMatrix[:,classIndice]) for classIndice in range(NB_CLASS)])) cCost = float(np.sum(np.array( - [costMatrix[exampleIndice, int(predictionMatrix[exampleIndice])] for exampleIndice in - range(DATASET_LENGTH)]))) + [costMatrix[exampleIndice, int(predictionMatrix[exampleIndice])] for exampleIndice in + range(DATASET_LENGTH)]))) tCost = float(np.sum( - np.array([-costMatrix[exampleIndice, CLASS_LABELS[exampleIndice]] for exampleIndice in - range(DATASET_LENGTH)]))) + np.array([-costMatrix[exampleIndice, CLASS_LABELS[exampleIndice]] for exampleIndice in + range(DATASET_LENGTH)]))) if tCost == 0.: self.edges[self.iterIndex, viewIndex] = -cCost else: @@ -283,13 +298,13 @@ class Mumbo: == \ CLASS_LABELS[exampleIndice] \ or self.allViewsClassifyWell(self.predictions, pastIterIndice, - NB_VIEW, CLASS_LABELS[exampleIndice], - exampleIndice): + NB_VIEW, CLASS_LABELS[exampleIndice], + exampleIndice): self.ds[pastIterIndice, viewIndice, exampleIndice] = 1 else: self.ds[pastIterIndice, viewIndice, exampleIndice] = 0 - #return ds + #return ds def updateFs(self, NB_VIEW, DATASET_LENGTH, NB_CLASS): for viewIndice in range(NB_VIEW): @@ -299,14 +314,14 @@ class Mumbo: = np.sum(np.array([self.alphas[pastIterIndice, viewIndice] * self.ds[pastIterIndice, viewIndice, exampleIndice] if self.predictions[pastIterIndice, viewIndice, - exampleIndice] + exampleIndice] == classe else 0 for pastIterIndice in range(self.iterIndex)])) if np.amax(np.absolute(self.fs)) != 0: self.fs /= np.amax(np.absolute(self.fs)) - #return fs + #return fs def updateCostmatrices(self, NB_VIEW, DATASET_LENGTH, NB_CLASS, CLASS_LABELS): for viewIndice in range(NB_VIEW): @@ -336,8 +351,8 @@ class Mumbo: self.generalFs[self.iterIndex, exampleIndice, classe] \ = np.sum(np.array([self.generalAlphas[pastIterIndice] if self.predictions[pastIterIndice, - bestView, - exampleIndice] + bestView, + exampleIndice] == classe else 0 @@ -346,7 +361,7 @@ class Mumbo: ) if np.amax(np.absolute(self.generalFs)) != 0: self.generalFs /= np.amax(np.absolute(self.generalFs)) - #return generalFs + #return generalFs def updateGeneralCostMatrix(self, DATASET_LENGTH, NB_CLASS, CLASS_LABELS): for exampleIndice in range(DATASET_LENGTH): @@ -359,8 +374,8 @@ class Mumbo: self.generalCostMatrix[self.iterIndex, exampleIndice, classe] \ = -1 * np.sum(np.exp(self.generalFs[self.iterIndex, exampleIndice] - self.generalFs[self.iterIndex, exampleIndice, classe])) - # if np.amax(np.absolute(generalCostMatrix)) != 0: - # generalCostMatrix = generalCostMatrix/np.amax(np.absolute(generalCostMatrix)) + # if np.amax(np.absolute(generalCostMatrix)) != 0: + # generalCostMatrix = generalCostMatrix/np.amax(np.absolute(generalCostMatrix)) def fit(self, DATASET, CLASS_LABELS, **kwargs): # Initialization @@ -372,11 +387,11 @@ class Mumbo: # predictions, generalAlphas, generalFs = initialize(NB_CLASS, NB_VIEW, # NB_ITER, DATASET_LENGTH, # CLASS_LABELS) - bestViews = np.zeros(self.nbIter) + bestViews = np.zeros(self.maxIter) bestClassifiers = [] # Learning - for i in range(self.nbIter): + for i in range(self.maxIter): logging.debug('\t\tStart:\t Iteration ' + str(self.iterIndex + 1)) classifiers, predictedLabels, areBad = self.trainWeakClassifiers(DATASET, CLASS_LABELS, NB_CLASS, DATASET_LENGTH, NB_VIEW) @@ -391,7 +406,7 @@ class Mumbo: self.alphas[self.iterIndex, viewIndice] = 0. else: self.alphas[self.iterIndex, viewIndice] = self.computeAlpha(self.edges[self.iterIndex, - viewIndice]) + viewIndice]) self.updateDs(CLASS_LABELS, NB_VIEW, DATASET_LENGTH) self.updateFs(NB_VIEW, DATASET_LENGTH, NB_CLASS) @@ -406,7 +421,7 @@ class Mumbo: self.updateGeneralFs(DATASET_LENGTH, NB_CLASS, bestView) self.updateGeneralCostMatrix(DATASET_LENGTH, NB_CLASS, CLASS_LABELS) - # finalFs = computeFinalFs(DATASET_LENGTH, NB_CLASS, generalAlphas, predictions, bestViews, LABELS, NB_ITER) + # finalFs = computeFinalFs(DATASET_LENGTH, NB_CLASS, generalAlphas, predictions, bestViews, LABELS, NB_ITER) def predict(self, DATASET, NB_CLASS=2): DATASET_LENGTH = len(DATASET[0]) @@ -442,7 +457,7 @@ class Mumbo: usedIndices = range(DATASET.get("Metadata").attrs["datasetLength"]) if usedIndices: DATASET_LENGTH = len(usedIndices) - predictedLabels = np.zeros((DATASET_LENGTH, self.nbIter)) + predictedLabels = np.zeros((DATASET_LENGTH, self.maxIter)) votes = np.zeros((DATASET_LENGTH, NB_CLASS)) for iterIndex, (classifier, alpha, view) in enumerate(zip(self.bestClassifiers, self.alphas, self.bestViews)): @@ -455,7 +470,7 @@ class Mumbo: predictedLabels[usedExampleIndex, iterIndex] = np.argmax(votes[usedExampleIndex]) else: predictedLabels = [] - for i in range(self.nbIter): + for i in range(self.maxIter): predictedLabels.append([]) return np.transpose(predictedLabels) diff --git a/Code/Multiview/Mumbo/__init__.py b/Code/MonoMutliViewClassifiers/Multiview/Mumbo/__init__.py similarity index 100% rename from Code/Multiview/Mumbo/__init__.py rename to Code/MonoMutliViewClassifiers/Multiview/Mumbo/__init__.py diff --git a/Code/Multiview/Mumbo/analyzeResults.py b/Code/MonoMutliViewClassifiers/Multiview/Mumbo/analyzeResults.py similarity index 99% rename from Code/Multiview/Mumbo/analyzeResults.py rename to Code/MonoMutliViewClassifiers/Multiview/Mumbo/analyzeResults.py index 8d32066b5acc42666c21c70f4295eed8b6af4d4a..ebca53330f61e9c1e83cf350a72bdfed946b9972 100644 --- a/Code/Multiview/Mumbo/analyzeResults.py +++ b/Code/MonoMutliViewClassifiers/Multiview/Mumbo/analyzeResults.py @@ -21,7 +21,7 @@ def plotAccuracyByIter(trainAccuracy, testAccuracy, validationAccuracy, NB_ITER, figure = plt.figure() ax1 = figure.add_subplot(111) axes = figure.gca() - axes.set_ylim([0,100]) + axes.set_ylim([40,100]) titleString = "" for view, classifierConfig in zip(features, classifierAnalysis): titleString += "\n" + view + " : " + classifierConfig diff --git a/Code/Multiview/Results/20160805-051412Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160805-051412Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake.txt similarity index 100% rename from Code/Multiview/Results/20160805-051412Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160805-051412Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake.txt diff --git a/Code/Multiview/Results/20160805-051504Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160805-051504Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160805-051504Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160805-051504Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160805-051504Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160805-051504Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake.txt similarity index 100% rename from Code/Multiview/Results/20160805-051504Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160805-051504Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake.txt diff --git a/Code/Multiview/Results/20160805-053948Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160805-053948Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160805-053948Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160805-053948Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160805-053948Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160805-053948Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160805-053948Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160805-053948Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt diff --git a/Code/Multiview/Results/20160805-060450Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160805-060450Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160805-060450Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160805-060450Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160805-060450Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160805-060450Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160805-060450Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160805-060450Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt diff --git a/Code/Multiview/Results/20160805-062754Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160805-062754Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160805-062754Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160805-062754Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160805-062754Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160805-062754Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160805-062754Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160805-062754Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt diff --git a/Code/Multiview/Results/20160805-065239Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160805-065239Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160805-065239Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160805-065239Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160805-065239Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160805-065239Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160805-065239Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160805-065239Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt diff --git a/Code/Multiview/Results/20160810-151543Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151543Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160810-151543Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151543Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160810-151543Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151543Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160810-151543Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151543Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt diff --git a/Code/Multiview/Results/20160810-151701Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151701Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160810-151701Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151701Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160810-151701Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151701Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160810-151701Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151701Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt diff --git a/Code/Multiview/Results/20160810-151848Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151848Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160810-151848Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151848Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160810-151848Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151848Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160810-151848Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151848Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt diff --git a/Code/Multiview/Results/20160810-151935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160810-151935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160810-151935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160810-151935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt diff --git a/Code/Multiview/Results/20160810-152152Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-152152Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160810-152152Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-152152Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160810-152152Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-152152Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160810-152152Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-152152Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt diff --git a/Code/Multiview/Results/20160810-154441Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-154441Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160810-154441Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-154441Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160810-154441Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-154441Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter100-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160810-154441Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter100-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-154441Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter100-MultiOmic.txt diff --git a/Code/Multiview/Results/20160810-164849Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.9-nbIter1-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-164849Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.9-nbIter1-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160810-164849Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.9-nbIter1-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-164849Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.9-nbIter1-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160810-164849Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.9-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-164849Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.9-nbIter1-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160810-164849Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.9-nbIter1-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-164849Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.9-nbIter1-MultiOmic.txt diff --git a/Code/Multiview/Results/20160810-170941Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.0-nbIter1-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-170941Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.0-nbIter1-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160810-170941Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.0-nbIter1-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-170941Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.0-nbIter1-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160810-170941Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.0-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-170941Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.0-nbIter1-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160810-170941Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.0-nbIter1-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-170941Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.0-nbIter1-MultiOmic.txt diff --git a/Code/Multiview/Results/20160810-171142Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter1-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-171142Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter1-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160810-171142Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter1-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-171142Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter1-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160810-171142Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-171142Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter1-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160810-171142Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter1-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-171142Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter1-MultiOmic.txt diff --git a/Code/Multiview/Results/20160810-171605Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-171605Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160810-171605Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-171605Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160810-171605Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-171605Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160810-171605Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-171605Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt diff --git a/Code/Multiview/Results/20160810-172819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-172819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160810-172819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-172819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160810-172819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-172819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160810-172819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-172819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt diff --git a/Code/Multiview/Results/20160810-174108Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174108Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160810-174108Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174108Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160810-174108Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174108Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160810-174108Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174108Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt diff --git a/Code/Multiview/Results/20160810-174407Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174407Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160810-174407Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174407Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160810-174407Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174407Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160810-174407Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174407Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt diff --git a/Code/Multiview/Results/20160810-174756Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174756Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160810-174756Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174756Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160810-174756Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174756Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160810-174756Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174756Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt diff --git a/Code/Multiview/Results/20160810-174819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160810-174819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160810-174819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160810-174819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt diff --git a/Code/Multiview/Results/20160810-180049Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter100-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-180049Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter100-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160810-180049Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter100-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-180049Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter100-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160810-180049Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-180049Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter100-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160810-180049Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter100-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-180049Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter100-MultiOmic.txt diff --git a/Code/Multiview/Results/20160810-180916Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter4-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-180916Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter4-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160810-180916Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter4-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-180916Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter4-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160810-180916Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter4-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-180916Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter4-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160810-180916Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter4-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-180916Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter4-MultiOmic.txt diff --git a/Code/Multiview/Results/20160810-191528Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-191528Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter400-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160810-191528Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter400-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-191528Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter400-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160810-191528Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-191528Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter400-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160810-191528Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter400-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-191528Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter400-MultiOmic.txt diff --git a/Code/Multiview/Results/20160811-102529Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160811-102529Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160811-102529Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160811-102529Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160811-102529Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160811-102529Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160811-102529Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160811-102529Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt diff --git a/Code/Multiview/Results/20160811-104307Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160811-104307Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160811-104307Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160811-104307Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160811-104307Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160811-104307Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160811-104307Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160811-104307Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt diff --git a/Code/Multiview/Results/20160811-110404Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160811-110404Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160811-110404Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160811-110404Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160811-110404Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160811-110404Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160811-110404Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160811-110404Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt diff --git a/Code/Multiview/Results/20160811-115935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160811-115935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160811-115935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160811-115935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160811-115935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160811-115935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160811-115935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160811-115935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt diff --git a/Code/Multiview/Results/20160811-135735Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160811-135735Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160811-135735Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160811-135735Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160811-135735Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160811-135735Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160811-135735Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160811-135735Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt diff --git a/Code/Multiview/Results/20160812-113004Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113004Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160812-113004Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113004Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160812-113004Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113004Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160812-113004Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113004Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt diff --git a/Code/Multiview/Results/20160812-113045Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113045Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160812-113045Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113045Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160812-113045Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113045Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160812-113045Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113045Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt diff --git a/Code/Multiview/Results/20160812-113624Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113624Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160812-113624Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113624Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160812-113624Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113624Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160812-113624Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113624Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt diff --git a/Code/Multiview/Results/20160812-113951Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113951Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160812-113951Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113951Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160812-113951Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113951Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160812-113951Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113951Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt diff --git a/Code/Multiview/Results/20160812-114041Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114041Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160812-114041Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114041Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160812-114041Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114041Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160812-114041Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114041Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt diff --git a/Code/Multiview/Results/20160812-114131Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114131Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160812-114131Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114131Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160812-114131Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114131Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160812-114131Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114131Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt diff --git a/Code/Multiview/Results/20160812-114158Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114158Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160812-114158Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114158Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160812-114158Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114158Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160812-114158Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114158Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt diff --git a/Code/Multiview/Results/20160812-114227Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114227Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160812-114227Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114227Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160812-114227Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114227Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160812-114227Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114227Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt diff --git a/Code/Multiview/Results/20160812-115346Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-115346Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160812-115346Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-115346Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160812-115346Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-115346Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160812-115346Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-115346Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt diff --git a/Code/Multiview/Results/20160812-125212Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-125212Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160812-125212Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-125212Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160812-125212Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-125212Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160812-125212Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-125212Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt diff --git a/Code/Multiview/Results/20160812-130530Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-130530Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160812-130530Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-130530Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160812-130530Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-130530Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160812-130530Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-130530Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt diff --git a/Code/Multiview/Results/20160812-130656Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-130656Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160812-130656Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-130656Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160812-130656Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-130656Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160812-130656Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-130656Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt diff --git a/Code/Multiview/Results/20160812-130943Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-130943Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160812-130943Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-130943Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160812-130943Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-130943Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160812-130943Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-130943Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt diff --git a/Code/Multiview/Results/20160812-131149Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-131149Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160812-131149Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-131149Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160812-131149Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-131149Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160812-131149Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-131149Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt diff --git a/Code/Multiview/Results/20160812-131326Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-131326Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160812-131326Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-131326Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160812-131326Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-131326Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160812-131326Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-131326Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt diff --git a/Code/Multiview/Results/20160812-131416Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-131416Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160812-131416Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-131416Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160812-131416Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-131416Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160812-131416Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-131416Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt diff --git a/Code/Multiview/Results/20160812-141531Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-141531Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160812-141531Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-141531Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160812-141531Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-141531Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160812-141531Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-141531Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt diff --git a/Code/Multiview/Results/20160812-151147Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-151147Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160812-151147Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-151147Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160812-151147Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-151147Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160812-151147Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-151147Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt diff --git a/Code/Multiview/Results/20160812-160744Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-160744Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160812-160744Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-160744Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160812-160744Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-160744Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160812-160744Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-160744Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt diff --git a/Code/Multiview/Results/20160812-170236Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-170236Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160812-170236Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-170236Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160812-170236Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-170236Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160812-170236Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-170236Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt diff --git a/Code/Multiview/Results/20160815-171926Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-171926Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160815-171926Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-171926Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160815-171926Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-171926Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160815-171926Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-171926Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt diff --git a/Code/Multiview/Results/20160815-172630Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-172630Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160815-172630Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-172630Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160815-172630Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-172630Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160815-172630Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-172630Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt diff --git a/Code/Multiview/Results/20160815-172657Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-172657Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160815-172657Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-172657Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160815-172657Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-172657Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160815-172657Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-172657Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt diff --git a/Code/Multiview/Results/20160815-172723Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-172723Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160815-172723Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-172723Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160815-172723Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-172723Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160815-172723Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-172723Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt diff --git a/Code/Multiview/Results/20160815-182427Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-182427Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160815-182427Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-182427Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160815-182427Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-182427Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160815-182427Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-182427Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt diff --git a/Code/Multiview/Results/20160815-191554Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-191554Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160815-191554Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-191554Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160815-191554Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-191554Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160815-191554Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-191554Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt diff --git a/Code/Multiview/Results/20160815-200833Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-200833Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160815-200833Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-200833Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160815-200833Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-200833Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160815-200833Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-200833Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt diff --git a/Code/Multiview/Results/20160815-205957Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-205957Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160815-205957Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-205957Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160815-205957Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-205957Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160815-205957Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-205957Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt diff --git a/Code/Multiview/Results/20160815-215245Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-215245Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160815-215245Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-215245Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160815-215245Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-215245Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160815-215245Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-215245Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt diff --git a/Code/Multiview/Results/20160815-224527Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-224527Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160815-224527Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-224527Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160815-224527Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-224527Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160815-224527Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-224527Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt diff --git a/Code/Multiview/Results/20160815-233644Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-233644Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160815-233644Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-233644Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160815-233644Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-233644Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160815-233644Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-233644Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt diff --git a/Code/Multiview/Results/20160816-002920Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160816-002920Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160816-002920Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160816-002920Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160816-002920Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160816-002920Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160816-002920Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160816-002920Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt diff --git a/Code/Multiview/Results/20160816-012052Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160816-012052Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160816-012052Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160816-012052Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160816-012052Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160816-012052Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160816-012052Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160816-012052Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt diff --git a/Code/Multiview/Results/20160816-021305Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160816-021305Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160816-021305Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160816-021305Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160816-021305Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160816-021305Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160816-021305Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160816-021305Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt diff --git a/Code/Multiview/Results/20160816-030405Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160816-030405Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160816-030405Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160816-030405Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160816-030405Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160816-030405Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160816-030405Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160816-030405Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt diff --git a/Code/Multiview/Results/20160816-035600Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160816-035600Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160816-035600Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160816-035600Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160816-035600Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160816-035600Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160816-035600Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160816-035600Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt diff --git a/Code/Multiview/Results/20160816-044836Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160816-044836Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160816-044836Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160816-044836Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160816-044836Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160816-044836Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160816-044836Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160816-044836Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt diff --git a/Code/Multiview/Results/20160816-054024Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160816-054024Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160816-054024Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160816-054024Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160816-054024Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160816-054024Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160816-054024Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160816-054024Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt diff --git a/Code/Multiview/Results/20160817-100628Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter3-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160817-100628Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter3-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160817-100628Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter3-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160817-100628Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter3-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160817-100628Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter3-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160817-100628Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter3-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160817-100628Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter3-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160817-100628Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter3-MultiOmic.txt diff --git a/Code/Multiview/Results/20160817-110027Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160817-110027Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160817-110027Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160817-110027Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160817-110027Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160817-110027Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160817-110027Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160817-110027Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt diff --git a/Code/Multiview/Results/20160817-173232Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160817-173232Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160817-173232Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160817-173232Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt diff --git a/Code/Multiview/Results/20160817-173308Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160817-173308Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160817-173308Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160817-173308Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt diff --git a/Code/Multiview/Results/20160817-173402Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160817-173402Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160817-173402Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160817-173402Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt diff --git a/Code/Multiview/Results/20160817-173429Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160817-173429Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160817-173429Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160817-173429Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt diff --git a/Code/Multiview/Results/20160817-173452Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160817-173452Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160817-173452Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160817-173452Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt diff --git a/Code/Multiview/Results/20160817-173829Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160817-173829Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160817-173829Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160817-173829Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt diff --git a/Code/Multiview/Results/20160817-181320Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160817-181320Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160817-181320Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160817-181320Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt diff --git a/Code/Multiview/Results/20160818-094003Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160818-094003Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160818-094003Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160818-094003Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt diff --git a/Code/Multiview/Results/20160818-100400Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160818-100400Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160818-100400Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160818-100400Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt diff --git a/Code/Multiview/Results/20160818-102335Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160818-102335Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160818-102335Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160818-102335Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt diff --git a/Code/Multiview/Results/20160818-111628Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160818-111628Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160818-111628Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160818-111628Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt diff --git a/Code/Multiview/Results/20160818-115729Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160818-115729Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160818-115729Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160818-115729Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt diff --git a/Code/Multiview/Results/20160818-144139Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160818-144139Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160818-144139Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160818-144139Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt diff --git a/Code/Multiview/Results/20160819-090138Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-090138Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160819-090138Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-090138Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160819-090138Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-090138Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt similarity index 100% rename from Code/Multiview/Results/20160819-090138Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-090138Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt diff --git a/Code/Multiview/Results/20160819-090956Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-090956Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160819-090956Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-090956Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160819-090956Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-090956Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt similarity index 100% rename from Code/Multiview/Results/20160819-090956Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-090956Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt diff --git a/Code/Multiview/Results/20160819-094229Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-094229Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160819-094229Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-094229Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160819-094229Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-094229Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified.txt similarity index 100% rename from Code/Multiview/Results/20160819-094229Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-094229Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified.txt diff --git a/Code/Multiview/Results/20160819-094257Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-094257Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160819-094257Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-094257Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160819-094257Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-094257Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified.txt similarity index 100% rename from Code/Multiview/Results/20160819-094257Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-094257Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified.txt diff --git a/Code/Multiview/Results/20160819-094609Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-094609Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160819-094609Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-094609Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160819-094609Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-094609Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt similarity index 100% rename from Code/Multiview/Results/20160819-094609Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-094609Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt diff --git a/Code/Multiview/Results/20160819-095436Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-095436Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160819-095436Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-095436Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160819-095436Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-095436Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt similarity index 100% rename from Code/Multiview/Results/20160819-095436Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-095436Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt diff --git a/Code/Multiview/Results/20160819-100249Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-100249Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160819-100249Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-100249Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160819-100249Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-100249Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt similarity index 100% rename from Code/Multiview/Results/20160819-100249Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-100249Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt diff --git a/Code/Multiview/Results/20160819-100936Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-100936Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160819-100936Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-100936Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160819-100936Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-100936Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified.txt similarity index 100% rename from Code/Multiview/Results/20160819-100936Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-100936Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified.txt diff --git a/Code/Multiview/Results/20160819-103243-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-103243-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log similarity index 100% rename from Code/Multiview/Results/20160819-103243-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-103243-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log diff --git a/Code/Multiview/Results/20160819-103707Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-MultiOmicModified-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-103707Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-MultiOmicModified-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160819-103707Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-MultiOmicModified-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-103707Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-MultiOmicModified-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160819-103707Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-MultiOmicModified.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-103707Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-MultiOmicModified.txt similarity index 100% rename from Code/Multiview/Results/20160819-103707Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-MultiOmicModified.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-103707Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-MultiOmicModified.txt diff --git a/Code/Multiview/Results/20160819-104311-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-104311-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log similarity index 100% rename from Code/Multiview/Results/20160819-104311-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-104311-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log diff --git a/Code/Multiview/Results/20160819-104325-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-104325-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log similarity index 100% rename from Code/Multiview/Results/20160819-104325-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-104325-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log diff --git a/Code/Multiview/Results/20160819-104346-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-104346-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log similarity index 100% rename from Code/Multiview/Results/20160819-104346-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-104346-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log diff --git a/Code/Multiview/Results/20160819-143036Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.7-MultiOmicModified-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-143036Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.7-MultiOmicModified-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/20160819-143036Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.7-MultiOmicModified-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-143036Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.7-MultiOmicModified-accuracyByIteration.png diff --git a/Code/Multiview/Results/20160819-143036Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.7-MultiOmicModified.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-143036Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.7-MultiOmicModified.txt similarity index 100% rename from Code/Multiview/Results/20160819-143036Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.7-MultiOmicModified.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-143036Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.7-MultiOmicModified.txt diff --git a/Code/Multiview/Results/20160819-202419-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202408-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log similarity index 100% rename from Code/Multiview/Results/20160819-202419-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202408-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log diff --git a/Code/Multiview/Results/20160819-202450-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202419-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log similarity index 100% rename from Code/Multiview/Results/20160819-202450-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202419-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log diff --git a/Code/Results/20160822-132214-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202450-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log similarity index 100% rename from Code/Results/20160822-132214-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202450-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log diff --git a/Code/Multiview/Results/20160819-202523-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202523-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log similarity index 100% rename from Code/Multiview/Results/20160819-202523-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202523-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log diff --git a/Code/Multiview/Results/20160819-202618-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202618-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160819-202618-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202618-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160819-202652-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202652-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160819-202652-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202652-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160819-202755-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202755-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160819-202755-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202755-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160819-202955-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202955-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160819-202955-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202955-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160819-203000Results-Fusion-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.7-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-203000Results-Fusion-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.7-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/20160819-203000Results-Fusion-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.7-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-203000Results-Fusion-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.7-MultiOmic.txt diff --git a/Code/Multiview/Results/20160819-203122-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-203122-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160819-203122-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-203122-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160819-203514-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-203514-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160819-203514-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-203514-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-102447-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102447-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-102447-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102447-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-102524-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102524-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-102524-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102524-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-102616-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102616-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-102616-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102616-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-102718-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102718-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-102718-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102718-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-102807-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102807-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-102807-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102807-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-102829-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102829-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-102829-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102829-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-102840-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102840-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-102840-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102840-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-102856-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102856-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-102856-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102856-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-102917-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102917-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-102917-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102917-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-103049-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103049-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-103049-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103049-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-103149-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103149-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-103149-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103149-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-103350-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103350-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-103350-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103350-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-103432-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103432-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-103432-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103432-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-103642-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103642-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-103642-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103642-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-103749-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103749-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-103749-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103749-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-103811-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103811-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-103811-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103811-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-103829-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103829-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-103829-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103829-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-103840-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103840-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-103840-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103840-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-103855-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103855-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-103855-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103855-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-103937-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103937-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-103937-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103937-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-103959-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103959-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-103959-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103959-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-104041-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-104041-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-104041-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-104041-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-104137-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-104137-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-104137-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-104137-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-104551-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-104551-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-104551-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-104551-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-104728-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-104728-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-104728-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-104728-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-104849-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-104849-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-104849-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-104849-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-105015-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-105015-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-105015-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-105015-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-105319-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-105319-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-105319-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-105319-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-105520-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-105520-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-105520-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-105520-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-105657-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-105657-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-105657-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-105657-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-110013-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-110013-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-110013-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-110013-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-110101-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-110101-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-110101-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-110101-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-110150-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-110150-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-110150-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-110150-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-110504-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-110504-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-110504-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-110504-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-110700-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-110700-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-110700-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-110700-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-110714-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-110714-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-110714-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-110714-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-110807-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-110807-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-110807-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-110807-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-111002-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-111002-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-111002-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-111002-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-111628-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-111628-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-111628-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-111628-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-111942-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-111942-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-111942-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-111942-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-112058-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-112058-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-112058-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-112058-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-112326-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-112326-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-112326-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-112326-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-112357-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-112357-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-112357-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-112357-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-123139-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123139-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-123139-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123139-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-123209-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123209-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-123209-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123209-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-123226-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123226-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-123226-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123226-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-123315-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123315-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-123315-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123315-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-123357-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123357-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-123357-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123357-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-123433-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123433-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-123433-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123433-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-123458-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123458-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-123458-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123458-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-123507-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123507-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-123507-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123507-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-123555-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123555-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-123555-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123555-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-123825-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123825-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-123825-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123825-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-123844-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123844-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-123844-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123844-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-123900-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123900-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-123900-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123900-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-124352-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-124352-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-124352-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-124352-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-124744-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-124744-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-124744-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-124744-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-125346-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-125346-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-125346-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-125346-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-130127-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-130127-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-130127-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-130127-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-152017-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-152017-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-152017-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-152017-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-152034-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-152034-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-152034-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-152034-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160822-152113-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-152113-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160822-152113-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-152113-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160823-095233-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160823-095233-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160823-095233-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160823-095233-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160823-095734-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160823-095734-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160823-095734-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160823-095734-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160823-100003-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160823-100003-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160823-100003-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160823-100003-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160823-100209-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160823-100209-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160823-100209-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160823-100209-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160823-100355-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160823-100355-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160823-100355-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160823-100355-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160823-100549-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160823-100549-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160823-100549-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160823-100549-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160823-100728-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160823-100728-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160823-100728-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160823-100728-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160823-101021-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160823-101021-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160823-101021-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160823-101021-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160823-101135-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160823-101135-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160823-101135-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160823-101135-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160823-101459-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160823-101459-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160823-101459-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160823-101459-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log diff --git a/Code/Multiview/Results/20160823-101527-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160823-101527-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/20160823-101527-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160823-101527-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-083255-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-083255-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..442b823485ce2b64760c16e107ac9bb22a7044be --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-083255-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log @@ -0,0 +1,2 @@ +2016-08-24 08:32:55,450 INFO: Start: Read CSV Database Files for ModifiedMultiOmic +2016-08-24 08:32:55,471 DEBUG: Start: Getting Methylation Data diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-083315-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-083315-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..0db771fc49da7eefd99a12fb35eed89bee226fbe --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-083315-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log @@ -0,0 +1,2 @@ +2016-08-24 08:33:15,026 INFO: Start: Read HDF5 Database Files for ModifiedMultiOmic +2016-08-24 08:33:15,027 INFO: Info: Labels used: No, Yes diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-083427-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-083427-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..ade5b1d09f18dffbc2de3ad96f12e5aefd03533c --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-083427-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log @@ -0,0 +1,10 @@ +2016-08-24 08:34:27,721 INFO: Start: Read CSV Database Files for MultiOmic +2016-08-24 08:34:27,744 DEBUG: Start: Getting Methylation Data +2016-08-24 08:34:40,551 DEBUG: Done: Getting Methylation Data +2016-08-24 08:34:40,551 DEBUG: Start: Getting MiRNA Data +2016-08-24 08:34:41,071 DEBUG: Done: Getting MiRNA Data +2016-08-24 08:34:41,071 DEBUG: Start: Getting RNASeq Data +2016-08-24 08:36:25,941 DEBUG: Done: Getting RNASeq Data +2016-08-24 08:36:26,035 DEBUG: Start: Getting Clinical Data +2016-08-24 08:36:26,594 DEBUG: Done: Getting Clinical Data +2016-08-24 08:36:28,223 INFO: Info: Labels used: No, Yes diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-084100-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-084100-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..a816c4d772836bb3d4525da72af41a52802716b8 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-084100-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log @@ -0,0 +1,12 @@ +2016-08-24 08:41:00,873 INFO: Start: Read CSV Database Files for ModifiedMultiOmic +2016-08-24 08:41:00,968 DEBUG: Start: Getting Methylation Data +2016-08-24 08:41:13,912 DEBUG: Done: Getting Methylation Data +2016-08-24 08:41:13,912 DEBUG: Start: Getting MiRNA Data +2016-08-24 08:41:14,437 DEBUG: Done: Getting MiRNA Data +2016-08-24 08:41:14,438 DEBUG: Start: Getting RNASeq Data +2016-08-24 08:41:58,294 DEBUG: Done: Getting RNASeq Data +2016-08-24 08:41:58,382 DEBUG: Start: Getting Clinical Data +2016-08-24 08:41:58,478 DEBUG: Done: Getting Clinical Data +2016-08-24 08:41:58,521 DEBUG: Start: Getting Modified RNASeq Data +2016-08-24 08:42:49,046 DEBUG: Done: Getting Modified RNASeq Data +2016-08-24 08:42:50,194 INFO: Info: Labels used: No, Yes diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-084717-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-084717-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..02a820c2cc336d69a134d9ff09531496cab240b4 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-084717-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log @@ -0,0 +1,21 @@ +2016-08-24 08:47:17,766 INFO: Start: Read HDF5 Database Files for ModifiedMultiOmic +2016-08-24 08:47:17,767 INFO: Info: Labels used: No, Yes +2016-08-24 08:47:17,767 INFO: Info: Length of dataset:347 +2016-08-24 08:47:17,769 INFO: ### Main Programm for Multiview Classification +2016-08-24 08:47:17,769 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1 +2016-08-24 08:47:17,769 INFO: Info: Shape of Methyl_ :(347, 25978) +2016-08-24 08:47:17,769 INFO: Info: Shape of MiRNA__ :(347, 1046) +2016-08-24 08:47:17,770 INFO: Info: Shape of RANSeq_ :(347, 73599) +2016-08-24 08:47:17,770 INFO: Info: Shape of Clinic_ :(347, 127) +2016-08-24 08:47:17,771 INFO: Done: Read Database Files +2016-08-24 08:47:17,771 INFO: Start: Determine validation split for ratio 0.7 +2016-08-24 08:47:17,774 INFO: Done: Determine validation split +2016-08-24 08:47:17,774 INFO: Start: Determine 2 folds +2016-08-24 08:47:17,783 INFO: Info: Length of Learning Sets: 122 +2016-08-24 08:47:17,783 INFO: Info: Length of Testing Sets: 122 +2016-08-24 08:47:17,783 INFO: Info: Length of Validation Set: 103 +2016-08-24 08:47:17,783 INFO: Done: Determine folds +2016-08-24 08:47:17,783 INFO: Start: Learning with Mumbo and 2 folds +2016-08-24 08:47:17,784 INFO: Start: Gridsearching best settings for monoview classifiers +2016-08-24 08:48:32,759 INFO: Done: Gridsearching best settings for monoview classifiers +2016-08-24 08:48:32,759 INFO: Start: Fold number 1 diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-084943-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-084943-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..a96b7a7ef59c7050952add93a0ca4cccbae871ab --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-084943-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log @@ -0,0 +1,97 @@ +2016-08-24 08:49:43,519 INFO: Start: Read HDF5 Database Files for ModifiedMultiOmic +2016-08-24 08:49:43,519 INFO: Info: Labels used: No, Yes +2016-08-24 08:49:43,520 INFO: Info: Length of dataset:347 +2016-08-24 08:49:43,521 INFO: ### Main Programm for Multiview Classification +2016-08-24 08:49:43,521 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1 +2016-08-24 08:49:43,522 INFO: Info: Shape of Methyl_ :(347, 25978) +2016-08-24 08:49:43,522 INFO: Info: Shape of MiRNA__ :(347, 1046) +2016-08-24 08:49:43,523 INFO: Info: Shape of RANSeq_ :(347, 73599) +2016-08-24 08:49:43,523 INFO: Info: Shape of Clinic_ :(347, 127) +2016-08-24 08:49:43,523 INFO: Done: Read Database Files +2016-08-24 08:49:43,523 INFO: Start: Determine validation split for ratio 0.7 +2016-08-24 08:49:43,527 INFO: Done: Determine validation split +2016-08-24 08:49:43,527 INFO: Start: Determine 2 folds +2016-08-24 08:49:43,537 INFO: Info: Length of Learning Sets: 122 +2016-08-24 08:49:43,537 INFO: Info: Length of Testing Sets: 122 +2016-08-24 08:49:43,537 INFO: Info: Length of Validation Set: 103 +2016-08-24 08:49:43,537 INFO: Done: Determine folds +2016-08-24 08:49:43,537 INFO: Start: Learning with Mumbo and 2 folds +2016-08-24 08:49:43,537 INFO: Start: Gridsearching best settings for monoview classifiers +2016-08-24 08:49:43,537 DEBUG: Start: Gridsearch for DecisionTree +2016-08-24 08:49:51,018 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 08:49:51,018 DEBUG: Start: Gridsearch for DecisionTree +2016-08-24 08:49:52,921 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 08:49:52,921 DEBUG: Start: Gridsearch for DecisionTree +2016-08-24 08:50:09,522 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 08:50:09,522 DEBUG: Start: Gridsearch for DecisionTree +2016-08-24 08:50:11,247 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 08:50:11,247 DEBUG: Start: Gridsearch for DecisionTree +2016-08-24 08:50:51,870 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 08:50:51,871 INFO: Done: Gridsearching best settings for monoview classifiers +2016-08-24 08:50:51,871 INFO: Start: Fold number 1 +2016-08-24 08:50:53,455 DEBUG: Start: Iteration 1 +2016-08-24 08:50:53,476 DEBUG: View 0 : 0.605263157895 +2016-08-24 08:50:53,484 DEBUG: View 1 : 0.605263157895 +2016-08-24 08:50:53,520 DEBUG: View 2 : 0.611842105263 +2016-08-24 08:50:53,528 DEBUG: View 3 : 0.493421052632 +2016-08-24 08:50:53,568 DEBUG: Best view : RANSeq_ +2016-08-24 08:50:53,652 DEBUG: Start: Iteration 2 +2016-08-24 08:50:53,669 DEBUG: View 0 : 0.605263157895 +2016-08-24 08:50:53,677 DEBUG: View 1 : 0.605263157895 +2016-08-24 08:50:53,713 DEBUG: View 2 : 0.394736842105 +2016-08-24 08:50:53,720 DEBUG: View 3 : 0.532894736842 +2016-08-24 08:50:53,763 DEBUG: Best view : Methyl_ +2016-08-24 08:50:53,908 DEBUG: Start: Iteration 3 +2016-08-24 08:50:53,924 DEBUG: View 0 : 0.565789473684 +2016-08-24 08:50:53,931 DEBUG: View 1 : 0.710526315789 +2016-08-24 08:50:53,966 DEBUG: View 2 : 0.407894736842 +2016-08-24 08:50:53,974 DEBUG: View 3 : 0.460526315789 +2016-08-24 08:50:54,024 DEBUG: Best view : MiRNA__ +2016-08-24 08:50:54,225 DEBUG: Start: Iteration 4 +2016-08-24 08:50:54,241 DEBUG: View 0 : 0.407894736842 +2016-08-24 08:50:54,249 DEBUG: View 1 : 0.427631578947 +2016-08-24 08:50:54,285 DEBUG: View 2 : 0.598684210526 +2016-08-24 08:50:54,292 DEBUG: View 3 : 0.519736842105 +2016-08-24 08:50:54,345 DEBUG: Best view : RANSeq_ +2016-08-24 08:50:54,614 DEBUG: Start: Iteration 5 +2016-08-24 08:50:54,630 DEBUG: View 0 : 0.565789473684 +2016-08-24 08:50:54,638 DEBUG: View 1 : 0.552631578947 +2016-08-24 08:50:54,673 DEBUG: View 2 : 0.480263157895 +2016-08-24 08:50:54,681 DEBUG: View 3 : 0.526315789474 +2016-08-24 08:50:54,736 DEBUG: Best view : MiRNA__ +2016-08-24 08:50:55,067 DEBUG: Start: Iteration 6 +2016-08-24 08:50:55,083 DEBUG: View 0 : 0.585526315789 +2016-08-24 08:50:55,090 DEBUG: View 1 : 0.381578947368 +2016-08-24 08:50:55,127 DEBUG: View 2 : 0.453947368421 +2016-08-24 08:50:55,134 DEBUG: View 3 : 0.467105263158 +2016-08-24 08:50:55,193 DEBUG: Best view : Methyl_ +2016-08-24 08:50:55,584 DEBUG: Start: Iteration 7 +2016-08-24 08:50:55,601 DEBUG: View 0 : 0.822368421053 +2016-08-24 08:50:55,609 DEBUG: View 1 : 0.651315789474 +2016-08-24 08:50:55,645 DEBUG: View 2 : 0.480263157895 +2016-08-24 08:50:55,653 DEBUG: View 3 : 0.375 +2016-08-24 08:50:55,712 DEBUG: Best view : Methyl_ +2016-08-24 08:50:56,161 DEBUG: Start: Iteration 8 +2016-08-24 08:50:56,178 DEBUG: View 0 : 0.638157894737 +2016-08-24 08:50:56,185 DEBUG: View 1 : 0.578947368421 +2016-08-24 08:50:56,221 DEBUG: View 2 : 0.631578947368 +2016-08-24 08:50:56,228 DEBUG: View 3 : 0.407894736842 +2016-08-24 08:50:56,290 DEBUG: Best view : Methyl_ +2016-08-24 08:50:56,793 DEBUG: Start: Iteration 9 +2016-08-24 08:50:56,809 DEBUG: View 0 : 0.532894736842 +2016-08-24 08:50:56,816 DEBUG: View 1 : 0.539473684211 +2016-08-24 08:50:56,852 DEBUG: View 2 : 0.532894736842 +2016-08-24 08:50:56,860 DEBUG: View 3 : 0.585526315789 +2016-08-24 08:50:56,923 DEBUG: Best view : Clinic_ +2016-08-24 08:50:57,481 DEBUG: Start: Iteration 10 +2016-08-24 08:50:57,497 DEBUG: View 0 : 0.618421052632 +2016-08-24 08:50:57,505 DEBUG: View 1 : 0.361842105263 +2016-08-24 08:50:57,541 DEBUG: View 2 : 0.394736842105 +2016-08-24 08:50:57,548 DEBUG: View 3 : 0.664473684211 +2016-08-24 08:50:57,614 DEBUG: Best view : Clinic_ +2016-08-24 08:50:58,229 DEBUG: Start: Iteration 11 +2016-08-24 08:50:58,244 DEBUG: View 0 : 0.565789473684 +2016-08-24 08:50:58,252 DEBUG: View 1 : 0.421052631579 +2016-08-24 08:50:58,287 DEBUG: View 2 : 0.539473684211 +2016-08-24 08:50:58,295 DEBUG: View 3 : 0.493421052632 +2016-08-24 08:50:58,363 DEBUG: Best view : Methyl_ diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-085300-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-085300-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..4b32381dc0c1d10aa5378d41a4fe63fa2b29129e --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-085300-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log @@ -0,0 +1,24 @@ +2016-08-24 08:53:00,304 INFO: Start: Read HDF5 Database Files for ModifiedMultiOmic +2016-08-24 08:53:00,305 INFO: Info: Labels used: No, Yes +2016-08-24 08:53:00,306 INFO: Info: Length of dataset:347 +2016-08-24 08:53:00,309 INFO: ### Main Programm for Multiview Classification +2016-08-24 08:53:00,309 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1 +2016-08-24 08:53:00,311 INFO: Info: Shape of Methyl_ :(347, 25978) +2016-08-24 08:53:00,312 INFO: Info: Shape of MiRNA__ :(347, 1046) +2016-08-24 08:53:00,313 INFO: Info: Shape of RANSeq_ :(347, 73599) +2016-08-24 08:53:00,314 INFO: Info: Shape of Clinic_ :(347, 127) +2016-08-24 08:53:00,314 INFO: Done: Read Database Files +2016-08-24 08:53:00,314 INFO: Start: Determine validation split for ratio 0.7 +2016-08-24 08:53:00,320 INFO: Done: Determine validation split +2016-08-24 08:53:00,320 INFO: Start: Determine 2 folds +2016-08-24 08:53:00,330 INFO: Info: Length of Learning Sets: 122 +2016-08-24 08:53:00,330 INFO: Info: Length of Testing Sets: 122 +2016-08-24 08:53:00,330 INFO: Info: Length of Validation Set: 103 +2016-08-24 08:53:00,331 INFO: Done: Determine folds +2016-08-24 08:53:00,331 INFO: Start: Learning with Mumbo and 2 folds +2016-08-24 08:53:00,331 INFO: Start: Gridsearching best settings for monoview classifiers +2016-08-24 08:53:00,331 DEBUG: Start: Gridsearch for DecisionTree on Methyl_ +2016-08-24 08:53:07,603 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 08:53:07,604 DEBUG: Start: Gridsearch for DecisionTree on MiRNA__ +2016-08-24 08:53:09,500 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 08:53:09,500 DEBUG: Start: Gridsearch for DecisionTree on RANSeq_ diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-085340-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-085340-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..38b211e35c099fc1b340a169cf5e3f9bb8bd9ed0 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-085340-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log @@ -0,0 +1,97 @@ +2016-08-24 08:53:40,067 INFO: Start: Read HDF5 Database Files for ModifiedMultiOmic +2016-08-24 08:53:40,068 INFO: Info: Labels used: No, Yes +2016-08-24 08:53:40,068 INFO: Info: Length of dataset:347 +2016-08-24 08:53:40,069 INFO: ### Main Programm for Multiview Classification +2016-08-24 08:53:40,069 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1 +2016-08-24 08:53:40,070 INFO: Info: Shape of Methyl_ :(347, 25978) +2016-08-24 08:53:40,070 INFO: Info: Shape of MiRNA__ :(347, 1046) +2016-08-24 08:53:40,071 INFO: Info: Shape of RANSeq_ :(347, 73599) +2016-08-24 08:53:40,071 INFO: Info: Shape of Clinic_ :(347, 127) +2016-08-24 08:53:40,071 INFO: Done: Read Database Files +2016-08-24 08:53:40,071 INFO: Start: Determine validation split for ratio 0.7 +2016-08-24 08:53:40,075 INFO: Done: Determine validation split +2016-08-24 08:53:40,075 INFO: Start: Determine 2 folds +2016-08-24 08:53:40,085 INFO: Info: Length of Learning Sets: 122 +2016-08-24 08:53:40,085 INFO: Info: Length of Testing Sets: 122 +2016-08-24 08:53:40,085 INFO: Info: Length of Validation Set: 103 +2016-08-24 08:53:40,085 INFO: Done: Determine folds +2016-08-24 08:53:40,085 INFO: Start: Learning with Mumbo and 2 folds +2016-08-24 08:53:40,085 INFO: Start: Gridsearching best settings for monoview classifiers +2016-08-24 08:53:40,086 DEBUG: Start: Gridsearch for DecisionTree on Methyl_ +2016-08-24 08:53:47,504 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 08:53:47,504 DEBUG: Start: Gridsearch for DecisionTree on MiRNA__ +2016-08-24 08:53:49,404 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 08:53:49,405 DEBUG: Start: Gridsearch for DecisionTree on RANSeq_ +2016-08-24 08:54:06,005 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 08:54:06,006 DEBUG: Start: Gridsearch for DecisionTree on Clinic_ +2016-08-24 08:54:07,742 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 08:54:07,742 DEBUG: Start: Gridsearch for DecisionTree on MRNASeq +2016-08-24 08:54:44,843 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 08:54:44,843 INFO: Done: Gridsearching best settings for monoview classifiers +2016-08-24 08:54:44,844 INFO: Start: Fold number 1 +2016-08-24 08:54:46,449 DEBUG: Start: Iteration 1 +2016-08-24 08:54:46,465 DEBUG: View 0 : 0.631901840491 +2016-08-24 08:54:46,473 DEBUG: View 1 : 0.638036809816 +2016-08-24 08:54:46,510 DEBUG: View 2 : 0.441717791411 +2016-08-24 08:54:46,518 DEBUG: View 3 : 0.631901840491 +2016-08-24 08:54:46,561 DEBUG: Best view : Methyl_ +2016-08-24 08:54:46,662 DEBUG: Start: Iteration 2 +2016-08-24 08:54:46,680 DEBUG: View 0 : 0.503067484663 +2016-08-24 08:54:46,688 DEBUG: View 1 : 0.466257668712 +2016-08-24 08:54:46,726 DEBUG: View 2 : 0.478527607362 +2016-08-24 08:54:46,734 DEBUG: View 3 : 0.441717791411 +2016-08-24 08:54:46,781 DEBUG: Best view : Methyl_ +2016-08-24 08:54:46,945 DEBUG: Start: Iteration 3 +2016-08-24 08:54:46,962 DEBUG: View 0 : 0.361963190184 +2016-08-24 08:54:46,970 DEBUG: View 1 : 0.613496932515 +2016-08-24 08:54:47,008 DEBUG: View 2 : 0.411042944785 +2016-08-24 08:54:47,016 DEBUG: View 3 : 0.656441717791 +2016-08-24 08:54:47,071 DEBUG: Best view : Clinic_ +2016-08-24 08:54:47,297 DEBUG: Start: Iteration 4 +2016-08-24 08:54:47,314 DEBUG: View 0 : 0.435582822086 +2016-08-24 08:54:47,322 DEBUG: View 1 : 0.509202453988 +2016-08-24 08:54:47,360 DEBUG: View 2 : 0.38036809816 +2016-08-24 08:54:47,368 DEBUG: View 3 : 0.631901840491 +2016-08-24 08:54:47,426 DEBUG: Best view : Clinic_ +2016-08-24 08:54:47,709 DEBUG: Start: Iteration 5 +2016-08-24 08:54:47,726 DEBUG: View 0 : 0.638036809816 +2016-08-24 08:54:47,734 DEBUG: View 1 : 0.564417177914 +2016-08-24 08:54:47,772 DEBUG: View 2 : 0.39263803681 +2016-08-24 08:54:47,780 DEBUG: View 3 : 0.546012269939 +2016-08-24 08:54:47,841 DEBUG: Best view : Methyl_ +2016-08-24 08:54:48,187 DEBUG: Start: Iteration 6 +2016-08-24 08:54:48,204 DEBUG: View 0 : 0.509202453988 +2016-08-24 08:54:48,211 DEBUG: View 1 : 0.638036809816 +2016-08-24 08:54:48,250 DEBUG: View 2 : 0.564417177914 +2016-08-24 08:54:48,258 DEBUG: View 3 : 0.558282208589 +2016-08-24 08:54:48,320 DEBUG: Best view : MiRNA__ +2016-08-24 08:54:48,727 DEBUG: Start: Iteration 7 +2016-08-24 08:54:48,744 DEBUG: View 0 : 0.564417177914 +2016-08-24 08:54:48,752 DEBUG: View 1 : 0.533742331288 +2016-08-24 08:54:48,791 DEBUG: View 2 : 0.509202453988 +2016-08-24 08:54:48,799 DEBUG: View 3 : 0.466257668712 +2016-08-24 08:54:48,863 DEBUG: Best view : Methyl_ +2016-08-24 08:54:49,333 DEBUG: Start: Iteration 8 +2016-08-24 08:54:49,350 DEBUG: View 0 : 0.423312883436 +2016-08-24 08:54:49,358 DEBUG: View 1 : 0.39263803681 +2016-08-24 08:54:49,396 DEBUG: View 2 : 0.40490797546 +2016-08-24 08:54:49,404 DEBUG: View 3 : 0.546012269939 +2016-08-24 08:54:49,471 DEBUG: Best view : Clinic_ +2016-08-24 08:54:50,001 DEBUG: Start: Iteration 9 +2016-08-24 08:54:50,018 DEBUG: View 0 : 0.478527607362 +2016-08-24 08:54:50,025 DEBUG: View 1 : 0.368098159509 +2016-08-24 08:54:50,063 DEBUG: View 2 : 0.631901840491 +2016-08-24 08:54:50,071 DEBUG: View 3 : 0.539877300613 +2016-08-24 08:54:50,141 DEBUG: Best view : RANSeq_ +2016-08-24 08:54:50,745 DEBUG: Start: Iteration 10 +2016-08-24 08:54:50,762 DEBUG: View 0 : 0.576687116564 +2016-08-24 08:54:50,770 DEBUG: View 1 : 0.496932515337 +2016-08-24 08:54:50,808 DEBUG: View 2 : 0.613496932515 +2016-08-24 08:54:50,816 DEBUG: View 3 : 0.374233128834 +2016-08-24 08:54:50,888 DEBUG: Best view : RANSeq_ +2016-08-24 08:54:51,566 DEBUG: Start: Iteration 11 +2016-08-24 08:54:51,583 DEBUG: View 0 : 0.472392638037 +2016-08-24 08:54:51,591 DEBUG: View 1 : 0.435582822086 +2016-08-24 08:54:51,629 DEBUG: View 2 : 0.478527607362 +2016-08-24 08:54:51,637 DEBUG: View 3 : 0.576687116564 +2016-08-24 08:54:51,711 DEBUG: Best view : Clinic_ diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-085528-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-085528-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..85f1830f76c6e72e0f194afef0d44aa915a055a9 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-085528-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log @@ -0,0 +1,98 @@ +2016-08-24 08:55:28,014 INFO: Start: Read HDF5 Database Files for ModifiedMultiOmic +2016-08-24 08:55:28,015 INFO: Info: Labels used: No, Yes +2016-08-24 08:55:28,015 INFO: Info: Length of dataset:347 +2016-08-24 08:55:28,016 INFO: ### Main Programm for Multiview Classification +2016-08-24 08:55:28,017 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1 +2016-08-24 08:55:28,017 INFO: Info: Shape of Methyl_ :(347, 25978) +2016-08-24 08:55:28,017 INFO: Info: Shape of MiRNA__ :(347, 1046) +2016-08-24 08:55:28,018 INFO: Info: Shape of RANSeq_ :(347, 73599) +2016-08-24 08:55:28,019 INFO: Info: Shape of Clinic_ :(347, 127) +2016-08-24 08:55:28,019 INFO: Done: Read Database Files +2016-08-24 08:55:28,019 INFO: Start: Determine validation split for ratio 0.7 +2016-08-24 08:55:28,025 INFO: Done: Determine validation split +2016-08-24 08:55:28,025 INFO: Start: Determine 2 folds +2016-08-24 08:55:28,039 INFO: Info: Length of Learning Sets: 122 +2016-08-24 08:55:28,040 INFO: Info: Length of Testing Sets: 122 +2016-08-24 08:55:28,040 INFO: Info: Length of Validation Set: 103 +2016-08-24 08:55:28,040 INFO: Done: Determine folds +2016-08-24 08:55:28,040 INFO: Start: Learning with Mumbo and 2 folds +2016-08-24 08:55:28,040 INFO: Start: Gridsearching best settings for monoview classifiers +2016-08-24 08:55:28,040 DEBUG: Start: Gridsearch for DecisionTree on Methyl_ +2016-08-24 08:55:35,427 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 08:55:35,427 DEBUG: Start: Gridsearch for DecisionTree on MiRNA__ +2016-08-24 08:55:37,400 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 08:55:37,401 DEBUG: Start: Gridsearch for DecisionTree on RANSeq_ +2016-08-24 08:55:55,603 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 08:55:55,604 DEBUG: Start: Gridsearch for DecisionTree on Clinic_ +2016-08-24 08:55:57,380 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 08:55:57,381 DEBUG: Start: Gridsearch for DecisionTree on MRNASeq +2016-08-24 08:56:35,467 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 08:56:35,467 INFO: Done: Gridsearching best settings for monoview classifiers +2016-08-24 08:56:35,467 INFO: Start: Fold number 1 +2016-08-24 08:56:37,036 DEBUG: Start: Iteration 1 +2016-08-24 08:56:37,052 DEBUG: View 0 : 0.37037037037 +2016-08-24 08:56:37,060 DEBUG: View 1 : 0.62962962963 +2016-08-24 08:56:37,089 DEBUG: View 2 : 0.37037037037 +2016-08-24 08:56:37,096 DEBUG: View 3 : 0.530864197531 +2016-08-24 08:56:37,139 DEBUG: Best view : Methyl_ +2016-08-24 08:56:37,218 DEBUG: Start: Iteration 2 +2016-08-24 08:56:37,235 DEBUG: View 0 : 0.481481481481 +2016-08-24 08:56:37,242 DEBUG: View 1 : 0.41975308642 +2016-08-24 08:56:37,279 DEBUG: View 2 : 0.481481481481 +2016-08-24 08:56:37,287 DEBUG: View 3 : 0.530864197531 +2016-08-24 08:56:37,339 DEBUG: Best view : Clinic_ +2016-08-24 08:56:37,477 DEBUG: Start: Iteration 3 +2016-08-24 08:56:37,494 DEBUG: View 0 : 0.438271604938 +2016-08-24 08:56:37,502 DEBUG: View 1 : 0.407407407407 +2016-08-24 08:56:37,539 DEBUG: View 2 : 0.382716049383 +2016-08-24 08:56:37,547 DEBUG: View 3 : 0.376543209877 +2016-08-24 08:56:37,547 WARNING: All bad for iteration 2 +2016-08-24 08:56:37,602 DEBUG: Best view : Methyl_ +2016-08-24 08:56:37,803 DEBUG: Start: Iteration 4 +2016-08-24 08:56:37,819 DEBUG: View 0 : 0.604938271605 +2016-08-24 08:56:37,827 DEBUG: View 1 : 0.271604938272 +2016-08-24 08:56:37,864 DEBUG: View 2 : 0.469135802469 +2016-08-24 08:56:37,872 DEBUG: View 3 : 0.487654320988 +2016-08-24 08:56:37,929 DEBUG: Best view : Methyl_ +2016-08-24 08:56:38,194 DEBUG: Start: Iteration 5 +2016-08-24 08:56:38,211 DEBUG: View 0 : 0.395061728395 +2016-08-24 08:56:38,219 DEBUG: View 1 : 0.413580246914 +2016-08-24 08:56:38,256 DEBUG: View 2 : 0.481481481481 +2016-08-24 08:56:38,264 DEBUG: View 3 : 0.506172839506 +2016-08-24 08:56:38,323 DEBUG: Best view : Clinic_ +2016-08-24 08:56:38,648 DEBUG: Start: Iteration 6 +2016-08-24 08:56:38,665 DEBUG: View 0 : 0.543209876543 +2016-08-24 08:56:38,672 DEBUG: View 1 : 0.425925925926 +2016-08-24 08:56:38,709 DEBUG: View 2 : 0.376543209877 +2016-08-24 08:56:38,717 DEBUG: View 3 : 0.586419753086 +2016-08-24 08:56:38,780 DEBUG: Best view : Clinic_ +2016-08-24 08:56:39,164 DEBUG: Start: Iteration 7 +2016-08-24 08:56:39,180 DEBUG: View 0 : 0.561728395062 +2016-08-24 08:56:39,188 DEBUG: View 1 : 0.5 +2016-08-24 08:56:39,225 DEBUG: View 2 : 0.537037037037 +2016-08-24 08:56:39,233 DEBUG: View 3 : 0.567901234568 +2016-08-24 08:56:39,298 DEBUG: Best view : Methyl_ +2016-08-24 08:56:39,744 DEBUG: Start: Iteration 8 +2016-08-24 08:56:39,761 DEBUG: View 0 : 0.592592592593 +2016-08-24 08:56:39,769 DEBUG: View 1 : 0.438271604938 +2016-08-24 08:56:39,806 DEBUG: View 2 : 0.456790123457 +2016-08-24 08:56:39,813 DEBUG: View 3 : 0.530864197531 +2016-08-24 08:56:39,880 DEBUG: Best view : Methyl_ +2016-08-24 08:56:40,391 DEBUG: Start: Iteration 9 +2016-08-24 08:56:40,408 DEBUG: View 0 : 0.561728395062 +2016-08-24 08:56:40,416 DEBUG: View 1 : 0.413580246914 +2016-08-24 08:56:40,453 DEBUG: View 2 : 0.617283950617 +2016-08-24 08:56:40,461 DEBUG: View 3 : 0.512345679012 +2016-08-24 08:56:40,530 DEBUG: Best view : RANSeq_ +2016-08-24 08:56:41,117 DEBUG: Start: Iteration 10 +2016-08-24 08:56:41,133 DEBUG: View 0 : 0.648148148148 +2016-08-24 08:56:41,141 DEBUG: View 1 : 0.456790123457 +2016-08-24 08:56:41,178 DEBUG: View 2 : 0.407407407407 +2016-08-24 08:56:41,186 DEBUG: View 3 : 0.66049382716 +2016-08-24 08:56:41,257 DEBUG: Best view : Methyl_ +2016-08-24 08:56:41,906 DEBUG: Start: Iteration 11 +2016-08-24 08:56:41,923 DEBUG: View 0 : 0.401234567901 +2016-08-24 08:56:41,931 DEBUG: View 1 : 0.586419753086 +2016-08-24 08:56:41,968 DEBUG: View 2 : 0.382716049383 +2016-08-24 08:56:41,975 DEBUG: View 3 : 0.493827160494 +2016-08-24 08:56:42,049 DEBUG: Best view : MiRNA__ diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-090120-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-090120-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..d966042b8c769ee3c568fa17c888a780b691af94 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-090120-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log @@ -0,0 +1,97 @@ +2016-08-24 09:01:20,823 INFO: Start: Read HDF5 Database Files for ModifiedMultiOmic +2016-08-24 09:01:20,823 INFO: Info: Labels used: No, Yes +2016-08-24 09:01:20,823 INFO: Info: Length of dataset:347 +2016-08-24 09:01:20,825 INFO: ### Main Programm for Multiview Classification +2016-08-24 09:01:20,825 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1 +2016-08-24 09:01:20,825 INFO: Info: Shape of Methyl_ :(347, 25978) +2016-08-24 09:01:20,826 INFO: Info: Shape of MiRNA__ :(347, 1046) +2016-08-24 09:01:20,826 INFO: Info: Shape of RANSeq_ :(347, 73599) +2016-08-24 09:01:20,827 INFO: Info: Shape of Clinic_ :(347, 127) +2016-08-24 09:01:20,827 INFO: Done: Read Database Files +2016-08-24 09:01:20,827 INFO: Start: Determine validation split for ratio 0.7 +2016-08-24 09:01:20,830 INFO: Done: Determine validation split +2016-08-24 09:01:20,830 INFO: Start: Determine 2 folds +2016-08-24 09:01:20,838 INFO: Info: Length of Learning Sets: 122 +2016-08-24 09:01:20,838 INFO: Info: Length of Testing Sets: 122 +2016-08-24 09:01:20,838 INFO: Info: Length of Validation Set: 103 +2016-08-24 09:01:20,838 INFO: Done: Determine folds +2016-08-24 09:01:20,839 INFO: Start: Learning with Mumbo and 2 folds +2016-08-24 09:01:20,839 INFO: Start: Gridsearching best settings for monoview classifiers +2016-08-24 09:01:20,839 DEBUG: Start: Gridsearch for DecisionTree on Methyl_ +2016-08-24 09:01:28,173 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:01:28,173 DEBUG: Start: Gridsearch for DecisionTree on MiRNA__ +2016-08-24 09:01:30,085 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:01:30,086 DEBUG: Start: Gridsearch for DecisionTree on RANSeq_ +2016-08-24 09:01:46,691 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:01:46,691 DEBUG: Start: Gridsearch for DecisionTree on Clinic_ +2016-08-24 09:01:48,441 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:01:48,441 DEBUG: Start: Gridsearch for DecisionTree on MRNASeq +2016-08-24 09:02:44,634 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:02:44,634 INFO: Done: Gridsearching best settings for monoview classifiers +2016-08-24 09:02:44,634 INFO: Start: Fold number 1 +2016-08-24 09:02:46,206 DEBUG: Start: Iteration 1 +2016-08-24 09:02:46,269 DEBUG: View 0 : 0.37037037037 +2016-08-24 09:02:46,303 DEBUG: View 1 : 0.623456790123 +2016-08-24 09:02:46,497 DEBUG: View 2 : 0.648148148148 +2016-08-24 09:02:46,505 DEBUG: View 3 : 0.62962962963 +2016-08-24 09:02:46,552 DEBUG: Best view : Methyl_ +2016-08-24 09:02:46,634 DEBUG: Start: Iteration 2 +2016-08-24 09:02:46,652 DEBUG: View 0 : 0.438271604938 +2016-08-24 09:02:46,660 DEBUG: View 1 : 0.493827160494 +2016-08-24 09:02:46,699 DEBUG: View 2 : 0.549382716049 +2016-08-24 09:02:46,707 DEBUG: View 3 : 0.518518518519 +2016-08-24 09:02:46,760 DEBUG: Best view : RANSeq_ +2016-08-24 09:02:46,915 DEBUG: Start: Iteration 3 +2016-08-24 09:02:46,932 DEBUG: View 0 : 0.543209876543 +2016-08-24 09:02:46,940 DEBUG: View 1 : 0.425925925926 +2016-08-24 09:02:46,978 DEBUG: View 2 : 0.518518518519 +2016-08-24 09:02:46,985 DEBUG: View 3 : 0.648148148148 +2016-08-24 09:02:47,040 DEBUG: Best view : Clinic_ +2016-08-24 09:02:47,253 DEBUG: Start: Iteration 4 +2016-08-24 09:02:47,270 DEBUG: View 0 : 0.432098765432 +2016-08-24 09:02:47,278 DEBUG: View 1 : 0.623456790123 +2016-08-24 09:02:47,316 DEBUG: View 2 : 0.456790123457 +2016-08-24 09:02:47,324 DEBUG: View 3 : 0.537037037037 +2016-08-24 09:02:47,381 DEBUG: Best view : MiRNA__ +2016-08-24 09:02:47,652 DEBUG: Start: Iteration 5 +2016-08-24 09:02:47,669 DEBUG: View 0 : 0.395061728395 +2016-08-24 09:02:47,677 DEBUG: View 1 : 0.561728395062 +2016-08-24 09:02:47,715 DEBUG: View 2 : 0.524691358025 +2016-08-24 09:02:47,723 DEBUG: View 3 : 0.413580246914 +2016-08-24 09:02:47,781 DEBUG: Best view : MiRNA__ +2016-08-24 09:02:48,113 DEBUG: Start: Iteration 6 +2016-08-24 09:02:48,130 DEBUG: View 0 : 0.716049382716 +2016-08-24 09:02:48,138 DEBUG: View 1 : 0.351851851852 +2016-08-24 09:02:48,176 DEBUG: View 2 : 0.549382716049 +2016-08-24 09:02:48,183 DEBUG: View 3 : 0.530864197531 +2016-08-24 09:02:48,245 DEBUG: Best view : Methyl_ +2016-08-24 09:02:48,639 DEBUG: Start: Iteration 7 +2016-08-24 09:02:48,656 DEBUG: View 0 : 0.598765432099 +2016-08-24 09:02:48,664 DEBUG: View 1 : 0.524691358025 +2016-08-24 09:02:48,701 DEBUG: View 2 : 0.524691358025 +2016-08-24 09:02:48,709 DEBUG: View 3 : 0.382716049383 +2016-08-24 09:02:48,773 DEBUG: Best view : Methyl_ +2016-08-24 09:02:49,242 DEBUG: Start: Iteration 8 +2016-08-24 09:02:49,262 DEBUG: View 0 : 0.33950617284 +2016-08-24 09:02:49,272 DEBUG: View 1 : 0.617283950617 +2016-08-24 09:02:49,315 DEBUG: View 2 : 0.5 +2016-08-24 09:02:49,325 DEBUG: View 3 : 0.574074074074 +2016-08-24 09:02:49,401 DEBUG: Best view : MiRNA__ +2016-08-24 09:02:49,959 DEBUG: Start: Iteration 9 +2016-08-24 09:02:49,975 DEBUG: View 0 : 0.512345679012 +2016-08-24 09:02:49,984 DEBUG: View 1 : 0.537037037037 +2016-08-24 09:02:50,021 DEBUG: View 2 : 0.438271604938 +2016-08-24 09:02:50,029 DEBUG: View 3 : 0.604938271605 +2016-08-24 09:02:50,097 DEBUG: Best view : Clinic_ +2016-08-24 09:02:50,670 DEBUG: Start: Iteration 10 +2016-08-24 09:02:50,687 DEBUG: View 0 : 0.401234567901 +2016-08-24 09:02:50,695 DEBUG: View 1 : 0.635802469136 +2016-08-24 09:02:50,733 DEBUG: View 2 : 0.518518518519 +2016-08-24 09:02:50,740 DEBUG: View 3 : 0.543209876543 +2016-08-24 09:02:50,811 DEBUG: Best view : MiRNA__ +2016-08-24 09:02:51,445 DEBUG: Start: Iteration 11 +2016-08-24 09:02:51,462 DEBUG: View 0 : 0.592592592593 +2016-08-24 09:02:51,470 DEBUG: View 1 : 0.537037037037 +2016-08-24 09:02:51,508 DEBUG: View 2 : 0.388888888889 +2016-08-24 09:02:51,516 DEBUG: View 3 : 0.450617283951 +2016-08-24 09:02:51,589 DEBUG: Best view : Methyl_ diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-090956-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-090956-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..ca2735947d563b15d49a2c78cc76f9886ddc8ced --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-090956-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log @@ -0,0 +1,14246 @@ +2016-08-24 09:09:56,962 INFO: Start: Read HDF5 Database Files for ModifiedMultiOmic +2016-08-24 09:09:56,963 INFO: Info: Labels used: No, Yes +2016-08-24 09:09:56,963 INFO: Info: Length of dataset:347 +2016-08-24 09:09:56,973 INFO: ### Main Programm for Multiview Classification +2016-08-24 09:09:56,973 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1 +2016-08-24 09:09:56,973 INFO: Info: Shape of Methyl_ :(347, 25978) +2016-08-24 09:09:56,974 INFO: Info: Shape of MiRNA__ :(347, 1046) +2016-08-24 09:09:56,974 INFO: Info: Shape of RANSeq_ :(347, 73599) +2016-08-24 09:09:56,975 INFO: Info: Shape of Clinic_ :(347, 127) +2016-08-24 09:09:56,975 INFO: Done: Read Database Files +2016-08-24 09:09:56,975 INFO: Start: Determine validation split for ratio 0.7 +2016-08-24 09:09:56,978 INFO: Done: Determine validation split +2016-08-24 09:09:56,978 INFO: Start: Determine 2 folds +2016-08-24 09:09:56,987 INFO: Info: Length of Learning Sets: 122 +2016-08-24 09:09:56,987 INFO: Info: Length of Testing Sets: 122 +2016-08-24 09:09:56,988 INFO: Info: Length of Validation Set: 103 +2016-08-24 09:09:56,988 INFO: Done: Determine folds +2016-08-24 09:09:56,988 INFO: Start: Learning with Mumbo and 2 folds +2016-08-24 09:09:56,988 INFO: Start: Gridsearching best settings for monoview classifiers +2016-08-24 09:09:56,988 DEBUG: Start: Gridsearch for DecisionTree on Methyl_ +2016-08-24 09:10:04,379 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:10:04,380 DEBUG: Start: Gridsearch for DecisionTree on MiRNA__ +2016-08-24 09:10:06,314 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:10:06,315 DEBUG: Start: Gridsearch for DecisionTree on RANSeq_ +2016-08-24 09:10:23,238 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:10:23,238 DEBUG: Start: Gridsearch for DecisionTree on Clinic_ +2016-08-24 09:10:25,001 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:10:25,002 DEBUG: Start: Gridsearch for DecisionTree on MRNASeq +2016-08-24 09:11:02,594 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:11:02,594 INFO: Done: Gridsearching best settings for monoview classifiers +2016-08-24 09:11:02,594 INFO: Start: Fold number 1 +2016-08-24 09:11:04,137 DEBUG: Start: Iteration 1 +2016-08-24 09:11:04,153 DEBUG: View 0 : 0.622641509434 +2016-08-24 09:11:04,161 DEBUG: View 1 : 0.339622641509 +2016-08-24 09:11:04,189 DEBUG: View 2 : 0.622641509434 +2016-08-24 09:11:04,197 DEBUG: View 3 : 0.377358490566 +2016-08-24 09:11:04,239 DEBUG: Best view : MiRNA__ +2016-08-24 09:11:04,311 DEBUG: Start: Iteration 2 +2016-08-24 09:11:04,328 DEBUG: View 0 : 0.534591194969 +2016-08-24 09:11:04,336 DEBUG: View 1 : 0.522012578616 +2016-08-24 09:11:04,373 DEBUG: View 2 : 0.540880503145 +2016-08-24 09:11:04,381 DEBUG: View 3 : 0.477987421384 +2016-08-24 09:11:04,426 DEBUG: Best view : RANSeq_ +2016-08-24 09:11:04,573 DEBUG: Start: Iteration 3 +2016-08-24 09:11:04,590 DEBUG: View 0 : 0.603773584906 +2016-08-24 09:11:04,598 DEBUG: View 1 : 0.566037735849 +2016-08-24 09:11:04,636 DEBUG: View 2 : 0.553459119497 +2016-08-24 09:11:04,643 DEBUG: View 3 : 0.62893081761 +2016-08-24 09:11:04,696 DEBUG: Best view : Clinic_ +2016-08-24 09:11:04,902 DEBUG: Start: Iteration 4 +2016-08-24 09:11:04,918 DEBUG: View 0 : 0.496855345912 +2016-08-24 09:11:04,926 DEBUG: View 1 : 0.51572327044 +2016-08-24 09:11:04,963 DEBUG: View 2 : 0.62893081761 +2016-08-24 09:11:04,970 DEBUG: View 3 : 0.421383647799 +2016-08-24 09:11:05,025 DEBUG: Best view : RANSeq_ +2016-08-24 09:11:05,308 DEBUG: Start: Iteration 5 +2016-08-24 09:11:05,324 DEBUG: View 0 : 0.477987421384 +2016-08-24 09:11:05,332 DEBUG: View 1 : 0.685534591195 +2016-08-24 09:11:05,369 DEBUG: View 2 : 0.452830188679 +2016-08-24 09:11:05,377 DEBUG: View 3 : 0.584905660377 +2016-08-24 09:11:05,434 DEBUG: Best view : MiRNA__ +2016-08-24 09:11:05,769 DEBUG: Start: Iteration 6 +2016-08-24 09:11:05,786 DEBUG: View 0 : 0.433962264151 +2016-08-24 09:11:05,793 DEBUG: View 1 : 0.333333333333 +2016-08-24 09:11:05,830 DEBUG: View 2 : 0.396226415094 +2016-08-24 09:11:05,838 DEBUG: View 3 : 0.616352201258 +2016-08-24 09:11:05,899 DEBUG: Best view : Clinic_ +2016-08-24 09:11:06,295 DEBUG: Start: Iteration 7 +2016-08-24 09:11:06,311 DEBUG: View 0 : 0.509433962264 +2016-08-24 09:11:06,319 DEBUG: View 1 : 0.295597484277 +2016-08-24 09:11:06,356 DEBUG: View 2 : 0.471698113208 +2016-08-24 09:11:06,364 DEBUG: View 3 : 0.427672955975 +2016-08-24 09:11:06,426 DEBUG: Best view : Methyl_ +2016-08-24 09:11:06,881 DEBUG: Start: Iteration 8 +2016-08-24 09:11:06,897 DEBUG: View 0 : 0.452830188679 +2016-08-24 09:11:06,905 DEBUG: View 1 : 0.295597484277 +2016-08-24 09:11:06,942 DEBUG: View 2 : 0.440251572327 +2016-08-24 09:11:06,950 DEBUG: View 3 : 0.62893081761 +2016-08-24 09:11:07,016 DEBUG: Best view : Clinic_ +2016-08-24 09:11:07,528 DEBUG: Start: Iteration 9 +2016-08-24 09:11:07,544 DEBUG: View 0 : 0.522012578616 +2016-08-24 09:11:07,552 DEBUG: View 1 : 0.754716981132 +2016-08-24 09:11:07,589 DEBUG: View 2 : 0.534591194969 +2016-08-24 09:11:07,597 DEBUG: View 3 : 0.396226415094 +2016-08-24 09:11:07,664 DEBUG: Best view : MiRNA__ +2016-08-24 09:11:08,239 DEBUG: Start: Iteration 10 +2016-08-24 09:11:08,256 DEBUG: View 0 : 0.48427672956 +2016-08-24 09:11:08,263 DEBUG: View 1 : 0.654088050314 +2016-08-24 09:11:08,301 DEBUG: View 2 : 0.610062893082 +2016-08-24 09:11:08,310 DEBUG: View 3 : 0.572327044025 +2016-08-24 09:11:08,380 DEBUG: Best view : MiRNA__ +2016-08-24 09:11:09,007 DEBUG: Start: Iteration 11 +2016-08-24 09:11:09,024 DEBUG: View 0 : 0.51572327044 +2016-08-24 09:11:09,032 DEBUG: View 1 : 0.559748427673 +2016-08-24 09:11:09,069 DEBUG: View 2 : 0.534591194969 +2016-08-24 09:11:09,077 DEBUG: View 3 : 0.389937106918 +2016-08-24 09:11:09,148 DEBUG: Best view : MiRNA__ +2016-08-24 09:11:09,842 DEBUG: Start: Iteration 12 +2016-08-24 09:11:09,873 DEBUG: View 0 : 0.503144654088 +2016-08-24 09:11:09,881 DEBUG: View 1 : 0.748427672956 +2016-08-24 09:11:09,918 DEBUG: View 2 : 0.540880503145 +2016-08-24 09:11:09,926 DEBUG: View 3 : 0.503144654088 +2016-08-24 09:11:09,999 DEBUG: Best view : MiRNA__ +2016-08-24 09:11:10,742 INFO: Start: Classification +2016-08-24 09:11:12,499 INFO: Done: Fold number 1 +2016-08-24 09:11:12,499 INFO: Start: Fold number 2 +2016-08-24 09:11:14,013 DEBUG: Start: Iteration 1 +2016-08-24 09:11:14,027 DEBUG: View 0 : 0.617834394904 +2016-08-24 09:11:14,035 DEBUG: View 1 : 0.382165605096 +2016-08-24 09:11:14,062 DEBUG: View 2 : 0.617834394904 +2016-08-24 09:11:14,070 DEBUG: View 3 : 0.528662420382 +2016-08-24 09:11:14,108 DEBUG: Best view : Methyl_ +2016-08-24 09:11:14,183 DEBUG: Start: Iteration 2 +2016-08-24 09:11:14,199 DEBUG: View 0 : 0.496815286624 +2016-08-24 09:11:14,207 DEBUG: View 1 : 0.420382165605 +2016-08-24 09:11:14,243 DEBUG: View 2 : 0.426751592357 +2016-08-24 09:11:14,250 DEBUG: View 3 : 0.426751592357 +2016-08-24 09:11:14,250 WARNING: All bad for iteration 1 +2016-08-24 09:11:14,299 DEBUG: Best view : Methyl_ +2016-08-24 09:11:14,436 DEBUG: Start: Iteration 3 +2016-08-24 09:11:14,452 DEBUG: View 0 : 0.662420382166 +2016-08-24 09:11:14,460 DEBUG: View 1 : 0.464968152866 +2016-08-24 09:11:14,495 DEBUG: View 2 : 0.503184713376 +2016-08-24 09:11:14,503 DEBUG: View 3 : 0.528662420382 +2016-08-24 09:11:14,554 DEBUG: Best view : Methyl_ +2016-08-24 09:11:14,751 DEBUG: Start: Iteration 4 +2016-08-24 09:11:14,767 DEBUG: View 0 : 0.433121019108 +2016-08-24 09:11:14,775 DEBUG: View 1 : 0.496815286624 +2016-08-24 09:11:14,811 DEBUG: View 2 : 0.43949044586 +2016-08-24 09:11:14,818 DEBUG: View 3 : 0.547770700637 +2016-08-24 09:11:14,872 DEBUG: Best view : Clinic_ +2016-08-24 09:11:15,126 DEBUG: Start: Iteration 5 +2016-08-24 09:11:15,143 DEBUG: View 0 : 0.503184713376 +2016-08-24 09:11:15,150 DEBUG: View 1 : 0.687898089172 +2016-08-24 09:11:15,187 DEBUG: View 2 : 0.420382165605 +2016-08-24 09:11:15,194 DEBUG: View 3 : 0.592356687898 +2016-08-24 09:11:15,250 DEBUG: Best view : MiRNA__ +2016-08-24 09:11:15,562 DEBUG: Start: Iteration 6 +2016-08-24 09:11:15,578 DEBUG: View 0 : 0.554140127389 +2016-08-24 09:11:15,585 DEBUG: View 1 : 0.515923566879 +2016-08-24 09:11:15,621 DEBUG: View 2 : 0.452229299363 +2016-08-24 09:11:15,629 DEBUG: View 3 : 0.624203821656 +2016-08-24 09:11:15,687 DEBUG: Best view : Clinic_ +2016-08-24 09:11:16,055 DEBUG: Start: Iteration 7 +2016-08-24 09:11:16,071 DEBUG: View 0 : 0.471337579618 +2016-08-24 09:11:16,079 DEBUG: View 1 : 0.388535031847 +2016-08-24 09:11:16,114 DEBUG: View 2 : 0.420382165605 +2016-08-24 09:11:16,122 DEBUG: View 3 : 0.535031847134 +2016-08-24 09:11:16,182 DEBUG: Best view : Clinic_ +2016-08-24 09:11:16,608 DEBUG: Start: Iteration 8 +2016-08-24 09:11:16,624 DEBUG: View 0 : 0.43949044586 +2016-08-24 09:11:16,632 DEBUG: View 1 : 0.726114649682 +2016-08-24 09:11:16,668 DEBUG: View 2 : 0.605095541401 +2016-08-24 09:11:16,676 DEBUG: View 3 : 0.605095541401 +2016-08-24 09:11:16,739 DEBUG: Best view : MiRNA__ +2016-08-24 09:11:17,220 DEBUG: Start: Iteration 9 +2016-08-24 09:11:17,236 DEBUG: View 0 : 0.579617834395 +2016-08-24 09:11:17,244 DEBUG: View 1 : 0.547770700637 +2016-08-24 09:11:17,280 DEBUG: View 2 : 0.388535031847 +2016-08-24 09:11:17,288 DEBUG: View 3 : 0.458598726115 +2016-08-24 09:11:17,352 DEBUG: Best view : Methyl_ +2016-08-24 09:11:17,896 DEBUG: Start: Iteration 10 +2016-08-24 09:11:17,913 DEBUG: View 0 : 0.464968152866 +2016-08-24 09:11:17,921 DEBUG: View 1 : 0.605095541401 +2016-08-24 09:11:17,958 DEBUG: View 2 : 0.528662420382 +2016-08-24 09:11:17,965 DEBUG: View 3 : 0.40127388535 +2016-08-24 09:11:18,034 DEBUG: Best view : MiRNA__ +2016-08-24 09:11:18,635 DEBUG: Start: Iteration 11 +2016-08-24 09:11:18,651 DEBUG: View 0 : 0.363057324841 +2016-08-24 09:11:18,659 DEBUG: View 1 : 0.573248407643 +2016-08-24 09:11:18,695 DEBUG: View 2 : 0.363057324841 +2016-08-24 09:11:18,703 DEBUG: View 3 : 0.445859872611 +2016-08-24 09:11:18,773 DEBUG: Best view : MiRNA__ +2016-08-24 09:11:19,431 DEBUG: Start: Iteration 12 +2016-08-24 09:11:19,447 DEBUG: View 0 : 0.43949044586 +2016-08-24 09:11:19,455 DEBUG: View 1 : 0.375796178344 +2016-08-24 09:11:19,491 DEBUG: View 2 : 0.515923566879 +2016-08-24 09:11:19,499 DEBUG: View 3 : 0.592356687898 +2016-08-24 09:11:19,571 DEBUG: Best view : Clinic_ +2016-08-24 09:11:20,286 INFO: Start: Classification +2016-08-24 09:11:21,987 INFO: Done: Fold number 2 +2016-08-24 09:11:21,987 INFO: Done: Classification +2016-08-24 09:11:21,988 INFO: Info: Time for Classification: 85[s] +2016-08-24 09:11:21,988 INFO: Start: Result Analysis for Mumbo +2016-08-24 09:11:28,399 INFO: Result for Multiview classification with Mumbo + +Average accuracy : + -On Train : 70.8648800224 + -On Test : 77.0491803279 + -On Validation : 81.067961165 + +Dataset info : + -Database name : ModifiedMultiOmic + -Labels : No, Yes + -Views : Methyl, MiRNA, RNASEQ, Clinical + -2 folds + - Validation set length : 103 for learning rate : 0.7 + +Classification configuration : + -Algorithm used : Mumbo + -Iterations : 1000 + -Weak Classifiers : DecisionTree with depth 1.0, sub-sampled at 0.006 on Methyl + -DecisionTree with depth 1.0, sub-sampled at 0.006 on MiRNA + -DecisionTree with depth 1.0, sub-sampled at 0.006 on RNASEQ + -DecisionTree with depth 1.0, sub-sampled at 0.006 on Clinical + + Mean average accuracies and stats for each fold : + - Fold 0 + - On Methyl_ : + - Mean average Accuracy : 0.0061572327044 + - Percentage of time chosen : 0.989 + - On MiRNA__ : + - Mean average Accuracy : 0.00627044025157 + - Percentage of time chosen : 0.006 + - On RANSeq_ : + - Mean average Accuracy : 0.00632704402516 + - Percentage of time chosen : 0.002 + - On Clinic_ : + - Mean average Accuracy : 0.0060251572327 + - Percentage of time chosen : 0.003 + - Fold 1 + - On Methyl_ : + - Mean average Accuracy : 0.00602547770701 + - Percentage of time chosen : 0.992 + - On MiRNA__ : + - Mean average Accuracy : 0.0061847133758 + - Percentage of time chosen : 0.004 + - On RANSeq_ : + - Mean average Accuracy : 0.00568152866242 + - Percentage of time chosen : 0.0 + - On Clinic_ : + - Mean average Accuracy : 0.00628662420382 + - Percentage of time chosen : 0.004 + + For each iteration : + - Iteration 1 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 2 + Fold 1 + Accuracy on train : 54.0880503145 + Accuracy on test : 65.5737704918 + Accuracy on validation : 65.0485436893 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 57.9357449025 + Accuracy on test : 69.262295082 + - Iteration 3 + Fold 1 + Accuracy on train : 62.893081761 + Accuracy on test : 59.8360655738 + Accuracy on validation : 68.932038835 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 66.2420382166 + Accuracy on test : 75.4098360656 + Accuracy on validation : 78.640776699 + Selected View : Methyl_ + - Mean : + Accuracy on train : 64.5675599888 + Accuracy on test : 67.6229508197 + - Iteration 4 + Fold 1 + Accuracy on train : 59.1194968553 + Accuracy on test : 73.7704918033 + Accuracy on validation : 69.9029126214 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 66.2420382166 + Accuracy on test : 75.4098360656 + Accuracy on validation : 78.640776699 + Selected View : Clinic_ + - Mean : + Accuracy on train : 62.680767536 + Accuracy on test : 74.5901639344 + - Iteration 5 + Fold 1 + Accuracy on train : 66.6666666667 + Accuracy on test : 68.8524590164 + Accuracy on validation : 76.6990291262 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 68.152866242 + Accuracy on test : 79.5081967213 + Accuracy on validation : 77.6699029126 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 67.4097664544 + Accuracy on test : 74.1803278689 + - Iteration 6 + Fold 1 + Accuracy on train : 63.5220125786 + Accuracy on test : 72.131147541 + Accuracy on validation : 72.8155339806 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 66.8789808917 + Accuracy on test : 79.5081967213 + Accuracy on validation : 80.5825242718 + Selected View : Clinic_ + - Mean : + Accuracy on train : 65.2004967352 + Accuracy on test : 75.8196721311 + - Iteration 7 + Fold 1 + Accuracy on train : 67.9245283019 + Accuracy on test : 72.9508196721 + Accuracy on validation : 77.6699029126 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 68.152866242 + Accuracy on test : 77.868852459 + Accuracy on validation : 78.640776699 + Selected View : Clinic_ + - Mean : + Accuracy on train : 68.038697272 + Accuracy on test : 75.4098360656 + - Iteration 8 + Fold 1 + Accuracy on train : 64.1509433962 + Accuracy on test : 66.393442623 + Accuracy on validation : 71.8446601942 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 71.974522293 + Accuracy on test : 81.1475409836 + Accuracy on validation : 82.5242718447 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 68.0627328446 + Accuracy on test : 73.7704918033 + - Iteration 9 + Fold 1 + Accuracy on train : 71.6981132075 + Accuracy on test : 72.9508196721 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 70.0636942675 + Accuracy on test : 79.5081967213 + Accuracy on validation : 81.5533980583 + Selected View : Methyl_ + - Mean : + Accuracy on train : 70.8809037375 + Accuracy on test : 76.2295081967 + - Iteration 10 + Fold 1 + Accuracy on train : 69.1823899371 + Accuracy on test : 71.3114754098 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 69.4267515924 + Accuracy on test : 78.6885245902 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 69.3045707647 + Accuracy on test : 75.0 + - Iteration 11 + Fold 1 + Accuracy on train : 71.0691823899 + Accuracy on test : 72.131147541 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 69.4267515924 + Accuracy on test : 78.6885245902 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 70.2479669911 + Accuracy on test : 75.4098360656 + - Iteration 12 + Fold 1 + Accuracy on train : 74.213836478 + Accuracy on test : 75.4098360656 + Accuracy on validation : 82.5242718447 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 67.5159235669 + Accuracy on test : 78.6885245902 + Accuracy on validation : 79.6116504854 + Selected View : Clinic_ + - Mean : + Accuracy on train : 70.8648800224 + Accuracy on test : 77.0491803279 + - Iteration 13 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 14 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 15 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 16 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 17 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 18 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 19 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 20 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 21 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 22 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 23 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 24 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 25 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 26 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 27 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 28 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 29 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 30 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 31 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 32 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 33 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 34 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 35 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 36 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 37 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 38 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 39 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 40 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 41 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 42 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 43 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 44 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 45 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 46 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 47 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 48 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 49 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 50 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 51 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 52 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 53 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 54 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 55 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 56 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 57 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 58 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 59 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 60 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 61 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 62 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 63 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 64 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 65 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 66 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 67 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 68 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 69 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 70 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 71 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 72 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 73 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 74 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 75 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 76 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 77 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 78 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 79 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 80 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 81 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 82 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 83 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 84 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 85 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 86 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 87 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 88 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 89 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 90 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 91 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 92 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 93 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 94 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 95 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 96 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 97 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 98 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 99 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 100 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 101 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 102 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 103 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 104 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 105 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 106 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 107 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 108 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 109 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 110 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 111 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 112 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 113 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 114 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 115 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 116 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 117 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 118 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 119 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 120 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 121 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 122 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 123 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 124 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 125 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 126 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 127 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 128 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 129 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 130 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 131 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 132 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 133 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 134 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 135 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 136 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 137 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 138 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 139 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 140 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 141 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 142 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 143 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 144 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 145 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 146 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 147 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 148 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 149 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 150 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 151 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 152 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 153 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 154 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 155 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 156 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 157 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 158 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 159 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 160 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 161 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 162 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 163 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 164 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 165 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 166 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 167 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 168 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 169 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 170 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 171 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 172 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 173 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 174 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 175 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 176 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 177 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 178 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 179 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 180 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 181 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 182 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 183 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 184 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 185 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 186 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 187 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 188 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 189 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 190 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 191 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 192 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 193 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 194 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 195 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 196 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 197 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 198 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 199 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 200 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 201 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 202 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 203 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 204 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 205 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 206 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 207 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 208 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 209 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 210 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 211 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 212 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 213 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 214 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 215 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 216 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 217 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 218 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 219 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 220 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 221 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 222 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 223 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 224 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 225 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 226 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 227 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 228 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 229 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 230 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 231 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 232 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 233 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 234 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 235 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 236 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 237 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 238 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 239 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 240 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 241 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 242 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 243 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 244 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 245 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 246 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 247 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 248 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 249 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 250 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 251 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 252 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 253 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 254 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 255 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 256 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 257 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 258 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 259 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 260 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 261 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 262 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 263 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 264 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 265 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 266 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 267 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 268 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 269 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 270 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 271 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 272 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 273 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 274 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 275 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 276 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 277 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 278 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 279 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 280 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 281 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 282 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 283 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 284 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 285 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 286 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 287 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 288 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 289 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 290 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 291 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 292 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 293 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 294 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 295 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 296 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 297 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 298 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 299 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 300 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 301 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 302 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 303 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 304 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 305 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 306 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 307 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 308 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 309 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 310 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 311 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 312 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 313 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 314 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 315 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 316 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 317 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 318 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 319 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 320 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 321 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 322 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 323 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 324 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 325 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 326 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 327 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 328 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 329 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 330 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 331 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 332 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 333 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 334 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 335 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 336 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 337 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 338 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 339 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 340 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 341 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 342 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 343 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 344 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 345 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 346 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 347 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 348 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 349 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 350 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 351 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 352 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 353 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 354 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 355 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 356 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 357 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 358 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 359 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 360 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 361 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 362 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 363 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 364 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 365 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 366 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 367 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 368 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 369 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 370 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 371 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 372 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 373 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 374 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 375 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 376 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 377 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 378 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 379 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 380 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 381 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 382 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 383 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 384 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 385 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 386 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 387 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 388 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 389 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 390 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 391 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 392 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 393 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 394 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 395 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 396 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 397 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 398 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 399 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 400 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 401 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 402 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 403 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 404 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 405 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 406 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 407 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 408 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 409 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 410 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 411 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 412 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 413 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 414 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 415 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 416 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 417 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 418 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 419 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 420 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 421 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 422 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 423 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 424 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 425 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 426 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 427 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 428 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 429 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 430 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 431 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 432 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 433 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 434 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 435 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 436 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 437 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 438 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 439 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 440 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 441 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 442 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 443 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 444 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 445 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 446 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 447 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 448 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 449 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 450 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 451 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 452 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 453 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 454 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 455 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 456 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 457 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 458 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 459 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 460 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 461 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 462 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 463 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 464 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 465 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 466 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 467 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 468 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 469 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 470 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 471 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 472 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 473 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 474 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 475 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 476 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 477 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 478 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 479 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 480 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 481 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 482 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 483 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 484 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 485 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 486 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 487 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 488 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 489 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 490 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 491 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 492 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 493 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 494 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 495 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 496 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 497 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 498 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 499 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 500 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 501 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 502 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 503 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 504 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 505 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 506 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 507 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 508 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 509 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 510 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 511 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 512 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 513 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 514 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 515 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 516 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 517 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 518 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 519 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 520 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 521 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 522 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 523 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 524 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 525 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 526 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 527 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 528 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 529 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 530 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 531 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 532 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 533 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 534 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 535 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 536 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 537 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 538 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 539 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 540 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 541 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 542 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 543 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 544 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 545 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 546 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 547 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 548 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 549 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 550 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 551 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 552 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 553 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 554 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 555 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 556 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 557 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 558 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 559 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 560 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 561 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 562 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 563 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 564 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 565 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 566 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 567 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 568 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 569 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 570 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 571 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 572 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 573 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 574 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 575 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 576 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 577 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 578 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 579 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 580 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 581 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 582 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 583 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 584 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 585 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 586 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 587 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 588 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 589 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 590 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 591 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 592 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 593 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 594 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 595 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 596 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 597 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 598 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 599 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 600 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 601 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 602 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 603 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 604 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 605 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 606 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 607 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 608 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 609 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 610 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 611 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 612 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 613 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 614 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 615 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 616 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 617 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 618 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 619 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 620 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 621 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 622 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 623 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 624 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 625 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 626 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 627 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 628 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 629 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 630 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 631 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 632 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 633 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 634 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 635 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 636 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 637 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 638 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 639 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 640 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 641 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 642 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 643 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 644 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 645 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 646 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 647 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 648 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 649 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 650 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 651 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 652 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 653 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 654 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 655 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 656 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 657 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 658 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 659 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 660 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 661 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 662 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 663 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 664 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 665 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 666 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 667 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 668 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 669 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 670 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 671 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 672 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 673 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 674 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 675 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 676 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 677 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 678 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 679 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 680 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 681 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 682 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 683 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 684 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 685 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 686 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 687 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 688 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 689 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 690 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 691 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 692 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 693 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 694 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 695 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 696 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 697 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 698 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 699 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 700 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 701 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 702 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 703 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 704 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 705 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 706 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 707 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 708 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 709 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 710 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 711 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 712 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 713 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 714 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 715 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 716 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 717 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 718 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 719 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 720 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 721 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 722 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 723 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 724 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 725 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 726 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 727 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 728 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 729 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 730 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 731 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 732 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 733 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 734 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 735 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 736 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 737 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 738 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 739 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 740 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 741 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 742 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 743 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 744 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 745 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 746 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 747 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 748 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 749 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 750 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 751 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 752 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 753 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 754 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 755 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 756 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 757 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 758 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 759 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 760 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 761 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 762 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 763 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 764 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 765 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 766 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 767 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 768 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 769 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 770 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 771 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 772 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 773 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 774 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 775 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 776 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 777 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 778 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 779 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 780 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 781 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 782 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 783 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 784 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 785 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 786 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 787 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 788 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 789 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 790 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 791 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 792 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 793 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 794 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 795 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 796 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 797 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 798 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 799 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 800 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 801 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 802 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 803 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 804 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 805 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 806 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 807 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 808 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 809 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 810 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 811 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 812 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 813 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 814 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 815 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 816 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 817 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 818 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 819 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 820 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 821 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 822 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 823 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 824 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 825 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 826 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 827 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 828 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 829 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 830 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 831 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 832 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 833 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 834 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 835 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 836 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 837 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 838 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 839 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 840 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 841 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 842 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 843 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 844 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 845 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 846 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 847 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 848 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 849 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 850 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 851 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 852 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 853 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 854 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 855 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 856 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 857 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 858 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 859 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 860 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 861 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 862 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 863 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 864 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 865 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 866 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 867 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 868 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 869 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 870 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 871 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 872 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 873 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 874 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 875 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 876 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 877 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 878 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 879 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 880 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 881 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 882 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 883 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 884 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 885 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 886 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 887 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 888 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 889 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 890 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 891 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 892 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 893 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 894 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 895 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 896 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 897 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 898 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 899 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 900 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 901 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 902 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 903 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 904 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 905 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 906 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 907 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 908 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 909 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 910 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 911 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 912 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 913 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 914 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 915 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 916 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 917 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 918 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 919 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 920 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 921 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 922 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 923 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 924 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 925 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 926 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 927 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 928 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 929 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 930 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 931 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 932 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 933 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 934 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 935 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 936 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 937 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 938 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 939 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 940 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 941 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 942 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 943 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 944 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 945 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 946 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 947 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 948 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 949 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 950 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 951 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 952 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 953 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 954 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 955 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 956 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 957 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 958 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 959 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 960 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 961 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 962 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 963 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 964 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 965 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 966 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 967 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 968 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 969 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 970 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 971 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 972 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 973 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 974 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 975 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 976 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 977 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 978 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 979 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 980 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 981 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 982 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 983 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 984 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 985 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 986 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 987 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 988 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 989 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 990 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 991 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 992 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 993 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 994 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 995 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 996 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 997 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 998 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 999 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 1000 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + +Computation time on 1 cores : + Database extraction time : 0:00:00 + Learn Prediction + Fold 1 0:01:13 0:00:01 + Fold 2 0:01:23 0:00:01 + Total 0:02:37 0:00:03 + So a total classification time of 0:01:25. + + +2016-08-24 09:11:29,450 INFO: Done: Result Analysis diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091129Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091129Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png new file mode 100644 index 0000000000000000000000000000000000000000..3715ab22b1a4f8a96fb587e9491c44044540442c Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091129Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png differ diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091129Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091129Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt new file mode 100644 index 0000000000000000000000000000000000000000..6cb12d889750d35dde77ef06b3b569c2dcf0e149 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091129Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt @@ -0,0 +1,14060 @@ + Result for Multiview classification with Mumbo + +Average accuracy : + -On Train : 70.8648800224 + -On Test : 77.0491803279 + -On Validation : 81.067961165 + +Dataset info : + -Database name : ModifiedMultiOmic + -Labels : No, Yes + -Views : Methyl, MiRNA, RNASEQ, Clinical + -2 folds + - Validation set length : 103 for learning rate : 0.7 + +Classification configuration : + -Algorithm used : Mumbo + -Iterations : 1000 + -Weak Classifiers : DecisionTree with depth 1.0, sub-sampled at 0.006 on Methyl + -DecisionTree with depth 1.0, sub-sampled at 0.006 on MiRNA + -DecisionTree with depth 1.0, sub-sampled at 0.006 on RNASEQ + -DecisionTree with depth 1.0, sub-sampled at 0.006 on Clinical + + Mean average accuracies and stats for each fold : + - Fold 0 + - On Methyl_ : + - Mean average Accuracy : 0.0061572327044 + - Percentage of time chosen : 0.989 + - On MiRNA__ : + - Mean average Accuracy : 0.00627044025157 + - Percentage of time chosen : 0.006 + - On RANSeq_ : + - Mean average Accuracy : 0.00632704402516 + - Percentage of time chosen : 0.002 + - On Clinic_ : + - Mean average Accuracy : 0.0060251572327 + - Percentage of time chosen : 0.003 + - Fold 1 + - On Methyl_ : + - Mean average Accuracy : 0.00602547770701 + - Percentage of time chosen : 0.992 + - On MiRNA__ : + - Mean average Accuracy : 0.0061847133758 + - Percentage of time chosen : 0.004 + - On RANSeq_ : + - Mean average Accuracy : 0.00568152866242 + - Percentage of time chosen : 0.0 + - On Clinic_ : + - Mean average Accuracy : 0.00628662420382 + - Percentage of time chosen : 0.004 + + For each iteration : + - Iteration 1 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 2 + Fold 1 + Accuracy on train : 54.0880503145 + Accuracy on test : 65.5737704918 + Accuracy on validation : 65.0485436893 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 57.9357449025 + Accuracy on test : 69.262295082 + - Iteration 3 + Fold 1 + Accuracy on train : 62.893081761 + Accuracy on test : 59.8360655738 + Accuracy on validation : 68.932038835 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 66.2420382166 + Accuracy on test : 75.4098360656 + Accuracy on validation : 78.640776699 + Selected View : Methyl_ + - Mean : + Accuracy on train : 64.5675599888 + Accuracy on test : 67.6229508197 + - Iteration 4 + Fold 1 + Accuracy on train : 59.1194968553 + Accuracy on test : 73.7704918033 + Accuracy on validation : 69.9029126214 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 66.2420382166 + Accuracy on test : 75.4098360656 + Accuracy on validation : 78.640776699 + Selected View : Clinic_ + - Mean : + Accuracy on train : 62.680767536 + Accuracy on test : 74.5901639344 + - Iteration 5 + Fold 1 + Accuracy on train : 66.6666666667 + Accuracy on test : 68.8524590164 + Accuracy on validation : 76.6990291262 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 68.152866242 + Accuracy on test : 79.5081967213 + Accuracy on validation : 77.6699029126 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 67.4097664544 + Accuracy on test : 74.1803278689 + - Iteration 6 + Fold 1 + Accuracy on train : 63.5220125786 + Accuracy on test : 72.131147541 + Accuracy on validation : 72.8155339806 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 66.8789808917 + Accuracy on test : 79.5081967213 + Accuracy on validation : 80.5825242718 + Selected View : Clinic_ + - Mean : + Accuracy on train : 65.2004967352 + Accuracy on test : 75.8196721311 + - Iteration 7 + Fold 1 + Accuracy on train : 67.9245283019 + Accuracy on test : 72.9508196721 + Accuracy on validation : 77.6699029126 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 68.152866242 + Accuracy on test : 77.868852459 + Accuracy on validation : 78.640776699 + Selected View : Clinic_ + - Mean : + Accuracy on train : 68.038697272 + Accuracy on test : 75.4098360656 + - Iteration 8 + Fold 1 + Accuracy on train : 64.1509433962 + Accuracy on test : 66.393442623 + Accuracy on validation : 71.8446601942 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 71.974522293 + Accuracy on test : 81.1475409836 + Accuracy on validation : 82.5242718447 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 68.0627328446 + Accuracy on test : 73.7704918033 + - Iteration 9 + Fold 1 + Accuracy on train : 71.6981132075 + Accuracy on test : 72.9508196721 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 70.0636942675 + Accuracy on test : 79.5081967213 + Accuracy on validation : 81.5533980583 + Selected View : Methyl_ + - Mean : + Accuracy on train : 70.8809037375 + Accuracy on test : 76.2295081967 + - Iteration 10 + Fold 1 + Accuracy on train : 69.1823899371 + Accuracy on test : 71.3114754098 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 69.4267515924 + Accuracy on test : 78.6885245902 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 69.3045707647 + Accuracy on test : 75.0 + - Iteration 11 + Fold 1 + Accuracy on train : 71.0691823899 + Accuracy on test : 72.131147541 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 69.4267515924 + Accuracy on test : 78.6885245902 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 70.2479669911 + Accuracy on test : 75.4098360656 + - Iteration 12 + Fold 1 + Accuracy on train : 74.213836478 + Accuracy on test : 75.4098360656 + Accuracy on validation : 82.5242718447 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 67.5159235669 + Accuracy on test : 78.6885245902 + Accuracy on validation : 79.6116504854 + Selected View : Clinic_ + - Mean : + Accuracy on train : 70.8648800224 + Accuracy on test : 77.0491803279 + - Iteration 13 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 14 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 15 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 16 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 17 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 18 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 19 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 20 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 21 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 22 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 23 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 24 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 25 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 26 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 27 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 28 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 29 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 30 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 31 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 32 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 33 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 34 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 35 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 36 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 37 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 38 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 39 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 40 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 41 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 42 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 43 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 44 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 45 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 46 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 47 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 48 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 49 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 50 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 51 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 52 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 53 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 54 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 55 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 56 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 57 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 58 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 59 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 60 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 61 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 62 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 63 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 64 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 65 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 66 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 67 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 68 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 69 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 70 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 71 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 72 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 73 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 74 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 75 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 76 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 77 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 78 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 79 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 80 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 81 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 82 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 83 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 84 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 85 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 86 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 87 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 88 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 89 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 90 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 91 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 92 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 93 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 94 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 95 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 96 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 97 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 98 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 99 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 100 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 101 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 102 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 103 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 104 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 105 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 106 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 107 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 108 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 109 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 110 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 111 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 112 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 113 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 114 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 115 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 116 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 117 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 118 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 119 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 120 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 121 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 122 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 123 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 124 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 125 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 126 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 127 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 128 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 129 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 130 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 131 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 132 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 133 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 134 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 135 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 136 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 137 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 138 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 139 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 140 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 141 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 142 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 143 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 144 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 145 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 146 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 147 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 148 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 149 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 150 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 151 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 152 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 153 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 154 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 155 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 156 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 157 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 158 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 159 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 160 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 161 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 162 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 163 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 164 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 165 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 166 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 167 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 168 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 169 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 170 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 171 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 172 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 173 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 174 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 175 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 176 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 177 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 178 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 179 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 180 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 181 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 182 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 183 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 184 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 185 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 186 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 187 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 188 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 189 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 190 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 191 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 192 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 193 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 194 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 195 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 196 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 197 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 198 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 199 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 200 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 201 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 202 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 203 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 204 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 205 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 206 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 207 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 208 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 209 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 210 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 211 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 212 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 213 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 214 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 215 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 216 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 217 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 218 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 219 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 220 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 221 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 222 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 223 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 224 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 225 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 226 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 227 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 228 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 229 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 230 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 231 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 232 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 233 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 234 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 235 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 236 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 237 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 238 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 239 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 240 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 241 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 242 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 243 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 244 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 245 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 246 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 247 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 248 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 249 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 250 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 251 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 252 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 253 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 254 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 255 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 256 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 257 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 258 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 259 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 260 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 261 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 262 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 263 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 264 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 265 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 266 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 267 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 268 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 269 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 270 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 271 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 272 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 273 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 274 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 275 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 276 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 277 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 278 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 279 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 280 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 281 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 282 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 283 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 284 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 285 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 286 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 287 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 288 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 289 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 290 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 291 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 292 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 293 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 294 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 295 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 296 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 297 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 298 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 299 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 300 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 301 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 302 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 303 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 304 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 305 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 306 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 307 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 308 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 309 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 310 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 311 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 312 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 313 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 314 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 315 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 316 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 317 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 318 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 319 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 320 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 321 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 322 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 323 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 324 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 325 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 326 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 327 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 328 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 329 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 330 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 331 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 332 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 333 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 334 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 335 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 336 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 337 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 338 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 339 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 340 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 341 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 342 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 343 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 344 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 345 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 346 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 347 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 348 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 349 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 350 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 351 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 352 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 353 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 354 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 355 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 356 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 357 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 358 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 359 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 360 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 361 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 362 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 363 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 364 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 365 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 366 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 367 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 368 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 369 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 370 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 371 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 372 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 373 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 374 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 375 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 376 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 377 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 378 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 379 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 380 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 381 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 382 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 383 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 384 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 385 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 386 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 387 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 388 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 389 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 390 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 391 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 392 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 393 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 394 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 395 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 396 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 397 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 398 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 399 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 400 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 401 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 402 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 403 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 404 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 405 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 406 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 407 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 408 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 409 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 410 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 411 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 412 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 413 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 414 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 415 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 416 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 417 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 418 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 419 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 420 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 421 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 422 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 423 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 424 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 425 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 426 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 427 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 428 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 429 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 430 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 431 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 432 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 433 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 434 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 435 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 436 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 437 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 438 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 439 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 440 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 441 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 442 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 443 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 444 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 445 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 446 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 447 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 448 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 449 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 450 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 451 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 452 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 453 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 454 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 455 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 456 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 457 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 458 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 459 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 460 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 461 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 462 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 463 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 464 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 465 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 466 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 467 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 468 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 469 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 470 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 471 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 472 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 473 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 474 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 475 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 476 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 477 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 478 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 479 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 480 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 481 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 482 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 483 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 484 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 485 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 486 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 487 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 488 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 489 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 490 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 491 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 492 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 493 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 494 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 495 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 496 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 497 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 498 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 499 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 500 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 501 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 502 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 503 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 504 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 505 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 506 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 507 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 508 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 509 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 510 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 511 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 512 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 513 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 514 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 515 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 516 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 517 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 518 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 519 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 520 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 521 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 522 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 523 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 524 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 525 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 526 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 527 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 528 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 529 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 530 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 531 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 532 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 533 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 534 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 535 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 536 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 537 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 538 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 539 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 540 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 541 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 542 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 543 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 544 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 545 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 546 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 547 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 548 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 549 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 550 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 551 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 552 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 553 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 554 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 555 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 556 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 557 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 558 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 559 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 560 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 561 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 562 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 563 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 564 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 565 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 566 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 567 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 568 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 569 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 570 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 571 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 572 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 573 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 574 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 575 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 576 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 577 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 578 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 579 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 580 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 581 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 582 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 583 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 584 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 585 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 586 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 587 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 588 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 589 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 590 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 591 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 592 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 593 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 594 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 595 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 596 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 597 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 598 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 599 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 600 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 601 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 602 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 603 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 604 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 605 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 606 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 607 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 608 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 609 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 610 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 611 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 612 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 613 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 614 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 615 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 616 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 617 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 618 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 619 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 620 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 621 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 622 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 623 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 624 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 625 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 626 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 627 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 628 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 629 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 630 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 631 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 632 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 633 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 634 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 635 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 636 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 637 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 638 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 639 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 640 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 641 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 642 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 643 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 644 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 645 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 646 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 647 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 648 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 649 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 650 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 651 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 652 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 653 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 654 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 655 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 656 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 657 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 658 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 659 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 660 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 661 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 662 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 663 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 664 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 665 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 666 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 667 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 668 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 669 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 670 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 671 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 672 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 673 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 674 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 675 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 676 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 677 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 678 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 679 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 680 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 681 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 682 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 683 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 684 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 685 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 686 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 687 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 688 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 689 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 690 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 691 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 692 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 693 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 694 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 695 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 696 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 697 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 698 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 699 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 700 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 701 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 702 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 703 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 704 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 705 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 706 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 707 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 708 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 709 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 710 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 711 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 712 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 713 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 714 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 715 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 716 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 717 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 718 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 719 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 720 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 721 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 722 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 723 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 724 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 725 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 726 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 727 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 728 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 729 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 730 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 731 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 732 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 733 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 734 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 735 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 736 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 737 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 738 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 739 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 740 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 741 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 742 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 743 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 744 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 745 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 746 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 747 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 748 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 749 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 750 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 751 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 752 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 753 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 754 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 755 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 756 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 757 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 758 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 759 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 760 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 761 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 762 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 763 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 764 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 765 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 766 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 767 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 768 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 769 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 770 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 771 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 772 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 773 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 774 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 775 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 776 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 777 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 778 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 779 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 780 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 781 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 782 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 783 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 784 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 785 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 786 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 787 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 788 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 789 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 790 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 791 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 792 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 793 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 794 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 795 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 796 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 797 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 798 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 799 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 800 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 801 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 802 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 803 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 804 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 805 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 806 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 807 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 808 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 809 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 810 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 811 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 812 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 813 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 814 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 815 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 816 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 817 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 818 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 819 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 820 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 821 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 822 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 823 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 824 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 825 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 826 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 827 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 828 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 829 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 830 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 831 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 832 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 833 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 834 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 835 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 836 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 837 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 838 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 839 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 840 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 841 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 842 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 843 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 844 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 845 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 846 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 847 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 848 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 849 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 850 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 851 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 852 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 853 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 854 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 855 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 856 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 857 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 858 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 859 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 860 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 861 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 862 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 863 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 864 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 865 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 866 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 867 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 868 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 869 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 870 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 871 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 872 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 873 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 874 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 875 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 876 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 877 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 878 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 879 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 880 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 881 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 882 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 883 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 884 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 885 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 886 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 887 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 888 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 889 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 890 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 891 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 892 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 893 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 894 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 895 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 896 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 897 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 898 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 899 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 900 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 901 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 902 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 903 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 904 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 905 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 906 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 907 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 908 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 909 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 910 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 911 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 912 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 913 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 914 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 915 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 916 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 917 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 918 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 919 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 920 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 921 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 922 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 923 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 924 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 925 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 926 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 927 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 928 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 929 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 930 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 931 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 932 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 933 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 934 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 935 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 936 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 937 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 938 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 939 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 940 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 941 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 942 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 943 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 944 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 945 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 946 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 947 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 948 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 949 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 950 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 951 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 952 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 953 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 954 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 955 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 956 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 957 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 958 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 959 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 960 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 961 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 962 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 963 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 964 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 965 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 966 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 967 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 968 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 969 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 970 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 971 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 972 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 973 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 974 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 975 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 976 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 977 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 978 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 979 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 980 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 981 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 982 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 983 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 984 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 985 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 986 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 987 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 988 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 989 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 990 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 991 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 992 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 993 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 994 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 995 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 996 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 997 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 998 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 999 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + - Iteration 1000 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.0237952169 + Accuracy on test : 72.9508196721 + +Computation time on 1 cores : + Database extraction time : 0:00:00 + Learn Prediction + Fold 1 0:01:13 0:00:01 + Fold 2 0:01:23 0:00:01 + Total 0:02:37 0:00:03 + So a total classification time of 0:01:25. + diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091625-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091625-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..d062fb389ed665841574f4e497aef0c6316703f8 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091625-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log @@ -0,0 +1,14246 @@ +2016-08-24 09:16:25,238 INFO: Start: Read HDF5 Database Files for ModifiedMultiOmic +2016-08-24 09:16:25,238 INFO: Info: Labels used: No, Yes +2016-08-24 09:16:25,239 INFO: Info: Length of dataset:347 +2016-08-24 09:16:25,240 INFO: ### Main Programm for Multiview Classification +2016-08-24 09:16:25,240 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1 +2016-08-24 09:16:25,241 INFO: Info: Shape of Methyl_ :(347, 25978) +2016-08-24 09:16:25,241 INFO: Info: Shape of MiRNA__ :(347, 1046) +2016-08-24 09:16:25,241 INFO: Info: Shape of RANSeq_ :(347, 73599) +2016-08-24 09:16:25,242 INFO: Info: Shape of Clinic_ :(347, 127) +2016-08-24 09:16:25,242 INFO: Done: Read Database Files +2016-08-24 09:16:25,242 INFO: Start: Determine validation split for ratio 0.7 +2016-08-24 09:16:25,245 INFO: Done: Determine validation split +2016-08-24 09:16:25,245 INFO: Start: Determine 2 folds +2016-08-24 09:16:25,255 INFO: Info: Length of Learning Sets: 122 +2016-08-24 09:16:25,255 INFO: Info: Length of Testing Sets: 122 +2016-08-24 09:16:25,255 INFO: Info: Length of Validation Set: 103 +2016-08-24 09:16:25,255 INFO: Done: Determine folds +2016-08-24 09:16:25,255 INFO: Start: Learning with Mumbo and 2 folds +2016-08-24 09:16:25,256 INFO: Start: Gridsearching best settings for monoview classifiers +2016-08-24 09:16:25,256 DEBUG: Start: Gridsearch for DecisionTree on Methyl_ +2016-08-24 09:16:32,562 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:16:32,563 DEBUG: Start: Gridsearch for DecisionTree on MiRNA__ +2016-08-24 09:16:34,472 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:16:34,473 DEBUG: Start: Gridsearch for DecisionTree on RANSeq_ +2016-08-24 09:16:51,458 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:16:51,458 DEBUG: Start: Gridsearch for DecisionTree on Clinic_ +2016-08-24 09:16:53,197 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:16:53,197 DEBUG: Start: Gridsearch for DecisionTree on MRNASeq +2016-08-24 09:17:30,357 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:17:30,357 INFO: Done: Gridsearching best settings for monoview classifiers +2016-08-24 09:17:30,357 INFO: Start: Fold number 1 +2016-08-24 09:17:32,053 DEBUG: Start: Iteration 1 +2016-08-24 09:17:32,069 DEBUG: View 0 : 0.377358490566 +2016-08-24 09:17:32,077 DEBUG: View 1 : 0.377358490566 +2016-08-24 09:17:32,106 DEBUG: View 2 : 0.622641509434 +2016-08-24 09:17:32,113 DEBUG: View 3 : 0.622641509434 +2016-08-24 09:17:32,155 DEBUG: Best view : Methyl_ +2016-08-24 09:17:32,230 DEBUG: Start: Iteration 2 +2016-08-24 09:17:32,247 DEBUG: View 0 : 0.547169811321 +2016-08-24 09:17:32,255 DEBUG: View 1 : 0.59748427673 +2016-08-24 09:17:32,292 DEBUG: View 2 : 0.547169811321 +2016-08-24 09:17:32,299 DEBUG: View 3 : 0.559748427673 +2016-08-24 09:17:32,344 DEBUG: Best view : MiRNA__ +2016-08-24 09:17:32,475 DEBUG: Start: Iteration 3 +2016-08-24 09:17:32,492 DEBUG: View 0 : 0.641509433962 +2016-08-24 09:17:32,500 DEBUG: View 1 : 0.534591194969 +2016-08-24 09:17:32,536 DEBUG: View 2 : 0.389937106918 +2016-08-24 09:17:32,544 DEBUG: View 3 : 0.59748427673 +2016-08-24 09:17:32,597 DEBUG: Best view : Methyl_ +2016-08-24 09:17:32,792 DEBUG: Start: Iteration 4 +2016-08-24 09:17:32,808 DEBUG: View 0 : 0.389937106918 +2016-08-24 09:17:32,816 DEBUG: View 1 : 0.62893081761 +2016-08-24 09:17:32,852 DEBUG: View 2 : 0.389937106918 +2016-08-24 09:17:32,860 DEBUG: View 3 : 0.446540880503 +2016-08-24 09:17:32,915 DEBUG: Best view : MiRNA__ +2016-08-24 09:17:33,165 DEBUG: Start: Iteration 5 +2016-08-24 09:17:33,182 DEBUG: View 0 : 0.509433962264 +2016-08-24 09:17:33,189 DEBUG: View 1 : 0.603773584906 +2016-08-24 09:17:33,226 DEBUG: View 2 : 0.62893081761 +2016-08-24 09:17:33,233 DEBUG: View 3 : 0.503144654088 +2016-08-24 09:17:33,291 DEBUG: Best view : MiRNA__ +2016-08-24 09:17:33,599 DEBUG: Start: Iteration 6 +2016-08-24 09:17:33,615 DEBUG: View 0 : 0.421383647799 +2016-08-24 09:17:33,623 DEBUG: View 1 : 0.572327044025 +2016-08-24 09:17:33,660 DEBUG: View 2 : 0.553459119497 +2016-08-24 09:17:33,668 DEBUG: View 3 : 0.490566037736 +2016-08-24 09:17:33,727 DEBUG: Best view : MiRNA__ +2016-08-24 09:17:34,092 DEBUG: Start: Iteration 7 +2016-08-24 09:17:34,109 DEBUG: View 0 : 0.553459119497 +2016-08-24 09:17:34,116 DEBUG: View 1 : 0.603773584906 +2016-08-24 09:17:34,153 DEBUG: View 2 : 0.610062893082 +2016-08-24 09:17:34,161 DEBUG: View 3 : 0.433962264151 +2016-08-24 09:17:34,223 DEBUG: Best view : RANSeq_ +2016-08-24 09:17:34,661 DEBUG: Start: Iteration 8 +2016-08-24 09:17:34,677 DEBUG: View 0 : 0.522012578616 +2016-08-24 09:17:34,685 DEBUG: View 1 : 0.654088050314 +2016-08-24 09:17:34,721 DEBUG: View 2 : 0.48427672956 +2016-08-24 09:17:34,729 DEBUG: View 3 : 0.477987421384 +2016-08-24 09:17:34,793 DEBUG: Best view : MiRNA__ +2016-08-24 09:17:35,289 DEBUG: Start: Iteration 9 +2016-08-24 09:17:35,305 DEBUG: View 0 : 0.358490566038 +2016-08-24 09:17:35,313 DEBUG: View 1 : 0.534591194969 +2016-08-24 09:17:35,350 DEBUG: View 2 : 0.522012578616 +2016-08-24 09:17:35,357 DEBUG: View 3 : 0.704402515723 +2016-08-24 09:17:35,424 DEBUG: Best view : Clinic_ +2016-08-24 09:17:35,976 DEBUG: Start: Iteration 10 +2016-08-24 09:17:35,992 DEBUG: View 0 : 0.666666666667 +2016-08-24 09:17:36,000 DEBUG: View 1 : 0.616352201258 +2016-08-24 09:17:36,037 DEBUG: View 2 : 0.415094339623 +2016-08-24 09:17:36,044 DEBUG: View 3 : 0.465408805031 +2016-08-24 09:17:36,112 DEBUG: Best view : Methyl_ +2016-08-24 09:17:36,725 DEBUG: Start: Iteration 11 +2016-08-24 09:17:36,742 DEBUG: View 0 : 0.427672955975 +2016-08-24 09:17:36,749 DEBUG: View 1 : 0.534591194969 +2016-08-24 09:17:36,786 DEBUG: View 2 : 0.446540880503 +2016-08-24 09:17:36,793 DEBUG: View 3 : 0.522012578616 +2016-08-24 09:17:36,864 DEBUG: Best view : Clinic_ +2016-08-24 09:17:37,731 DEBUG: Start: Iteration 12 +2016-08-24 09:17:37,748 DEBUG: View 0 : 0.440251572327 +2016-08-24 09:17:37,756 DEBUG: View 1 : 0.37106918239 +2016-08-24 09:17:37,793 DEBUG: View 2 : 0.553459119497 +2016-08-24 09:17:37,800 DEBUG: View 3 : 0.509433962264 +2016-08-24 09:17:37,874 DEBUG: Best view : RANSeq_ +2016-08-24 09:17:38,629 INFO: Start: Classification +2016-08-24 09:17:40,368 INFO: Done: Fold number 1 +2016-08-24 09:17:40,368 INFO: Start: Fold number 2 +2016-08-24 09:17:41,934 DEBUG: Start: Iteration 1 +2016-08-24 09:17:41,952 DEBUG: View 0 : 0.5 +2016-08-24 09:17:41,960 DEBUG: View 1 : 0.379746835443 +2016-08-24 09:17:41,988 DEBUG: View 2 : 0.620253164557 +2016-08-24 09:17:41,996 DEBUG: View 3 : 0.620253164557 +2016-08-24 09:17:42,041 DEBUG: Best view : Methyl_ +2016-08-24 09:17:42,117 DEBUG: Start: Iteration 2 +2016-08-24 09:17:42,133 DEBUG: View 0 : 0.436708860759 +2016-08-24 09:17:42,141 DEBUG: View 1 : 0.354430379747 +2016-08-24 09:17:42,178 DEBUG: View 2 : 0.430379746835 +2016-08-24 09:17:42,185 DEBUG: View 3 : 0.556962025316 +2016-08-24 09:17:42,230 DEBUG: Best view : Clinic_ +2016-08-24 09:17:42,361 DEBUG: Start: Iteration 3 +2016-08-24 09:17:42,377 DEBUG: View 0 : 0.481012658228 +2016-08-24 09:17:42,385 DEBUG: View 1 : 0.373417721519 +2016-08-24 09:17:42,421 DEBUG: View 2 : 0.386075949367 +2016-08-24 09:17:42,429 DEBUG: View 3 : 0.386075949367 +2016-08-24 09:17:42,429 WARNING: All bad for iteration 2 +2016-08-24 09:17:42,482 DEBUG: Best view : Methyl_ +2016-08-24 09:17:42,675 DEBUG: Start: Iteration 4 +2016-08-24 09:17:42,692 DEBUG: View 0 : 0.506329113924 +2016-08-24 09:17:42,699 DEBUG: View 1 : 0.544303797468 +2016-08-24 09:17:42,735 DEBUG: View 2 : 0.550632911392 +2016-08-24 09:17:42,743 DEBUG: View 3 : 0.626582278481 +2016-08-24 09:17:42,798 DEBUG: Best view : Clinic_ +2016-08-24 09:17:43,047 DEBUG: Start: Iteration 5 +2016-08-24 09:17:43,063 DEBUG: View 0 : 0.588607594937 +2016-08-24 09:17:43,071 DEBUG: View 1 : 0.601265822785 +2016-08-24 09:17:43,107 DEBUG: View 2 : 0.443037974684 +2016-08-24 09:17:43,114 DEBUG: View 3 : 0.544303797468 +2016-08-24 09:17:43,171 DEBUG: Best view : MiRNA__ +2016-08-24 09:17:43,477 DEBUG: Start: Iteration 6 +2016-08-24 09:17:43,494 DEBUG: View 0 : 0.481012658228 +2016-08-24 09:17:43,501 DEBUG: View 1 : 0.601265822785 +2016-08-24 09:17:43,538 DEBUG: View 2 : 0.493670886076 +2016-08-24 09:17:43,545 DEBUG: View 3 : 0.493670886076 +2016-08-24 09:17:43,605 DEBUG: Best view : MiRNA__ +2016-08-24 09:17:43,969 DEBUG: Start: Iteration 7 +2016-08-24 09:17:43,985 DEBUG: View 0 : 0.322784810127 +2016-08-24 09:17:43,993 DEBUG: View 1 : 0.474683544304 +2016-08-24 09:17:44,029 DEBUG: View 2 : 0.417721518987 +2016-08-24 09:17:44,036 DEBUG: View 3 : 0.601265822785 +2016-08-24 09:17:44,097 DEBUG: Best view : Clinic_ +2016-08-24 09:17:44,516 DEBUG: Start: Iteration 8 +2016-08-24 09:17:44,533 DEBUG: View 0 : 0.525316455696 +2016-08-24 09:17:44,540 DEBUG: View 1 : 0.632911392405 +2016-08-24 09:17:44,577 DEBUG: View 2 : 0.607594936709 +2016-08-24 09:17:44,584 DEBUG: View 3 : 0.411392405063 +2016-08-24 09:17:44,648 DEBUG: Best view : MiRNA__ +2016-08-24 09:17:45,123 DEBUG: Start: Iteration 9 +2016-08-24 09:17:45,139 DEBUG: View 0 : 0.677215189873 +2016-08-24 09:17:45,147 DEBUG: View 1 : 0.398734177215 +2016-08-24 09:17:45,183 DEBUG: View 2 : 0.575949367089 +2016-08-24 09:17:45,191 DEBUG: View 3 : 0.462025316456 +2016-08-24 09:17:45,257 DEBUG: Best view : Methyl_ +2016-08-24 09:17:45,800 DEBUG: Start: Iteration 10 +2016-08-24 09:17:45,817 DEBUG: View 0 : 0.664556962025 +2016-08-24 09:17:45,825 DEBUG: View 1 : 0.632911392405 +2016-08-24 09:17:45,862 DEBUG: View 2 : 0.613924050633 +2016-08-24 09:17:45,869 DEBUG: View 3 : 0.601265822785 +2016-08-24 09:17:45,941 DEBUG: Best view : Methyl_ +2016-08-24 09:17:46,549 DEBUG: Start: Iteration 11 +2016-08-24 09:17:46,566 DEBUG: View 0 : 0.506329113924 +2016-08-24 09:17:46,573 DEBUG: View 1 : 0.373417721519 +2016-08-24 09:17:46,610 DEBUG: View 2 : 0.620253164557 +2016-08-24 09:17:46,617 DEBUG: View 3 : 0.563291139241 +2016-08-24 09:17:46,688 DEBUG: Best view : RANSeq_ +2016-08-24 09:17:47,371 DEBUG: Start: Iteration 12 +2016-08-24 09:17:47,390 DEBUG: View 0 : 0.405063291139 +2016-08-24 09:17:47,399 DEBUG: View 1 : 0.658227848101 +2016-08-24 09:17:47,435 DEBUG: View 2 : 0.620253164557 +2016-08-24 09:17:47,443 DEBUG: View 3 : 0.626582278481 +2016-08-24 09:17:47,517 DEBUG: Best view : MiRNA__ +2016-08-24 09:17:48,252 INFO: Start: Classification +2016-08-24 09:17:49,990 INFO: Done: Fold number 2 +2016-08-24 09:17:49,990 INFO: Done: Classification +2016-08-24 09:17:49,990 INFO: Info: Time for Classification: 84[s] +2016-08-24 09:17:49,990 INFO: Start: Result Analysis for Mumbo +2016-08-24 09:17:55,375 INFO: Result for Multiview classification with Mumbo + +Average accuracy : + -On Train : 68.4519544622 + -On Test : 76.6393442623 + -On Validation : 76.213592233 + +Dataset info : + -Database name : ModifiedMultiOmic + -Labels : No, Yes + -Views : Methyl, MiRNA, RNASEQ, Clinical + -2 folds + - Validation set length : 103 for learning rate : 0.7 + +Classification configuration : + -Algorithm used : Mumbo + -Iterations : 1000 + -Weak Classifiers : DecisionTree with depth 1.0, sub-sampled at 0.0075 on Methyl + -DecisionTree with depth 1.0, sub-sampled at 0.006 on MiRNA + -DecisionTree with depth 1.0, sub-sampled at 0.006 on RNASEQ + -DecisionTree with depth 1.0, sub-sampled at 0.0065 on Clinical + + Mean average accuracies and stats for each fold : + - Fold 0 + - On Methyl_ : + - Mean average Accuracy : 0.00585534591195 + - Percentage of time chosen : 0.991 + - On MiRNA__ : + - Mean average Accuracy : 0.00662893081761 + - Percentage of time chosen : 0.005 + - On RANSeq_ : + - Mean average Accuracy : 0.00616352201258 + - Percentage of time chosen : 0.002 + - On Clinic_ : + - Mean average Accuracy : 0.00633333333333 + - Percentage of time chosen : 0.002 + - Fold 1 + - On Methyl_ : + - Mean average Accuracy : 0.00609493670886 + - Percentage of time chosen : 0.992 + - On MiRNA__ : + - Mean average Accuracy : 0.0060253164557 + - Percentage of time chosen : 0.004 + - On RANSeq_ : + - Mean average Accuracy : 0.00637974683544 + - Percentage of time chosen : 0.001 + - On Clinic_ : + - Mean average Accuracy : 0.00649367088608 + - Percentage of time chosen : 0.003 + + For each iteration : + - Iteration 1 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 2 + Fold 1 + Accuracy on train : 59.748427673 + Accuracy on test : 53.2786885246 + Accuracy on validation : 67.9611650485 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 55.6962025316 + Accuracy on test : 64.7540983607 + Accuracy on validation : 63.1067961165 + Selected View : Clinic_ + - Mean : + Accuracy on train : 57.7223151023 + Accuracy on test : 59.0163934426 + - Iteration 3 + Fold 1 + Accuracy on train : 64.1509433962 + Accuracy on test : 69.6721311475 + Accuracy on validation : 75.7281553398 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 55.6962025316 + Accuracy on test : 64.7540983607 + Accuracy on validation : 63.1067961165 + Selected View : Methyl_ + - Mean : + Accuracy on train : 59.9235729639 + Accuracy on test : 67.2131147541 + - Iteration 4 + Fold 1 + Accuracy on train : 62.893081761 + Accuracy on test : 71.3114754098 + Accuracy on validation : 73.786407767 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 62.6582278481 + Accuracy on test : 73.7704918033 + Accuracy on validation : 69.9029126214 + Selected View : Clinic_ + - Mean : + Accuracy on train : 62.7756548046 + Accuracy on test : 72.5409836066 + - Iteration 5 + Fold 1 + Accuracy on train : 63.5220125786 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 63.2911392405 + Accuracy on test : 72.131147541 + Accuracy on validation : 70.8737864078 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 63.4065759096 + Accuracy on test : 72.5409836066 + - Iteration 6 + Fold 1 + Accuracy on train : 62.893081761 + Accuracy on test : 71.3114754098 + Accuracy on validation : 74.7572815534 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 73.7704918033 + Accuracy on validation : 69.9029126214 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 62.4591991084 + Accuracy on test : 72.5409836066 + - Iteration 7 + Fold 1 + Accuracy on train : 64.1509433962 + Accuracy on test : 73.7704918033 + Accuracy on validation : 74.7572815534 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 69.6721311475 + Accuracy on validation : 70.8737864078 + Selected View : Clinic_ + - Mean : + Accuracy on train : 63.088129926 + Accuracy on test : 71.7213114754 + - Iteration 8 + Fold 1 + Accuracy on train : 62.893081761 + Accuracy on test : 74.5901639344 + Accuracy on validation : 74.7572815534 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 65.1898734177 + Accuracy on test : 72.131147541 + Accuracy on validation : 73.786407767 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 64.0414775894 + Accuracy on test : 73.3606557377 + - Iteration 9 + Fold 1 + Accuracy on train : 64.7798742138 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 67.7215189873 + Accuracy on test : 72.9508196721 + Accuracy on validation : 75.7281553398 + Selected View : Methyl_ + - Mean : + Accuracy on train : 66.2506966006 + Accuracy on test : 72.9508196721 + - Iteration 10 + Fold 1 + Accuracy on train : 66.0377358491 + Accuracy on test : 75.4098360656 + Accuracy on validation : 76.6990291262 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 70.8860759494 + Accuracy on test : 80.3278688525 + Accuracy on validation : 74.7572815534 + Selected View : Methyl_ + - Mean : + Accuracy on train : 68.4619058992 + Accuracy on test : 77.868852459 + - Iteration 11 + Fold 1 + Accuracy on train : 70.4402515723 + Accuracy on test : 75.4098360656 + Accuracy on validation : 79.6116504854 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 72.7848101266 + Accuracy on test : 76.2295081967 + Accuracy on validation : 78.640776699 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 71.6125308495 + Accuracy on test : 75.8196721311 + - Iteration 12 + Fold 1 + Accuracy on train : 69.1823899371 + Accuracy on test : 76.2295081967 + Accuracy on validation : 78.640776699 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 67.7215189873 + Accuracy on test : 77.0491803279 + Accuracy on validation : 73.786407767 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 68.4519544622 + Accuracy on test : 76.6393442623 + - Iteration 13 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 14 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 15 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 16 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 17 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 18 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 19 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 20 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 21 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 22 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 23 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 24 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 25 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 26 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 27 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 28 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 29 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 30 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 31 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 32 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 33 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 34 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 35 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 36 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 37 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 38 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 39 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 40 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 41 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 42 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 43 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 44 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 45 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 46 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 47 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 48 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 49 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 50 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 51 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 52 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 53 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 54 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 55 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 56 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 57 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 58 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 59 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 60 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 61 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 62 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 63 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 64 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 65 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 66 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 67 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 68 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 69 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 70 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 71 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 72 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 73 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 74 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 75 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 76 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 77 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 78 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 79 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 80 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 81 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 82 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 83 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 84 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 85 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 86 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 87 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 88 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 89 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 90 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 91 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 92 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 93 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 94 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 95 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 96 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 97 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 98 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 99 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 100 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 101 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 102 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 103 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 104 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 105 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 106 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 107 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 108 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 109 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 110 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 111 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 112 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 113 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 114 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 115 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 116 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 117 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 118 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 119 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 120 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 121 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 122 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 123 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 124 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 125 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 126 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 127 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 128 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 129 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 130 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 131 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 132 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 133 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 134 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 135 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 136 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 137 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 138 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 139 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 140 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 141 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 142 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 143 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 144 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 145 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 146 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 147 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 148 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 149 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 150 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 151 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 152 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 153 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 154 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 155 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 156 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 157 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 158 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 159 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 160 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 161 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 162 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 163 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 164 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 165 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 166 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 167 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 168 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 169 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 170 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 171 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 172 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 173 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 174 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 175 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 176 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 177 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 178 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 179 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 180 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 181 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 182 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 183 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 184 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 185 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 186 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 187 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 188 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 189 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 190 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 191 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 192 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 193 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 194 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 195 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 196 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 197 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 198 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 199 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 200 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 201 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 202 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 203 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 204 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 205 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 206 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 207 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 208 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 209 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 210 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 211 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 212 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 213 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 214 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 215 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 216 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 217 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 218 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 219 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 220 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 221 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 222 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 223 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 224 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 225 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 226 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 227 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 228 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 229 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 230 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 231 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 232 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 233 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 234 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 235 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 236 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 237 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 238 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 239 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 240 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 241 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 242 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 243 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 244 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 245 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 246 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 247 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 248 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 249 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 250 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 251 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 252 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 253 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 254 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 255 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 256 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 257 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 258 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 259 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 260 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 261 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 262 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 263 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 264 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 265 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 266 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 267 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 268 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 269 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 270 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 271 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 272 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 273 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 274 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 275 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 276 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 277 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 278 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 279 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 280 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 281 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 282 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 283 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 284 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 285 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 286 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 287 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 288 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 289 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 290 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 291 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 292 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 293 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 294 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 295 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 296 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 297 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 298 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 299 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 300 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 301 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 302 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 303 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 304 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 305 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 306 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 307 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 308 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 309 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 310 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 311 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 312 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 313 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 314 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 315 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 316 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 317 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 318 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 319 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 320 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 321 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 322 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 323 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 324 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 325 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 326 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 327 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 328 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 329 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 330 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 331 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 332 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 333 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 334 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 335 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 336 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 337 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 338 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 339 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 340 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 341 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 342 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 343 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 344 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 345 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 346 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 347 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 348 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 349 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 350 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 351 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 352 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 353 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 354 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 355 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 356 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 357 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 358 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 359 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 360 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 361 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 362 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 363 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 364 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 365 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 366 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 367 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 368 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 369 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 370 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 371 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 372 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 373 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 374 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 375 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 376 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 377 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 378 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 379 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 380 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 381 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 382 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 383 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 384 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 385 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 386 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 387 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 388 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 389 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 390 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 391 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 392 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 393 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 394 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 395 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 396 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 397 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 398 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 399 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 400 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 401 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 402 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 403 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 404 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 405 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 406 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 407 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 408 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 409 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 410 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 411 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 412 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 413 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 414 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 415 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 416 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 417 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 418 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 419 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 420 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 421 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 422 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 423 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 424 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 425 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 426 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 427 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 428 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 429 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 430 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 431 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 432 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 433 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 434 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 435 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 436 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 437 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 438 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 439 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 440 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 441 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 442 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 443 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 444 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 445 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 446 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 447 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 448 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 449 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 450 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 451 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 452 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 453 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 454 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 455 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 456 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 457 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 458 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 459 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 460 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 461 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 462 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 463 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 464 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 465 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 466 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 467 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 468 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 469 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 470 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 471 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 472 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 473 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 474 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 475 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 476 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 477 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 478 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 479 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 480 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 481 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 482 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 483 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 484 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 485 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 486 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 487 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 488 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 489 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 490 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 491 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 492 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 493 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 494 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 495 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 496 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 497 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 498 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 499 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 500 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 501 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 502 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 503 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 504 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 505 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 506 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 507 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 508 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 509 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 510 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 511 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 512 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 513 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 514 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 515 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 516 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 517 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 518 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 519 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 520 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 521 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 522 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 523 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 524 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 525 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 526 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 527 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 528 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 529 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 530 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 531 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 532 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 533 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 534 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 535 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 536 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 537 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 538 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 539 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 540 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 541 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 542 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 543 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 544 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 545 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 546 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 547 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 548 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 549 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 550 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 551 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 552 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 553 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 554 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 555 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 556 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 557 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 558 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 559 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 560 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 561 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 562 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 563 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 564 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 565 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 566 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 567 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 568 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 569 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 570 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 571 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 572 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 573 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 574 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 575 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 576 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 577 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 578 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 579 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 580 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 581 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 582 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 583 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 584 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 585 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 586 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 587 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 588 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 589 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 590 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 591 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 592 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 593 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 594 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 595 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 596 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 597 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 598 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 599 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 600 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 601 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 602 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 603 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 604 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 605 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 606 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 607 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 608 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 609 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 610 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 611 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 612 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 613 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 614 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 615 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 616 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 617 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 618 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 619 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 620 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 621 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 622 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 623 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 624 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 625 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 626 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 627 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 628 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 629 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 630 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 631 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 632 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 633 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 634 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 635 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 636 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 637 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 638 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 639 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 640 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 641 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 642 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 643 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 644 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 645 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 646 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 647 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 648 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 649 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 650 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 651 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 652 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 653 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 654 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 655 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 656 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 657 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 658 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 659 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 660 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 661 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 662 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 663 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 664 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 665 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 666 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 667 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 668 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 669 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 670 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 671 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 672 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 673 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 674 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 675 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 676 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 677 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 678 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 679 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 680 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 681 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 682 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 683 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 684 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 685 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 686 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 687 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 688 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 689 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 690 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 691 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 692 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 693 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 694 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 695 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 696 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 697 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 698 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 699 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 700 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 701 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 702 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 703 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 704 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 705 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 706 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 707 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 708 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 709 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 710 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 711 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 712 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 713 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 714 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 715 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 716 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 717 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 718 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 719 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 720 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 721 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 722 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 723 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 724 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 725 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 726 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 727 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 728 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 729 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 730 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 731 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 732 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 733 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 734 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 735 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 736 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 737 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 738 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 739 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 740 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 741 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 742 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 743 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 744 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 745 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 746 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 747 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 748 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 749 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 750 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 751 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 752 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 753 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 754 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 755 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 756 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 757 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 758 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 759 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 760 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 761 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 762 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 763 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 764 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 765 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 766 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 767 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 768 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 769 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 770 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 771 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 772 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 773 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 774 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 775 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 776 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 777 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 778 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 779 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 780 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 781 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 782 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 783 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 784 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 785 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 786 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 787 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 788 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 789 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 790 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 791 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 792 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 793 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 794 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 795 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 796 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 797 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 798 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 799 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 800 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 801 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 802 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 803 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 804 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 805 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 806 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 807 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 808 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 809 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 810 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 811 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 812 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 813 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 814 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 815 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 816 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 817 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 818 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 819 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 820 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 821 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 822 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 823 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 824 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 825 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 826 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 827 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 828 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 829 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 830 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 831 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 832 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 833 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 834 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 835 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 836 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 837 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 838 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 839 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 840 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 841 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 842 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 843 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 844 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 845 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 846 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 847 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 848 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 849 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 850 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 851 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 852 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 853 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 854 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 855 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 856 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 857 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 858 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 859 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 860 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 861 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 862 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 863 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 864 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 865 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 866 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 867 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 868 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 869 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 870 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 871 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 872 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 873 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 874 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 875 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 876 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 877 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 878 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 879 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 880 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 881 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 882 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 883 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 884 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 885 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 886 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 887 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 888 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 889 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 890 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 891 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 892 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 893 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 894 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 895 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 896 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 897 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 898 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 899 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 900 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 901 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 902 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 903 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 904 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 905 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 906 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 907 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 908 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 909 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 910 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 911 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 912 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 913 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 914 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 915 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 916 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 917 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 918 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 919 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 920 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 921 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 922 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 923 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 924 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 925 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 926 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 927 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 928 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 929 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 930 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 931 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 932 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 933 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 934 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 935 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 936 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 937 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 938 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 939 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 940 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 941 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 942 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 943 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 944 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 945 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 946 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 947 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 948 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 949 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 950 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 951 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 952 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 953 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 954 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 955 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 956 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 957 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 958 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 959 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 960 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 961 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 962 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 963 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 964 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 965 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 966 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 967 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 968 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 969 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 970 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 971 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 972 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 973 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 974 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 975 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 976 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 977 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 978 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 979 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 980 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 981 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 982 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 983 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 984 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 985 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 986 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 987 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 988 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 989 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 990 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 991 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 992 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 993 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 994 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 995 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 996 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 997 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 998 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 999 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 1000 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + +Computation time on 1 cores : + Database extraction time : 0:00:00 + Learn Prediction + Fold 1 0:01:13 0:00:01 + Fold 2 0:01:22 0:00:01 + Total 0:02:36 0:00:03 + So a total classification time of 0:01:24. + + +2016-08-24 09:17:56,318 INFO: Done: Result Analysis diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091756Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091756Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png new file mode 100644 index 0000000000000000000000000000000000000000..f331f2fb198ab0807813fcc2584f9e9b11772d4b Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091756Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png differ diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091756Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091756Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt new file mode 100644 index 0000000000000000000000000000000000000000..616b19abd831a756d5b4fba15edca36223933097 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091756Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt @@ -0,0 +1,14060 @@ + Result for Multiview classification with Mumbo + +Average accuracy : + -On Train : 68.4519544622 + -On Test : 76.6393442623 + -On Validation : 76.213592233 + +Dataset info : + -Database name : ModifiedMultiOmic + -Labels : No, Yes + -Views : Methyl, MiRNA, RNASEQ, Clinical + -2 folds + - Validation set length : 103 for learning rate : 0.7 + +Classification configuration : + -Algorithm used : Mumbo + -Iterations : 1000 + -Weak Classifiers : DecisionTree with depth 1.0, sub-sampled at 0.0075 on Methyl + -DecisionTree with depth 1.0, sub-sampled at 0.006 on MiRNA + -DecisionTree with depth 1.0, sub-sampled at 0.006 on RNASEQ + -DecisionTree with depth 1.0, sub-sampled at 0.0065 on Clinical + + Mean average accuracies and stats for each fold : + - Fold 0 + - On Methyl_ : + - Mean average Accuracy : 0.00585534591195 + - Percentage of time chosen : 0.991 + - On MiRNA__ : + - Mean average Accuracy : 0.00662893081761 + - Percentage of time chosen : 0.005 + - On RANSeq_ : + - Mean average Accuracy : 0.00616352201258 + - Percentage of time chosen : 0.002 + - On Clinic_ : + - Mean average Accuracy : 0.00633333333333 + - Percentage of time chosen : 0.002 + - Fold 1 + - On Methyl_ : + - Mean average Accuracy : 0.00609493670886 + - Percentage of time chosen : 0.992 + - On MiRNA__ : + - Mean average Accuracy : 0.0060253164557 + - Percentage of time chosen : 0.004 + - On RANSeq_ : + - Mean average Accuracy : 0.00637974683544 + - Percentage of time chosen : 0.001 + - On Clinic_ : + - Mean average Accuracy : 0.00649367088608 + - Percentage of time chosen : 0.003 + + For each iteration : + - Iteration 1 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 2 + Fold 1 + Accuracy on train : 59.748427673 + Accuracy on test : 53.2786885246 + Accuracy on validation : 67.9611650485 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 55.6962025316 + Accuracy on test : 64.7540983607 + Accuracy on validation : 63.1067961165 + Selected View : Clinic_ + - Mean : + Accuracy on train : 57.7223151023 + Accuracy on test : 59.0163934426 + - Iteration 3 + Fold 1 + Accuracy on train : 64.1509433962 + Accuracy on test : 69.6721311475 + Accuracy on validation : 75.7281553398 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 55.6962025316 + Accuracy on test : 64.7540983607 + Accuracy on validation : 63.1067961165 + Selected View : Methyl_ + - Mean : + Accuracy on train : 59.9235729639 + Accuracy on test : 67.2131147541 + - Iteration 4 + Fold 1 + Accuracy on train : 62.893081761 + Accuracy on test : 71.3114754098 + Accuracy on validation : 73.786407767 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 62.6582278481 + Accuracy on test : 73.7704918033 + Accuracy on validation : 69.9029126214 + Selected View : Clinic_ + - Mean : + Accuracy on train : 62.7756548046 + Accuracy on test : 72.5409836066 + - Iteration 5 + Fold 1 + Accuracy on train : 63.5220125786 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 63.2911392405 + Accuracy on test : 72.131147541 + Accuracy on validation : 70.8737864078 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 63.4065759096 + Accuracy on test : 72.5409836066 + - Iteration 6 + Fold 1 + Accuracy on train : 62.893081761 + Accuracy on test : 71.3114754098 + Accuracy on validation : 74.7572815534 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 73.7704918033 + Accuracy on validation : 69.9029126214 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 62.4591991084 + Accuracy on test : 72.5409836066 + - Iteration 7 + Fold 1 + Accuracy on train : 64.1509433962 + Accuracy on test : 73.7704918033 + Accuracy on validation : 74.7572815534 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 69.6721311475 + Accuracy on validation : 70.8737864078 + Selected View : Clinic_ + - Mean : + Accuracy on train : 63.088129926 + Accuracy on test : 71.7213114754 + - Iteration 8 + Fold 1 + Accuracy on train : 62.893081761 + Accuracy on test : 74.5901639344 + Accuracy on validation : 74.7572815534 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 65.1898734177 + Accuracy on test : 72.131147541 + Accuracy on validation : 73.786407767 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 64.0414775894 + Accuracy on test : 73.3606557377 + - Iteration 9 + Fold 1 + Accuracy on train : 64.7798742138 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 67.7215189873 + Accuracy on test : 72.9508196721 + Accuracy on validation : 75.7281553398 + Selected View : Methyl_ + - Mean : + Accuracy on train : 66.2506966006 + Accuracy on test : 72.9508196721 + - Iteration 10 + Fold 1 + Accuracy on train : 66.0377358491 + Accuracy on test : 75.4098360656 + Accuracy on validation : 76.6990291262 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 70.8860759494 + Accuracy on test : 80.3278688525 + Accuracy on validation : 74.7572815534 + Selected View : Methyl_ + - Mean : + Accuracy on train : 68.4619058992 + Accuracy on test : 77.868852459 + - Iteration 11 + Fold 1 + Accuracy on train : 70.4402515723 + Accuracy on test : 75.4098360656 + Accuracy on validation : 79.6116504854 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 72.7848101266 + Accuracy on test : 76.2295081967 + Accuracy on validation : 78.640776699 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 71.6125308495 + Accuracy on test : 75.8196721311 + - Iteration 12 + Fold 1 + Accuracy on train : 69.1823899371 + Accuracy on test : 76.2295081967 + Accuracy on validation : 78.640776699 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 67.7215189873 + Accuracy on test : 77.0491803279 + Accuracy on validation : 73.786407767 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 68.4519544622 + Accuracy on test : 76.6393442623 + - Iteration 13 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 14 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 15 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 16 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 17 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 18 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 19 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 20 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 21 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 22 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 23 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 24 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 25 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 26 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 27 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 28 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 29 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 30 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 31 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 32 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 33 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 34 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 35 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 36 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 37 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 38 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 39 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 40 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 41 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 42 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 43 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 44 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 45 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 46 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 47 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 48 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 49 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 50 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 51 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 52 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 53 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 54 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 55 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 56 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 57 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 58 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 59 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 60 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 61 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 62 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 63 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 64 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 65 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 66 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 67 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 68 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 69 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 70 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 71 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 72 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 73 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 74 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 75 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 76 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 77 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 78 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 79 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 80 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 81 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 82 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 83 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 84 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 85 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 86 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 87 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 88 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 89 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 90 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 91 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 92 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 93 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 94 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 95 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 96 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 97 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 98 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 99 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 100 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 101 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 102 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 103 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 104 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 105 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 106 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 107 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 108 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 109 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 110 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 111 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 112 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 113 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 114 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 115 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 116 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 117 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 118 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 119 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 120 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 121 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 122 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 123 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 124 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 125 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 126 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 127 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 128 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 129 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 130 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 131 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 132 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 133 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 134 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 135 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 136 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 137 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 138 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 139 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 140 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 141 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 142 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 143 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 144 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 145 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 146 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 147 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 148 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 149 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 150 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 151 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 152 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 153 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 154 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 155 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 156 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 157 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 158 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 159 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 160 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 161 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 162 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 163 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 164 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 165 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 166 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 167 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 168 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 169 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 170 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 171 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 172 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 173 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 174 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 175 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 176 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 177 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 178 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 179 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 180 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 181 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 182 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 183 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 184 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 185 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 186 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 187 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 188 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 189 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 190 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 191 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 192 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 193 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 194 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 195 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 196 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 197 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 198 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 199 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 200 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 201 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 202 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 203 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 204 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 205 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 206 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 207 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 208 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 209 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 210 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 211 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 212 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 213 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 214 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 215 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 216 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 217 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 218 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 219 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 220 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 221 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 222 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 223 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 224 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 225 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 226 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 227 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 228 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 229 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 230 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 231 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 232 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 233 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 234 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 235 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 236 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 237 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 238 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 239 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 240 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 241 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 242 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 243 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 244 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 245 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 246 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 247 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 248 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 249 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 250 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 251 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 252 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 253 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 254 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 255 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 256 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 257 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 258 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 259 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 260 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 261 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 262 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 263 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 264 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 265 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 266 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 267 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 268 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 269 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 270 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 271 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 272 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 273 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 274 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 275 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 276 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 277 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 278 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 279 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 280 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 281 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 282 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 283 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 284 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 285 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 286 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 287 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 288 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 289 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 290 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 291 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 292 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 293 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 294 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 295 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 296 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 297 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 298 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 299 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 300 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 301 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 302 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 303 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 304 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 305 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 306 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 307 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 308 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 309 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 310 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 311 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 312 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 313 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 314 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 315 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 316 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 317 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 318 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 319 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 320 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 321 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 322 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 323 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 324 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 325 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 326 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 327 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 328 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 329 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 330 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 331 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 332 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 333 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 334 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 335 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 336 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 337 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 338 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 339 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 340 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 341 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 342 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 343 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 344 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 345 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 346 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 347 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 348 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 349 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 350 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 351 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 352 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 353 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 354 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 355 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 356 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 357 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 358 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 359 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 360 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 361 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 362 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 363 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 364 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 365 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 366 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 367 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 368 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 369 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 370 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 371 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 372 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 373 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 374 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 375 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 376 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 377 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 378 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 379 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 380 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 381 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 382 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 383 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 384 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 385 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 386 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 387 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 388 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 389 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 390 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 391 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 392 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 393 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 394 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 395 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 396 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 397 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 398 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 399 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 400 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 401 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 402 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 403 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 404 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 405 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 406 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 407 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 408 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 409 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 410 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 411 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 412 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 413 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 414 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 415 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 416 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 417 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 418 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 419 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 420 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 421 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 422 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 423 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 424 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 425 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 426 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 427 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 428 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 429 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 430 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 431 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 432 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 433 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 434 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 435 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 436 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 437 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 438 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 439 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 440 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 441 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 442 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 443 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 444 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 445 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 446 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 447 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 448 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 449 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 450 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 451 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 452 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 453 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 454 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 455 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 456 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 457 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 458 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 459 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 460 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 461 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 462 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 463 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 464 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 465 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 466 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 467 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 468 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 469 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 470 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 471 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 472 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 473 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 474 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 475 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 476 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 477 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 478 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 479 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 480 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 481 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 482 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 483 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 484 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 485 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 486 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 487 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 488 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 489 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 490 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 491 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 492 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 493 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 494 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 495 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 496 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 497 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 498 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 499 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 500 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 501 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 502 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 503 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 504 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 505 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 506 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 507 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 508 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 509 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 510 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 511 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 512 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 513 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 514 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 515 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 516 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 517 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 518 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 519 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 520 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 521 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 522 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 523 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 524 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 525 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 526 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 527 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 528 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 529 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 530 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 531 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 532 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 533 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 534 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 535 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 536 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 537 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 538 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 539 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 540 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 541 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 542 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 543 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 544 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 545 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 546 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 547 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 548 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 549 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 550 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 551 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 552 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 553 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 554 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 555 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 556 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 557 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 558 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 559 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 560 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 561 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 562 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 563 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 564 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 565 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 566 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 567 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 568 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 569 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 570 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 571 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 572 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 573 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 574 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 575 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 576 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 577 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 578 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 579 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 580 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 581 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 582 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 583 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 584 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 585 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 586 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 587 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 588 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 589 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 590 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 591 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 592 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 593 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 594 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 595 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 596 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 597 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 598 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 599 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 600 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 601 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 602 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 603 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 604 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 605 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 606 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 607 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 608 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 609 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 610 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 611 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 612 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 613 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 614 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 615 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 616 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 617 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 618 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 619 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 620 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 621 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 622 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 623 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 624 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 625 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 626 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 627 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 628 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 629 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 630 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 631 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 632 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 633 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 634 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 635 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 636 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 637 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 638 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 639 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 640 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 641 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 642 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 643 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 644 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 645 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 646 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 647 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 648 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 649 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 650 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 651 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 652 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 653 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 654 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 655 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 656 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 657 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 658 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 659 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 660 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 661 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 662 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 663 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 664 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 665 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 666 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 667 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 668 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 669 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 670 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 671 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 672 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 673 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 674 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 675 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 676 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 677 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 678 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 679 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 680 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 681 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 682 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 683 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 684 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 685 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 686 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 687 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 688 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 689 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 690 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 691 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 692 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 693 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 694 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 695 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 696 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 697 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 698 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 699 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 700 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 701 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 702 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 703 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 704 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 705 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 706 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 707 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 708 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 709 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 710 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 711 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 712 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 713 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 714 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 715 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 716 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 717 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 718 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 719 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 720 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 721 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 722 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 723 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 724 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 725 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 726 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 727 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 728 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 729 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 730 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 731 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 732 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 733 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 734 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 735 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 736 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 737 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 738 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 739 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 740 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 741 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 742 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 743 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 744 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 745 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 746 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 747 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 748 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 749 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 750 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 751 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 752 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 753 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 754 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 755 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 756 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 757 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 758 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 759 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 760 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 761 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 762 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 763 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 764 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 765 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 766 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 767 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 768 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 769 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 770 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 771 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 772 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 773 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 774 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 775 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 776 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 777 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 778 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 779 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 780 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 781 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 782 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 783 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 784 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 785 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 786 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 787 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 788 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 789 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 790 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 791 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 792 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 793 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 794 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 795 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 796 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 797 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 798 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 799 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 800 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 801 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 802 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 803 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 804 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 805 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 806 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 807 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 808 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 809 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 810 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 811 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 812 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 813 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 814 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 815 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 816 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 817 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 818 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 819 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 820 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 821 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 822 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 823 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 824 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 825 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 826 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 827 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 828 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 829 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 830 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 831 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 832 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 833 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 834 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 835 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 836 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 837 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 838 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 839 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 840 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 841 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 842 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 843 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 844 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 845 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 846 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 847 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 848 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 849 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 850 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 851 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 852 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 853 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 854 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 855 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 856 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 857 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 858 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 859 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 860 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 861 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 862 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 863 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 864 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 865 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 866 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 867 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 868 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 869 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 870 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 871 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 872 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 873 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 874 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 875 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 876 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 877 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 878 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 879 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 880 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 881 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 882 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 883 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 884 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 885 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 886 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 887 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 888 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 889 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 890 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 891 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 892 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 893 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 894 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 895 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 896 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 897 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 898 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 899 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 900 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 901 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 902 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 903 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 904 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 905 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 906 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 907 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 908 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 909 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 910 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 911 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 912 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 913 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 914 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 915 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 916 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 917 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 918 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 919 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 920 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 921 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 922 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 923 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 924 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 925 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 926 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 927 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 928 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 929 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 930 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 931 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 932 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 933 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 934 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 935 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 936 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 937 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 938 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 939 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 940 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 941 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 942 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 943 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 944 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 945 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 946 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 947 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 948 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 949 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 950 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 951 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 952 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 953 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 954 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 955 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 956 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 957 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 958 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 959 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 960 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 961 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 962 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 963 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 964 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 965 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 966 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 967 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 968 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 969 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 970 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 971 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 972 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 973 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 974 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 975 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 976 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 977 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 978 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 979 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 980 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 981 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 982 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 983 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 984 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 985 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 986 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 987 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 988 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 989 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 990 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 991 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 992 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 993 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 994 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 995 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 996 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 997 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 998 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 999 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + - Iteration 1000 + Fold 1 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.0253164557 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1447336995 + Accuracy on test : 72.9508196721 + +Computation time on 1 cores : + Database extraction time : 0:00:00 + Learn Prediction + Fold 1 0:01:13 0:00:01 + Fold 2 0:01:22 0:00:01 + Total 0:02:36 0:00:03 + So a total classification time of 0:01:24. + diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092030-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092030-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..3426f1a2d0c9e2d5664b919f9344c18a2051ad40 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092030-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log @@ -0,0 +1,14248 @@ +2016-08-24 09:20:30,659 INFO: Start: Read HDF5 Database Files for ModifiedMultiOmic +2016-08-24 09:20:30,660 INFO: Info: Labels used: No, Yes +2016-08-24 09:20:30,660 INFO: Info: Length of dataset:347 +2016-08-24 09:20:30,661 INFO: ### Main Programm for Multiview Classification +2016-08-24 09:20:30,661 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1 +2016-08-24 09:20:30,662 INFO: Info: Shape of Methyl_ :(347, 25978) +2016-08-24 09:20:30,662 INFO: Info: Shape of MiRNA__ :(347, 1046) +2016-08-24 09:20:30,663 INFO: Info: Shape of RANSeq_ :(347, 73599) +2016-08-24 09:20:30,663 INFO: Info: Shape of Clinic_ :(347, 127) +2016-08-24 09:20:30,663 INFO: Done: Read Database Files +2016-08-24 09:20:30,663 INFO: Start: Determine validation split for ratio 0.7 +2016-08-24 09:20:30,667 INFO: Done: Determine validation split +2016-08-24 09:20:30,667 INFO: Start: Determine 2 folds +2016-08-24 09:20:30,678 INFO: Info: Length of Learning Sets: 122 +2016-08-24 09:20:30,678 INFO: Info: Length of Testing Sets: 122 +2016-08-24 09:20:30,678 INFO: Info: Length of Validation Set: 103 +2016-08-24 09:20:30,678 INFO: Done: Determine folds +2016-08-24 09:20:30,678 INFO: Start: Learning with Mumbo and 2 folds +2016-08-24 09:20:30,678 INFO: Start: Gridsearching best settings for monoview classifiers +2016-08-24 09:20:30,679 DEBUG: Start: Gridsearch for DecisionTree on Methyl_ +2016-08-24 09:20:37,995 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:20:37,995 DEBUG: Start: Gridsearch for DecisionTree on MiRNA__ +2016-08-24 09:20:39,915 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:20:39,916 DEBUG: Start: Gridsearch for DecisionTree on RANSeq_ +2016-08-24 09:20:56,530 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:20:56,530 DEBUG: Start: Gridsearch for DecisionTree on Clinic_ +2016-08-24 09:20:58,283 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:20:58,284 DEBUG: Start: Gridsearch for DecisionTree on MRNASeq +2016-08-24 09:21:35,801 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:21:35,802 INFO: Done: Gridsearching best settings for monoview classifiers +2016-08-24 09:21:35,802 INFO: Start: Fold number 1 +2016-08-24 09:21:37,555 DEBUG: Start: Iteration 1 +2016-08-24 09:21:37,575 DEBUG: View 0 : 0.375 +2016-08-24 09:21:37,583 DEBUG: View 1 : 0.625 +2016-08-24 09:21:37,620 DEBUG: View 2 : 0.375 +2016-08-24 09:21:37,628 DEBUG: View 3 : 0.625 +2016-08-24 09:21:37,670 DEBUG: Best view : MiRNA__ +2016-08-24 09:21:37,743 DEBUG: Start: Iteration 2 +2016-08-24 09:21:37,760 DEBUG: View 0 : 0.4625 +2016-08-24 09:21:37,768 DEBUG: View 1 : 0.6875 +2016-08-24 09:21:37,805 DEBUG: View 2 : 0.5375 +2016-08-24 09:21:37,812 DEBUG: View 3 : 0.39375 +2016-08-24 09:21:37,858 DEBUG: Best view : MiRNA__ +2016-08-24 09:21:37,989 DEBUG: Start: Iteration 3 +2016-08-24 09:21:38,006 DEBUG: View 0 : 0.43125 +2016-08-24 09:21:38,014 DEBUG: View 1 : 0.7 +2016-08-24 09:21:38,050 DEBUG: View 2 : 0.41875 +2016-08-24 09:21:38,058 DEBUG: View 3 : 0.38125 +2016-08-24 09:21:38,112 DEBUG: Best view : MiRNA__ +2016-08-24 09:21:38,303 DEBUG: Start: Iteration 4 +2016-08-24 09:21:38,320 DEBUG: View 0 : 0.425 +2016-08-24 09:21:38,328 DEBUG: View 1 : 0.63125 +2016-08-24 09:21:38,365 DEBUG: View 2 : 0.525 +2016-08-24 09:21:38,372 DEBUG: View 3 : 0.44375 +2016-08-24 09:21:38,429 DEBUG: Best view : MiRNA__ +2016-08-24 09:21:38,678 DEBUG: Start: Iteration 5 +2016-08-24 09:21:38,695 DEBUG: View 0 : 0.56875 +2016-08-24 09:21:38,703 DEBUG: View 1 : 0.45625 +2016-08-24 09:21:38,739 DEBUG: View 2 : 0.575 +2016-08-24 09:21:38,747 DEBUG: View 3 : 0.5125 +2016-08-24 09:21:38,806 DEBUG: Best view : RANSeq_ +2016-08-24 09:21:39,130 DEBUG: Start: Iteration 6 +2016-08-24 09:21:39,147 DEBUG: View 0 : 0.4625 +2016-08-24 09:21:39,155 DEBUG: View 1 : 0.4375 +2016-08-24 09:21:39,192 DEBUG: View 2 : 0.54375 +2016-08-24 09:21:39,199 DEBUG: View 3 : 0.3875 +2016-08-24 09:21:39,260 DEBUG: Best view : RANSeq_ +2016-08-24 09:21:39,657 DEBUG: Start: Iteration 7 +2016-08-24 09:21:39,673 DEBUG: View 0 : 0.60625 +2016-08-24 09:21:39,681 DEBUG: View 1 : 0.4 +2016-08-24 09:21:39,717 DEBUG: View 2 : 0.54375 +2016-08-24 09:21:39,725 DEBUG: View 3 : 0.6125 +2016-08-24 09:21:39,788 DEBUG: Best view : Methyl_ +2016-08-24 09:21:40,246 DEBUG: Start: Iteration 8 +2016-08-24 09:21:40,263 DEBUG: View 0 : 0.43125 +2016-08-24 09:21:40,271 DEBUG: View 1 : 0.7 +2016-08-24 09:21:40,307 DEBUG: View 2 : 0.44375 +2016-08-24 09:21:40,315 DEBUG: View 3 : 0.50625 +2016-08-24 09:21:40,381 DEBUG: Best view : MiRNA__ +2016-08-24 09:21:40,897 DEBUG: Start: Iteration 9 +2016-08-24 09:21:40,914 DEBUG: View 0 : 0.41875 +2016-08-24 09:21:40,922 DEBUG: View 1 : 0.30625 +2016-08-24 09:21:40,961 DEBUG: View 2 : 0.35625 +2016-08-24 09:21:40,968 DEBUG: View 3 : 0.425 +2016-08-24 09:21:40,968 WARNING: All bad for iteration 8 +2016-08-24 09:21:41,036 DEBUG: Best view : Clinic_ +2016-08-24 09:21:41,611 DEBUG: Start: Iteration 10 +2016-08-24 09:21:41,628 DEBUG: View 0 : 0.70625 +2016-08-24 09:21:41,635 DEBUG: View 1 : 0.6375 +2016-08-24 09:21:41,672 DEBUG: View 2 : 0.55625 +2016-08-24 09:21:41,679 DEBUG: View 3 : 0.39375 +2016-08-24 09:21:41,750 DEBUG: Best view : Methyl_ +2016-08-24 09:21:42,388 DEBUG: Start: Iteration 11 +2016-08-24 09:21:42,404 DEBUG: View 0 : 0.40625 +2016-08-24 09:21:42,412 DEBUG: View 1 : 0.79375 +2016-08-24 09:21:42,449 DEBUG: View 2 : 0.425 +2016-08-24 09:21:42,456 DEBUG: View 3 : 0.525 +2016-08-24 09:21:42,530 DEBUG: Best view : MiRNA__ +2016-08-24 09:21:43,407 DEBUG: Start: Iteration 12 +2016-08-24 09:21:43,424 DEBUG: View 0 : 0.4875 +2016-08-24 09:21:43,432 DEBUG: View 1 : 0.4625 +2016-08-24 09:21:43,468 DEBUG: View 2 : 0.43125 +2016-08-24 09:21:43,475 DEBUG: View 3 : 0.44375 +2016-08-24 09:21:43,476 WARNING: All bad for iteration 11 +2016-08-24 09:21:43,550 DEBUG: Best view : MiRNA__ +2016-08-24 09:21:44,302 INFO: Start: Classification +2016-08-24 09:21:46,079 INFO: Done: Fold number 1 +2016-08-24 09:21:46,079 INFO: Start: Fold number 2 +2016-08-24 09:21:47,689 DEBUG: Start: Iteration 1 +2016-08-24 09:21:47,704 DEBUG: View 0 : 0.37037037037 +2016-08-24 09:21:47,712 DEBUG: View 1 : 0.364197530864 +2016-08-24 09:21:47,741 DEBUG: View 2 : 0.62962962963 +2016-08-24 09:21:47,748 DEBUG: View 3 : 0.37037037037 +2016-08-24 09:21:47,790 DEBUG: Best view : Methyl_ +2016-08-24 09:21:47,866 DEBUG: Start: Iteration 2 +2016-08-24 09:21:47,883 DEBUG: View 0 : 0.475308641975 +2016-08-24 09:21:47,891 DEBUG: View 1 : 0.345679012346 +2016-08-24 09:21:47,928 DEBUG: View 2 : 0.518518518519 +2016-08-24 09:21:47,935 DEBUG: View 3 : 0.574074074074 +2016-08-24 09:21:47,981 DEBUG: Best view : Clinic_ +2016-08-24 09:21:48,116 DEBUG: Start: Iteration 3 +2016-08-24 09:21:48,133 DEBUG: View 0 : 0.530864197531 +2016-08-24 09:21:48,141 DEBUG: View 1 : 0.561728395062 +2016-08-24 09:21:48,177 DEBUG: View 2 : 0.506172839506 +2016-08-24 09:21:48,185 DEBUG: View 3 : 0.518518518519 +2016-08-24 09:21:48,239 DEBUG: Best view : MiRNA__ +2016-08-24 09:21:48,435 DEBUG: Start: Iteration 4 +2016-08-24 09:21:48,452 DEBUG: View 0 : 0.450617283951 +2016-08-24 09:21:48,460 DEBUG: View 1 : 0.432098765432 +2016-08-24 09:21:48,497 DEBUG: View 2 : 0.481481481481 +2016-08-24 09:21:48,504 DEBUG: View 3 : 0.41975308642 +2016-08-24 09:21:48,504 WARNING: All bad for iteration 3 +2016-08-24 09:21:48,560 DEBUG: Best view : Clinic_ +2016-08-24 09:21:48,815 DEBUG: Start: Iteration 5 +2016-08-24 09:21:48,831 DEBUG: View 0 : 0.666666666667 +2016-08-24 09:21:48,839 DEBUG: View 1 : 0.487654320988 +2016-08-24 09:21:48,876 DEBUG: View 2 : 0.512345679012 +2016-08-24 09:21:48,884 DEBUG: View 3 : 0.41975308642 +2016-08-24 09:21:48,942 DEBUG: Best view : Methyl_ +2016-08-24 09:21:49,259 DEBUG: Start: Iteration 6 +2016-08-24 09:21:49,275 DEBUG: View 0 : 0.567901234568 +2016-08-24 09:21:49,283 DEBUG: View 1 : 0.703703703704 +2016-08-24 09:21:49,320 DEBUG: View 2 : 0.432098765432 +2016-08-24 09:21:49,328 DEBUG: View 3 : 0.604938271605 +2016-08-24 09:21:49,389 DEBUG: Best view : MiRNA__ +2016-08-24 09:21:49,764 DEBUG: Start: Iteration 7 +2016-08-24 09:21:49,781 DEBUG: View 0 : 0.41975308642 +2016-08-24 09:21:49,789 DEBUG: View 1 : 0.617283950617 +2016-08-24 09:21:49,825 DEBUG: View 2 : 0.438271604938 +2016-08-24 09:21:49,833 DEBUG: View 3 : 0.382716049383 +2016-08-24 09:21:49,896 DEBUG: Best view : MiRNA__ +2016-08-24 09:21:50,330 DEBUG: Start: Iteration 8 +2016-08-24 09:21:50,347 DEBUG: View 0 : 0.524691358025 +2016-08-24 09:21:50,355 DEBUG: View 1 : 0.574074074074 +2016-08-24 09:21:50,391 DEBUG: View 2 : 0.469135802469 +2016-08-24 09:21:50,398 DEBUG: View 3 : 0.432098765432 +2016-08-24 09:21:50,464 DEBUG: Best view : MiRNA__ +2016-08-24 09:21:50,959 DEBUG: Start: Iteration 9 +2016-08-24 09:21:50,975 DEBUG: View 0 : 0.475308641975 +2016-08-24 09:21:50,983 DEBUG: View 1 : 0.432098765432 +2016-08-24 09:21:51,020 DEBUG: View 2 : 0.456790123457 +2016-08-24 09:21:51,028 DEBUG: View 3 : 0.524691358025 +2016-08-24 09:21:51,095 DEBUG: Best view : Clinic_ +2016-08-24 09:21:51,646 DEBUG: Start: Iteration 10 +2016-08-24 09:21:51,663 DEBUG: View 0 : 0.524691358025 +2016-08-24 09:21:51,670 DEBUG: View 1 : 0.395061728395 +2016-08-24 09:21:51,707 DEBUG: View 2 : 0.475308641975 +2016-08-24 09:21:51,714 DEBUG: View 3 : 0.537037037037 +2016-08-24 09:21:51,784 DEBUG: Best view : Methyl_ +2016-08-24 09:21:52,399 DEBUG: Start: Iteration 11 +2016-08-24 09:21:52,416 DEBUG: View 0 : 0.666666666667 +2016-08-24 09:21:52,424 DEBUG: View 1 : 0.574074074074 +2016-08-24 09:21:52,460 DEBUG: View 2 : 0.555555555556 +2016-08-24 09:21:52,467 DEBUG: View 3 : 0.5 +2016-08-24 09:21:52,539 DEBUG: Best view : Methyl_ +2016-08-24 09:21:53,381 DEBUG: Start: Iteration 12 +2016-08-24 09:21:53,398 DEBUG: View 0 : 0.512345679012 +2016-08-24 09:21:53,406 DEBUG: View 1 : 0.475308641975 +2016-08-24 09:21:53,442 DEBUG: View 2 : 0.586419753086 +2016-08-24 09:21:53,450 DEBUG: View 3 : 0.456790123457 +2016-08-24 09:21:53,524 DEBUG: Best view : RANSeq_ +2016-08-24 09:21:54,276 INFO: Start: Classification +2016-08-24 09:21:56,037 INFO: Done: Fold number 2 +2016-08-24 09:21:56,037 INFO: Done: Classification +2016-08-24 09:21:56,037 INFO: Info: Time for Classification: 85[s] +2016-08-24 09:21:56,037 INFO: Start: Result Analysis for Mumbo +2016-08-24 09:22:01,520 INFO: Result for Multiview classification with Mumbo + +Average accuracy : + -On Train : 76.1072530864 + -On Test : 79.0983606557 + -On Validation : 83.0097087379 + +Dataset info : + -Database name : ModifiedMultiOmic + -Labels : No, Yes + -Views : Methyl, MiRNA, RNASEQ, Clinical + -2 folds + - Validation set length : 103 for learning rate : 0.7 + +Classification configuration : + -Algorithm used : Mumbo + -Iterations : 1000 + -Weak Classifiers : DecisionTree with depth 1.0, sub-sampled at 0.006 on Methyl + -DecisionTree with depth 1.0, sub-sampled at 0.006 on MiRNA + -DecisionTree with depth 1.0, sub-sampled at 0.006 on RNASEQ + -DecisionTree with depth 1.0, sub-sampled at 0.008 on Clinical + + Mean average accuracies and stats for each fold : + - Fold 0 + - On Methyl_ : + - Mean average Accuracy : 0.00578125 + - Percentage of time chosen : 0.99 + - On MiRNA__ : + - Mean average Accuracy : 0.0068375 + - Percentage of time chosen : 0.007 + - On RANSeq_ : + - Mean average Accuracy : 0.00573125 + - Percentage of time chosen : 0.002 + - On Clinic_ : + - Mean average Accuracy : 0.00565 + - Percentage of time chosen : 0.001 + - Fold 1 + - On Methyl_ : + - Mean average Accuracy : 0.00618518518519 + - Percentage of time chosen : 0.992 + - On MiRNA__ : + - Mean average Accuracy : 0.00596296296296 + - Percentage of time chosen : 0.004 + - On RANSeq_ : + - Mean average Accuracy : 0.00606172839506 + - Percentage of time chosen : 0.001 + - On Clinic_ : + - Mean average Accuracy : 0.00574074074074 + - Percentage of time chosen : 0.003 + + For each iteration : + - Iteration 1 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 2 + Fold 1 + Accuracy on train : 68.75 + Accuracy on test : 77.0491803279 + Accuracy on validation : 77.6699029126 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 57.4074074074 + Accuracy on test : 68.0327868852 + Accuracy on validation : 70.8737864078 + Selected View : Clinic_ + - Mean : + Accuracy on train : 63.0787037037 + Accuracy on test : 72.5409836066 + - Iteration 3 + Fold 1 + Accuracy on train : 70.0 + Accuracy on test : 77.868852459 + Accuracy on validation : 74.7572815534 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 57.4074074074 + Accuracy on test : 68.0327868852 + Accuracy on validation : 70.8737864078 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 63.7037037037 + Accuracy on test : 72.9508196721 + - Iteration 4 + Fold 1 + Accuracy on train : 69.375 + Accuracy on test : 81.1475409836 + Accuracy on validation : 77.6699029126 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 57.4074074074 + Accuracy on test : 68.0327868852 + Accuracy on validation : 70.8737864078 + Selected View : Clinic_ + - Mean : + Accuracy on train : 63.3912037037 + Accuracy on test : 74.5901639344 + - Iteration 5 + Fold 1 + Accuracy on train : 69.375 + Accuracy on test : 81.1475409836 + Accuracy on validation : 77.6699029126 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 60.4938271605 + Accuracy on test : 70.4918032787 + Accuracy on validation : 71.8446601942 + Selected View : Methyl_ + - Mean : + Accuracy on train : 64.9344135802 + Accuracy on test : 75.8196721311 + - Iteration 6 + Fold 1 + Accuracy on train : 68.75 + Accuracy on test : 77.868852459 + Accuracy on validation : 76.6990291262 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 67.2839506173 + Accuracy on test : 72.9508196721 + Accuracy on validation : 75.7281553398 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 68.0169753086 + Accuracy on test : 75.4098360656 + - Iteration 7 + Fold 1 + Accuracy on train : 70.0 + Accuracy on test : 77.0491803279 + Accuracy on validation : 78.640776699 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 66.049382716 + Accuracy on test : 72.131147541 + Accuracy on validation : 74.7572815534 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 68.024691358 + Accuracy on test : 74.5901639344 + - Iteration 8 + Fold 1 + Accuracy on train : 75.625 + Accuracy on test : 81.1475409836 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 67.2839506173 + Accuracy on test : 73.7704918033 + Accuracy on validation : 71.8446601942 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 71.4544753086 + Accuracy on test : 77.4590163934 + - Iteration 9 + Fold 1 + Accuracy on train : 75.625 + Accuracy on test : 81.1475409836 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 66.049382716 + Accuracy on test : 73.7704918033 + Accuracy on validation : 73.786407767 + Selected View : Clinic_ + - Mean : + Accuracy on train : 70.837191358 + Accuracy on test : 77.4590163934 + - Iteration 10 + Fold 1 + Accuracy on train : 73.75 + Accuracy on test : 81.9672131148 + Accuracy on validation : 81.5533980583 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 70.987654321 + Accuracy on test : 71.3114754098 + Accuracy on validation : 74.7572815534 + Selected View : Methyl_ + - Mean : + Accuracy on train : 72.3688271605 + Accuracy on test : 76.6393442623 + - Iteration 11 + Fold 1 + Accuracy on train : 79.375 + Accuracy on test : 85.2459016393 + Accuracy on validation : 87.3786407767 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 74.0740740741 + Accuracy on test : 75.4098360656 + Accuracy on validation : 77.6699029126 + Selected View : Methyl_ + - Mean : + Accuracy on train : 76.724537037 + Accuracy on test : 80.3278688525 + - Iteration 12 + Fold 1 + Accuracy on train : 79.375 + Accuracy on test : 85.2459016393 + Accuracy on validation : 87.3786407767 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 72.8395061728 + Accuracy on test : 72.9508196721 + Accuracy on validation : 78.640776699 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 76.1072530864 + Accuracy on test : 79.0983606557 + - Iteration 13 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 14 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 15 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 16 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 17 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 18 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 19 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 20 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 21 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 22 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 23 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 24 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 25 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 26 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 27 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 28 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 29 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 30 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 31 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 32 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 33 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 34 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 35 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 36 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 37 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 38 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 39 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 40 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 41 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 42 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 43 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 44 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 45 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 46 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 47 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 48 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 49 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 50 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 51 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 52 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 53 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 54 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 55 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 56 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 57 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 58 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 59 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 60 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 61 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 62 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 63 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 64 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 65 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 66 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 67 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 68 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 69 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 70 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 71 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 72 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 73 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 74 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 75 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 76 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 77 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 78 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 79 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 80 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 81 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 82 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 83 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 84 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 85 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 86 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 87 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 88 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 89 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 90 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 91 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 92 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 93 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 94 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 95 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 96 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 97 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 98 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 99 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 100 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 101 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 102 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 103 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 104 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 105 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 106 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 107 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 108 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 109 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 110 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 111 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 112 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 113 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 114 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 115 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 116 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 117 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 118 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 119 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 120 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 121 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 122 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 123 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 124 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 125 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 126 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 127 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 128 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 129 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 130 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 131 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 132 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 133 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 134 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 135 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 136 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 137 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 138 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 139 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 140 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 141 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 142 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 143 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 144 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 145 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 146 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 147 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 148 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 149 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 150 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 151 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 152 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 153 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 154 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 155 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 156 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 157 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 158 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 159 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 160 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 161 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 162 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 163 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 164 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 165 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 166 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 167 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 168 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 169 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 170 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 171 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 172 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 173 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 174 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 175 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 176 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 177 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 178 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 179 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 180 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 181 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 182 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 183 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 184 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 185 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 186 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 187 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 188 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 189 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 190 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 191 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 192 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 193 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 194 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 195 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 196 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 197 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 198 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 199 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 200 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 201 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 202 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 203 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 204 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 205 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 206 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 207 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 208 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 209 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 210 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 211 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 212 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 213 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 214 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 215 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 216 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 217 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 218 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 219 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 220 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 221 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 222 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 223 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 224 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 225 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 226 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 227 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 228 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 229 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 230 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 231 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 232 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 233 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 234 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 235 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 236 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 237 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 238 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 239 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 240 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 241 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 242 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 243 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 244 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 245 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 246 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 247 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 248 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 249 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 250 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 251 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 252 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 253 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 254 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 255 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 256 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 257 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 258 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 259 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 260 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 261 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 262 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 263 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 264 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 265 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 266 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 267 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 268 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 269 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 270 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 271 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 272 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 273 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 274 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 275 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 276 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 277 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 278 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 279 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 280 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 281 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 282 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 283 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 284 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 285 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 286 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 287 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 288 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 289 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 290 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 291 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 292 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 293 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 294 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 295 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 296 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 297 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 298 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 299 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 300 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 301 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 302 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 303 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 304 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 305 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 306 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 307 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 308 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 309 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 310 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 311 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 312 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 313 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 314 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 315 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 316 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 317 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 318 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 319 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 320 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 321 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 322 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 323 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 324 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 325 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 326 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 327 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 328 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 329 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 330 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 331 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 332 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 333 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 334 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 335 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 336 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 337 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 338 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 339 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 340 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 341 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 342 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 343 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 344 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 345 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 346 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 347 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 348 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 349 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 350 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 351 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 352 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 353 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 354 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 355 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 356 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 357 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 358 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 359 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 360 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 361 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 362 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 363 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 364 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 365 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 366 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 367 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 368 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 369 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 370 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 371 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 372 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 373 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 374 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 375 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 376 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 377 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 378 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 379 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 380 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 381 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 382 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 383 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 384 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 385 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 386 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 387 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 388 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 389 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 390 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 391 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 392 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 393 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 394 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 395 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 396 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 397 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 398 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 399 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 400 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 401 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 402 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 403 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 404 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 405 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 406 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 407 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 408 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 409 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 410 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 411 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 412 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 413 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 414 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 415 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 416 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 417 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 418 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 419 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 420 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 421 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 422 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 423 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 424 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 425 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 426 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 427 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 428 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 429 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 430 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 431 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 432 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 433 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 434 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 435 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 436 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 437 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 438 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 439 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 440 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 441 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 442 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 443 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 444 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 445 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 446 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 447 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 448 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 449 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 450 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 451 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 452 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 453 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 454 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 455 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 456 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 457 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 458 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 459 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 460 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 461 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 462 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 463 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 464 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 465 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 466 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 467 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 468 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 469 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 470 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 471 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 472 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 473 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 474 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 475 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 476 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 477 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 478 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 479 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 480 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 481 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 482 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 483 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 484 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 485 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 486 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 487 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 488 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 489 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 490 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 491 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 492 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 493 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 494 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 495 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 496 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 497 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 498 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 499 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 500 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 501 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 502 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 503 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 504 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 505 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 506 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 507 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 508 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 509 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 510 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 511 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 512 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 513 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 514 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 515 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 516 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 517 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 518 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 519 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 520 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 521 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 522 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 523 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 524 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 525 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 526 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 527 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 528 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 529 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 530 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 531 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 532 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 533 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 534 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 535 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 536 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 537 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 538 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 539 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 540 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 541 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 542 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 543 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 544 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 545 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 546 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 547 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 548 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 549 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 550 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 551 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 552 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 553 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 554 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 555 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 556 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 557 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 558 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 559 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 560 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 561 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 562 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 563 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 564 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 565 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 566 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 567 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 568 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 569 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 570 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 571 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 572 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 573 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 574 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 575 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 576 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 577 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 578 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 579 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 580 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 581 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 582 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 583 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 584 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 585 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 586 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 587 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 588 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 589 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 590 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 591 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 592 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 593 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 594 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 595 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 596 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 597 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 598 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 599 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 600 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 601 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 602 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 603 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 604 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 605 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 606 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 607 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 608 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 609 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 610 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 611 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 612 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 613 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 614 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 615 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 616 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 617 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 618 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 619 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 620 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 621 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 622 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 623 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 624 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 625 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 626 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 627 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 628 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 629 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 630 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 631 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 632 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 633 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 634 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 635 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 636 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 637 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 638 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 639 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 640 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 641 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 642 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 643 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 644 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 645 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 646 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 647 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 648 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 649 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 650 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 651 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 652 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 653 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 654 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 655 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 656 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 657 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 658 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 659 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 660 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 661 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 662 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 663 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 664 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 665 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 666 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 667 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 668 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 669 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 670 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 671 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 672 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 673 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 674 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 675 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 676 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 677 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 678 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 679 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 680 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 681 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 682 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 683 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 684 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 685 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 686 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 687 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 688 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 689 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 690 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 691 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 692 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 693 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 694 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 695 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 696 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 697 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 698 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 699 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 700 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 701 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 702 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 703 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 704 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 705 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 706 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 707 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 708 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 709 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 710 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 711 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 712 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 713 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 714 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 715 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 716 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 717 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 718 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 719 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 720 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 721 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 722 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 723 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 724 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 725 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 726 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 727 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 728 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 729 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 730 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 731 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 732 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 733 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 734 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 735 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 736 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 737 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 738 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 739 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 740 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 741 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 742 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 743 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 744 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 745 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 746 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 747 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 748 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 749 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 750 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 751 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 752 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 753 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 754 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 755 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 756 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 757 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 758 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 759 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 760 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 761 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 762 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 763 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 764 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 765 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 766 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 767 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 768 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 769 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 770 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 771 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 772 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 773 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 774 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 775 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 776 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 777 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 778 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 779 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 780 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 781 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 782 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 783 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 784 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 785 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 786 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 787 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 788 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 789 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 790 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 791 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 792 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 793 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 794 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 795 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 796 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 797 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 798 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 799 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 800 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 801 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 802 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 803 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 804 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 805 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 806 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 807 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 808 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 809 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 810 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 811 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 812 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 813 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 814 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 815 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 816 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 817 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 818 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 819 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 820 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 821 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 822 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 823 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 824 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 825 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 826 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 827 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 828 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 829 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 830 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 831 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 832 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 833 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 834 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 835 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 836 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 837 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 838 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 839 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 840 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 841 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 842 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 843 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 844 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 845 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 846 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 847 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 848 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 849 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 850 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 851 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 852 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 853 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 854 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 855 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 856 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 857 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 858 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 859 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 860 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 861 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 862 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 863 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 864 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 865 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 866 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 867 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 868 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 869 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 870 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 871 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 872 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 873 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 874 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 875 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 876 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 877 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 878 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 879 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 880 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 881 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 882 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 883 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 884 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 885 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 886 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 887 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 888 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 889 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 890 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 891 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 892 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 893 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 894 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 895 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 896 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 897 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 898 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 899 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 900 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 901 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 902 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 903 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 904 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 905 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 906 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 907 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 908 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 909 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 910 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 911 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 912 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 913 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 914 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 915 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 916 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 917 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 918 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 919 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 920 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 921 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 922 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 923 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 924 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 925 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 926 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 927 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 928 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 929 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 930 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 931 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 932 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 933 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 934 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 935 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 936 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 937 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 938 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 939 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 940 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 941 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 942 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 943 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 944 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 945 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 946 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 947 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 948 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 949 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 950 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 951 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 952 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 953 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 954 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 955 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 956 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 957 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 958 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 959 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 960 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 961 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 962 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 963 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 964 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 965 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 966 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 967 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 968 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 969 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 970 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 971 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 972 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 973 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 974 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 975 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 976 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 977 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 978 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 979 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 980 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 981 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 982 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 983 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 984 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 985 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 986 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 987 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 988 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 989 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 990 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 991 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 992 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 993 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 994 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 995 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 996 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 997 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 998 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 999 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 1000 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + +Computation time on 1 cores : + Database extraction time : 0:00:00 + Learn Prediction + Fold 1 0:01:13 0:00:01 + Fold 2 0:01:23 0:00:01 + Total 0:02:37 0:00:03 + So a total classification time of 0:01:25. + + +2016-08-24 09:22:02,444 INFO: Done: Result Analysis diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092202Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092202Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png new file mode 100644 index 0000000000000000000000000000000000000000..1e1c6469e67fa516d2b8346608b162c9c1559562 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092202Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png differ diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092202Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092202Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt new file mode 100644 index 0000000000000000000000000000000000000000..42ada44b205287f7dbad67dc7101e17dc06f06be --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092202Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt @@ -0,0 +1,14060 @@ + Result for Multiview classification with Mumbo + +Average accuracy : + -On Train : 76.1072530864 + -On Test : 79.0983606557 + -On Validation : 83.0097087379 + +Dataset info : + -Database name : ModifiedMultiOmic + -Labels : No, Yes + -Views : Methyl, MiRNA, RNASEQ, Clinical + -2 folds + - Validation set length : 103 for learning rate : 0.7 + +Classification configuration : + -Algorithm used : Mumbo + -Iterations : 1000 + -Weak Classifiers : DecisionTree with depth 1.0, sub-sampled at 0.006 on Methyl + -DecisionTree with depth 1.0, sub-sampled at 0.006 on MiRNA + -DecisionTree with depth 1.0, sub-sampled at 0.006 on RNASEQ + -DecisionTree with depth 1.0, sub-sampled at 0.008 on Clinical + + Mean average accuracies and stats for each fold : + - Fold 0 + - On Methyl_ : + - Mean average Accuracy : 0.00578125 + - Percentage of time chosen : 0.99 + - On MiRNA__ : + - Mean average Accuracy : 0.0068375 + - Percentage of time chosen : 0.007 + - On RANSeq_ : + - Mean average Accuracy : 0.00573125 + - Percentage of time chosen : 0.002 + - On Clinic_ : + - Mean average Accuracy : 0.00565 + - Percentage of time chosen : 0.001 + - Fold 1 + - On Methyl_ : + - Mean average Accuracy : 0.00618518518519 + - Percentage of time chosen : 0.992 + - On MiRNA__ : + - Mean average Accuracy : 0.00596296296296 + - Percentage of time chosen : 0.004 + - On RANSeq_ : + - Mean average Accuracy : 0.00606172839506 + - Percentage of time chosen : 0.001 + - On Clinic_ : + - Mean average Accuracy : 0.00574074074074 + - Percentage of time chosen : 0.003 + + For each iteration : + - Iteration 1 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 2 + Fold 1 + Accuracy on train : 68.75 + Accuracy on test : 77.0491803279 + Accuracy on validation : 77.6699029126 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 57.4074074074 + Accuracy on test : 68.0327868852 + Accuracy on validation : 70.8737864078 + Selected View : Clinic_ + - Mean : + Accuracy on train : 63.0787037037 + Accuracy on test : 72.5409836066 + - Iteration 3 + Fold 1 + Accuracy on train : 70.0 + Accuracy on test : 77.868852459 + Accuracy on validation : 74.7572815534 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 57.4074074074 + Accuracy on test : 68.0327868852 + Accuracy on validation : 70.8737864078 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 63.7037037037 + Accuracy on test : 72.9508196721 + - Iteration 4 + Fold 1 + Accuracy on train : 69.375 + Accuracy on test : 81.1475409836 + Accuracy on validation : 77.6699029126 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 57.4074074074 + Accuracy on test : 68.0327868852 + Accuracy on validation : 70.8737864078 + Selected View : Clinic_ + - Mean : + Accuracy on train : 63.3912037037 + Accuracy on test : 74.5901639344 + - Iteration 5 + Fold 1 + Accuracy on train : 69.375 + Accuracy on test : 81.1475409836 + Accuracy on validation : 77.6699029126 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 60.4938271605 + Accuracy on test : 70.4918032787 + Accuracy on validation : 71.8446601942 + Selected View : Methyl_ + - Mean : + Accuracy on train : 64.9344135802 + Accuracy on test : 75.8196721311 + - Iteration 6 + Fold 1 + Accuracy on train : 68.75 + Accuracy on test : 77.868852459 + Accuracy on validation : 76.6990291262 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 67.2839506173 + Accuracy on test : 72.9508196721 + Accuracy on validation : 75.7281553398 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 68.0169753086 + Accuracy on test : 75.4098360656 + - Iteration 7 + Fold 1 + Accuracy on train : 70.0 + Accuracy on test : 77.0491803279 + Accuracy on validation : 78.640776699 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 66.049382716 + Accuracy on test : 72.131147541 + Accuracy on validation : 74.7572815534 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 68.024691358 + Accuracy on test : 74.5901639344 + - Iteration 8 + Fold 1 + Accuracy on train : 75.625 + Accuracy on test : 81.1475409836 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 67.2839506173 + Accuracy on test : 73.7704918033 + Accuracy on validation : 71.8446601942 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 71.4544753086 + Accuracy on test : 77.4590163934 + - Iteration 9 + Fold 1 + Accuracy on train : 75.625 + Accuracy on test : 81.1475409836 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 66.049382716 + Accuracy on test : 73.7704918033 + Accuracy on validation : 73.786407767 + Selected View : Clinic_ + - Mean : + Accuracy on train : 70.837191358 + Accuracy on test : 77.4590163934 + - Iteration 10 + Fold 1 + Accuracy on train : 73.75 + Accuracy on test : 81.9672131148 + Accuracy on validation : 81.5533980583 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 70.987654321 + Accuracy on test : 71.3114754098 + Accuracy on validation : 74.7572815534 + Selected View : Methyl_ + - Mean : + Accuracy on train : 72.3688271605 + Accuracy on test : 76.6393442623 + - Iteration 11 + Fold 1 + Accuracy on train : 79.375 + Accuracy on test : 85.2459016393 + Accuracy on validation : 87.3786407767 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 74.0740740741 + Accuracy on test : 75.4098360656 + Accuracy on validation : 77.6699029126 + Selected View : Methyl_ + - Mean : + Accuracy on train : 76.724537037 + Accuracy on test : 80.3278688525 + - Iteration 12 + Fold 1 + Accuracy on train : 79.375 + Accuracy on test : 85.2459016393 + Accuracy on validation : 87.3786407767 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 72.8395061728 + Accuracy on test : 72.9508196721 + Accuracy on validation : 78.640776699 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 76.1072530864 + Accuracy on test : 79.0983606557 + - Iteration 13 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 14 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 15 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 16 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 17 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 18 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 19 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 20 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 21 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 22 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 23 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 24 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 25 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 26 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 27 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 28 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 29 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 30 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 31 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 32 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 33 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 34 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 35 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 36 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 37 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 38 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 39 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 40 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 41 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 42 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 43 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 44 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 45 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 46 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 47 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 48 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 49 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 50 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 51 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 52 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 53 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 54 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 55 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 56 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 57 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 58 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 59 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 60 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 61 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 62 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 63 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 64 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 65 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 66 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 67 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 68 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 69 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 70 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 71 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 72 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 73 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 74 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 75 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 76 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 77 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 78 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 79 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 80 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 81 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 82 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 83 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 84 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 85 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 86 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 87 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 88 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 89 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 90 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 91 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 92 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 93 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 94 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 95 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 96 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 97 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 98 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 99 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 100 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 101 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 102 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 103 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 104 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 105 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 106 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 107 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 108 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 109 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 110 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 111 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 112 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 113 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 114 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 115 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 116 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 117 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 118 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 119 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 120 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 121 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 122 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 123 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 124 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 125 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 126 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 127 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 128 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 129 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 130 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 131 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 132 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 133 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 134 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 135 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 136 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 137 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 138 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 139 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 140 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 141 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 142 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 143 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 144 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 145 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 146 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 147 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 148 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 149 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 150 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 151 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 152 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 153 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 154 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 155 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 156 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 157 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 158 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 159 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 160 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 161 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 162 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 163 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 164 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 165 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 166 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 167 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 168 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 169 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 170 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 171 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 172 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 173 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 174 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 175 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 176 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 177 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 178 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 179 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 180 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 181 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 182 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 183 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 184 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 185 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 186 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 187 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 188 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 189 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 190 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 191 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 192 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 193 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 194 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 195 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 196 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 197 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 198 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 199 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 200 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 201 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 202 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 203 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 204 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 205 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 206 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 207 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 208 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 209 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 210 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 211 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 212 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 213 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 214 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 215 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 216 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 217 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 218 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 219 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 220 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 221 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 222 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 223 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 224 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 225 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 226 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 227 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 228 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 229 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 230 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 231 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 232 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 233 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 234 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 235 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 236 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 237 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 238 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 239 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 240 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 241 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 242 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 243 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 244 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 245 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 246 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 247 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 248 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 249 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 250 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 251 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 252 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 253 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 254 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 255 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 256 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 257 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 258 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 259 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 260 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 261 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 262 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 263 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 264 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 265 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 266 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 267 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 268 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 269 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 270 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 271 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 272 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 273 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 274 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 275 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 276 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 277 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 278 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 279 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 280 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 281 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 282 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 283 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 284 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 285 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 286 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 287 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 288 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 289 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 290 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 291 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 292 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 293 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 294 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 295 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 296 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 297 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 298 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 299 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 300 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 301 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 302 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 303 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 304 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 305 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 306 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 307 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 308 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 309 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 310 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 311 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 312 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 313 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 314 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 315 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 316 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 317 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 318 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 319 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 320 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 321 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 322 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 323 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 324 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 325 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 326 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 327 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 328 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 329 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 330 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 331 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 332 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 333 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 334 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 335 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 336 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 337 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 338 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 339 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 340 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 341 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 342 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 343 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 344 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 345 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 346 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 347 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 348 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 349 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 350 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 351 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 352 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 353 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 354 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 355 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 356 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 357 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 358 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 359 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 360 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 361 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 362 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 363 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 364 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 365 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 366 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 367 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 368 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 369 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 370 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 371 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 372 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 373 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 374 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 375 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 376 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 377 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 378 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 379 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 380 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 381 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 382 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 383 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 384 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 385 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 386 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 387 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 388 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 389 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 390 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 391 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 392 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 393 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 394 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 395 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 396 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 397 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 398 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 399 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 400 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 401 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 402 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 403 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 404 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 405 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 406 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 407 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 408 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 409 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 410 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 411 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 412 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 413 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 414 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 415 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 416 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 417 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 418 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 419 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 420 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 421 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 422 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 423 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 424 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 425 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 426 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 427 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 428 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 429 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 430 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 431 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 432 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 433 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 434 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 435 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 436 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 437 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 438 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 439 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 440 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 441 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 442 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 443 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 444 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 445 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 446 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 447 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 448 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 449 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 450 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 451 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 452 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 453 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 454 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 455 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 456 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 457 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 458 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 459 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 460 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 461 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 462 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 463 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 464 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 465 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 466 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 467 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 468 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 469 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 470 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 471 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 472 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 473 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 474 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 475 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 476 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 477 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 478 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 479 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 480 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 481 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 482 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 483 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 484 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 485 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 486 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 487 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 488 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 489 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 490 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 491 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 492 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 493 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 494 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 495 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 496 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 497 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 498 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 499 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 500 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 501 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 502 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 503 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 504 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 505 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 506 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 507 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 508 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 509 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 510 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 511 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 512 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 513 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 514 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 515 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 516 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 517 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 518 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 519 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 520 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 521 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 522 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 523 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 524 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 525 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 526 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 527 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 528 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 529 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 530 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 531 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 532 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 533 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 534 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 535 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 536 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 537 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 538 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 539 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 540 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 541 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 542 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 543 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 544 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 545 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 546 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 547 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 548 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 549 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 550 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 551 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 552 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 553 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 554 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 555 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 556 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 557 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 558 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 559 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 560 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 561 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 562 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 563 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 564 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 565 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 566 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 567 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 568 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 569 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 570 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 571 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 572 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 573 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 574 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 575 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 576 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 577 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 578 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 579 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 580 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 581 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 582 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 583 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 584 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 585 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 586 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 587 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 588 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 589 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 590 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 591 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 592 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 593 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 594 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 595 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 596 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 597 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 598 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 599 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 600 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 601 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 602 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 603 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 604 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 605 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 606 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 607 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 608 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 609 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 610 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 611 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 612 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 613 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 614 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 615 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 616 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 617 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 618 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 619 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 620 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 621 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 622 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 623 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 624 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 625 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 626 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 627 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 628 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 629 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 630 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 631 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 632 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 633 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 634 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 635 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 636 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 637 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 638 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 639 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 640 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 641 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 642 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 643 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 644 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 645 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 646 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 647 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 648 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 649 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 650 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 651 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 652 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 653 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 654 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 655 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 656 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 657 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 658 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 659 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 660 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 661 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 662 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 663 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 664 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 665 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 666 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 667 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 668 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 669 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 670 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 671 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 672 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 673 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 674 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 675 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 676 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 677 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 678 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 679 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 680 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 681 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 682 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 683 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 684 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 685 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 686 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 687 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 688 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 689 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 690 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 691 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 692 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 693 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 694 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 695 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 696 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 697 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 698 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 699 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 700 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 701 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 702 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 703 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 704 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 705 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 706 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 707 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 708 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 709 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 710 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 711 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 712 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 713 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 714 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 715 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 716 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 717 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 718 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 719 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 720 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 721 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 722 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 723 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 724 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 725 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 726 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 727 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 728 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 729 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 730 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 731 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 732 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 733 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 734 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 735 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 736 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 737 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 738 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 739 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 740 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 741 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 742 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 743 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 744 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 745 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 746 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 747 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 748 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 749 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 750 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 751 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 752 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 753 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 754 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 755 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 756 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 757 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 758 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 759 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 760 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 761 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 762 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 763 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 764 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 765 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 766 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 767 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 768 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 769 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 770 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 771 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 772 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 773 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 774 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 775 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 776 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 777 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 778 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 779 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 780 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 781 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 782 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 783 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 784 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 785 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 786 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 787 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 788 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 789 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 790 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 791 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 792 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 793 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 794 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 795 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 796 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 797 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 798 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 799 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 800 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 801 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 802 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 803 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 804 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 805 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 806 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 807 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 808 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 809 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 810 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 811 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 812 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 813 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 814 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 815 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 816 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 817 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 818 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 819 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 820 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 821 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 822 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 823 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 824 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 825 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 826 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 827 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 828 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 829 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 830 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 831 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 832 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 833 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 834 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 835 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 836 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 837 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 838 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 839 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 840 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 841 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 842 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 843 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 844 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 845 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 846 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 847 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 848 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 849 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 850 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 851 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 852 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 853 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 854 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 855 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 856 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 857 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 858 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 859 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 860 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 861 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 862 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 863 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 864 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 865 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 866 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 867 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 868 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 869 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 870 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 871 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 872 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 873 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 874 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 875 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 876 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 877 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 878 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 879 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 880 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 881 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 882 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 883 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 884 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 885 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 886 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 887 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 888 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 889 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 890 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 891 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 892 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 893 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 894 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 895 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 896 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 897 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 898 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 899 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 900 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 901 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 902 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 903 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 904 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 905 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 906 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 907 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 908 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 909 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 910 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 911 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 912 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 913 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 914 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 915 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 916 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 917 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 918 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 919 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 920 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 921 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 922 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 923 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 924 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 925 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 926 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 927 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 928 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 929 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 930 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 931 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 932 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 933 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 934 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 935 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 936 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 937 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 938 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 939 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 940 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 941 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 942 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 943 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 944 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 945 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 946 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 947 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 948 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 949 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 950 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 951 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 952 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 953 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 954 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 955 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 956 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 957 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 958 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 959 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 960 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 961 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 962 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 963 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 964 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 965 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 966 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 967 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 968 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 969 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 970 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 971 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 972 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 973 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 974 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 975 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 976 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 977 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 978 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 979 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 980 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 981 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 982 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 983 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 984 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 985 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 986 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 987 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 988 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 989 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 990 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 991 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 992 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 993 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 994 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 995 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 996 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 997 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 998 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 999 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + - Iteration 1000 + Fold 1 + Accuracy on train : 62.5 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.962962963 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.7314814815 + Accuracy on test : 72.9508196721 + +Computation time on 1 cores : + Database extraction time : 0:00:00 + Learn Prediction + Fold 1 0:01:13 0:00:01 + Fold 2 0:01:23 0:00:01 + Total 0:02:37 0:00:03 + So a total classification time of 0:01:25. + diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092301-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092301-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..8ef0a66520ea0fc6696ae83bbfbad58b7353302f --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092301-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log @@ -0,0 +1,557 @@ +2016-08-24 09:23:01,452 INFO: Start: Read HDF5 Database Files for ModifiedMultiOmic +2016-08-24 09:23:01,453 INFO: Info: Labels used: No, Yes +2016-08-24 09:23:01,453 INFO: Info: Length of dataset:347 +2016-08-24 09:23:01,454 INFO: ### Main Programm for Multiview Classification +2016-08-24 09:23:01,455 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1 +2016-08-24 09:23:01,455 INFO: Info: Shape of Methyl_ :(347, 25978) +2016-08-24 09:23:01,455 INFO: Info: Shape of MiRNA__ :(347, 1046) +2016-08-24 09:23:01,456 INFO: Info: Shape of RANSeq_ :(347, 73599) +2016-08-24 09:23:01,456 INFO: Info: Shape of Clinic_ :(347, 127) +2016-08-24 09:23:01,456 INFO: Done: Read Database Files +2016-08-24 09:23:01,456 INFO: Start: Determine validation split for ratio 0.7 +2016-08-24 09:23:01,460 INFO: Done: Determine validation split +2016-08-24 09:23:01,460 INFO: Start: Determine 2 folds +2016-08-24 09:23:01,469 INFO: Info: Length of Learning Sets: 122 +2016-08-24 09:23:01,469 INFO: Info: Length of Testing Sets: 122 +2016-08-24 09:23:01,469 INFO: Info: Length of Validation Set: 103 +2016-08-24 09:23:01,469 INFO: Done: Determine folds +2016-08-24 09:23:01,469 INFO: Start: Learning with Mumbo and 2 folds +2016-08-24 09:23:01,469 INFO: Start: Gridsearching best settings for monoview classifiers +2016-08-24 09:23:01,469 DEBUG: Start: Gridsearch for DecisionTree on Methyl_ +2016-08-24 09:23:08,825 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:23:08,826 DEBUG: Start: Gridsearch for DecisionTree on MiRNA__ +2016-08-24 09:23:10,814 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:23:10,814 DEBUG: Start: Gridsearch for DecisionTree on RANSeq_ +2016-08-24 09:23:27,482 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:23:27,482 DEBUG: Start: Gridsearch for DecisionTree on Clinic_ +2016-08-24 09:23:29,240 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:23:29,241 DEBUG: Start: Gridsearch for DecisionTree on MRNASeq +2016-08-24 09:24:07,505 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:24:07,505 INFO: Done: Gridsearching best settings for monoview classifiers +2016-08-24 09:24:07,505 INFO: Start: Fold number 1 +2016-08-24 09:24:09,143 DEBUG: Start: Iteration 1 +2016-08-24 09:24:09,163 DEBUG: View 0 : 0.596153846154 +2016-08-24 09:24:09,171 DEBUG: View 1 : 0.384615384615 +2016-08-24 09:24:09,198 DEBUG: View 2 : 0.615384615385 +2016-08-24 09:24:09,206 DEBUG: View 3 : 0.615384615385 +2016-08-24 09:24:09,247 DEBUG: Best view : MiRNA__ +2016-08-24 09:24:09,317 DEBUG: Start: Iteration 2 +2016-08-24 09:24:09,335 DEBUG: View 0 : 0.5 +2016-08-24 09:24:09,342 DEBUG: View 1 : 0.288461538462 +2016-08-24 09:24:09,379 DEBUG: View 2 : 0.5 +2016-08-24 09:24:09,386 DEBUG: View 3 : 0.410256410256 +2016-08-24 09:24:09,432 DEBUG: Best view : Methyl_ +2016-08-24 09:24:09,567 DEBUG: Start: Iteration 3 +2016-08-24 09:24:09,584 DEBUG: View 0 : 0.461538461538 +2016-08-24 09:24:09,592 DEBUG: View 1 : 0.621794871795 +2016-08-24 09:24:09,628 DEBUG: View 2 : 0.532051282051 +2016-08-24 09:24:09,636 DEBUG: View 3 : 0.621794871795 +2016-08-24 09:24:09,689 DEBUG: Best view : MiRNA__ +2016-08-24 09:24:09,884 DEBUG: Start: Iteration 4 +2016-08-24 09:24:09,900 DEBUG: View 0 : 0.544871794872 +2016-08-24 09:24:09,908 DEBUG: View 1 : 0.474358974359 +2016-08-24 09:24:09,944 DEBUG: View 2 : 0.442307692308 +2016-08-24 09:24:09,952 DEBUG: View 3 : 0.423076923077 +2016-08-24 09:24:10,007 DEBUG: Best view : Methyl_ +2016-08-24 09:24:10,258 DEBUG: Start: Iteration 5 +2016-08-24 09:24:10,275 DEBUG: View 0 : 0.49358974359 +2016-08-24 09:24:10,282 DEBUG: View 1 : 0.557692307692 +2016-08-24 09:24:10,319 DEBUG: View 2 : 0.596153846154 +2016-08-24 09:24:10,327 DEBUG: View 3 : 0.429487179487 +2016-08-24 09:24:10,384 DEBUG: Best view : RANSeq_ +2016-08-24 09:24:10,714 DEBUG: Start: Iteration 6 +2016-08-24 09:24:10,731 DEBUG: View 0 : 0.544871794872 +2016-08-24 09:24:10,739 DEBUG: View 1 : 0.429487179487 +2016-08-24 09:24:10,775 DEBUG: View 2 : 0.608974358974 +2016-08-24 09:24:10,783 DEBUG: View 3 : 0.608974358974 +2016-08-24 09:24:10,843 DEBUG: Best view : RANSeq_ +2016-08-24 09:24:11,237 DEBUG: Start: Iteration 7 +2016-08-24 09:24:11,253 DEBUG: View 0 : 0.467948717949 +2016-08-24 09:24:11,261 DEBUG: View 1 : 0.570512820513 +2016-08-24 09:24:11,297 DEBUG: View 2 : 0.403846153846 +2016-08-24 09:24:11,305 DEBUG: View 3 : 0.487179487179 +2016-08-24 09:24:11,367 DEBUG: Best view : MiRNA__ +2016-08-24 09:24:11,817 DEBUG: Start: Iteration 8 +2016-08-24 09:24:11,834 DEBUG: View 0 : 0.410256410256 +2016-08-24 09:24:11,841 DEBUG: View 1 : 0.435897435897 +2016-08-24 09:24:11,877 DEBUG: View 2 : 0.615384615385 +2016-08-24 09:24:11,885 DEBUG: View 3 : 0.570512820513 +2016-08-24 09:24:11,949 DEBUG: Best view : Clinic_ +2016-08-24 09:24:12,494 DEBUG: Start: Iteration 9 +2016-08-24 09:24:12,510 DEBUG: View 0 : 0.583333333333 +2016-08-24 09:24:12,518 DEBUG: View 1 : 0.602564102564 +2016-08-24 09:24:12,556 DEBUG: View 2 : 0.391025641026 +2016-08-24 09:24:12,563 DEBUG: View 3 : 0.461538461538 +2016-08-24 09:24:12,633 DEBUG: Best view : MiRNA__ +2016-08-24 09:24:13,242 DEBUG: Start: Iteration 10 +2016-08-24 09:24:13,269 DEBUG: View 0 : 0.551282051282 +2016-08-24 09:24:13,278 DEBUG: View 1 : 0.647435897436 +2016-08-24 09:24:13,322 DEBUG: View 2 : 0.551282051282 +2016-08-24 09:24:13,331 DEBUG: View 3 : 0.602564102564 +2016-08-24 09:24:13,410 DEBUG: Best view : MiRNA__ +2016-08-24 09:24:14,046 DEBUG: Start: Iteration 11 +2016-08-24 09:24:14,063 DEBUG: View 0 : 0.435897435897 +2016-08-24 09:24:14,070 DEBUG: View 1 : 0.455128205128 +2016-08-24 09:24:14,106 DEBUG: View 2 : 0.416666666667 +2016-08-24 09:24:14,114 DEBUG: View 3 : 0.532051282051 +2016-08-24 09:24:14,187 DEBUG: Best view : Clinic_ +2016-08-24 09:24:14,942 DEBUG: Start: Iteration 12 +2016-08-24 09:24:14,963 DEBUG: View 0 : 0.724358974359 +2016-08-24 09:24:14,972 DEBUG: View 1 : 0.775641025641 +2016-08-24 09:24:15,010 DEBUG: View 2 : 0.467948717949 +2016-08-24 09:24:15,019 DEBUG: View 3 : 0.487179487179 +2016-08-24 09:24:15,094 DEBUG: Best view : MiRNA__ +2016-08-24 09:24:15,834 DEBUG: Start: Iteration 13 +2016-08-24 09:24:15,853 DEBUG: View 0 : 0.782051282051 +2016-08-24 09:24:15,861 DEBUG: View 1 : 0.480769230769 +2016-08-24 09:24:15,899 DEBUG: View 2 : 0.538461538462 +2016-08-24 09:24:15,907 DEBUG: View 3 : 0.423076923077 +2016-08-24 09:24:15,982 DEBUG: Best view : Methyl_ +2016-08-24 09:24:16,787 DEBUG: Start: Iteration 14 +2016-08-24 09:24:16,804 DEBUG: View 0 : 0.788461538462 +2016-08-24 09:24:16,812 DEBUG: View 1 : 0.641025641026 +2016-08-24 09:24:16,848 DEBUG: View 2 : 0.564102564103 +2016-08-24 09:24:16,856 DEBUG: View 3 : 0.615384615385 +2016-08-24 09:24:16,934 DEBUG: Best view : Methyl_ +2016-08-24 09:24:17,794 DEBUG: Start: Iteration 15 +2016-08-24 09:24:17,810 DEBUG: View 0 : 0.589743589744 +2016-08-24 09:24:17,818 DEBUG: View 1 : 0.519230769231 +2016-08-24 09:24:17,854 DEBUG: View 2 : 0.403846153846 +2016-08-24 09:24:17,861 DEBUG: View 3 : 0.570512820513 +2016-08-24 09:24:17,941 DEBUG: Best view : Methyl_ +2016-08-24 09:24:18,865 DEBUG: Start: Iteration 16 +2016-08-24 09:24:18,882 DEBUG: View 0 : 0.673076923077 +2016-08-24 09:24:18,890 DEBUG: View 1 : 0.634615384615 +2016-08-24 09:24:18,930 DEBUG: View 2 : 0.461538461538 +2016-08-24 09:24:18,938 DEBUG: View 3 : 0.416666666667 +2016-08-24 09:24:19,022 DEBUG: Best view : Methyl_ +2016-08-24 09:24:20,318 DEBUG: Start: Iteration 17 +2016-08-24 09:24:20,347 DEBUG: View 0 : 0.685897435897 +2016-08-24 09:24:20,361 DEBUG: View 1 : 0.403846153846 +2016-08-24 09:24:20,409 DEBUG: View 2 : 0.50641025641 +2016-08-24 09:24:20,418 DEBUG: View 3 : 0.666666666667 +2016-08-24 09:24:20,513 DEBUG: Best view : Clinic_ +2016-08-24 09:24:21,727 DEBUG: Start: Iteration 18 +2016-08-24 09:24:21,746 DEBUG: View 0 : 0.544871794872 +2016-08-24 09:24:21,755 DEBUG: View 1 : 0.467948717949 +2016-08-24 09:24:21,799 DEBUG: View 2 : 0.576923076923 +2016-08-24 09:24:21,809 DEBUG: View 3 : 0.455128205128 +2016-08-24 09:24:21,907 DEBUG: Best view : Methyl_ +2016-08-24 09:24:23,082 DEBUG: Start: Iteration 19 +2016-08-24 09:24:23,100 DEBUG: View 0 : 0.519230769231 +2016-08-24 09:24:23,109 DEBUG: View 1 : 0.339743589744 +2016-08-24 09:24:23,158 DEBUG: View 2 : 0.525641025641 +2016-08-24 09:24:23,167 DEBUG: View 3 : 0.525641025641 +2016-08-24 09:24:23,274 DEBUG: Best view : Methyl_ +2016-08-24 09:24:24,497 DEBUG: Start: Iteration 20 +2016-08-24 09:24:24,515 DEBUG: View 0 : 0.615384615385 +2016-08-24 09:24:24,523 DEBUG: View 1 : 0.50641025641 +2016-08-24 09:24:24,571 DEBUG: View 2 : 0.384615384615 +2016-08-24 09:24:24,579 DEBUG: View 3 : 0.512820512821 +2016-08-24 09:24:24,674 DEBUG: Best view : Methyl_ +2016-08-24 09:24:25,966 DEBUG: Start: Iteration 21 +2016-08-24 09:24:25,984 DEBUG: View 0 : 0.391025641026 +2016-08-24 09:24:25,992 DEBUG: View 1 : 0.615384615385 +2016-08-24 09:24:26,030 DEBUG: View 2 : 0.480769230769 +2016-08-24 09:24:26,038 DEBUG: View 3 : 0.538461538462 +2016-08-24 09:24:26,133 DEBUG: Best view : MiRNA__ +2016-08-24 09:24:27,438 DEBUG: Start: Iteration 22 +2016-08-24 09:24:27,455 DEBUG: View 0 : 0.358974358974 +2016-08-24 09:24:27,463 DEBUG: View 1 : 0.730769230769 +2016-08-24 09:24:27,499 DEBUG: View 2 : 0.557692307692 +2016-08-24 09:24:27,507 DEBUG: View 3 : 0.378205128205 +2016-08-24 09:24:27,603 DEBUG: Best view : MiRNA__ +2016-08-24 09:24:29,071 DEBUG: Start: Iteration 23 +2016-08-24 09:24:29,087 DEBUG: View 0 : 0.512820512821 +2016-08-24 09:24:29,095 DEBUG: View 1 : 0.371794871795 +2016-08-24 09:24:29,135 DEBUG: View 2 : 0.487179487179 +2016-08-24 09:24:29,143 DEBUG: View 3 : 0.455128205128 +2016-08-24 09:24:29,243 DEBUG: Best view : Methyl_ +2016-08-24 09:24:30,754 DEBUG: Start: Iteration 24 +2016-08-24 09:24:30,771 DEBUG: View 0 : 0.615384615385 +2016-08-24 09:24:30,779 DEBUG: View 1 : 0.698717948718 +2016-08-24 09:24:30,832 DEBUG: View 2 : 0.49358974359 +2016-08-24 09:24:30,848 DEBUG: View 3 : 0.583333333333 +2016-08-24 09:24:30,972 DEBUG: Best view : MiRNA__ +2016-08-24 09:24:32,536 DEBUG: Start: Iteration 25 +2016-08-24 09:24:32,553 DEBUG: View 0 : 0.512820512821 +2016-08-24 09:24:32,561 DEBUG: View 1 : 0.461538461538 +2016-08-24 09:24:32,598 DEBUG: View 2 : 0.532051282051 +2016-08-24 09:24:32,609 DEBUG: View 3 : 0.512820512821 +2016-08-24 09:24:32,735 DEBUG: Best view : Methyl_ +2016-08-24 09:24:34,372 DEBUG: Start: Iteration 26 +2016-08-24 09:24:34,395 DEBUG: View 0 : 0.705128205128 +2016-08-24 09:24:34,404 DEBUG: View 1 : 0.442307692308 +2016-08-24 09:24:34,443 DEBUG: View 2 : 0.5 +2016-08-24 09:24:34,451 DEBUG: View 3 : 0.666666666667 +2016-08-24 09:24:34,558 DEBUG: Best view : Methyl_ +2016-08-24 09:24:36,187 DEBUG: Start: Iteration 27 +2016-08-24 09:24:36,206 DEBUG: View 0 : 0.525641025641 +2016-08-24 09:24:36,214 DEBUG: View 1 : 0.429487179487 +2016-08-24 09:24:36,252 DEBUG: View 2 : 0.467948717949 +2016-08-24 09:24:36,260 DEBUG: View 3 : 0.467948717949 +2016-08-24 09:24:36,370 DEBUG: Best view : Methyl_ +2016-08-24 09:24:38,001 DEBUG: Start: Iteration 28 +2016-08-24 09:24:38,017 DEBUG: View 0 : 0.608974358974 +2016-08-24 09:24:38,025 DEBUG: View 1 : 0.448717948718 +2016-08-24 09:24:38,061 DEBUG: View 2 : 0.589743589744 +2016-08-24 09:24:38,069 DEBUG: View 3 : 0.416666666667 +2016-08-24 09:24:38,177 DEBUG: Best view : Methyl_ +2016-08-24 09:24:39,928 DEBUG: Start: Iteration 29 +2016-08-24 09:24:39,944 DEBUG: View 0 : 0.403846153846 +2016-08-24 09:24:39,952 DEBUG: View 1 : 0.410256410256 +2016-08-24 09:24:39,989 DEBUG: View 2 : 0.538461538462 +2016-08-24 09:24:39,997 DEBUG: View 3 : 0.544871794872 +2016-08-24 09:24:40,108 DEBUG: Best view : Clinic_ +2016-08-24 09:24:41,868 DEBUG: Start: Iteration 30 +2016-08-24 09:24:41,885 DEBUG: View 0 : 0.692307692308 +2016-08-24 09:24:41,893 DEBUG: View 1 : 0.49358974359 +2016-08-24 09:24:41,929 DEBUG: View 2 : 0.423076923077 +2016-08-24 09:24:41,937 DEBUG: View 3 : 0.487179487179 +2016-08-24 09:24:42,050 DEBUG: Best view : Methyl_ +2016-08-24 09:24:44,013 DEBUG: Start: Iteration 31 +2016-08-24 09:24:44,030 DEBUG: View 0 : 0.442307692308 +2016-08-24 09:24:44,038 DEBUG: View 1 : 0.576923076923 +2016-08-24 09:24:44,074 DEBUG: View 2 : 0.442307692308 +2016-08-24 09:24:44,082 DEBUG: View 3 : 0.538461538462 +2016-08-24 09:24:44,197 DEBUG: Best view : MiRNA__ +2016-08-24 09:24:46,115 DEBUG: Start: Iteration 32 +2016-08-24 09:24:46,140 DEBUG: View 0 : 0.448717948718 +2016-08-24 09:24:46,155 DEBUG: View 1 : 0.326923076923 +2016-08-24 09:24:46,202 DEBUG: View 2 : 0.512820512821 +2016-08-24 09:24:46,212 DEBUG: View 3 : 0.442307692308 +2016-08-24 09:24:46,350 DEBUG: Best view : RANSeq_ +2016-08-24 09:24:48,336 DEBUG: Start: Iteration 33 +2016-08-24 09:24:48,352 DEBUG: View 0 : 0.621794871795 +2016-08-24 09:24:48,360 DEBUG: View 1 : 0.50641025641 +2016-08-24 09:24:48,397 DEBUG: View 2 : 0.589743589744 +2016-08-24 09:24:48,405 DEBUG: View 3 : 0.429487179487 +2016-08-24 09:24:48,525 DEBUG: Best view : Methyl_ +2016-08-24 09:24:50,614 DEBUG: Start: Iteration 34 +2016-08-24 09:24:50,633 DEBUG: View 0 : 0.416666666667 +2016-08-24 09:24:50,642 DEBUG: View 1 : 0.391025641026 +2016-08-24 09:24:50,684 DEBUG: View 2 : 0.5 +2016-08-24 09:24:50,693 DEBUG: View 3 : 0.423076923077 +2016-08-24 09:24:50,835 DEBUG: Best view : RANSeq_ +2016-08-24 09:24:53,102 DEBUG: Start: Iteration 35 +2016-08-24 09:24:53,119 DEBUG: View 0 : 0.564102564103 +2016-08-24 09:24:53,126 DEBUG: View 1 : 0.589743589744 +2016-08-24 09:24:53,163 DEBUG: View 2 : 0.391025641026 +2016-08-24 09:24:53,171 DEBUG: View 3 : 0.519230769231 +2016-08-24 09:24:53,313 DEBUG: Best view : Methyl_ +2016-08-24 09:24:55,605 DEBUG: Start: Iteration 36 +2016-08-24 09:24:55,622 DEBUG: View 0 : 0.448717948718 +2016-08-24 09:24:55,630 DEBUG: View 1 : 0.653846153846 +2016-08-24 09:24:55,667 DEBUG: View 2 : 0.589743589744 +2016-08-24 09:24:55,675 DEBUG: View 3 : 0.397435897436 +2016-08-24 09:24:55,810 DEBUG: Best view : MiRNA__ +2016-08-24 09:24:58,037 DEBUG: Start: Iteration 37 +2016-08-24 09:24:58,053 DEBUG: View 0 : 0.461538461538 +2016-08-24 09:24:58,061 DEBUG: View 1 : 0.660256410256 +2016-08-24 09:24:58,098 DEBUG: View 2 : 0.5 +2016-08-24 09:24:58,105 DEBUG: View 3 : 0.525641025641 +2016-08-24 09:24:58,235 DEBUG: Best view : MiRNA__ +2016-08-24 09:25:00,477 DEBUG: Start: Iteration 38 +2016-08-24 09:25:00,494 DEBUG: View 0 : 0.525641025641 +2016-08-24 09:25:00,502 DEBUG: View 1 : 0.49358974359 +2016-08-24 09:25:00,540 DEBUG: View 2 : 0.551282051282 +2016-08-24 09:25:00,548 DEBUG: View 3 : 0.519230769231 +2016-08-24 09:25:00,684 DEBUG: Best view : Methyl_ +2016-08-24 09:25:02,984 DEBUG: Start: Iteration 39 +2016-08-24 09:25:03,001 DEBUG: View 0 : 0.532051282051 +2016-08-24 09:25:03,008 DEBUG: View 1 : 0.641025641026 +2016-08-24 09:25:03,045 DEBUG: View 2 : 0.576923076923 +2016-08-24 09:25:03,053 DEBUG: View 3 : 0.647435897436 +2016-08-24 09:25:03,187 DEBUG: Best view : MiRNA__ +2016-08-24 09:25:05,555 DEBUG: Start: Iteration 40 +2016-08-24 09:25:05,571 DEBUG: View 0 : 0.442307692308 +2016-08-24 09:25:05,579 DEBUG: View 1 : 0.634615384615 +2016-08-24 09:25:05,616 DEBUG: View 2 : 0.512820512821 +2016-08-24 09:25:05,624 DEBUG: View 3 : 0.532051282051 +2016-08-24 09:25:05,761 DEBUG: Best view : MiRNA__ +2016-08-24 09:25:08,173 DEBUG: Start: Iteration 41 +2016-08-24 09:25:08,189 DEBUG: View 0 : 0.576923076923 +2016-08-24 09:25:08,197 DEBUG: View 1 : 0.692307692308 +2016-08-24 09:25:08,233 DEBUG: View 2 : 0.615384615385 +2016-08-24 09:25:08,241 DEBUG: View 3 : 0.589743589744 +2016-08-24 09:25:08,380 DEBUG: Best view : MiRNA__ +2016-08-24 09:25:10,856 DEBUG: Start: Iteration 42 +2016-08-24 09:25:10,873 DEBUG: View 0 : 0.410256410256 +2016-08-24 09:25:10,881 DEBUG: View 1 : 0.384615384615 +2016-08-24 09:25:10,918 DEBUG: View 2 : 0.621794871795 +2016-08-24 09:25:10,926 DEBUG: View 3 : 0.564102564103 +2016-08-24 09:25:11,067 DEBUG: Best view : RANSeq_ +2016-08-24 09:25:13,607 DEBUG: Start: Iteration 43 +2016-08-24 09:25:13,623 DEBUG: View 0 : 0.608974358974 +2016-08-24 09:25:13,631 DEBUG: View 1 : 0.711538461538 +2016-08-24 09:25:13,668 DEBUG: View 2 : 0.557692307692 +2016-08-24 09:25:13,675 DEBUG: View 3 : 0.589743589744 +2016-08-24 09:25:13,817 DEBUG: Best view : MiRNA__ +2016-08-24 09:25:16,417 DEBUG: Start: Iteration 44 +2016-08-24 09:25:16,434 DEBUG: View 0 : 0.423076923077 +2016-08-24 09:25:16,442 DEBUG: View 1 : 0.641025641026 +2016-08-24 09:25:16,478 DEBUG: View 2 : 0.538461538462 +2016-08-24 09:25:16,486 DEBUG: View 3 : 0.608974358974 +2016-08-24 09:25:16,632 DEBUG: Best view : MiRNA__ +2016-08-24 09:25:19,287 DEBUG: Start: Iteration 45 +2016-08-24 09:25:19,303 DEBUG: View 0 : 0.49358974359 +2016-08-24 09:25:19,311 DEBUG: View 1 : 0.628205128205 +2016-08-24 09:25:19,348 DEBUG: View 2 : 0.519230769231 +2016-08-24 09:25:19,356 DEBUG: View 3 : 0.544871794872 +2016-08-24 09:25:19,504 DEBUG: Best view : MiRNA__ +2016-08-24 09:25:22,218 DEBUG: Start: Iteration 46 +2016-08-24 09:25:22,235 DEBUG: View 0 : 0.525641025641 +2016-08-24 09:25:22,243 DEBUG: View 1 : 0.423076923077 +2016-08-24 09:25:22,280 DEBUG: View 2 : 0.544871794872 +2016-08-24 09:25:22,287 DEBUG: View 3 : 0.416666666667 +2016-08-24 09:25:22,437 DEBUG: Best view : Methyl_ +2016-08-24 09:25:25,212 DEBUG: Start: Iteration 47 +2016-08-24 09:25:25,228 DEBUG: View 0 : 0.378205128205 +2016-08-24 09:25:25,236 DEBUG: View 1 : 0.480769230769 +2016-08-24 09:25:25,273 DEBUG: View 2 : 0.583333333333 +2016-08-24 09:25:25,281 DEBUG: View 3 : 0.570512820513 +2016-08-24 09:25:25,434 DEBUG: Best view : Clinic_ +2016-08-24 09:25:28,262 DEBUG: Start: Iteration 48 +2016-08-24 09:25:28,279 DEBUG: View 0 : 0.525641025641 +2016-08-24 09:25:28,287 DEBUG: View 1 : 0.333333333333 +2016-08-24 09:25:28,323 DEBUG: View 2 : 0.544871794872 +2016-08-24 09:25:28,331 DEBUG: View 3 : 0.435897435897 +2016-08-24 09:25:28,487 DEBUG: Best view : RANSeq_ +2016-08-24 09:25:31,392 DEBUG: Start: Iteration 49 +2016-08-24 09:25:31,409 DEBUG: View 0 : 0.570512820513 +2016-08-24 09:25:31,416 DEBUG: View 1 : 0.50641025641 +2016-08-24 09:25:31,453 DEBUG: View 2 : 0.474358974359 +2016-08-24 09:25:31,461 DEBUG: View 3 : 0.461538461538 +2016-08-24 09:25:31,616 DEBUG: Best view : Methyl_ +2016-08-24 09:25:34,579 DEBUG: Start: Iteration 50 +2016-08-24 09:25:34,596 DEBUG: View 0 : 0.628205128205 +2016-08-24 09:25:34,604 DEBUG: View 1 : 0.474358974359 +2016-08-24 09:25:34,640 DEBUG: View 2 : 0.576923076923 +2016-08-24 09:25:34,648 DEBUG: View 3 : 0.519230769231 +2016-08-24 09:25:34,807 DEBUG: Best view : Methyl_ +2016-08-24 09:25:37,851 DEBUG: Start: Iteration 51 +2016-08-24 09:25:37,868 DEBUG: View 0 : 0.525641025641 +2016-08-24 09:25:37,876 DEBUG: View 1 : 0.49358974359 +2016-08-24 09:25:37,912 DEBUG: View 2 : 0.50641025641 +2016-08-24 09:25:37,920 DEBUG: View 3 : 0.397435897436 +2016-08-24 09:25:38,082 DEBUG: Best view : Methyl_ +2016-08-24 09:25:41,390 DEBUG: Start: Iteration 52 +2016-08-24 09:25:41,409 DEBUG: View 0 : 0.397435897436 +2016-08-24 09:25:41,417 DEBUG: View 1 : 0.634615384615 +2016-08-24 09:25:41,454 DEBUG: View 2 : 0.532051282051 +2016-08-24 09:25:41,462 DEBUG: View 3 : 0.416666666667 +2016-08-24 09:25:41,625 DEBUG: Best view : MiRNA__ +2016-08-24 09:25:44,792 INFO: Start: Classification +2016-08-24 09:25:52,398 INFO: Done: Fold number 1 +2016-08-24 09:25:52,398 INFO: Start: Fold number 2 +2016-08-24 09:25:54,031 DEBUG: Start: Iteration 1 +2016-08-24 09:25:54,047 DEBUG: View 0 : 0.62962962963 +2016-08-24 09:25:54,055 DEBUG: View 1 : 0.666666666667 +2016-08-24 09:25:54,093 DEBUG: View 2 : 0.623456790123 +2016-08-24 09:25:54,101 DEBUG: View 3 : 0.37037037037 +2016-08-24 09:25:54,143 DEBUG: Best view : Clinic_ +2016-08-24 09:25:54,215 DEBUG: Start: Iteration 2 +2016-08-24 09:25:54,233 DEBUG: View 0 : 0.530864197531 +2016-08-24 09:25:54,241 DEBUG: View 1 : 0.277777777778 +2016-08-24 09:25:54,279 DEBUG: View 2 : 0.41975308642 +2016-08-24 09:25:54,287 DEBUG: View 3 : 0.561728395062 +2016-08-24 09:25:54,340 DEBUG: Best view : Clinic_ +2016-08-24 09:25:54,473 DEBUG: Start: Iteration 3 +2016-08-24 09:25:54,491 DEBUG: View 0 : 0.506172839506 +2016-08-24 09:25:54,502 DEBUG: View 1 : 0.592592592593 +2016-08-24 09:25:54,543 DEBUG: View 2 : 0.549382716049 +2016-08-24 09:25:54,551 DEBUG: View 3 : 0.450617283951 +2016-08-24 09:25:54,607 DEBUG: Best view : MiRNA__ +2016-08-24 09:25:54,799 DEBUG: Start: Iteration 4 +2016-08-24 09:25:54,817 DEBUG: View 0 : 0.469135802469 +2016-08-24 09:25:54,825 DEBUG: View 1 : 0.549382716049 +2016-08-24 09:25:54,865 DEBUG: View 2 : 0.487654320988 +2016-08-24 09:25:54,873 DEBUG: View 3 : 0.382716049383 +2016-08-24 09:25:54,931 DEBUG: Best view : MiRNA__ +2016-08-24 09:25:55,184 DEBUG: Start: Iteration 5 +2016-08-24 09:25:55,202 DEBUG: View 0 : 0.506172839506 +2016-08-24 09:25:55,211 DEBUG: View 1 : 0.716049382716 +2016-08-24 09:25:55,249 DEBUG: View 2 : 0.469135802469 +2016-08-24 09:25:55,257 DEBUG: View 3 : 0.623456790123 +2016-08-24 09:25:55,325 DEBUG: Best view : MiRNA__ +2016-08-24 09:25:55,645 DEBUG: Start: Iteration 6 +2016-08-24 09:25:55,663 DEBUG: View 0 : 0.388888888889 +2016-08-24 09:25:55,671 DEBUG: View 1 : 0.771604938272 +2016-08-24 09:25:55,709 DEBUG: View 2 : 0.598765432099 +2016-08-24 09:25:55,717 DEBUG: View 3 : 0.524691358025 +2016-08-24 09:25:55,779 DEBUG: Best view : MiRNA__ +2016-08-24 09:25:56,151 DEBUG: Start: Iteration 7 +2016-08-24 09:25:56,168 DEBUG: View 0 : 0.524691358025 +2016-08-24 09:25:56,176 DEBUG: View 1 : 0.641975308642 +2016-08-24 09:25:56,214 DEBUG: View 2 : 0.506172839506 +2016-08-24 09:25:56,222 DEBUG: View 3 : 0.537037037037 +2016-08-24 09:25:56,288 DEBUG: Best view : MiRNA__ +2016-08-24 09:25:56,721 DEBUG: Start: Iteration 8 +2016-08-24 09:25:56,738 DEBUG: View 0 : 0.413580246914 +2016-08-24 09:25:56,747 DEBUG: View 1 : 0.524691358025 +2016-08-24 09:25:56,785 DEBUG: View 2 : 0.586419753086 +2016-08-24 09:25:56,793 DEBUG: View 3 : 0.407407407407 +2016-08-24 09:25:56,862 DEBUG: Best view : RANSeq_ +2016-08-24 09:25:57,369 DEBUG: Start: Iteration 9 +2016-08-24 09:25:57,386 DEBUG: View 0 : 0.444444444444 +2016-08-24 09:25:57,394 DEBUG: View 1 : 0.604938271605 +2016-08-24 09:25:57,431 DEBUG: View 2 : 0.444444444444 +2016-08-24 09:25:57,439 DEBUG: View 3 : 0.481481481481 +2016-08-24 09:25:57,507 DEBUG: Best view : MiRNA__ +2016-08-24 09:25:58,072 DEBUG: Start: Iteration 10 +2016-08-24 09:25:58,089 DEBUG: View 0 : 0.382716049383 +2016-08-24 09:25:58,097 DEBUG: View 1 : 0.623456790123 +2016-08-24 09:25:58,134 DEBUG: View 2 : 0.617283950617 +2016-08-24 09:25:58,142 DEBUG: View 3 : 0.41975308642 +2016-08-24 09:25:58,213 DEBUG: Best view : MiRNA__ +2016-08-24 09:25:58,839 DEBUG: Start: Iteration 11 +2016-08-24 09:25:58,856 DEBUG: View 0 : 0.506172839506 +2016-08-24 09:25:58,864 DEBUG: View 1 : 0.487654320988 +2016-08-24 09:25:58,901 DEBUG: View 2 : 0.530864197531 +2016-08-24 09:25:58,909 DEBUG: View 3 : 0.407407407407 +2016-08-24 09:25:58,983 DEBUG: Best view : RANSeq_ +2016-08-24 09:25:59,688 DEBUG: Start: Iteration 12 +2016-08-24 09:25:59,705 DEBUG: View 0 : 0.518518518519 +2016-08-24 09:25:59,714 DEBUG: View 1 : 0.543209876543 +2016-08-24 09:25:59,751 DEBUG: View 2 : 0.530864197531 +2016-08-24 09:25:59,759 DEBUG: View 3 : 0.469135802469 +2016-08-24 09:25:59,835 DEBUG: Best view : MiRNA__ +2016-08-24 09:26:00,606 DEBUG: Start: Iteration 13 +2016-08-24 09:26:00,623 DEBUG: View 0 : 0.487654320988 +2016-08-24 09:26:00,631 DEBUG: View 1 : 0.549382716049 +2016-08-24 09:26:00,669 DEBUG: View 2 : 0.413580246914 +2016-08-24 09:26:00,676 DEBUG: View 3 : 0.530864197531 +2016-08-24 09:26:00,756 DEBUG: Best view : MiRNA__ +2016-08-24 09:26:01,578 DEBUG: Start: Iteration 14 +2016-08-24 09:26:01,595 DEBUG: View 0 : 0.561728395062 +2016-08-24 09:26:01,603 DEBUG: View 1 : 0.555555555556 +2016-08-24 09:26:01,640 DEBUG: View 2 : 0.537037037037 +2016-08-24 09:26:01,648 DEBUG: View 3 : 0.376543209877 +2016-08-24 09:26:01,729 DEBUG: Best view : MiRNA__ +2016-08-24 09:26:02,647 DEBUG: Start: Iteration 15 +2016-08-24 09:26:02,664 DEBUG: View 0 : 0.444444444444 +2016-08-24 09:26:02,672 DEBUG: View 1 : 0.364197530864 +2016-08-24 09:26:02,709 DEBUG: View 2 : 0.450617283951 +2016-08-24 09:26:02,717 DEBUG: View 3 : 0.561728395062 +2016-08-24 09:26:02,800 DEBUG: Best view : Clinic_ +2016-08-24 09:26:03,734 DEBUG: Start: Iteration 16 +2016-08-24 09:26:03,751 DEBUG: View 0 : 0.604938271605 +2016-08-24 09:26:03,759 DEBUG: View 1 : 0.666666666667 +2016-08-24 09:26:03,796 DEBUG: View 2 : 0.530864197531 +2016-08-24 09:26:03,804 DEBUG: View 3 : 0.611111111111 +2016-08-24 09:26:03,888 DEBUG: Best view : MiRNA__ +2016-08-24 09:26:04,879 DEBUG: Start: Iteration 17 +2016-08-24 09:26:04,896 DEBUG: View 0 : 0.561728395062 +2016-08-24 09:26:04,904 DEBUG: View 1 : 0.641975308642 +2016-08-24 09:26:04,941 DEBUG: View 2 : 0.450617283951 +2016-08-24 09:26:04,948 DEBUG: View 3 : 0.62962962963 +2016-08-24 09:26:05,035 DEBUG: Best view : Clinic_ +2016-08-24 09:26:06,079 DEBUG: Start: Iteration 18 +2016-08-24 09:26:06,096 DEBUG: View 0 : 0.438271604938 +2016-08-24 09:26:06,104 DEBUG: View 1 : 0.549382716049 +2016-08-24 09:26:06,141 DEBUG: View 2 : 0.493827160494 +2016-08-24 09:26:06,149 DEBUG: View 3 : 0.524691358025 +2016-08-24 09:26:06,238 DEBUG: Best view : MiRNA__ +2016-08-24 09:26:07,352 DEBUG: Start: Iteration 19 +2016-08-24 09:26:07,369 DEBUG: View 0 : 0.512345679012 +2016-08-24 09:26:07,377 DEBUG: View 1 : 0.611111111111 +2016-08-24 09:26:07,415 DEBUG: View 2 : 0.617283950617 +2016-08-24 09:26:07,423 DEBUG: View 3 : 0.574074074074 +2016-08-24 09:26:07,517 DEBUG: Best view : MiRNA__ +2016-08-24 09:26:08,688 DEBUG: Start: Iteration 20 +2016-08-24 09:26:08,705 DEBUG: View 0 : 0.407407407407 +2016-08-24 09:26:08,713 DEBUG: View 1 : 0.62962962963 +2016-08-24 09:26:08,751 DEBUG: View 2 : 0.549382716049 +2016-08-24 09:26:08,759 DEBUG: View 3 : 0.493827160494 +2016-08-24 09:26:08,855 DEBUG: Best view : MiRNA__ +2016-08-24 09:26:10,080 DEBUG: Start: Iteration 21 +2016-08-24 09:26:10,097 DEBUG: View 0 : 0.561728395062 +2016-08-24 09:26:10,105 DEBUG: View 1 : 0.672839506173 +2016-08-24 09:26:10,142 DEBUG: View 2 : 0.648148148148 +2016-08-24 09:26:10,150 DEBUG: View 3 : 0.438271604938 +2016-08-24 09:26:10,246 DEBUG: Best view : MiRNA__ +2016-08-24 09:26:11,549 DEBUG: Start: Iteration 22 +2016-08-24 09:26:11,566 DEBUG: View 0 : 0.549382716049 +2016-08-24 09:26:11,574 DEBUG: View 1 : 0.586419753086 +2016-08-24 09:26:11,612 DEBUG: View 2 : 0.450617283951 +2016-08-24 09:26:11,620 DEBUG: View 3 : 0.561728395062 +2016-08-24 09:26:11,718 DEBUG: Best view : MiRNA__ +2016-08-24 09:26:13,055 DEBUG: Start: Iteration 23 +2016-08-24 09:26:13,072 DEBUG: View 0 : 0.592592592593 +2016-08-24 09:26:13,080 DEBUG: View 1 : 0.666666666667 +2016-08-24 09:26:13,117 DEBUG: View 2 : 0.62962962963 +2016-08-24 09:26:13,125 DEBUG: View 3 : 0.586419753086 +2016-08-24 09:26:13,226 DEBUG: Best view : MiRNA__ +2016-08-24 09:26:14,621 DEBUG: Start: Iteration 24 +2016-08-24 09:26:14,638 DEBUG: View 0 : 0.425925925926 +2016-08-24 09:26:14,646 DEBUG: View 1 : 0.376543209877 +2016-08-24 09:26:14,684 DEBUG: View 2 : 0.475308641975 +2016-08-24 09:26:14,691 DEBUG: View 3 : 0.413580246914 +2016-08-24 09:26:14,692 WARNING: All bad for iteration 23 +2016-08-24 09:26:14,795 DEBUG: Best view : RANSeq_ +2016-08-24 09:26:16,277 DEBUG: Start: Iteration 25 +2016-08-24 09:26:16,294 DEBUG: View 0 : 0.462962962963 +2016-08-24 09:26:16,302 DEBUG: View 1 : 0.716049382716 +2016-08-24 09:26:16,339 DEBUG: View 2 : 0.530864197531 +2016-08-24 09:26:16,347 DEBUG: View 3 : 0.401234567901 +2016-08-24 09:26:16,452 DEBUG: Best view : MiRNA__ +2016-08-24 09:26:18,023 DEBUG: Start: Iteration 26 +2016-08-24 09:26:18,040 DEBUG: View 0 : 0.62962962963 +2016-08-24 09:26:18,048 DEBUG: View 1 : 0.567901234568 +2016-08-24 09:26:18,089 DEBUG: View 2 : 0.506172839506 +2016-08-24 09:26:18,098 DEBUG: View 3 : 0.567901234568 +2016-08-24 09:26:18,209 DEBUG: Best view : Methyl_ +2016-08-24 09:26:19,837 DEBUG: Start: Iteration 27 +2016-08-24 09:26:19,854 DEBUG: View 0 : 0.413580246914 +2016-08-24 09:26:19,862 DEBUG: View 1 : 0.672839506173 +2016-08-24 09:26:19,900 DEBUG: View 2 : 0.364197530864 +2016-08-24 09:26:19,908 DEBUG: View 3 : 0.469135802469 +2016-08-24 09:26:20,019 DEBUG: Best view : MiRNA__ +2016-08-24 09:26:21,774 DEBUG: Start: Iteration 28 +2016-08-24 09:26:21,791 DEBUG: View 0 : 0.555555555556 +2016-08-24 09:26:21,799 DEBUG: View 1 : 0.388888888889 +2016-08-24 09:26:21,837 DEBUG: View 2 : 0.530864197531 +2016-08-24 09:26:21,845 DEBUG: View 3 : 0.561728395062 +2016-08-24 09:26:21,962 DEBUG: Best view : Methyl_ +2016-08-24 09:26:23,703 DEBUG: Start: Iteration 29 +2016-08-24 09:26:23,720 DEBUG: View 0 : 0.493827160494 +2016-08-24 09:26:23,728 DEBUG: View 1 : 0.611111111111 +2016-08-24 09:26:23,765 DEBUG: View 2 : 0.617283950617 +2016-08-24 09:26:23,773 DEBUG: View 3 : 0.438271604938 +2016-08-24 09:26:23,890 DEBUG: Best view : MiRNA__ +2016-08-24 09:26:25,713 DEBUG: Start: Iteration 30 +2016-08-24 09:26:25,730 DEBUG: View 0 : 0.432098765432 +2016-08-24 09:26:25,739 DEBUG: View 1 : 0.586419753086 +2016-08-24 09:26:25,776 DEBUG: View 2 : 0.604938271605 +2016-08-24 09:26:25,784 DEBUG: View 3 : 0.617283950617 +2016-08-24 09:26:25,904 DEBUG: Best view : Clinic_ +2016-08-24 09:26:27,986 DEBUG: Start: Iteration 31 +2016-08-24 09:26:28,004 DEBUG: View 0 : 0.623456790123 +2016-08-24 09:26:28,013 DEBUG: View 1 : 0.456790123457 +2016-08-24 09:26:28,051 DEBUG: View 2 : 0.506172839506 +2016-08-24 09:26:28,059 DEBUG: View 3 : 0.376543209877 +2016-08-24 09:26:28,180 DEBUG: Best view : Methyl_ +2016-08-24 09:26:30,112 DEBUG: Start: Iteration 32 +2016-08-24 09:26:30,129 DEBUG: View 0 : 0.456790123457 +2016-08-24 09:26:30,137 DEBUG: View 1 : 0.567901234568 +2016-08-24 09:26:30,175 DEBUG: View 2 : 0.382716049383 +2016-08-24 09:26:30,182 DEBUG: View 3 : 0.567901234568 +2016-08-24 09:26:30,305 DEBUG: Best view : MiRNA__ +2016-08-24 09:26:32,285 DEBUG: Start: Iteration 33 +2016-08-24 09:26:32,302 DEBUG: View 0 : 0.512345679012 +2016-08-24 09:26:32,310 DEBUG: View 1 : 0.327160493827 +2016-08-24 09:26:32,347 DEBUG: View 2 : 0.592592592593 +2016-08-24 09:26:32,355 DEBUG: View 3 : 0.487654320988 +2016-08-24 09:26:32,483 DEBUG: Best view : RANSeq_ +2016-08-24 09:26:34,814 DEBUG: Start: Iteration 34 +2016-08-24 09:26:34,837 DEBUG: View 0 : 0.5 +2016-08-24 09:26:34,853 DEBUG: View 1 : 0.537037037037 +2016-08-24 09:26:34,913 DEBUG: View 2 : 0.487654320988 +2016-08-24 09:26:34,927 DEBUG: View 3 : 0.395061728395 +2016-08-24 09:26:35,074 DEBUG: Best view : MiRNA__ +2016-08-24 09:26:37,180 DEBUG: Start: Iteration 35 +2016-08-24 09:26:37,197 DEBUG: View 0 : 0.493827160494 +2016-08-24 09:26:37,205 DEBUG: View 1 : 0.493827160494 +2016-08-24 09:26:37,242 DEBUG: View 2 : 0.512345679012 +2016-08-24 09:26:37,250 DEBUG: View 3 : 0.641975308642 +2016-08-24 09:26:37,379 DEBUG: Best view : Clinic_ diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092640-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092640-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..1c9b53f08823be3ad9d40d9401da83eea1f96c6a --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092640-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log @@ -0,0 +1,50 @@ +2016-08-24 09:26:40,875 INFO: Start: Read HDF5 Database Files for ModifiedMultiOmic +2016-08-24 09:26:40,875 INFO: Info: Labels used: No, Yes +2016-08-24 09:26:40,875 INFO: Info: Length of dataset:347 +2016-08-24 09:26:40,877 INFO: ### Main Programm for Multiview Classification +2016-08-24 09:26:40,877 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1 +2016-08-24 09:26:40,877 INFO: Info: Shape of Methyl_ :(347, 25978) +2016-08-24 09:26:40,878 INFO: Info: Shape of MiRNA__ :(347, 1046) +2016-08-24 09:26:40,878 INFO: Info: Shape of RANSeq_ :(347, 73599) +2016-08-24 09:26:40,878 INFO: Info: Shape of Clinic_ :(347, 127) +2016-08-24 09:26:40,879 INFO: Done: Read Database Files +2016-08-24 09:26:40,879 INFO: Start: Determine validation split for ratio 0.7 +2016-08-24 09:26:40,882 INFO: Done: Determine validation split +2016-08-24 09:26:40,882 INFO: Start: Determine 2 folds +2016-08-24 09:26:40,891 INFO: Info: Length of Learning Sets: 122 +2016-08-24 09:26:40,892 INFO: Info: Length of Testing Sets: 122 +2016-08-24 09:26:40,892 INFO: Info: Length of Validation Set: 103 +2016-08-24 09:26:40,892 INFO: Done: Determine folds +2016-08-24 09:26:40,892 INFO: Start: Learning with Mumbo and 2 folds +2016-08-24 09:26:40,892 INFO: Start: Gridsearching best settings for monoview classifiers +2016-08-24 09:26:40,892 DEBUG: Start: Gridsearch for DecisionTree on Methyl_ +2016-08-24 09:26:48,203 DEBUG: 0.593198847262Poulet +2016-08-24 09:26:48,203 DEBUG: 0.572910662824Poulet +2016-08-24 09:26:48,203 DEBUG: 0.586167146974Poulet +2016-08-24 09:26:48,203 DEBUG: 0.5134870317Poulet +2016-08-24 09:26:48,203 DEBUG: 0.508933717579Poulet +2016-08-24 09:26:48,203 DEBUG: 0.549682997118Poulet +2016-08-24 09:26:48,204 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:26:48,204 DEBUG: Start: Gridsearch for DecisionTree on MiRNA__ +2016-08-24 09:26:50,116 DEBUG: 0.584495677233Poulet +2016-08-24 09:26:50,117 DEBUG: 0.583342939481Poulet +2016-08-24 09:26:50,117 DEBUG: 0.52288184438Poulet +2016-08-24 09:26:50,117 DEBUG: 0.560691642651Poulet +2016-08-24 09:26:50,117 DEBUG: 0.536657060519Poulet +2016-08-24 09:26:50,117 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:26:50,117 DEBUG: Start: Gridsearch for DecisionTree on RANSeq_ +2016-08-24 09:27:07,105 DEBUG: 0.571469740634Poulet +2016-08-24 09:27:07,105 DEBUG: 0.587665706052Poulet +2016-08-24 09:27:07,105 DEBUG: 0.551527377522Poulet +2016-08-24 09:27:07,105 DEBUG: 0.55469740634Poulet +2016-08-24 09:27:07,105 DEBUG: 0.508760806916Poulet +2016-08-24 09:27:07,105 DEBUG: 0.507262247839Poulet +2016-08-24 09:27:07,106 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:27:07,107 DEBUG: Start: Gridsearch for DecisionTree on Clinic_ +2016-08-24 09:27:08,919 DEBUG: 0.583227665706Poulet +2016-08-24 09:27:08,919 DEBUG: 0.570489913545Poulet +2016-08-24 09:27:08,919 DEBUG: 0.55976945245Poulet +2016-08-24 09:27:08,919 DEBUG: 0.586570605187Poulet +2016-08-24 09:27:08,919 DEBUG: 0.516195965418Poulet +2016-08-24 09:27:08,919 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:27:08,920 DEBUG: Start: Gridsearch for DecisionTree on MRNASeq diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092735-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092735-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..a19abd196dec9008d67213022082119af465c39d --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092735-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log @@ -0,0 +1,650 @@ +2016-08-24 09:27:35,426 INFO: Start: Read HDF5 Database Files for ModifiedMultiOmic +2016-08-24 09:27:35,427 INFO: Info: Labels used: No, Yes +2016-08-24 09:27:35,427 INFO: Info: Length of dataset:347 +2016-08-24 09:27:35,428 INFO: ### Main Programm for Multiview Classification +2016-08-24 09:27:35,428 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1 +2016-08-24 09:27:35,429 INFO: Info: Shape of Methyl_ :(347, 25978) +2016-08-24 09:27:35,429 INFO: Info: Shape of MiRNA__ :(347, 1046) +2016-08-24 09:27:35,430 INFO: Info: Shape of RANSeq_ :(347, 73599) +2016-08-24 09:27:35,430 INFO: Info: Shape of Clinic_ :(347, 127) +2016-08-24 09:27:35,430 INFO: Done: Read Database Files +2016-08-24 09:27:35,430 INFO: Start: Determine validation split for ratio 0.7 +2016-08-24 09:27:35,433 INFO: Done: Determine validation split +2016-08-24 09:27:35,434 INFO: Start: Determine 2 folds +2016-08-24 09:27:35,442 INFO: Info: Length of Learning Sets: 122 +2016-08-24 09:27:35,442 INFO: Info: Length of Testing Sets: 122 +2016-08-24 09:27:35,442 INFO: Info: Length of Validation Set: 103 +2016-08-24 09:27:35,442 INFO: Done: Determine folds +2016-08-24 09:27:35,442 INFO: Start: Learning with Mumbo and 2 folds +2016-08-24 09:27:35,442 INFO: Start: Gridsearching best settings for monoview classifiers +2016-08-24 09:27:35,442 DEBUG: Start: Gridsearch for DecisionTree on Methyl_ +2016-08-24 09:27:42,729 DEBUG: 0.591873198847Poulet +2016-08-24 09:27:42,729 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:27:42,730 DEBUG: Start: Gridsearch for DecisionTree on MiRNA__ +2016-08-24 09:27:44,640 DEBUG: 0.569740634006Poulet +2016-08-24 09:27:44,640 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:27:44,641 DEBUG: Start: Gridsearch for DecisionTree on RANSeq_ +2016-08-24 09:28:01,306 DEBUG: 0.576945244957Poulet +2016-08-24 09:28:01,306 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:28:01,307 DEBUG: Start: Gridsearch for DecisionTree on Clinic_ +2016-08-24 09:28:03,058 DEBUG: 0.582305475504Poulet +2016-08-24 09:28:03,058 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:28:03,058 DEBUG: Start: Gridsearch for DecisionTree on MRNASeq +2016-08-24 09:28:40,826 DEBUG: 0.558962536023Poulet +2016-08-24 09:28:40,827 DEBUG: 0.560518731988Poulet +2016-08-24 09:28:40,827 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:28:40,827 INFO: Done: Gridsearching best settings for monoview classifiers +2016-08-24 09:28:40,827 INFO: Start: Fold number 1 +2016-08-24 09:28:42,410 DEBUG: Start: Iteration 1 +2016-08-24 09:28:42,426 DEBUG: View 0 : 0.602649006623 +2016-08-24 09:28:42,433 DEBUG: View 1 : 0.649006622517 +2016-08-24 09:28:42,460 DEBUG: View 2 : 0.602649006623 +2016-08-24 09:28:42,467 DEBUG: View 3 : 0.602649006623 +2016-08-24 09:28:42,507 DEBUG: Best view : Methyl_ +2016-08-24 09:28:42,579 DEBUG: Start: Iteration 2 +2016-08-24 09:28:42,596 DEBUG: View 0 : 0.549668874172 +2016-08-24 09:28:42,603 DEBUG: View 1 : 0.576158940397 +2016-08-24 09:28:42,639 DEBUG: View 2 : 0.529801324503 +2016-08-24 09:28:42,646 DEBUG: View 3 : 0.576158940397 +2016-08-24 09:28:42,689 DEBUG: Best view : MiRNA__ +2016-08-24 09:28:42,816 DEBUG: Start: Iteration 3 +2016-08-24 09:28:42,832 DEBUG: View 0 : 0.470198675497 +2016-08-24 09:28:42,840 DEBUG: View 1 : 0.443708609272 +2016-08-24 09:28:42,875 DEBUG: View 2 : 0.543046357616 +2016-08-24 09:28:42,882 DEBUG: View 3 : 0.443708609272 +2016-08-24 09:28:42,933 DEBUG: Best view : RANSeq_ +2016-08-24 09:28:43,132 DEBUG: Start: Iteration 4 +2016-08-24 09:28:43,148 DEBUG: View 0 : 0.390728476821 +2016-08-24 09:28:43,155 DEBUG: View 1 : 0.715231788079 +2016-08-24 09:28:43,190 DEBUG: View 2 : 0.503311258278 +2016-08-24 09:28:43,198 DEBUG: View 3 : 0.483443708609 +2016-08-24 09:28:43,250 DEBUG: Best view : MiRNA__ +2016-08-24 09:28:43,503 DEBUG: Start: Iteration 5 +2016-08-24 09:28:43,520 DEBUG: View 0 : 0.483443708609 +2016-08-24 09:28:43,527 DEBUG: View 1 : 0.397350993377 +2016-08-24 09:28:43,563 DEBUG: View 2 : 0.602649006623 +2016-08-24 09:28:43,570 DEBUG: View 3 : 0.629139072848 +2016-08-24 09:28:43,624 DEBUG: Best view : Clinic_ +2016-08-24 09:28:43,933 DEBUG: Start: Iteration 6 +2016-08-24 09:28:43,949 DEBUG: View 0 : 0.675496688742 +2016-08-24 09:28:43,956 DEBUG: View 1 : 0.456953642384 +2016-08-24 09:28:43,992 DEBUG: View 2 : 0.476821192053 +2016-08-24 09:28:43,999 DEBUG: View 3 : 0.503311258278 +2016-08-24 09:28:44,056 DEBUG: Best view : Methyl_ +2016-08-24 09:28:44,423 DEBUG: Start: Iteration 7 +2016-08-24 09:28:44,439 DEBUG: View 0 : 0.602649006623 +2016-08-24 09:28:44,447 DEBUG: View 1 : 0.298013245033 +2016-08-24 09:28:44,482 DEBUG: View 2 : 0.602649006623 +2016-08-24 09:28:44,489 DEBUG: View 3 : 0.569536423841 +2016-08-24 09:28:44,547 DEBUG: Best view : RANSeq_ +2016-08-24 09:28:44,982 DEBUG: Start: Iteration 8 +2016-08-24 09:28:44,998 DEBUG: View 0 : 0.529801324503 +2016-08-24 09:28:45,005 DEBUG: View 1 : 0.390728476821 +2016-08-24 09:28:45,041 DEBUG: View 2 : 0.509933774834 +2016-08-24 09:28:45,048 DEBUG: View 3 : 0.509933774834 +2016-08-24 09:28:45,108 DEBUG: Best view : Methyl_ +2016-08-24 09:28:45,601 DEBUG: Start: Iteration 9 +2016-08-24 09:28:45,618 DEBUG: View 0 : 0.417218543046 +2016-08-24 09:28:45,625 DEBUG: View 1 : 0.609271523179 +2016-08-24 09:28:45,660 DEBUG: View 2 : 0.582781456954 +2016-08-24 09:28:45,668 DEBUG: View 3 : 0.476821192053 +2016-08-24 09:28:45,730 DEBUG: Best view : MiRNA__ +2016-08-24 09:28:46,279 DEBUG: Start: Iteration 10 +2016-08-24 09:28:46,295 DEBUG: View 0 : 0.503311258278 +2016-08-24 09:28:46,303 DEBUG: View 1 : 0.635761589404 +2016-08-24 09:28:46,338 DEBUG: View 2 : 0.470198675497 +2016-08-24 09:28:46,345 DEBUG: View 3 : 0.58940397351 +2016-08-24 09:28:46,410 DEBUG: Best view : MiRNA__ +2016-08-24 09:28:47,014 DEBUG: Start: Iteration 11 +2016-08-24 09:28:47,030 DEBUG: View 0 : 0.562913907285 +2016-08-24 09:28:47,038 DEBUG: View 1 : 0.582781456954 +2016-08-24 09:28:47,073 DEBUG: View 2 : 0.423841059603 +2016-08-24 09:28:47,080 DEBUG: View 3 : 0.549668874172 +2016-08-24 09:28:47,147 DEBUG: Best view : MiRNA__ +2016-08-24 09:28:47,805 DEBUG: Start: Iteration 12 +2016-08-24 09:28:47,821 DEBUG: View 0 : 0.529801324503 +2016-08-24 09:28:47,829 DEBUG: View 1 : 0.635761589404 +2016-08-24 09:28:47,864 DEBUG: View 2 : 0.437086092715 +2016-08-24 09:28:47,871 DEBUG: View 3 : 0.576158940397 +2016-08-24 09:28:47,940 DEBUG: Best view : MiRNA__ +2016-08-24 09:28:48,655 DEBUG: Start: Iteration 13 +2016-08-24 09:28:48,671 DEBUG: View 0 : 0.483443708609 +2016-08-24 09:28:48,679 DEBUG: View 1 : 0.668874172185 +2016-08-24 09:28:48,714 DEBUG: View 2 : 0.53642384106 +2016-08-24 09:28:48,721 DEBUG: View 3 : 0.430463576159 +2016-08-24 09:28:48,792 DEBUG: Best view : MiRNA__ +2016-08-24 09:28:49,562 DEBUG: Start: Iteration 14 +2016-08-24 09:28:49,579 DEBUG: View 0 : 0.450331125828 +2016-08-24 09:28:49,586 DEBUG: View 1 : 0.443708609272 +2016-08-24 09:28:49,621 DEBUG: View 2 : 0.483443708609 +2016-08-24 09:28:49,628 DEBUG: View 3 : 0.423841059603 +2016-08-24 09:28:49,628 WARNING: All bad for iteration 13 +2016-08-24 09:28:49,703 DEBUG: Best view : RANSeq_ +2016-08-24 09:28:50,539 DEBUG: Start: Iteration 15 +2016-08-24 09:28:50,555 DEBUG: View 0 : 0.470198675497 +2016-08-24 09:28:50,563 DEBUG: View 1 : 0.615894039735 +2016-08-24 09:28:50,598 DEBUG: View 2 : 0.490066225166 +2016-08-24 09:28:50,605 DEBUG: View 3 : 0.569536423841 +2016-08-24 09:28:50,682 DEBUG: Best view : MiRNA__ +2016-08-24 09:28:51,575 DEBUG: Start: Iteration 16 +2016-08-24 09:28:51,591 DEBUG: View 0 : 0.456953642384 +2016-08-24 09:28:51,598 DEBUG: View 1 : 0.430463576159 +2016-08-24 09:28:51,633 DEBUG: View 2 : 0.562913907285 +2016-08-24 09:28:51,640 DEBUG: View 3 : 0.549668874172 +2016-08-24 09:28:51,718 DEBUG: Best view : Clinic_ +2016-08-24 09:28:52,694 DEBUG: Start: Iteration 17 +2016-08-24 09:28:52,710 DEBUG: View 0 : 0.403973509934 +2016-08-24 09:28:52,717 DEBUG: View 1 : 0.370860927152 +2016-08-24 09:28:52,752 DEBUG: View 2 : 0.476821192053 +2016-08-24 09:28:52,760 DEBUG: View 3 : 0.417218543046 +2016-08-24 09:28:52,760 WARNING: All bad for iteration 16 +2016-08-24 09:28:52,839 DEBUG: Best view : RANSeq_ +2016-08-24 09:28:53,853 DEBUG: Start: Iteration 18 +2016-08-24 09:28:53,869 DEBUG: View 0 : 0.437086092715 +2016-08-24 09:28:53,876 DEBUG: View 1 : 0.483443708609 +2016-08-24 09:28:53,911 DEBUG: View 2 : 0.622516556291 +2016-08-24 09:28:53,918 DEBUG: View 3 : 0.629139072848 +2016-08-24 09:28:54,002 DEBUG: Best view : Clinic_ +2016-08-24 09:28:55,105 DEBUG: Start: Iteration 19 +2016-08-24 09:28:55,121 DEBUG: View 0 : 0.615894039735 +2016-08-24 09:28:55,129 DEBUG: View 1 : 0.430463576159 +2016-08-24 09:28:55,164 DEBUG: View 2 : 0.46357615894 +2016-08-24 09:28:55,171 DEBUG: View 3 : 0.496688741722 +2016-08-24 09:28:55,255 DEBUG: Best view : Methyl_ +2016-08-24 09:28:56,383 DEBUG: Start: Iteration 20 +2016-08-24 09:28:56,399 DEBUG: View 0 : 0.503311258278 +2016-08-24 09:28:56,407 DEBUG: View 1 : 0.602649006623 +2016-08-24 09:28:56,442 DEBUG: View 2 : 0.576158940397 +2016-08-24 09:28:56,449 DEBUG: View 3 : 0.576158940397 +2016-08-24 09:28:56,535 DEBUG: Best view : MiRNA__ +2016-08-24 09:28:57,716 DEBUG: Start: Iteration 21 +2016-08-24 09:28:57,732 DEBUG: View 0 : 0.496688741722 +2016-08-24 09:28:57,739 DEBUG: View 1 : 0.46357615894 +2016-08-24 09:28:57,774 DEBUG: View 2 : 0.417218543046 +2016-08-24 09:28:57,781 DEBUG: View 3 : 0.569536423841 +2016-08-24 09:28:57,870 DEBUG: Best view : Clinic_ +2016-08-24 09:28:59,107 DEBUG: Start: Iteration 22 +2016-08-24 09:28:59,123 DEBUG: View 0 : 0.728476821192 +2016-08-24 09:28:59,130 DEBUG: View 1 : 0.350993377483 +2016-08-24 09:28:59,165 DEBUG: View 2 : 0.529801324503 +2016-08-24 09:28:59,172 DEBUG: View 3 : 0.437086092715 +2016-08-24 09:28:59,262 DEBUG: Best view : Methyl_ +2016-08-24 09:29:00,559 DEBUG: Start: Iteration 23 +2016-08-24 09:29:00,575 DEBUG: View 0 : 0.476821192053 +2016-08-24 09:29:00,583 DEBUG: View 1 : 0.609271523179 +2016-08-24 09:29:00,618 DEBUG: View 2 : 0.503311258278 +2016-08-24 09:29:00,625 DEBUG: View 3 : 0.496688741722 +2016-08-24 09:29:00,718 DEBUG: Best view : MiRNA__ +2016-08-24 09:29:02,130 DEBUG: Start: Iteration 24 +2016-08-24 09:29:02,147 DEBUG: View 0 : 0.615894039735 +2016-08-24 09:29:02,155 DEBUG: View 1 : 0.397350993377 +2016-08-24 09:29:02,193 DEBUG: View 2 : 0.476821192053 +2016-08-24 09:29:02,201 DEBUG: View 3 : 0.576158940397 +2016-08-24 09:29:02,307 DEBUG: Best view : Methyl_ +2016-08-24 09:29:03,725 DEBUG: Start: Iteration 25 +2016-08-24 09:29:03,741 DEBUG: View 0 : 0.443708609272 +2016-08-24 09:29:03,748 DEBUG: View 1 : 0.615894039735 +2016-08-24 09:29:03,783 DEBUG: View 2 : 0.443708609272 +2016-08-24 09:29:03,790 DEBUG: View 3 : 0.370860927152 +2016-08-24 09:29:03,888 DEBUG: Best view : MiRNA__ +2016-08-24 09:29:05,358 DEBUG: Start: Iteration 26 +2016-08-24 09:29:05,374 DEBUG: View 0 : 0.615894039735 +2016-08-24 09:29:05,381 DEBUG: View 1 : 0.556291390728 +2016-08-24 09:29:05,417 DEBUG: View 2 : 0.556291390728 +2016-08-24 09:29:05,425 DEBUG: View 3 : 0.41059602649 +2016-08-24 09:29:05,526 DEBUG: Best view : Methyl_ +2016-08-24 09:29:07,057 DEBUG: Start: Iteration 27 +2016-08-24 09:29:07,073 DEBUG: View 0 : 0.423841059603 +2016-08-24 09:29:07,081 DEBUG: View 1 : 0.688741721854 +2016-08-24 09:29:07,116 DEBUG: View 2 : 0.509933774834 +2016-08-24 09:29:07,123 DEBUG: View 3 : 0.503311258278 +2016-08-24 09:29:07,225 DEBUG: Best view : MiRNA__ +2016-08-24 09:29:08,808 DEBUG: Start: Iteration 28 +2016-08-24 09:29:08,824 DEBUG: View 0 : 0.543046357616 +2016-08-24 09:29:08,832 DEBUG: View 1 : 0.675496688742 +2016-08-24 09:29:08,867 DEBUG: View 2 : 0.549668874172 +2016-08-24 09:29:08,874 DEBUG: View 3 : 0.483443708609 +2016-08-24 09:29:08,979 DEBUG: Best view : MiRNA__ +2016-08-24 09:29:10,621 DEBUG: Start: Iteration 29 +2016-08-24 09:29:10,637 DEBUG: View 0 : 0.53642384106 +2016-08-24 09:29:10,645 DEBUG: View 1 : 0.701986754967 +2016-08-24 09:29:10,680 DEBUG: View 2 : 0.496688741722 +2016-08-24 09:29:10,687 DEBUG: View 3 : 0.516556291391 +2016-08-24 09:29:10,794 DEBUG: Best view : MiRNA__ +2016-08-24 09:29:12,491 DEBUG: Start: Iteration 30 +2016-08-24 09:29:12,507 DEBUG: View 0 : 0.483443708609 +2016-08-24 09:29:12,514 DEBUG: View 1 : 0.615894039735 +2016-08-24 09:29:12,550 DEBUG: View 2 : 0.390728476821 +2016-08-24 09:29:12,557 DEBUG: View 3 : 0.509933774834 +2016-08-24 09:29:12,666 DEBUG: Best view : MiRNA__ +2016-08-24 09:29:14,431 DEBUG: Start: Iteration 31 +2016-08-24 09:29:14,447 DEBUG: View 0 : 0.53642384106 +2016-08-24 09:29:14,454 DEBUG: View 1 : 0.58940397351 +2016-08-24 09:29:14,490 DEBUG: View 2 : 0.529801324503 +2016-08-24 09:29:14,497 DEBUG: View 3 : 0.549668874172 +2016-08-24 09:29:14,607 DEBUG: Best view : MiRNA__ +2016-08-24 09:29:16,428 DEBUG: Start: Iteration 32 +2016-08-24 09:29:16,445 DEBUG: View 0 : 0.523178807947 +2016-08-24 09:29:16,452 DEBUG: View 1 : 0.483443708609 +2016-08-24 09:29:16,488 DEBUG: View 2 : 0.470198675497 +2016-08-24 09:29:16,495 DEBUG: View 3 : 0.456953642384 +2016-08-24 09:29:16,608 DEBUG: Best view : Methyl_ +2016-08-24 09:29:18,508 DEBUG: Start: Iteration 33 +2016-08-24 09:29:18,524 DEBUG: View 0 : 0.582781456954 +2016-08-24 09:29:18,531 DEBUG: View 1 : 0.662251655629 +2016-08-24 09:29:18,568 DEBUG: View 2 : 0.476821192053 +2016-08-24 09:29:18,575 DEBUG: View 3 : 0.523178807947 +2016-08-24 09:29:18,688 DEBUG: Best view : MiRNA__ +2016-08-24 09:29:20,620 DEBUG: Start: Iteration 34 +2016-08-24 09:29:20,637 DEBUG: View 0 : 0.529801324503 +2016-08-24 09:29:20,644 DEBUG: View 1 : 0.450331125828 +2016-08-24 09:29:20,679 DEBUG: View 2 : 0.476821192053 +2016-08-24 09:29:20,686 DEBUG: View 3 : 0.596026490066 +2016-08-24 09:29:20,802 DEBUG: Best view : Clinic_ +2016-08-24 09:29:22,810 DEBUG: Start: Iteration 35 +2016-08-24 09:29:22,827 DEBUG: View 0 : 0.523178807947 +2016-08-24 09:29:22,834 DEBUG: View 1 : 0.582781456954 +2016-08-24 09:29:22,872 DEBUG: View 2 : 0.668874172185 +2016-08-24 09:29:22,880 DEBUG: View 3 : 0.58940397351 +2016-08-24 09:29:23,000 DEBUG: Best view : RANSeq_ +2016-08-24 09:29:25,109 DEBUG: Start: Iteration 36 +2016-08-24 09:29:25,125 DEBUG: View 0 : 0.46357615894 +2016-08-24 09:29:25,133 DEBUG: View 1 : 0.390728476821 +2016-08-24 09:29:25,170 DEBUG: View 2 : 0.384105960265 +2016-08-24 09:29:25,178 DEBUG: View 3 : 0.53642384106 +2016-08-24 09:29:25,307 DEBUG: Best view : Clinic_ +2016-08-24 09:29:27,522 DEBUG: Start: Iteration 37 +2016-08-24 09:29:27,538 DEBUG: View 0 : 0.635761589404 +2016-08-24 09:29:27,545 DEBUG: View 1 : 0.476821192053 +2016-08-24 09:29:27,580 DEBUG: View 2 : 0.509933774834 +2016-08-24 09:29:27,588 DEBUG: View 3 : 0.523178807947 +2016-08-24 09:29:27,714 DEBUG: Best view : Methyl_ +2016-08-24 09:29:29,889 DEBUG: Start: Iteration 38 +2016-08-24 09:29:29,905 DEBUG: View 0 : 0.569536423841 +2016-08-24 09:29:29,912 DEBUG: View 1 : 0.64238410596 +2016-08-24 09:29:29,948 DEBUG: View 2 : 0.556291390728 +2016-08-24 09:29:29,955 DEBUG: View 3 : 0.423841059603 +2016-08-24 09:29:30,079 DEBUG: Best view : MiRNA__ +2016-08-24 09:29:32,282 DEBUG: Start: Iteration 39 +2016-08-24 09:29:32,298 DEBUG: View 0 : 0.549668874172 +2016-08-24 09:29:32,305 DEBUG: View 1 : 0.562913907285 +2016-08-24 09:29:32,341 DEBUG: View 2 : 0.403973509934 +2016-08-24 09:29:32,348 DEBUG: View 3 : 0.503311258278 +2016-08-24 09:29:32,473 DEBUG: Best view : MiRNA__ +2016-08-24 09:29:34,735 DEBUG: Start: Iteration 40 +2016-08-24 09:29:34,751 DEBUG: View 0 : 0.569536423841 +2016-08-24 09:29:34,760 DEBUG: View 1 : 0.437086092715 +2016-08-24 09:29:34,797 DEBUG: View 2 : 0.46357615894 +2016-08-24 09:29:34,804 DEBUG: View 3 : 0.503311258278 +2016-08-24 09:29:34,933 DEBUG: Best view : Methyl_ +2016-08-24 09:29:37,258 DEBUG: Start: Iteration 41 +2016-08-24 09:29:37,274 DEBUG: View 0 : 0.549668874172 +2016-08-24 09:29:37,281 DEBUG: View 1 : 0.708609271523 +2016-08-24 09:29:37,316 DEBUG: View 2 : 0.41059602649 +2016-08-24 09:29:37,323 DEBUG: View 3 : 0.437086092715 +2016-08-24 09:29:37,453 DEBUG: Best view : MiRNA__ +2016-08-24 09:29:39,827 DEBUG: Start: Iteration 42 +2016-08-24 09:29:39,843 DEBUG: View 0 : 0.615894039735 +2016-08-24 09:29:39,850 DEBUG: View 1 : 0.549668874172 +2016-08-24 09:29:39,886 DEBUG: View 2 : 0.562913907285 +2016-08-24 09:29:39,893 DEBUG: View 3 : 0.543046357616 +2016-08-24 09:29:40,025 DEBUG: Best view : Methyl_ +2016-08-24 09:29:42,592 DEBUG: Start: Iteration 43 +2016-08-24 09:29:42,611 DEBUG: View 0 : 0.602649006623 +2016-08-24 09:29:42,620 DEBUG: View 1 : 0.549668874172 +2016-08-24 09:29:42,664 DEBUG: View 2 : 0.450331125828 +2016-08-24 09:29:42,673 DEBUG: View 3 : 0.549668874172 +2016-08-24 09:29:42,907 DEBUG: Best view : Methyl_ +2016-08-24 09:29:45,611 DEBUG: Start: Iteration 44 +2016-08-24 09:29:45,627 DEBUG: View 0 : 0.344370860927 +2016-08-24 09:29:45,635 DEBUG: View 1 : 0.582781456954 +2016-08-24 09:29:45,672 DEBUG: View 2 : 0.556291390728 +2016-08-24 09:29:45,679 DEBUG: View 3 : 0.450331125828 +2016-08-24 09:29:45,821 DEBUG: Best view : MiRNA__ +2016-08-24 09:29:48,520 DEBUG: Start: Iteration 45 +2016-08-24 09:29:48,539 DEBUG: View 0 : 0.662251655629 +2016-08-24 09:29:48,548 DEBUG: View 1 : 0.596026490066 +2016-08-24 09:29:48,589 DEBUG: View 2 : 0.549668874172 +2016-08-24 09:29:48,597 DEBUG: View 3 : 0.483443708609 +2016-08-24 09:29:48,760 DEBUG: Best view : Methyl_ +2016-08-24 09:29:51,441 DEBUG: Start: Iteration 46 +2016-08-24 09:29:51,457 DEBUG: View 0 : 0.523178807947 +2016-08-24 09:29:51,466 DEBUG: View 1 : 0.64238410596 +2016-08-24 09:29:51,502 DEBUG: View 2 : 0.562913907285 +2016-08-24 09:29:51,510 DEBUG: View 3 : 0.430463576159 +2016-08-24 09:29:51,667 DEBUG: Best view : MiRNA__ +2016-08-24 09:29:54,334 DEBUG: Start: Iteration 47 +2016-08-24 09:29:54,350 DEBUG: View 0 : 0.437086092715 +2016-08-24 09:29:54,358 DEBUG: View 1 : 0.53642384106 +2016-08-24 09:29:54,393 DEBUG: View 2 : 0.437086092715 +2016-08-24 09:29:54,401 DEBUG: View 3 : 0.483443708609 +2016-08-24 09:29:54,544 DEBUG: Best view : MiRNA__ +2016-08-24 09:29:57,261 DEBUG: Start: Iteration 48 +2016-08-24 09:29:57,277 DEBUG: View 0 : 0.53642384106 +2016-08-24 09:29:57,285 DEBUG: View 1 : 0.569536423841 +2016-08-24 09:29:57,320 DEBUG: View 2 : 0.562913907285 +2016-08-24 09:29:57,327 DEBUG: View 3 : 0.456953642384 +2016-08-24 09:29:57,473 DEBUG: Best view : MiRNA__ +2016-08-24 09:30:00,260 DEBUG: Start: Iteration 49 +2016-08-24 09:30:00,276 DEBUG: View 0 : 0.509933774834 +2016-08-24 09:30:00,283 DEBUG: View 1 : 0.41059602649 +2016-08-24 09:30:00,319 DEBUG: View 2 : 0.562913907285 +2016-08-24 09:30:00,326 DEBUG: View 3 : 0.496688741722 +2016-08-24 09:30:00,474 DEBUG: Best view : RANSeq_ +2016-08-24 09:30:03,315 DEBUG: Start: Iteration 50 +2016-08-24 09:30:03,331 DEBUG: View 0 : 0.569536423841 +2016-08-24 09:30:03,338 DEBUG: View 1 : 0.437086092715 +2016-08-24 09:30:03,373 DEBUG: View 2 : 0.430463576159 +2016-08-24 09:30:03,381 DEBUG: View 3 : 0.503311258278 +2016-08-24 09:30:03,531 DEBUG: Best view : Methyl_ +2016-08-24 09:30:06,430 DEBUG: Start: Iteration 51 +2016-08-24 09:30:06,446 DEBUG: View 0 : 0.476821192053 +2016-08-24 09:30:06,453 DEBUG: View 1 : 0.602649006623 +2016-08-24 09:30:06,489 DEBUG: View 2 : 0.556291390728 +2016-08-24 09:30:06,496 DEBUG: View 3 : 0.609271523179 +2016-08-24 09:30:06,648 DEBUG: Best view : Clinic_ +2016-08-24 09:30:09,800 DEBUG: Start: Iteration 52 +2016-08-24 09:30:09,818 DEBUG: View 0 : 0.64238410596 +2016-08-24 09:30:09,826 DEBUG: View 1 : 0.490066225166 +2016-08-24 09:30:09,861 DEBUG: View 2 : 0.423841059603 +2016-08-24 09:30:09,868 DEBUG: View 3 : 0.470198675497 +2016-08-24 09:30:10,026 DEBUG: Best view : Methyl_ +2016-08-24 09:30:13,052 INFO: Start: Classification +2016-08-24 09:30:20,660 INFO: Done: Fold number 1 +2016-08-24 09:30:20,660 INFO: Start: Fold number 2 +2016-08-24 09:30:22,264 DEBUG: Start: Iteration 1 +2016-08-24 09:30:22,279 DEBUG: View 0 : 0.62962962963 +2016-08-24 09:30:22,287 DEBUG: View 1 : 0.62962962963 +2016-08-24 09:30:22,315 DEBUG: View 2 : 0.62962962963 +2016-08-24 09:30:22,323 DEBUG: View 3 : 0.62962962963 +2016-08-24 09:30:22,364 DEBUG: Best view : Methyl_ +2016-08-24 09:30:22,443 DEBUG: Start: Iteration 2 +2016-08-24 09:30:22,461 DEBUG: View 0 : 0.432098765432 +2016-08-24 09:30:22,468 DEBUG: View 1 : 0.345679012346 +2016-08-24 09:30:22,506 DEBUG: View 2 : 0.37037037037 +2016-08-24 09:30:22,514 DEBUG: View 3 : 0.598765432099 +2016-08-24 09:30:22,560 DEBUG: Best view : Clinic_ +2016-08-24 09:30:22,701 DEBUG: Start: Iteration 3 +2016-08-24 09:30:22,718 DEBUG: View 0 : 0.481481481481 +2016-08-24 09:30:22,726 DEBUG: View 1 : 0.425925925926 +2016-08-24 09:30:22,764 DEBUG: View 2 : 0.555555555556 +2016-08-24 09:30:22,772 DEBUG: View 3 : 0.444444444444 +2016-08-24 09:30:22,827 DEBUG: Best view : RANSeq_ +2016-08-24 09:30:23,047 DEBUG: Start: Iteration 4 +2016-08-24 09:30:23,064 DEBUG: View 0 : 0.635802469136 +2016-08-24 09:30:23,072 DEBUG: View 1 : 0.549382716049 +2016-08-24 09:30:23,109 DEBUG: View 2 : 0.450617283951 +2016-08-24 09:30:23,117 DEBUG: View 3 : 0.598765432099 +2016-08-24 09:30:23,174 DEBUG: Best view : Methyl_ +2016-08-24 09:30:23,451 DEBUG: Start: Iteration 5 +2016-08-24 09:30:23,468 DEBUG: View 0 : 0.462962962963 +2016-08-24 09:30:23,476 DEBUG: View 1 : 0.364197530864 +2016-08-24 09:30:23,513 DEBUG: View 2 : 0.469135802469 +2016-08-24 09:30:23,521 DEBUG: View 3 : 0.524691358025 +2016-08-24 09:30:23,579 DEBUG: Best view : Clinic_ +2016-08-24 09:30:23,913 DEBUG: Start: Iteration 6 +2016-08-24 09:30:23,929 DEBUG: View 0 : 0.592592592593 +2016-08-24 09:30:23,937 DEBUG: View 1 : 0.666666666667 +2016-08-24 09:30:23,974 DEBUG: View 2 : 0.493827160494 +2016-08-24 09:30:23,981 DEBUG: View 3 : 0.549382716049 +2016-08-24 09:30:24,042 DEBUG: Best view : MiRNA__ +2016-08-24 09:30:24,446 DEBUG: Start: Iteration 7 +2016-08-24 09:30:24,463 DEBUG: View 0 : 0.413580246914 +2016-08-24 09:30:24,471 DEBUG: View 1 : 0.450617283951 +2016-08-24 09:30:24,509 DEBUG: View 2 : 0.432098765432 +2016-08-24 09:30:24,517 DEBUG: View 3 : 0.401234567901 +2016-08-24 09:30:24,517 WARNING: All bad for iteration 6 +2016-08-24 09:30:24,581 DEBUG: Best view : Clinic_ +2016-08-24 09:30:25,033 DEBUG: Start: Iteration 8 +2016-08-24 09:30:25,050 DEBUG: View 0 : 0.413580246914 +2016-08-24 09:30:25,058 DEBUG: View 1 : 0.648148148148 +2016-08-24 09:30:25,095 DEBUG: View 2 : 0.598765432099 +2016-08-24 09:30:25,102 DEBUG: View 3 : 0.549382716049 +2016-08-24 09:30:25,168 DEBUG: Best view : MiRNA__ +2016-08-24 09:30:25,678 DEBUG: Start: Iteration 9 +2016-08-24 09:30:25,695 DEBUG: View 0 : 0.549382716049 +2016-08-24 09:30:25,703 DEBUG: View 1 : 0.549382716049 +2016-08-24 09:30:25,740 DEBUG: View 2 : 0.567901234568 +2016-08-24 09:30:25,748 DEBUG: View 3 : 0.530864197531 +2016-08-24 09:30:25,815 DEBUG: Best view : MiRNA__ +2016-08-24 09:30:26,384 DEBUG: Start: Iteration 10 +2016-08-24 09:30:26,401 DEBUG: View 0 : 0.716049382716 +2016-08-24 09:30:26,409 DEBUG: View 1 : 0.524691358025 +2016-08-24 09:30:26,445 DEBUG: View 2 : 0.444444444444 +2016-08-24 09:30:26,453 DEBUG: View 3 : 0.395061728395 +2016-08-24 09:30:26,522 DEBUG: Best view : Methyl_ +2016-08-24 09:30:27,154 DEBUG: Start: Iteration 11 +2016-08-24 09:30:27,171 DEBUG: View 0 : 0.407407407407 +2016-08-24 09:30:27,179 DEBUG: View 1 : 0.506172839506 +2016-08-24 09:30:27,216 DEBUG: View 2 : 0.469135802469 +2016-08-24 09:30:27,223 DEBUG: View 3 : 0.506172839506 +2016-08-24 09:30:27,295 DEBUG: Best view : Clinic_ +2016-08-24 09:30:27,985 DEBUG: Start: Iteration 12 +2016-08-24 09:30:28,001 DEBUG: View 0 : 0.524691358025 +2016-08-24 09:30:28,009 DEBUG: View 1 : 0.586419753086 +2016-08-24 09:30:28,046 DEBUG: View 2 : 0.543209876543 +2016-08-24 09:30:28,054 DEBUG: View 3 : 0.617283950617 +2016-08-24 09:30:28,128 DEBUG: Best view : MiRNA__ +2016-08-24 09:30:28,887 DEBUG: Start: Iteration 13 +2016-08-24 09:30:28,904 DEBUG: View 0 : 0.567901234568 +2016-08-24 09:30:28,911 DEBUG: View 1 : 0.648148148148 +2016-08-24 09:30:28,948 DEBUG: View 2 : 0.432098765432 +2016-08-24 09:30:28,956 DEBUG: View 3 : 0.395061728395 +2016-08-24 09:30:29,034 DEBUG: Best view : MiRNA__ +2016-08-24 09:30:29,843 DEBUG: Start: Iteration 14 +2016-08-24 09:30:29,860 DEBUG: View 0 : 0.5 +2016-08-24 09:30:29,868 DEBUG: View 1 : 0.716049382716 +2016-08-24 09:30:29,905 DEBUG: View 2 : 0.487654320988 +2016-08-24 09:30:29,912 DEBUG: View 3 : 0.537037037037 +2016-08-24 09:30:29,991 DEBUG: Best view : MiRNA__ +2016-08-24 09:30:30,859 DEBUG: Start: Iteration 15 +2016-08-24 09:30:30,876 DEBUG: View 0 : 0.487654320988 +2016-08-24 09:30:30,884 DEBUG: View 1 : 0.70987654321 +2016-08-24 09:30:30,921 DEBUG: View 2 : 0.425925925926 +2016-08-24 09:30:30,929 DEBUG: View 3 : 0.462962962963 +2016-08-24 09:30:31,012 DEBUG: Best view : MiRNA__ +2016-08-24 09:30:31,939 DEBUG: Start: Iteration 16 +2016-08-24 09:30:31,956 DEBUG: View 0 : 0.574074074074 +2016-08-24 09:30:31,963 DEBUG: View 1 : 0.364197530864 +2016-08-24 09:30:32,000 DEBUG: View 2 : 0.592592592593 +2016-08-24 09:30:32,008 DEBUG: View 3 : 0.444444444444 +2016-08-24 09:30:32,090 DEBUG: Best view : Methyl_ +2016-08-24 09:30:33,081 DEBUG: Start: Iteration 17 +2016-08-24 09:30:33,098 DEBUG: View 0 : 0.58024691358 +2016-08-24 09:30:33,106 DEBUG: View 1 : 0.413580246914 +2016-08-24 09:30:33,143 DEBUG: View 2 : 0.5 +2016-08-24 09:30:33,150 DEBUG: View 3 : 0.543209876543 +2016-08-24 09:30:33,236 DEBUG: Best view : Methyl_ +2016-08-24 09:30:34,291 DEBUG: Start: Iteration 18 +2016-08-24 09:30:34,307 DEBUG: View 0 : 0.530864197531 +2016-08-24 09:30:34,315 DEBUG: View 1 : 0.623456790123 +2016-08-24 09:30:34,352 DEBUG: View 2 : 0.444444444444 +2016-08-24 09:30:34,360 DEBUG: View 3 : 0.493827160494 +2016-08-24 09:30:34,448 DEBUG: Best view : MiRNA__ +2016-08-24 09:30:35,560 DEBUG: Start: Iteration 19 +2016-08-24 09:30:35,576 DEBUG: View 0 : 0.41975308642 +2016-08-24 09:30:35,584 DEBUG: View 1 : 0.481481481481 +2016-08-24 09:30:35,621 DEBUG: View 2 : 0.432098765432 +2016-08-24 09:30:35,628 DEBUG: View 3 : 0.518518518519 +2016-08-24 09:30:35,719 DEBUG: Best view : Clinic_ +2016-08-24 09:30:36,890 DEBUG: Start: Iteration 20 +2016-08-24 09:30:36,907 DEBUG: View 0 : 0.518518518519 +2016-08-24 09:30:36,915 DEBUG: View 1 : 0.283950617284 +2016-08-24 09:30:36,952 DEBUG: View 2 : 0.58024691358 +2016-08-24 09:30:36,960 DEBUG: View 3 : 0.487654320988 +2016-08-24 09:30:37,053 DEBUG: Best view : RANSeq_ +2016-08-24 09:30:38,326 DEBUG: Start: Iteration 21 +2016-08-24 09:30:38,343 DEBUG: View 0 : 0.450617283951 +2016-08-24 09:30:38,351 DEBUG: View 1 : 0.623456790123 +2016-08-24 09:30:38,389 DEBUG: View 2 : 0.456790123457 +2016-08-24 09:30:38,397 DEBUG: View 3 : 0.462962962963 +2016-08-24 09:30:38,493 DEBUG: Best view : MiRNA__ +2016-08-24 09:30:39,813 DEBUG: Start: Iteration 22 +2016-08-24 09:30:39,831 DEBUG: View 0 : 0.598765432099 +2016-08-24 09:30:39,839 DEBUG: View 1 : 0.345679012346 +2016-08-24 09:30:39,876 DEBUG: View 2 : 0.462962962963 +2016-08-24 09:30:39,884 DEBUG: View 3 : 0.604938271605 +2016-08-24 09:30:39,984 DEBUG: Best view : Methyl_ +2016-08-24 09:30:41,351 DEBUG: Start: Iteration 23 +2016-08-24 09:30:41,368 DEBUG: View 0 : 0.524691358025 +2016-08-24 09:30:41,375 DEBUG: View 1 : 0.549382716049 +2016-08-24 09:30:41,413 DEBUG: View 2 : 0.635802469136 +2016-08-24 09:30:41,420 DEBUG: View 3 : 0.487654320988 +2016-08-24 09:30:41,519 DEBUG: Best view : RANSeq_ +2016-08-24 09:30:42,958 DEBUG: Start: Iteration 24 +2016-08-24 09:30:42,975 DEBUG: View 0 : 0.679012345679 +2016-08-24 09:30:42,983 DEBUG: View 1 : 0.401234567901 +2016-08-24 09:30:43,020 DEBUG: View 2 : 0.592592592593 +2016-08-24 09:30:43,027 DEBUG: View 3 : 0.456790123457 +2016-08-24 09:30:43,129 DEBUG: Best view : Methyl_ +2016-08-24 09:30:44,627 DEBUG: Start: Iteration 25 +2016-08-24 09:30:44,644 DEBUG: View 0 : 0.487654320988 +2016-08-24 09:30:44,652 DEBUG: View 1 : 0.654320987654 +2016-08-24 09:30:44,689 DEBUG: View 2 : 0.450617283951 +2016-08-24 09:30:44,696 DEBUG: View 3 : 0.58024691358 +2016-08-24 09:30:44,800 DEBUG: Best view : MiRNA__ +2016-08-24 09:30:46,374 DEBUG: Start: Iteration 26 +2016-08-24 09:30:46,392 DEBUG: View 0 : 0.425925925926 +2016-08-24 09:30:46,400 DEBUG: View 1 : 0.376543209877 +2016-08-24 09:30:46,439 DEBUG: View 2 : 0.512345679012 +2016-08-24 09:30:46,446 DEBUG: View 3 : 0.475308641975 +2016-08-24 09:30:46,558 DEBUG: Best view : RANSeq_ +2016-08-24 09:30:48,255 DEBUG: Start: Iteration 27 +2016-08-24 09:30:48,272 DEBUG: View 0 : 0.586419753086 +2016-08-24 09:30:48,280 DEBUG: View 1 : 0.549382716049 +2016-08-24 09:30:48,318 DEBUG: View 2 : 0.5 +2016-08-24 09:30:48,326 DEBUG: View 3 : 0.432098765432 +2016-08-24 09:30:48,434 DEBUG: Best view : MiRNA__ +2016-08-24 09:30:50,179 DEBUG: Start: Iteration 28 +2016-08-24 09:30:50,196 DEBUG: View 0 : 0.524691358025 +2016-08-24 09:30:50,204 DEBUG: View 1 : 0.41975308642 +2016-08-24 09:30:50,242 DEBUG: View 2 : 0.481481481481 +2016-08-24 09:30:50,250 DEBUG: View 3 : 0.549382716049 +2016-08-24 09:30:50,361 DEBUG: Best view : Methyl_ +2016-08-24 09:30:52,134 DEBUG: Start: Iteration 29 +2016-08-24 09:30:52,151 DEBUG: View 0 : 0.438271604938 +2016-08-24 09:30:52,159 DEBUG: View 1 : 0.672839506173 +2016-08-24 09:30:52,197 DEBUG: View 2 : 0.617283950617 +2016-08-24 09:30:52,205 DEBUG: View 3 : 0.407407407407 +2016-08-24 09:30:52,321 DEBUG: Best view : MiRNA__ +2016-08-24 09:30:54,169 DEBUG: Start: Iteration 30 +2016-08-24 09:30:54,186 DEBUG: View 0 : 0.475308641975 +2016-08-24 09:30:54,194 DEBUG: View 1 : 0.487654320988 +2016-08-24 09:30:54,232 DEBUG: View 2 : 0.58024691358 +2016-08-24 09:30:54,239 DEBUG: View 3 : 0.376543209877 +2016-08-24 09:30:54,355 DEBUG: Best view : RANSeq_ +2016-08-24 09:30:56,248 DEBUG: Start: Iteration 31 +2016-08-24 09:30:56,266 DEBUG: View 0 : 0.586419753086 +2016-08-24 09:30:56,274 DEBUG: View 1 : 0.407407407407 +2016-08-24 09:30:56,312 DEBUG: View 2 : 0.66049382716 +2016-08-24 09:30:56,320 DEBUG: View 3 : 0.549382716049 +2016-08-24 09:30:56,442 DEBUG: Best view : RANSeq_ +2016-08-24 09:30:58,403 DEBUG: Start: Iteration 32 +2016-08-24 09:30:58,420 DEBUG: View 0 : 0.469135802469 +2016-08-24 09:30:58,428 DEBUG: View 1 : 0.734567901235 +2016-08-24 09:30:58,465 DEBUG: View 2 : 0.567901234568 +2016-08-24 09:30:58,472 DEBUG: View 3 : 0.506172839506 +2016-08-24 09:30:58,592 DEBUG: Best view : MiRNA__ +2016-08-24 09:31:00,607 DEBUG: Start: Iteration 33 +2016-08-24 09:31:00,623 DEBUG: View 0 : 0.493827160494 +2016-08-24 09:31:00,631 DEBUG: View 1 : 0.685185185185 +2016-08-24 09:31:00,668 DEBUG: View 2 : 0.41975308642 +2016-08-24 09:31:00,676 DEBUG: View 3 : 0.487654320988 +2016-08-24 09:31:00,798 DEBUG: Best view : MiRNA__ +2016-08-24 09:31:02,869 DEBUG: Start: Iteration 34 +2016-08-24 09:31:02,885 DEBUG: View 0 : 0.425925925926 +2016-08-24 09:31:02,893 DEBUG: View 1 : 0.567901234568 +2016-08-24 09:31:02,931 DEBUG: View 2 : 0.425925925926 +2016-08-24 09:31:02,939 DEBUG: View 3 : 0.462962962963 +2016-08-24 09:31:03,064 DEBUG: Best view : MiRNA__ +2016-08-24 09:31:05,264 DEBUG: Start: Iteration 35 +2016-08-24 09:31:05,281 DEBUG: View 0 : 0.611111111111 +2016-08-24 09:31:05,289 DEBUG: View 1 : 0.444444444444 +2016-08-24 09:31:05,327 DEBUG: View 2 : 0.456790123457 +2016-08-24 09:31:05,334 DEBUG: View 3 : 0.567901234568 +2016-08-24 09:31:05,465 DEBUG: Best view : Methyl_ +2016-08-24 09:31:07,724 DEBUG: Start: Iteration 36 +2016-08-24 09:31:07,741 DEBUG: View 0 : 0.296296296296 +2016-08-24 09:31:07,749 DEBUG: View 1 : 0.635802469136 +2016-08-24 09:31:07,787 DEBUG: View 2 : 0.487654320988 +2016-08-24 09:31:07,795 DEBUG: View 3 : 0.506172839506 +2016-08-24 09:31:07,928 DEBUG: Best view : MiRNA__ +2016-08-24 09:31:10,248 DEBUG: Start: Iteration 37 +2016-08-24 09:31:10,264 DEBUG: View 0 : 0.364197530864 +2016-08-24 09:31:10,272 DEBUG: View 1 : 0.623456790123 +2016-08-24 09:31:10,309 DEBUG: View 2 : 0.518518518519 +2016-08-24 09:31:10,317 DEBUG: View 3 : 0.586419753086 +2016-08-24 09:31:10,448 DEBUG: Best view : MiRNA__ +2016-08-24 09:31:12,764 DEBUG: Start: Iteration 38 +2016-08-24 09:31:12,781 DEBUG: View 0 : 0.567901234568 +2016-08-24 09:31:12,789 DEBUG: View 1 : 0.66049382716 +2016-08-24 09:31:12,825 DEBUG: View 2 : 0.561728395062 +2016-08-24 09:31:12,833 DEBUG: View 3 : 0.41975308642 +2016-08-24 09:31:12,966 DEBUG: Best view : MiRNA__ +2016-08-24 09:31:15,340 DEBUG: Start: Iteration 39 +2016-08-24 09:31:15,356 DEBUG: View 0 : 0.432098765432 +2016-08-24 09:31:15,364 DEBUG: View 1 : 0.654320987654 +2016-08-24 09:31:15,402 DEBUG: View 2 : 0.574074074074 +2016-08-24 09:31:15,410 DEBUG: View 3 : 0.450617283951 +2016-08-24 09:31:15,550 DEBUG: Best view : MiRNA__ +2016-08-24 09:31:17,981 DEBUG: Start: Iteration 40 +2016-08-24 09:31:17,998 DEBUG: View 0 : 0.598765432099 +2016-08-24 09:31:18,006 DEBUG: View 1 : 0.623456790123 +2016-08-24 09:31:18,043 DEBUG: View 2 : 0.555555555556 +2016-08-24 09:31:18,051 DEBUG: View 3 : 0.530864197531 +2016-08-24 09:31:18,189 DEBUG: Best view : MiRNA__ +2016-08-24 09:31:20,681 DEBUG: Start: Iteration 41 +2016-08-24 09:31:20,699 DEBUG: View 0 : 0.5 +2016-08-24 09:31:20,706 DEBUG: View 1 : 0.716049382716 +2016-08-24 09:31:20,744 DEBUG: View 2 : 0.388888888889 +2016-08-24 09:31:20,751 DEBUG: View 3 : 0.617283950617 +2016-08-24 09:31:20,895 DEBUG: Best view : MiRNA__ +2016-08-24 09:31:23,510 DEBUG: Start: Iteration 42 +2016-08-24 09:31:23,528 DEBUG: View 0 : 0.388888888889 +2016-08-24 09:31:23,536 DEBUG: View 1 : 0.654320987654 +2016-08-24 09:31:23,574 DEBUG: View 2 : 0.58024691358 +2016-08-24 09:31:23,582 DEBUG: View 3 : 0.407407407407 +2016-08-24 09:31:23,729 DEBUG: Best view : MiRNA__ +2016-08-24 09:31:26,574 DEBUG: Start: Iteration 43 +2016-08-24 09:31:26,592 DEBUG: View 0 : 0.481481481481 +2016-08-24 09:31:26,600 DEBUG: View 1 : 0.604938271605 +2016-08-24 09:31:26,638 DEBUG: View 2 : 0.481481481481 +2016-08-24 09:31:26,646 DEBUG: View 3 : 0.407407407407 +2016-08-24 09:31:26,793 DEBUG: Best view : MiRNA__ +2016-08-24 09:31:29,678 DEBUG: Start: Iteration 44 +2016-08-24 09:31:29,697 DEBUG: View 0 : 0.462962962963 +2016-08-24 09:31:29,706 DEBUG: View 1 : 0.561728395062 +2016-08-24 09:31:29,749 DEBUG: View 2 : 0.537037037037 +2016-08-24 09:31:29,758 DEBUG: View 3 : 0.543209876543 +2016-08-24 09:31:29,929 DEBUG: Best view : MiRNA__ +2016-08-24 09:31:32,694 DEBUG: Start: Iteration 45 +2016-08-24 09:31:32,711 DEBUG: View 0 : 0.530864197531 +2016-08-24 09:31:32,719 DEBUG: View 1 : 0.679012345679 +2016-08-24 09:31:32,756 DEBUG: View 2 : 0.358024691358 +2016-08-24 09:31:32,764 DEBUG: View 3 : 0.518518518519 +2016-08-24 09:31:32,917 DEBUG: Best view : MiRNA__ +2016-08-24 09:31:35,983 DEBUG: Start: Iteration 46 +2016-08-24 09:31:36,000 DEBUG: View 0 : 0.475308641975 +2016-08-24 09:31:36,008 DEBUG: View 1 : 0.382716049383 +2016-08-24 09:31:36,045 DEBUG: View 2 : 0.493827160494 +2016-08-24 09:31:36,053 DEBUG: View 3 : 0.475308641975 +2016-08-24 09:31:36,053 WARNING: All bad for iteration 45 +2016-08-24 09:31:36,209 DEBUG: Best view : RANSeq_ +2016-08-24 09:31:39,103 DEBUG: Start: Iteration 47 +2016-08-24 09:31:39,122 DEBUG: View 0 : 0.611111111111 +2016-08-24 09:31:39,130 DEBUG: View 1 : 0.512345679012 +2016-08-24 09:31:39,174 DEBUG: View 2 : 0.462962962963 +2016-08-24 09:31:39,182 DEBUG: View 3 : 0.506172839506 +2016-08-24 09:31:39,352 DEBUG: Best view : Methyl_ +2016-08-24 09:31:42,556 DEBUG: Start: Iteration 48 +2016-08-24 09:31:42,572 DEBUG: View 0 : 0.530864197531 +2016-08-24 09:31:42,580 DEBUG: View 1 : 0.604938271605 +2016-08-24 09:31:42,619 DEBUG: View 2 : 0.518518518519 +2016-08-24 09:31:42,628 DEBUG: View 3 : 0.407407407407 +2016-08-24 09:31:42,789 DEBUG: Best view : MiRNA__ +2016-08-24 09:31:46,061 DEBUG: Start: Iteration 49 +2016-08-24 09:31:46,078 DEBUG: View 0 : 0.413580246914 +2016-08-24 09:31:46,086 DEBUG: View 1 : 0.549382716049 +2016-08-24 09:31:46,124 DEBUG: View 2 : 0.62962962963 +2016-08-24 09:31:46,131 DEBUG: View 3 : 0.407407407407 +2016-08-24 09:31:46,294 DEBUG: Best view : RANSeq_ diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093148-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093148-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..81280fafd9f5ba7f5f428ea342b0a231f53b3de1 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093148-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log @@ -0,0 +1,30 @@ +2016-08-24 09:31:48,286 INFO: Start: Read HDF5 Database Files for ModifiedMultiOmic +2016-08-24 09:31:48,286 INFO: Info: Labels used: No, Yes +2016-08-24 09:31:48,287 INFO: Info: Length of dataset:347 +2016-08-24 09:31:48,288 INFO: ### Main Programm for Multiview Classification +2016-08-24 09:31:48,288 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1 +2016-08-24 09:31:48,289 INFO: Info: Shape of Methyl_ :(347, 25978) +2016-08-24 09:31:48,289 INFO: Info: Shape of MiRNA__ :(347, 1046) +2016-08-24 09:31:48,289 INFO: Info: Shape of RANSeq_ :(347, 73599) +2016-08-24 09:31:48,290 INFO: Info: Shape of Clinic_ :(347, 127) +2016-08-24 09:31:48,290 INFO: Done: Read Database Files +2016-08-24 09:31:48,290 INFO: Start: Determine validation split for ratio 0.7 +2016-08-24 09:31:48,293 INFO: Done: Determine validation split +2016-08-24 09:31:48,293 INFO: Start: Determine 2 folds +2016-08-24 09:31:48,304 INFO: Info: Length of Learning Sets: 122 +2016-08-24 09:31:48,304 INFO: Info: Length of Testing Sets: 122 +2016-08-24 09:31:48,304 INFO: Info: Length of Validation Set: 103 +2016-08-24 09:31:48,304 INFO: Done: Determine folds +2016-08-24 09:31:48,304 INFO: Start: Learning with Mumbo and 2 folds +2016-08-24 09:31:48,304 INFO: Start: Gridsearching best settings for monoview classifiers +2016-08-24 09:31:48,305 DEBUG: Start: Gridsearch for DecisionTree on Methyl_ +2016-08-24 09:31:55,692 DEBUG: 0.579596541787Poulet +2016-08-24 09:31:55,692 DEBUG: 0.592103746398Poulet +2016-08-24 09:31:55,693 DEBUG: 0.599135446686Poulet +2016-08-24 09:31:55,694 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:31:55,694 DEBUG: Start: Gridsearch for DecisionTree on MiRNA__ +2016-08-24 09:31:57,621 DEBUG: 0.502997118156Poulet +2016-08-24 09:31:57,621 DEBUG: 0.571354466859Poulet +2016-08-24 09:31:57,621 DEBUG: 0.575331412104Poulet +2016-08-24 09:31:57,621 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:31:57,622 DEBUG: Start: Gridsearch for DecisionTree on RANSeq_ diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093234-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093234-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..d2aff05edd9ca76570b2d7dc018eb6430a8c89a4 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093234-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log @@ -0,0 +1,27 @@ +2016-08-24 09:32:34,093 INFO: Start: Read HDF5 Database Files for ModifiedMultiOmic +2016-08-24 09:32:34,093 INFO: Info: Labels used: No, Yes +2016-08-24 09:32:34,094 INFO: Info: Length of dataset:347 +2016-08-24 09:32:34,095 INFO: ### Main Programm for Multiview Classification +2016-08-24 09:32:34,095 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1 +2016-08-24 09:32:34,096 INFO: Info: Shape of Methyl_ :(347, 25978) +2016-08-24 09:32:34,096 INFO: Info: Shape of MiRNA__ :(347, 1046) +2016-08-24 09:32:34,096 INFO: Info: Shape of RANSeq_ :(347, 73599) +2016-08-24 09:32:34,097 INFO: Info: Shape of Clinic_ :(347, 127) +2016-08-24 09:32:34,097 INFO: Done: Read Database Files +2016-08-24 09:32:34,097 INFO: Start: Determine validation split for ratio 0.7 +2016-08-24 09:32:34,100 INFO: Done: Determine validation split +2016-08-24 09:32:34,100 INFO: Start: Determine 2 folds +2016-08-24 09:32:34,111 INFO: Info: Length of Learning Sets: 122 +2016-08-24 09:32:34,111 INFO: Info: Length of Testing Sets: 122 +2016-08-24 09:32:34,111 INFO: Info: Length of Validation Set: 103 +2016-08-24 09:32:34,111 INFO: Done: Determine folds +2016-08-24 09:32:34,111 INFO: Start: Learning with Mumbo and 2 folds +2016-08-24 09:32:34,112 INFO: Start: Gridsearching best settings for monoview classifiers +2016-08-24 09:32:34,112 DEBUG: Start: Gridsearch for DecisionTree on Methyl_ +2016-08-24 09:32:41,471 DEBUG: 0.585014409222Poulet +2016-08-24 09:32:41,471 DEBUG: 0.596714697406Poulet +2016-08-24 09:32:41,472 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:32:41,472 DEBUG: Start: Gridsearch for DecisionTree on MiRNA__ +2016-08-24 09:32:43,398 DEBUG: 0.58386167147Poulet +2016-08-24 09:32:43,399 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:32:43,399 DEBUG: Start: Gridsearch for DecisionTree on RANSeq_ diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093312-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093312-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..3862f8c6dde772c5f7804dd85526bebd79f7d53e --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093312-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log @@ -0,0 +1,53 @@ +2016-08-24 09:33:12,122 INFO: Start: Read HDF5 Database Files for ModifiedMultiOmic +2016-08-24 09:33:12,123 INFO: Info: Labels used: No, Yes +2016-08-24 09:33:12,123 INFO: Info: Length of dataset:347 +2016-08-24 09:33:12,124 INFO: ### Main Programm for Multiview Classification +2016-08-24 09:33:12,124 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1 +2016-08-24 09:33:12,125 INFO: Info: Shape of Methyl_ :(347, 25978) +2016-08-24 09:33:12,125 INFO: Info: Shape of MiRNA__ :(347, 1046) +2016-08-24 09:33:12,125 INFO: Info: Shape of RANSeq_ :(347, 73599) +2016-08-24 09:33:12,126 INFO: Info: Shape of Clinic_ :(347, 127) +2016-08-24 09:33:12,126 INFO: Done: Read Database Files +2016-08-24 09:33:12,126 INFO: Start: Determine validation split for ratio 0.7 +2016-08-24 09:33:12,129 INFO: Done: Determine validation split +2016-08-24 09:33:12,129 INFO: Start: Determine 2 folds +2016-08-24 09:33:12,143 INFO: Info: Length of Learning Sets: 122 +2016-08-24 09:33:12,143 INFO: Info: Length of Testing Sets: 122 +2016-08-24 09:33:12,143 INFO: Info: Length of Validation Set: 103 +2016-08-24 09:33:12,143 INFO: Done: Determine folds +2016-08-24 09:33:12,143 INFO: Start: Learning with Mumbo and 2 folds +2016-08-24 09:33:12,143 INFO: Start: Gridsearching best settings for monoview classifiers +2016-08-24 09:33:12,143 DEBUG: Start: Gridsearch for DecisionTree on Methyl_ +2016-08-24 09:33:19,481 DEBUG: 0.596714697406Poulet +2016-08-24 09:33:19,481 DEBUG: 0.583227665706Poulet +2016-08-24 09:33:19,481 DEBUG: 0.591527377522Poulet +2016-08-24 09:33:19,481 DEBUG: 0.58288184438Poulet +2016-08-24 09:33:19,481 DEBUG: 0.535273775216Poulet +2016-08-24 09:33:19,481 DEBUG: 0.515619596542Poulet +2016-08-24 09:33:19,481 DEBUG: 0.523804034582Poulet +2016-08-24 09:33:19,481 DEBUG: 0.521556195965Poulet +2016-08-24 09:33:19,482 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:33:19,482 DEBUG: Start: Gridsearch for DecisionTree on MiRNA__ +2016-08-24 09:33:21,403 DEBUG: 0.58553314121Poulet +2016-08-24 09:33:21,403 DEBUG: 0.554178674352Poulet +2016-08-24 09:33:21,403 DEBUG: 0.53734870317Poulet +2016-08-24 09:33:21,403 DEBUG: 0.575792507205Poulet +2016-08-24 09:33:21,403 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:33:21,404 DEBUG: Start: Gridsearch for DecisionTree on RANSeq_ +2016-08-24 09:33:38,038 DEBUG: 0.576253602305Poulet +2016-08-24 09:33:38,038 DEBUG: 0.566109510086Poulet +2016-08-24 09:33:38,038 DEBUG: 0.577925072046Poulet +2016-08-24 09:33:38,039 DEBUG: 0.58144092219Poulet +2016-08-24 09:33:38,039 DEBUG: 0.502305475504Poulet +2016-08-24 09:33:38,039 DEBUG: 0.501613832853Poulet +2016-08-24 09:33:38,039 DEBUG: 0.50818443804Poulet +2016-08-24 09:33:38,039 DEBUG: 0.52795389049Poulet +2016-08-24 09:33:38,039 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:33:38,040 DEBUG: Start: Gridsearch for DecisionTree on Clinic_ +2016-08-24 09:33:39,777 DEBUG: 0.551296829971Poulet +2016-08-24 09:33:39,777 DEBUG: 0.591008645533Poulet +2016-08-24 09:33:39,777 DEBUG: 0.582478386167Poulet +2016-08-24 09:33:39,777 DEBUG: 0.567838616715Poulet +2016-08-24 09:33:39,777 DEBUG: 0.517002881844Poulet +2016-08-24 09:33:39,777 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:33:39,778 DEBUG: Start: Gridsearch for DecisionTree on MRNASeq diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093355-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093355-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..2c779d8c58a02ca2bdc27dcb7a71399efd035c26 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093355-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log @@ -0,0 +1,14742 @@ +2016-08-24 09:33:55,099 INFO: Start: Read HDF5 Database Files for ModifiedMultiOmic +2016-08-24 09:33:55,100 INFO: Info: Labels used: No, Yes +2016-08-24 09:33:55,100 INFO: Info: Length of dataset:347 +2016-08-24 09:33:55,101 INFO: ### Main Programm for Multiview Classification +2016-08-24 09:33:55,101 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1 +2016-08-24 09:33:55,102 INFO: Info: Shape of Methyl_ :(347, 25978) +2016-08-24 09:33:55,102 INFO: Info: Shape of MiRNA__ :(347, 1046) +2016-08-24 09:33:55,103 INFO: Info: Shape of RANSeq_ :(347, 73599) +2016-08-24 09:33:55,103 INFO: Info: Shape of Clinic_ :(347, 127) +2016-08-24 09:33:55,103 INFO: Done: Read Database Files +2016-08-24 09:33:55,103 INFO: Start: Determine validation split for ratio 0.7 +2016-08-24 09:33:55,107 INFO: Done: Determine validation split +2016-08-24 09:33:55,107 INFO: Start: Determine 2 folds +2016-08-24 09:33:55,116 INFO: Info: Length of Learning Sets: 122 +2016-08-24 09:33:55,116 INFO: Info: Length of Testing Sets: 122 +2016-08-24 09:33:55,116 INFO: Info: Length of Validation Set: 103 +2016-08-24 09:33:55,116 INFO: Done: Determine folds +2016-08-24 09:33:55,117 INFO: Start: Learning with Mumbo and 2 folds +2016-08-24 09:33:55,117 INFO: Start: Gridsearching best settings for monoview classifiers +2016-08-24 09:33:55,117 DEBUG: Start: Gridsearch for DecisionTree on Methyl_ +2016-08-24 09:34:02,435 DEBUG: 0.591988472622Poulet +2016-08-24 09:34:02,435 DEBUG: 0.58386167147Poulet +2016-08-24 09:34:02,435 DEBUG: 0.517752161383Poulet +2016-08-24 09:34:02,435 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:34:02,436 DEBUG: Start: Gridsearch for DecisionTree on MiRNA__ +2016-08-24 09:34:04,356 DEBUG: 0.533083573487Poulet +2016-08-24 09:34:04,356 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:34:04,357 DEBUG: Start: Gridsearch for DecisionTree on RANSeq_ +2016-08-24 09:34:20,901 DEBUG: 0.582997118156Poulet +2016-08-24 09:34:20,902 DEBUG: 0.549682997118Poulet +2016-08-24 09:34:20,902 DEBUG: 0.503746397695Poulet +2016-08-24 09:34:20,902 DEBUG: 0.50674351585Poulet +2016-08-24 09:34:20,902 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:34:20,903 DEBUG: Start: Gridsearch for DecisionTree on Clinic_ +2016-08-24 09:34:22,667 DEBUG: 0.567319884726Poulet +2016-08-24 09:34:22,667 DEBUG: 0.554409221902Poulet +2016-08-24 09:34:22,667 DEBUG: 0.504553314121Poulet +2016-08-24 09:34:22,667 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:34:22,668 DEBUG: Start: Gridsearch for DecisionTree on MRNASeq +2016-08-24 09:34:59,961 DEBUG: 0.553544668588Poulet +2016-08-24 09:34:59,961 DEBUG: 0.549452449568Poulet +2016-08-24 09:34:59,961 DEBUG: 0.53325648415Poulet +2016-08-24 09:34:59,962 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:34:59,962 INFO: Done: Gridsearching best settings for monoview classifiers +2016-08-24 09:34:59,962 INFO: Start: Fold number 1 +2016-08-24 09:35:01,610 DEBUG: Start: Iteration 1 +2016-08-24 09:35:01,630 DEBUG: View 0 : 0.615384615385 +2016-08-24 09:35:01,638 DEBUG: View 1 : 0.615384615385 +2016-08-24 09:35:01,679 DEBUG: View 2 : 0.615384615385 +2016-08-24 09:35:01,687 DEBUG: View 3 : 0.615384615385 +2016-08-24 09:35:01,730 DEBUG: Best view : Methyl_ +2016-08-24 09:35:01,811 DEBUG: Start: Iteration 2 +2016-08-24 09:35:01,829 DEBUG: View 0 : 0.666666666667 +2016-08-24 09:35:01,838 DEBUG: View 1 : 0.564102564103 +2016-08-24 09:35:01,876 DEBUG: View 2 : 0.564102564103 +2016-08-24 09:35:01,884 DEBUG: View 3 : 0.5 +2016-08-24 09:35:01,931 DEBUG: Best view : Methyl_ +2016-08-24 09:35:02,070 DEBUG: Start: Iteration 3 +2016-08-24 09:35:02,086 DEBUG: View 0 : 0.461538461538 +2016-08-24 09:35:02,094 DEBUG: View 1 : 0.538461538462 +2016-08-24 09:35:02,130 DEBUG: View 2 : 0.512820512821 +2016-08-24 09:35:02,138 DEBUG: View 3 : 0.5 +2016-08-24 09:35:02,191 DEBUG: Best view : MiRNA__ +2016-08-24 09:35:02,387 DEBUG: Start: Iteration 4 +2016-08-24 09:35:02,404 DEBUG: View 0 : 0.538461538462 +2016-08-24 09:35:02,412 DEBUG: View 1 : 0.525641025641 +2016-08-24 09:35:02,448 DEBUG: View 2 : 0.455128205128 +2016-08-24 09:35:02,456 DEBUG: View 3 : 0.512820512821 +2016-08-24 09:35:02,512 DEBUG: Best view : Methyl_ +2016-08-24 09:35:02,768 DEBUG: Start: Iteration 5 +2016-08-24 09:35:02,784 DEBUG: View 0 : 0.448717948718 +2016-08-24 09:35:02,792 DEBUG: View 1 : 0.647435897436 +2016-08-24 09:35:02,828 DEBUG: View 2 : 0.455128205128 +2016-08-24 09:35:02,836 DEBUG: View 3 : 0.461538461538 +2016-08-24 09:35:02,895 DEBUG: Best view : MiRNA__ +2016-08-24 09:35:03,209 DEBUG: Start: Iteration 6 +2016-08-24 09:35:03,225 DEBUG: View 0 : 0.628205128205 +2016-08-24 09:35:03,233 DEBUG: View 1 : 0.679487179487 +2016-08-24 09:35:03,269 DEBUG: View 2 : 0.391025641026 +2016-08-24 09:35:03,277 DEBUG: View 3 : 0.544871794872 +2016-08-24 09:35:03,339 DEBUG: Best view : MiRNA__ +2016-08-24 09:35:03,710 DEBUG: Start: Iteration 7 +2016-08-24 09:35:03,727 DEBUG: View 0 : 0.538461538462 +2016-08-24 09:35:03,734 DEBUG: View 1 : 0.512820512821 +2016-08-24 09:35:03,771 DEBUG: View 2 : 0.391025641026 +2016-08-24 09:35:03,778 DEBUG: View 3 : 0.5 +2016-08-24 09:35:03,842 DEBUG: Best view : Methyl_ +2016-08-24 09:35:04,273 DEBUG: Start: Iteration 8 +2016-08-24 09:35:04,290 DEBUG: View 0 : 0.442307692308 +2016-08-24 09:35:04,297 DEBUG: View 1 : 0.608974358974 +2016-08-24 09:35:04,334 DEBUG: View 2 : 0.474358974359 +2016-08-24 09:35:04,341 DEBUG: View 3 : 0.50641025641 +2016-08-24 09:35:04,407 DEBUG: Best view : MiRNA__ +2016-08-24 09:35:04,895 DEBUG: Start: Iteration 9 +2016-08-24 09:35:04,911 DEBUG: View 0 : 0.435897435897 +2016-08-24 09:35:04,919 DEBUG: View 1 : 0.525641025641 +2016-08-24 09:35:04,957 DEBUG: View 2 : 0.602564102564 +2016-08-24 09:35:04,964 DEBUG: View 3 : 0.608974358974 +2016-08-24 09:35:05,033 DEBUG: Best view : Clinic_ +2016-08-24 09:35:05,579 DEBUG: Start: Iteration 10 +2016-08-24 09:35:05,595 DEBUG: View 0 : 0.596153846154 +2016-08-24 09:35:05,603 DEBUG: View 1 : 0.371794871795 +2016-08-24 09:35:05,639 DEBUG: View 2 : 0.532051282051 +2016-08-24 09:35:05,646 DEBUG: View 3 : 0.442307692308 +2016-08-24 09:35:05,717 DEBUG: Best view : Methyl_ +2016-08-24 09:35:06,322 DEBUG: Start: Iteration 11 +2016-08-24 09:35:06,338 DEBUG: View 0 : 0.474358974359 +2016-08-24 09:35:06,346 DEBUG: View 1 : 0.608974358974 +2016-08-24 09:35:06,382 DEBUG: View 2 : 0.608974358974 +2016-08-24 09:35:06,389 DEBUG: View 3 : 0.557692307692 +2016-08-24 09:35:06,462 DEBUG: Best view : MiRNA__ +2016-08-24 09:35:07,123 DEBUG: Start: Iteration 12 +2016-08-24 09:35:07,140 DEBUG: View 0 : 0.5 +2016-08-24 09:35:07,147 DEBUG: View 1 : 0.391025641026 +2016-08-24 09:35:07,184 DEBUG: View 2 : 0.551282051282 +2016-08-24 09:35:07,192 DEBUG: View 3 : 0.50641025641 +2016-08-24 09:35:07,266 DEBUG: Best view : RANSeq_ +2016-08-24 09:35:08,000 DEBUG: Start: Iteration 13 +2016-08-24 09:35:08,016 DEBUG: View 0 : 0.519230769231 +2016-08-24 09:35:08,024 DEBUG: View 1 : 0.647435897436 +2016-08-24 09:35:08,060 DEBUG: View 2 : 0.557692307692 +2016-08-24 09:35:08,068 DEBUG: View 3 : 0.634615384615 +2016-08-24 09:35:08,144 DEBUG: Best view : MiRNA__ +2016-08-24 09:35:08,935 DEBUG: Start: Iteration 14 +2016-08-24 09:35:08,951 DEBUG: View 0 : 0.461538461538 +2016-08-24 09:35:08,959 DEBUG: View 1 : 0.519230769231 +2016-08-24 09:35:08,995 DEBUG: View 2 : 0.474358974359 +2016-08-24 09:35:09,003 DEBUG: View 3 : 0.435897435897 +2016-08-24 09:35:09,080 DEBUG: Best view : MiRNA__ +2016-08-24 09:35:09,927 DEBUG: Start: Iteration 15 +2016-08-24 09:35:09,943 DEBUG: View 0 : 0.442307692308 +2016-08-24 09:35:09,951 DEBUG: View 1 : 0.474358974359 +2016-08-24 09:35:09,987 DEBUG: View 2 : 0.589743589744 +2016-08-24 09:35:09,995 DEBUG: View 3 : 0.410256410256 +2016-08-24 09:35:10,074 DEBUG: Best view : RANSeq_ +2016-08-24 09:35:10,994 DEBUG: Start: Iteration 16 +2016-08-24 09:35:11,011 DEBUG: View 0 : 0.455128205128 +2016-08-24 09:35:11,019 DEBUG: View 1 : 0.628205128205 +2016-08-24 09:35:11,056 DEBUG: View 2 : 0.532051282051 +2016-08-24 09:35:11,064 DEBUG: View 3 : 0.50641025641 +2016-08-24 09:35:11,146 DEBUG: Best view : MiRNA__ +2016-08-24 09:35:12,120 DEBUG: Start: Iteration 17 +2016-08-24 09:35:12,136 DEBUG: View 0 : 0.621794871795 +2016-08-24 09:35:12,144 DEBUG: View 1 : 0.551282051282 +2016-08-24 09:35:12,181 DEBUG: View 2 : 0.49358974359 +2016-08-24 09:35:12,188 DEBUG: View 3 : 0.455128205128 +2016-08-24 09:35:12,273 DEBUG: Best view : Methyl_ +2016-08-24 09:35:13,308 DEBUG: Start: Iteration 18 +2016-08-24 09:35:13,325 DEBUG: View 0 : 0.557692307692 +2016-08-24 09:35:13,332 DEBUG: View 1 : 0.608974358974 +2016-08-24 09:35:13,369 DEBUG: View 2 : 0.49358974359 +2016-08-24 09:35:13,376 DEBUG: View 3 : 0.512820512821 +2016-08-24 09:35:13,464 DEBUG: Best view : MiRNA__ +2016-08-24 09:35:14,557 DEBUG: Start: Iteration 19 +2016-08-24 09:35:14,573 DEBUG: View 0 : 0.416666666667 +2016-08-24 09:35:14,581 DEBUG: View 1 : 0.403846153846 +2016-08-24 09:35:14,618 DEBUG: View 2 : 0.589743589744 +2016-08-24 09:35:14,626 DEBUG: View 3 : 0.403846153846 +2016-08-24 09:35:14,714 DEBUG: Best view : RANSeq_ +2016-08-24 09:35:15,878 DEBUG: Start: Iteration 20 +2016-08-24 09:35:15,895 DEBUG: View 0 : 0.467948717949 +2016-08-24 09:35:15,902 DEBUG: View 1 : 0.685897435897 +2016-08-24 09:35:15,939 DEBUG: View 2 : 0.628205128205 +2016-08-24 09:35:15,946 DEBUG: View 3 : 0.49358974359 +2016-08-24 09:35:16,038 DEBUG: Best view : MiRNA__ +2016-08-24 09:35:17,259 DEBUG: Start: Iteration 21 +2016-08-24 09:35:17,275 DEBUG: View 0 : 0.564102564103 +2016-08-24 09:35:17,283 DEBUG: View 1 : 0.711538461538 +2016-08-24 09:35:17,319 DEBUG: View 2 : 0.429487179487 +2016-08-24 09:35:17,327 DEBUG: View 3 : 0.532051282051 +2016-08-24 09:35:17,419 DEBUG: Best view : MiRNA__ +2016-08-24 09:35:18,697 DEBUG: Start: Iteration 22 +2016-08-24 09:35:18,713 DEBUG: View 0 : 0.538461538462 +2016-08-24 09:35:18,721 DEBUG: View 1 : 0.634615384615 +2016-08-24 09:35:18,757 DEBUG: View 2 : 0.525641025641 +2016-08-24 09:35:18,765 DEBUG: View 3 : 0.570512820513 +2016-08-24 09:35:18,860 DEBUG: Best view : MiRNA__ +2016-08-24 09:35:20,195 DEBUG: Start: Iteration 23 +2016-08-24 09:35:20,212 DEBUG: View 0 : 0.525641025641 +2016-08-24 09:35:20,219 DEBUG: View 1 : 0.641025641026 +2016-08-24 09:35:20,256 DEBUG: View 2 : 0.551282051282 +2016-08-24 09:35:20,264 DEBUG: View 3 : 0.602564102564 +2016-08-24 09:35:20,360 DEBUG: Best view : MiRNA__ +2016-08-24 09:35:21,760 DEBUG: Start: Iteration 24 +2016-08-24 09:35:21,776 DEBUG: View 0 : 0.762820512821 +2016-08-24 09:35:21,784 DEBUG: View 1 : 0.628205128205 +2016-08-24 09:35:21,820 DEBUG: View 2 : 0.371794871795 +2016-08-24 09:35:21,828 DEBUG: View 3 : 0.461538461538 +2016-08-24 09:35:21,926 DEBUG: Best view : Methyl_ +2016-08-24 09:35:23,376 DEBUG: Start: Iteration 25 +2016-08-24 09:35:23,392 DEBUG: View 0 : 0.487179487179 +2016-08-24 09:35:23,400 DEBUG: View 1 : 0.391025641026 +2016-08-24 09:35:23,436 DEBUG: View 2 : 0.487179487179 +2016-08-24 09:35:23,444 DEBUG: View 3 : 0.403846153846 +2016-08-24 09:35:23,444 WARNING: All bad for iteration 24 +2016-08-24 09:35:23,545 DEBUG: Best view : Methyl_ +2016-08-24 09:35:25,059 DEBUG: Start: Iteration 26 +2016-08-24 09:35:25,076 DEBUG: View 0 : 0.602564102564 +2016-08-24 09:35:25,084 DEBUG: View 1 : 0.608974358974 +2016-08-24 09:35:25,121 DEBUG: View 2 : 0.5 +2016-08-24 09:35:25,129 DEBUG: View 3 : 0.467948717949 +2016-08-24 09:35:25,232 DEBUG: Best view : MiRNA__ +2016-08-24 09:35:26,805 DEBUG: Start: Iteration 27 +2016-08-24 09:35:26,821 DEBUG: View 0 : 0.544871794872 +2016-08-24 09:35:26,829 DEBUG: View 1 : 0.416666666667 +2016-08-24 09:35:26,866 DEBUG: View 2 : 0.557692307692 +2016-08-24 09:35:26,873 DEBUG: View 3 : 0.570512820513 +2016-08-24 09:35:26,978 DEBUG: Best view : Clinic_ +2016-08-24 09:35:28,607 DEBUG: Start: Iteration 28 +2016-08-24 09:35:28,624 DEBUG: View 0 : 0.608974358974 +2016-08-24 09:35:28,632 DEBUG: View 1 : 0.519230769231 +2016-08-24 09:35:28,668 DEBUG: View 2 : 0.467948717949 +2016-08-24 09:35:28,676 DEBUG: View 3 : 0.50641025641 +2016-08-24 09:35:28,783 DEBUG: Best view : Methyl_ +2016-08-24 09:35:30,474 DEBUG: Start: Iteration 29 +2016-08-24 09:35:30,490 DEBUG: View 0 : 0.602564102564 +2016-08-24 09:35:30,498 DEBUG: View 1 : 0.480769230769 +2016-08-24 09:35:30,534 DEBUG: View 2 : 0.474358974359 +2016-08-24 09:35:30,541 DEBUG: View 3 : 0.589743589744 +2016-08-24 09:35:30,651 DEBUG: Best view : Methyl_ +2016-08-24 09:35:32,412 DEBUG: Start: Iteration 30 +2016-08-24 09:35:32,428 DEBUG: View 0 : 0.455128205128 +2016-08-24 09:35:32,436 DEBUG: View 1 : 0.429487179487 +2016-08-24 09:35:32,472 DEBUG: View 2 : 0.423076923077 +2016-08-24 09:35:32,479 DEBUG: View 3 : 0.647435897436 +2016-08-24 09:35:32,591 DEBUG: Best view : Clinic_ +2016-08-24 09:35:34,461 DEBUG: Start: Iteration 31 +2016-08-24 09:35:34,480 DEBUG: View 0 : 0.576923076923 +2016-08-24 09:35:34,488 DEBUG: View 1 : 0.615384615385 +2016-08-24 09:35:34,526 DEBUG: View 2 : 0.448717948718 +2016-08-24 09:35:34,533 DEBUG: View 3 : 0.442307692308 +2016-08-24 09:35:34,653 DEBUG: Best view : MiRNA__ +2016-08-24 09:35:36,567 DEBUG: Start: Iteration 32 +2016-08-24 09:35:36,583 DEBUG: View 0 : 0.602564102564 +2016-08-24 09:35:36,591 DEBUG: View 1 : 0.647435897436 +2016-08-24 09:35:36,628 DEBUG: View 2 : 0.519230769231 +2016-08-24 09:35:36,635 DEBUG: View 3 : 0.602564102564 +2016-08-24 09:35:36,760 DEBUG: Best view : MiRNA__ +2016-08-24 09:35:38,858 DEBUG: Start: Iteration 33 +2016-08-24 09:35:38,875 DEBUG: View 0 : 0.50641025641 +2016-08-24 09:35:38,883 DEBUG: View 1 : 0.371794871795 +2016-08-24 09:35:38,920 DEBUG: View 2 : 0.403846153846 +2016-08-24 09:35:38,928 DEBUG: View 3 : 0.641025641026 +2016-08-24 09:35:39,047 DEBUG: Best view : Clinic_ +2016-08-24 09:35:41,049 DEBUG: Start: Iteration 34 +2016-08-24 09:35:41,066 DEBUG: View 0 : 0.596153846154 +2016-08-24 09:35:41,074 DEBUG: View 1 : 0.641025641026 +2016-08-24 09:35:41,110 DEBUG: View 2 : 0.448717948718 +2016-08-24 09:35:41,118 DEBUG: View 3 : 0.397435897436 +2016-08-24 09:35:41,241 DEBUG: Best view : MiRNA__ +2016-08-24 09:35:43,293 DEBUG: Start: Iteration 35 +2016-08-24 09:35:43,310 DEBUG: View 0 : 0.5 +2016-08-24 09:35:43,317 DEBUG: View 1 : 0.666666666667 +2016-08-24 09:35:43,354 DEBUG: View 2 : 0.557692307692 +2016-08-24 09:35:43,361 DEBUG: View 3 : 0.576923076923 +2016-08-24 09:35:43,483 DEBUG: Best view : MiRNA__ +2016-08-24 09:35:45,576 DEBUG: Start: Iteration 36 +2016-08-24 09:35:45,593 DEBUG: View 0 : 0.435897435897 +2016-08-24 09:35:45,600 DEBUG: View 1 : 0.358974358974 +2016-08-24 09:35:45,636 DEBUG: View 2 : 0.487179487179 +2016-08-24 09:35:45,644 DEBUG: View 3 : 0.570512820513 +2016-08-24 09:35:45,768 DEBUG: Best view : Clinic_ +2016-08-24 09:35:47,921 DEBUG: Start: Iteration 37 +2016-08-24 09:35:47,937 DEBUG: View 0 : 0.583333333333 +2016-08-24 09:35:47,945 DEBUG: View 1 : 0.647435897436 +2016-08-24 09:35:47,981 DEBUG: View 2 : 0.583333333333 +2016-08-24 09:35:47,989 DEBUG: View 3 : 0.557692307692 +2016-08-24 09:35:48,116 DEBUG: Best view : MiRNA__ +2016-08-24 09:35:50,347 DEBUG: Start: Iteration 38 +2016-08-24 09:35:50,364 DEBUG: View 0 : 0.423076923077 +2016-08-24 09:35:50,372 DEBUG: View 1 : 0.685897435897 +2016-08-24 09:35:50,409 DEBUG: View 2 : 0.50641025641 +2016-08-24 09:35:50,416 DEBUG: View 3 : 0.410256410256 +2016-08-24 09:35:50,547 DEBUG: Best view : MiRNA__ +2016-08-24 09:35:52,847 DEBUG: Start: Iteration 39 +2016-08-24 09:35:52,863 DEBUG: View 0 : 0.423076923077 +2016-08-24 09:35:52,871 DEBUG: View 1 : 0.532051282051 +2016-08-24 09:35:52,909 DEBUG: View 2 : 0.596153846154 +2016-08-24 09:35:52,917 DEBUG: View 3 : 0.621794871795 +2016-08-24 09:35:53,050 DEBUG: Best view : Clinic_ +2016-08-24 09:35:55,388 DEBUG: Start: Iteration 40 +2016-08-24 09:35:55,405 DEBUG: View 0 : 0.628205128205 +2016-08-24 09:35:55,413 DEBUG: View 1 : 0.474358974359 +2016-08-24 09:35:55,450 DEBUG: View 2 : 0.474358974359 +2016-08-24 09:35:55,459 DEBUG: View 3 : 0.448717948718 +2016-08-24 09:35:55,654 DEBUG: Best view : Methyl_ +2016-08-24 09:35:58,192 DEBUG: Start: Iteration 41 +2016-08-24 09:35:58,210 DEBUG: View 0 : 0.615384615385 +2016-08-24 09:35:58,219 DEBUG: View 1 : 0.628205128205 +2016-08-24 09:35:58,261 DEBUG: View 2 : 0.570512820513 +2016-08-24 09:35:58,270 DEBUG: View 3 : 0.435897435897 +2016-08-24 09:35:58,469 DEBUG: Best view : MiRNA__ +2016-08-24 09:36:01,082 DEBUG: Start: Iteration 42 +2016-08-24 09:36:01,099 DEBUG: View 0 : 0.705128205128 +2016-08-24 09:36:01,107 DEBUG: View 1 : 0.647435897436 +2016-08-24 09:36:01,144 DEBUG: View 2 : 0.435897435897 +2016-08-24 09:36:01,152 DEBUG: View 3 : 0.602564102564 +2016-08-24 09:36:01,298 DEBUG: Best view : Methyl_ +2016-08-24 09:36:04,147 DEBUG: Start: Iteration 43 +2016-08-24 09:36:04,173 DEBUG: View 0 : 0.448717948718 +2016-08-24 09:36:04,182 DEBUG: View 1 : 0.416666666667 +2016-08-24 09:36:04,224 DEBUG: View 2 : 0.480769230769 +2016-08-24 09:36:04,236 DEBUG: View 3 : 0.551282051282 +2016-08-24 09:36:04,378 DEBUG: Best view : Clinic_ +2016-08-24 09:36:07,254 DEBUG: Start: Iteration 44 +2016-08-24 09:36:07,271 DEBUG: View 0 : 0.564102564103 +2016-08-24 09:36:07,278 DEBUG: View 1 : 0.660256410256 +2016-08-24 09:36:07,315 DEBUG: View 2 : 0.557692307692 +2016-08-24 09:36:07,322 DEBUG: View 3 : 0.557692307692 +2016-08-24 09:36:07,468 DEBUG: Best view : MiRNA__ +2016-08-24 09:36:10,373 DEBUG: Start: Iteration 45 +2016-08-24 09:36:10,391 DEBUG: View 0 : 0.371794871795 +2016-08-24 09:36:10,400 DEBUG: View 1 : 0.673076923077 +2016-08-24 09:36:10,447 DEBUG: View 2 : 0.538461538462 +2016-08-24 09:36:10,456 DEBUG: View 3 : 0.487179487179 +2016-08-24 09:36:10,702 DEBUG: Best view : MiRNA__ +2016-08-24 09:36:13,728 DEBUG: Start: Iteration 46 +2016-08-24 09:36:13,744 DEBUG: View 0 : 0.532051282051 +2016-08-24 09:36:13,752 DEBUG: View 1 : 0.576923076923 +2016-08-24 09:36:13,789 DEBUG: View 2 : 0.487179487179 +2016-08-24 09:36:13,797 DEBUG: View 3 : 0.628205128205 +2016-08-24 09:36:13,944 DEBUG: Best view : Clinic_ +2016-08-24 09:36:16,698 DEBUG: Start: Iteration 47 +2016-08-24 09:36:16,714 DEBUG: View 0 : 0.410256410256 +2016-08-24 09:36:16,722 DEBUG: View 1 : 0.532051282051 +2016-08-24 09:36:16,759 DEBUG: View 2 : 0.487179487179 +2016-08-24 09:36:16,767 DEBUG: View 3 : 0.448717948718 +2016-08-24 09:36:16,916 DEBUG: Best view : MiRNA__ +2016-08-24 09:36:19,727 DEBUG: Start: Iteration 48 +2016-08-24 09:36:19,743 DEBUG: View 0 : 0.423076923077 +2016-08-24 09:36:19,751 DEBUG: View 1 : 0.615384615385 +2016-08-24 09:36:19,787 DEBUG: View 2 : 0.532051282051 +2016-08-24 09:36:19,794 DEBUG: View 3 : 0.583333333333 +2016-08-24 09:36:19,945 DEBUG: Best view : MiRNA__ +2016-08-24 09:36:22,795 DEBUG: Start: Iteration 49 +2016-08-24 09:36:22,811 DEBUG: View 0 : 0.487179487179 +2016-08-24 09:36:22,819 DEBUG: View 1 : 0.608974358974 +2016-08-24 09:36:22,855 DEBUG: View 2 : 0.378205128205 +2016-08-24 09:36:22,863 DEBUG: View 3 : 0.596153846154 +2016-08-24 09:36:23,015 DEBUG: Best view : MiRNA__ +2016-08-24 09:36:25,918 DEBUG: Start: Iteration 50 +2016-08-24 09:36:25,934 DEBUG: View 0 : 0.423076923077 +2016-08-24 09:36:25,942 DEBUG: View 1 : 0.365384615385 +2016-08-24 09:36:25,979 DEBUG: View 2 : 0.570512820513 +2016-08-24 09:36:25,987 DEBUG: View 3 : 0.544871794872 +2016-08-24 09:36:26,144 DEBUG: Best view : RANSeq_ +2016-08-24 09:36:29,125 DEBUG: Start: Iteration 51 +2016-08-24 09:36:29,141 DEBUG: View 0 : 0.602564102564 +2016-08-24 09:36:29,149 DEBUG: View 1 : 0.653846153846 +2016-08-24 09:36:29,185 DEBUG: View 2 : 0.397435897436 +2016-08-24 09:36:29,193 DEBUG: View 3 : 0.615384615385 +2016-08-24 09:36:29,350 DEBUG: Best view : MiRNA__ +2016-08-24 09:36:32,554 DEBUG: Start: Iteration 52 +2016-08-24 09:36:32,572 DEBUG: View 0 : 0.621794871795 +2016-08-24 09:36:32,580 DEBUG: View 1 : 0.692307692308 +2016-08-24 09:36:32,617 DEBUG: View 2 : 0.435897435897 +2016-08-24 09:36:32,625 DEBUG: View 3 : 0.608974358974 +2016-08-24 09:36:32,784 DEBUG: Best view : MiRNA__ +2016-08-24 09:36:35,871 INFO: Start: Classification +2016-08-24 09:36:43,411 INFO: Done: Fold number 1 +2016-08-24 09:36:43,411 INFO: Start: Fold number 2 +2016-08-24 09:36:44,984 DEBUG: Start: Iteration 1 +2016-08-24 09:36:44,998 DEBUG: View 0 : 0.382165605096 +2016-08-24 09:36:45,006 DEBUG: View 1 : 0.617834394904 +2016-08-24 09:36:45,042 DEBUG: View 2 : 0.369426751592 +2016-08-24 09:36:45,049 DEBUG: View 3 : 0.617834394904 +2016-08-24 09:36:45,089 DEBUG: Best view : Methyl_ +2016-08-24 09:36:45,164 DEBUG: Start: Iteration 2 +2016-08-24 09:36:45,180 DEBUG: View 0 : 0.43949044586 +2016-08-24 09:36:45,188 DEBUG: View 1 : 0.649681528662 +2016-08-24 09:36:45,224 DEBUG: View 2 : 0.541401273885 +2016-08-24 09:36:45,231 DEBUG: View 3 : 0.509554140127 +2016-08-24 09:36:45,276 DEBUG: Best view : MiRNA__ +2016-08-24 09:36:45,408 DEBUG: Start: Iteration 3 +2016-08-24 09:36:45,424 DEBUG: View 0 : 0.420382165605 +2016-08-24 09:36:45,432 DEBUG: View 1 : 0.630573248408 +2016-08-24 09:36:45,467 DEBUG: View 2 : 0.535031847134 +2016-08-24 09:36:45,475 DEBUG: View 3 : 0.388535031847 +2016-08-24 09:36:45,527 DEBUG: Best view : MiRNA__ +2016-08-24 09:36:45,717 DEBUG: Start: Iteration 4 +2016-08-24 09:36:45,733 DEBUG: View 0 : 0.375796178344 +2016-08-24 09:36:45,741 DEBUG: View 1 : 0.573248407643 +2016-08-24 09:36:45,777 DEBUG: View 2 : 0.490445859873 +2016-08-24 09:36:45,784 DEBUG: View 3 : 0.503184713376 +2016-08-24 09:36:45,839 DEBUG: Best view : MiRNA__ +2016-08-24 09:36:46,086 DEBUG: Start: Iteration 5 +2016-08-24 09:36:46,103 DEBUG: View 0 : 0.566878980892 +2016-08-24 09:36:46,110 DEBUG: View 1 : 0.585987261146 +2016-08-24 09:36:46,146 DEBUG: View 2 : 0.566878980892 +2016-08-24 09:36:46,154 DEBUG: View 3 : 0.579617834395 +2016-08-24 09:36:46,210 DEBUG: Best view : Clinic_ +2016-08-24 09:36:46,514 DEBUG: Start: Iteration 6 +2016-08-24 09:36:46,530 DEBUG: View 0 : 0.484076433121 +2016-08-24 09:36:46,538 DEBUG: View 1 : 0.496815286624 +2016-08-24 09:36:46,574 DEBUG: View 2 : 0.56050955414 +2016-08-24 09:36:46,581 DEBUG: View 3 : 0.445859872611 +2016-08-24 09:36:46,640 DEBUG: Best view : MiRNA__ +2016-08-24 09:36:47,001 DEBUG: Start: Iteration 7 +2016-08-24 09:36:47,018 DEBUG: View 0 : 0.541401273885 +2016-08-24 09:36:47,025 DEBUG: View 1 : 0.624203821656 +2016-08-24 09:36:47,061 DEBUG: View 2 : 0.43949044586 +2016-08-24 09:36:47,069 DEBUG: View 3 : 0.375796178344 +2016-08-24 09:36:47,129 DEBUG: Best view : MiRNA__ +2016-08-24 09:36:47,548 DEBUG: Start: Iteration 8 +2016-08-24 09:36:47,565 DEBUG: View 0 : 0.643312101911 +2016-08-24 09:36:47,572 DEBUG: View 1 : 0.312101910828 +2016-08-24 09:36:47,608 DEBUG: View 2 : 0.420382165605 +2016-08-24 09:36:47,615 DEBUG: View 3 : 0.541401273885 +2016-08-24 09:36:47,678 DEBUG: Best view : Methyl_ +2016-08-24 09:36:48,158 DEBUG: Start: Iteration 9 +2016-08-24 09:36:48,174 DEBUG: View 0 : 0.458598726115 +2016-08-24 09:36:48,182 DEBUG: View 1 : 0.407643312102 +2016-08-24 09:36:48,217 DEBUG: View 2 : 0.445859872611 +2016-08-24 09:36:48,224 DEBUG: View 3 : 0.458598726115 +2016-08-24 09:36:48,225 WARNING: All bad for iteration 8 +2016-08-24 09:36:48,290 DEBUG: Best view : Clinic_ +2016-08-24 09:36:48,826 DEBUG: Start: Iteration 10 +2016-08-24 09:36:48,843 DEBUG: View 0 : 0.547770700637 +2016-08-24 09:36:48,851 DEBUG: View 1 : 0.566878980892 +2016-08-24 09:36:48,887 DEBUG: View 2 : 0.407643312102 +2016-08-24 09:36:48,894 DEBUG: View 3 : 0.43949044586 +2016-08-24 09:36:48,962 DEBUG: Best view : MiRNA__ +2016-08-24 09:36:49,554 DEBUG: Start: Iteration 11 +2016-08-24 09:36:49,571 DEBUG: View 0 : 0.535031847134 +2016-08-24 09:36:49,579 DEBUG: View 1 : 0.433121019108 +2016-08-24 09:36:49,614 DEBUG: View 2 : 0.484076433121 +2016-08-24 09:36:49,622 DEBUG: View 3 : 0.420382165605 +2016-08-24 09:36:49,691 DEBUG: Best view : RANSeq_ +2016-08-24 09:36:50,358 DEBUG: Start: Iteration 12 +2016-08-24 09:36:50,374 DEBUG: View 0 : 0.770700636943 +2016-08-24 09:36:50,382 DEBUG: View 1 : 0.56050955414 +2016-08-24 09:36:50,418 DEBUG: View 2 : 0.426751592357 +2016-08-24 09:36:50,425 DEBUG: View 3 : 0.433121019108 +2016-08-24 09:36:50,498 DEBUG: Best view : Methyl_ +2016-08-24 09:36:51,225 DEBUG: Start: Iteration 13 +2016-08-24 09:36:51,242 DEBUG: View 0 : 0.420382165605 +2016-08-24 09:36:51,249 DEBUG: View 1 : 0.343949044586 +2016-08-24 09:36:51,285 DEBUG: View 2 : 0.573248407643 +2016-08-24 09:36:51,293 DEBUG: View 3 : 0.394904458599 +2016-08-24 09:36:51,367 DEBUG: Best view : RANSeq_ +2016-08-24 09:36:52,162 DEBUG: Start: Iteration 14 +2016-08-24 09:36:52,179 DEBUG: View 0 : 0.445859872611 +2016-08-24 09:36:52,187 DEBUG: View 1 : 0.566878980892 +2016-08-24 09:36:52,223 DEBUG: View 2 : 0.579617834395 +2016-08-24 09:36:52,230 DEBUG: View 3 : 0.541401273885 +2016-08-24 09:36:52,308 DEBUG: Best view : RANSeq_ +2016-08-24 09:36:53,175 DEBUG: Start: Iteration 15 +2016-08-24 09:36:53,191 DEBUG: View 0 : 0.624203821656 +2016-08-24 09:36:53,199 DEBUG: View 1 : 0.656050955414 +2016-08-24 09:36:53,235 DEBUG: View 2 : 0.592356687898 +2016-08-24 09:36:53,242 DEBUG: View 3 : 0.503184713376 +2016-08-24 09:36:53,321 DEBUG: Best view : MiRNA__ +2016-08-24 09:36:54,247 DEBUG: Start: Iteration 16 +2016-08-24 09:36:54,263 DEBUG: View 0 : 0.636942675159 +2016-08-24 09:36:54,271 DEBUG: View 1 : 0.592356687898 +2016-08-24 09:36:54,307 DEBUG: View 2 : 0.554140127389 +2016-08-24 09:36:54,314 DEBUG: View 3 : 0.484076433121 +2016-08-24 09:36:54,396 DEBUG: Best view : MiRNA__ +2016-08-24 09:36:55,378 DEBUG: Start: Iteration 17 +2016-08-24 09:36:55,395 DEBUG: View 0 : 0.458598726115 +2016-08-24 09:36:55,402 DEBUG: View 1 : 0.624203821656 +2016-08-24 09:36:55,439 DEBUG: View 2 : 0.426751592357 +2016-08-24 09:36:55,446 DEBUG: View 3 : 0.414012738854 +2016-08-24 09:36:55,529 DEBUG: Best view : MiRNA__ +2016-08-24 09:36:56,570 DEBUG: Start: Iteration 18 +2016-08-24 09:36:56,586 DEBUG: View 0 : 0.535031847134 +2016-08-24 09:36:56,594 DEBUG: View 1 : 0.343949044586 +2016-08-24 09:36:56,630 DEBUG: View 2 : 0.605095541401 +2016-08-24 09:36:56,638 DEBUG: View 3 : 0.496815286624 +2016-08-24 09:36:56,724 DEBUG: Best view : RANSeq_ +2016-08-24 09:36:57,833 DEBUG: Start: Iteration 19 +2016-08-24 09:36:57,850 DEBUG: View 0 : 0.426751592357 +2016-08-24 09:36:57,857 DEBUG: View 1 : 0.414012738854 +2016-08-24 09:36:57,893 DEBUG: View 2 : 0.433121019108 +2016-08-24 09:36:57,901 DEBUG: View 3 : 0.56050955414 +2016-08-24 09:36:57,989 DEBUG: Best view : Clinic_ +2016-08-24 09:36:59,153 DEBUG: Start: Iteration 20 +2016-08-24 09:36:59,170 DEBUG: View 0 : 0.40127388535 +2016-08-24 09:36:59,178 DEBUG: View 1 : 0.630573248408 +2016-08-24 09:36:59,214 DEBUG: View 2 : 0.477707006369 +2016-08-24 09:36:59,221 DEBUG: View 3 : 0.624203821656 +2016-08-24 09:36:59,312 DEBUG: Best view : Clinic_ +2016-08-24 09:37:00,535 DEBUG: Start: Iteration 21 +2016-08-24 09:37:00,552 DEBUG: View 0 : 0.566878980892 +2016-08-24 09:37:00,559 DEBUG: View 1 : 0.541401273885 +2016-08-24 09:37:00,595 DEBUG: View 2 : 0.509554140127 +2016-08-24 09:37:00,602 DEBUG: View 3 : 0.515923566879 +2016-08-24 09:37:00,695 DEBUG: Best view : MiRNA__ +2016-08-24 09:37:01,976 DEBUG: Start: Iteration 22 +2016-08-24 09:37:01,992 DEBUG: View 0 : 0.452229299363 +2016-08-24 09:37:02,000 DEBUG: View 1 : 0.566878980892 +2016-08-24 09:37:02,036 DEBUG: View 2 : 0.433121019108 +2016-08-24 09:37:02,043 DEBUG: View 3 : 0.484076433121 +2016-08-24 09:37:02,137 DEBUG: Best view : MiRNA__ +2016-08-24 09:37:03,474 DEBUG: Start: Iteration 23 +2016-08-24 09:37:03,490 DEBUG: View 0 : 0.573248407643 +2016-08-24 09:37:03,498 DEBUG: View 1 : 0.624203821656 +2016-08-24 09:37:03,534 DEBUG: View 2 : 0.503184713376 +2016-08-24 09:37:03,541 DEBUG: View 3 : 0.394904458599 +2016-08-24 09:37:03,638 DEBUG: Best view : MiRNA__ +2016-08-24 09:37:05,032 DEBUG: Start: Iteration 24 +2016-08-24 09:37:05,048 DEBUG: View 0 : 0.605095541401 +2016-08-24 09:37:05,056 DEBUG: View 1 : 0.643312101911 +2016-08-24 09:37:05,092 DEBUG: View 2 : 0.630573248408 +2016-08-24 09:37:05,099 DEBUG: View 3 : 0.541401273885 +2016-08-24 09:37:05,197 DEBUG: Best view : MiRNA__ +2016-08-24 09:37:06,651 DEBUG: Start: Iteration 25 +2016-08-24 09:37:06,668 DEBUG: View 0 : 0.43949044586 +2016-08-24 09:37:06,675 DEBUG: View 1 : 0.350318471338 +2016-08-24 09:37:06,711 DEBUG: View 2 : 0.414012738854 +2016-08-24 09:37:06,719 DEBUG: View 3 : 0.611464968153 +2016-08-24 09:37:06,819 DEBUG: Best view : Clinic_ +2016-08-24 09:37:08,325 DEBUG: Start: Iteration 26 +2016-08-24 09:37:08,342 DEBUG: View 0 : 0.43949044586 +2016-08-24 09:37:08,349 DEBUG: View 1 : 0.675159235669 +2016-08-24 09:37:08,385 DEBUG: View 2 : 0.585987261146 +2016-08-24 09:37:08,393 DEBUG: View 3 : 0.573248407643 +2016-08-24 09:37:08,496 DEBUG: Best view : MiRNA__ +2016-08-24 09:37:10,064 DEBUG: Start: Iteration 27 +2016-08-24 09:37:10,080 DEBUG: View 0 : 0.433121019108 +2016-08-24 09:37:10,088 DEBUG: View 1 : 0.496815286624 +2016-08-24 09:37:10,124 DEBUG: View 2 : 0.496815286624 +2016-08-24 09:37:10,131 DEBUG: View 3 : 0.515923566879 +2016-08-24 09:37:10,237 DEBUG: Best view : MiRNA__ +2016-08-24 09:37:11,867 DEBUG: Start: Iteration 28 +2016-08-24 09:37:11,883 DEBUG: View 0 : 0.522292993631 +2016-08-24 09:37:11,891 DEBUG: View 1 : 0.464968152866 +2016-08-24 09:37:11,927 DEBUG: View 2 : 0.452229299363 +2016-08-24 09:37:11,935 DEBUG: View 3 : 0.420382165605 +2016-08-24 09:37:12,042 DEBUG: Best view : Methyl_ +2016-08-24 09:37:13,729 DEBUG: Start: Iteration 29 +2016-08-24 09:37:13,746 DEBUG: View 0 : 0.764331210191 +2016-08-24 09:37:13,753 DEBUG: View 1 : 0.40127388535 +2016-08-24 09:37:13,789 DEBUG: View 2 : 0.40127388535 +2016-08-24 09:37:13,797 DEBUG: View 3 : 0.566878980892 +2016-08-24 09:37:13,907 DEBUG: Best view : Methyl_ +2016-08-24 09:37:15,653 DEBUG: Start: Iteration 30 +2016-08-24 09:37:15,669 DEBUG: View 0 : 0.522292993631 +2016-08-24 09:37:15,677 DEBUG: View 1 : 0.649681528662 +2016-08-24 09:37:15,713 DEBUG: View 2 : 0.426751592357 +2016-08-24 09:37:15,721 DEBUG: View 3 : 0.59872611465 +2016-08-24 09:37:15,834 DEBUG: Best view : MiRNA__ +2016-08-24 09:37:17,639 DEBUG: Start: Iteration 31 +2016-08-24 09:37:17,655 DEBUG: View 0 : 0.605095541401 +2016-08-24 09:37:17,663 DEBUG: View 1 : 0.477707006369 +2016-08-24 09:37:17,699 DEBUG: View 2 : 0.388535031847 +2016-08-24 09:37:17,706 DEBUG: View 3 : 0.605095541401 +2016-08-24 09:37:17,820 DEBUG: Best view : Methyl_ +2016-08-24 09:37:19,683 DEBUG: Start: Iteration 32 +2016-08-24 09:37:19,699 DEBUG: View 0 : 0.579617834395 +2016-08-24 09:37:19,707 DEBUG: View 1 : 0.445859872611 +2016-08-24 09:37:19,743 DEBUG: View 2 : 0.464968152866 +2016-08-24 09:37:19,751 DEBUG: View 3 : 0.458598726115 +2016-08-24 09:37:19,868 DEBUG: Best view : Methyl_ +2016-08-24 09:37:21,795 DEBUG: Start: Iteration 33 +2016-08-24 09:37:21,811 DEBUG: View 0 : 0.630573248408 +2016-08-24 09:37:21,819 DEBUG: View 1 : 0.656050955414 +2016-08-24 09:37:21,855 DEBUG: View 2 : 0.617834394904 +2016-08-24 09:37:21,866 DEBUG: View 3 : 0.40127388535 +2016-08-24 09:37:21,984 DEBUG: Best view : MiRNA__ +2016-08-24 09:37:23,972 DEBUG: Start: Iteration 34 +2016-08-24 09:37:23,989 DEBUG: View 0 : 0.585987261146 +2016-08-24 09:37:23,996 DEBUG: View 1 : 0.624203821656 +2016-08-24 09:37:24,033 DEBUG: View 2 : 0.56050955414 +2016-08-24 09:37:24,044 DEBUG: View 3 : 0.554140127389 +2016-08-24 09:37:24,164 DEBUG: Best view : MiRNA__ +2016-08-24 09:37:26,207 DEBUG: Start: Iteration 35 +2016-08-24 09:37:26,223 DEBUG: View 0 : 0.515923566879 +2016-08-24 09:37:26,231 DEBUG: View 1 : 0.68152866242 +2016-08-24 09:37:26,267 DEBUG: View 2 : 0.369426751592 +2016-08-24 09:37:26,275 DEBUG: View 3 : 0.452229299363 +2016-08-24 09:37:26,397 DEBUG: Best view : MiRNA__ +2016-08-24 09:37:28,497 DEBUG: Start: Iteration 36 +2016-08-24 09:37:28,513 DEBUG: View 0 : 0.503184713376 +2016-08-24 09:37:28,521 DEBUG: View 1 : 0.458598726115 +2016-08-24 09:37:28,557 DEBUG: View 2 : 0.528662420382 +2016-08-24 09:37:28,564 DEBUG: View 3 : 0.624203821656 +2016-08-24 09:37:28,689 DEBUG: Best view : Clinic_ +2016-08-24 09:37:30,849 DEBUG: Start: Iteration 37 +2016-08-24 09:37:30,866 DEBUG: View 0 : 0.630573248408 +2016-08-24 09:37:30,873 DEBUG: View 1 : 0.662420382166 +2016-08-24 09:37:30,910 DEBUG: View 2 : 0.414012738854 +2016-08-24 09:37:30,917 DEBUG: View 3 : 0.43949044586 +2016-08-24 09:37:31,044 DEBUG: Best view : MiRNA__ +2016-08-24 09:37:33,257 DEBUG: Start: Iteration 38 +2016-08-24 09:37:33,273 DEBUG: View 0 : 0.414012738854 +2016-08-24 09:37:33,281 DEBUG: View 1 : 0.414012738854 +2016-08-24 09:37:33,316 DEBUG: View 2 : 0.471337579618 +2016-08-24 09:37:33,324 DEBUG: View 3 : 0.503184713376 +2016-08-24 09:37:33,453 DEBUG: Best view : Clinic_ +2016-08-24 09:37:35,720 DEBUG: Start: Iteration 39 +2016-08-24 09:37:35,736 DEBUG: View 0 : 0.375796178344 +2016-08-24 09:37:35,744 DEBUG: View 1 : 0.471337579618 +2016-08-24 09:37:35,780 DEBUG: View 2 : 0.585987261146 +2016-08-24 09:37:35,787 DEBUG: View 3 : 0.547770700637 +2016-08-24 09:37:35,923 DEBUG: Best view : RANSeq_ +2016-08-24 09:37:38,261 DEBUG: Start: Iteration 40 +2016-08-24 09:37:38,278 DEBUG: View 0 : 0.554140127389 +2016-08-24 09:37:38,286 DEBUG: View 1 : 0.528662420382 +2016-08-24 09:37:38,322 DEBUG: View 2 : 0.43949044586 +2016-08-24 09:37:38,329 DEBUG: View 3 : 0.515923566879 +2016-08-24 09:37:38,463 DEBUG: Best view : Methyl_ +2016-08-24 09:37:40,864 DEBUG: Start: Iteration 41 +2016-08-24 09:37:40,880 DEBUG: View 0 : 0.611464968153 +2016-08-24 09:37:40,888 DEBUG: View 1 : 0.675159235669 +2016-08-24 09:37:40,924 DEBUG: View 2 : 0.535031847134 +2016-08-24 09:37:40,931 DEBUG: View 3 : 0.471337579618 +2016-08-24 09:37:41,067 DEBUG: Best view : MiRNA__ +2016-08-24 09:37:43,527 DEBUG: Start: Iteration 42 +2016-08-24 09:37:43,544 DEBUG: View 0 : 0.656050955414 +2016-08-24 09:37:43,552 DEBUG: View 1 : 0.522292993631 +2016-08-24 09:37:43,587 DEBUG: View 2 : 0.554140127389 +2016-08-24 09:37:43,595 DEBUG: View 3 : 0.617834394904 +2016-08-24 09:37:43,733 DEBUG: Best view : Methyl_ +2016-08-24 09:37:46,249 DEBUG: Start: Iteration 43 +2016-08-24 09:37:46,266 DEBUG: View 0 : 0.573248407643 +2016-08-24 09:37:46,274 DEBUG: View 1 : 0.31847133758 +2016-08-24 09:37:46,310 DEBUG: View 2 : 0.445859872611 +2016-08-24 09:37:46,317 DEBUG: View 3 : 0.573248407643 +2016-08-24 09:37:46,457 DEBUG: Best view : Methyl_ +2016-08-24 09:37:49,037 DEBUG: Start: Iteration 44 +2016-08-24 09:37:49,053 DEBUG: View 0 : 0.662420382166 +2016-08-24 09:37:49,061 DEBUG: View 1 : 0.656050955414 +2016-08-24 09:37:49,097 DEBUG: View 2 : 0.509554140127 +2016-08-24 09:37:49,104 DEBUG: View 3 : 0.433121019108 +2016-08-24 09:37:49,246 DEBUG: Best view : MiRNA__ +2016-08-24 09:37:51,883 DEBUG: Start: Iteration 45 +2016-08-24 09:37:51,900 DEBUG: View 0 : 0.630573248408 +2016-08-24 09:37:51,908 DEBUG: View 1 : 0.649681528662 +2016-08-24 09:37:51,943 DEBUG: View 2 : 0.452229299363 +2016-08-24 09:37:51,951 DEBUG: View 3 : 0.566878980892 +2016-08-24 09:37:52,096 DEBUG: Best view : MiRNA__ +2016-08-24 09:37:54,788 DEBUG: Start: Iteration 46 +2016-08-24 09:37:54,804 DEBUG: View 0 : 0.426751592357 +2016-08-24 09:37:54,812 DEBUG: View 1 : 0.471337579618 +2016-08-24 09:37:54,848 DEBUG: View 2 : 0.509554140127 +2016-08-24 09:37:54,855 DEBUG: View 3 : 0.585987261146 +2016-08-24 09:37:55,001 DEBUG: Best view : Clinic_ +2016-08-24 09:37:57,748 DEBUG: Start: Iteration 47 +2016-08-24 09:37:57,764 DEBUG: View 0 : 0.503184713376 +2016-08-24 09:37:57,772 DEBUG: View 1 : 0.40127388535 +2016-08-24 09:37:57,808 DEBUG: View 2 : 0.464968152866 +2016-08-24 09:37:57,815 DEBUG: View 3 : 0.43949044586 +2016-08-24 09:37:57,963 DEBUG: Best view : Methyl_ +2016-08-24 09:38:00,821 DEBUG: Start: Iteration 48 +2016-08-24 09:38:00,837 DEBUG: View 0 : 0.687898089172 +2016-08-24 09:38:00,845 DEBUG: View 1 : 0.726114649682 +2016-08-24 09:38:00,883 DEBUG: View 2 : 0.503184713376 +2016-08-24 09:38:00,891 DEBUG: View 3 : 0.630573248408 +2016-08-24 09:38:01,052 DEBUG: Best view : MiRNA__ +2016-08-24 09:38:04,075 DEBUG: Start: Iteration 49 +2016-08-24 09:38:04,092 DEBUG: View 0 : 0.496815286624 +2016-08-24 09:38:04,099 DEBUG: View 1 : 0.426751592357 +2016-08-24 09:38:04,135 DEBUG: View 2 : 0.420382165605 +2016-08-24 09:38:04,142 DEBUG: View 3 : 0.426751592357 +2016-08-24 09:38:04,142 WARNING: All bad for iteration 48 +2016-08-24 09:38:04,297 DEBUG: Best view : Methyl_ +2016-08-24 09:38:07,226 DEBUG: Start: Iteration 50 +2016-08-24 09:38:07,243 DEBUG: View 0 : 0.630573248408 +2016-08-24 09:38:07,250 DEBUG: View 1 : 0.777070063694 +2016-08-24 09:38:07,286 DEBUG: View 2 : 0.464968152866 +2016-08-24 09:38:07,294 DEBUG: View 3 : 0.605095541401 +2016-08-24 09:38:07,449 DEBUG: Best view : MiRNA__ +2016-08-24 09:38:10,439 DEBUG: Start: Iteration 51 +2016-08-24 09:38:10,456 DEBUG: View 0 : 0.757961783439 +2016-08-24 09:38:10,464 DEBUG: View 1 : 0.490445859873 +2016-08-24 09:38:10,499 DEBUG: View 2 : 0.464968152866 +2016-08-24 09:38:10,507 DEBUG: View 3 : 0.509554140127 +2016-08-24 09:38:10,664 DEBUG: Best view : Methyl_ +2016-08-24 09:38:13,867 DEBUG: Start: Iteration 52 +2016-08-24 09:38:13,885 DEBUG: View 0 : 0.496815286624 +2016-08-24 09:38:13,892 DEBUG: View 1 : 0.59872611465 +2016-08-24 09:38:13,928 DEBUG: View 2 : 0.407643312102 +2016-08-24 09:38:13,936 DEBUG: View 3 : 0.585987261146 +2016-08-24 09:38:14,100 DEBUG: Best view : MiRNA__ +2016-08-24 09:38:17,221 INFO: Start: Classification +2016-08-24 09:38:24,786 INFO: Done: Fold number 2 +2016-08-24 09:38:24,786 INFO: Done: Classification +2016-08-24 09:38:24,786 INFO: Info: Time for Classification: 269[s] +2016-08-24 09:38:24,786 INFO: Start: Result Analysis for Mumbo +2016-08-24 09:38:42,191 INFO: Result for Multiview classification with Mumbo + +Average accuracy : + -On Train : 74.1078719582 + -On Test : 79.0983606557 + -On Validation : 81.5533980583 + +Dataset info : + -Database name : ModifiedMultiOmic + -Labels : No, Yes + -Views : Methyl, MiRNA, RNASEQ, Clinical + -2 folds + - Validation set length : 103 for learning rate : 0.7 + +Classification configuration : + -Algorithm used : Mumbo + -Iterations : 1000 + -Weak Classifiers : DecisionTree with depth 1.0, sub-sampled at 0.0075 on Methyl + -DecisionTree with depth 1.0, sub-sampled at 0.007 on MiRNA + -DecisionTree with depth 1.0, sub-sampled at 0.006 on RNASEQ + -DecisionTree with depth 1.0, sub-sampled at 0.0075 on Clinical + + Mean average accuracies and stats for each fold : + - Fold 0 + - On Methyl_ : + - Mean average Accuracy : 0.0274615384615 + - Percentage of time chosen : 0.96 + - On MiRNA__ : + - Mean average Accuracy : 0.0292820512821 + - Percentage of time chosen : 0.028 + - On RANSeq_ : + - Mean average Accuracy : 0.0261987179487 + - Percentage of time chosen : 0.004 + - On Clinic_ : + - Mean average Accuracy : 0.027391025641 + - Percentage of time chosen : 0.008 + - Fold 1 + - On Methyl_ : + - Mean average Accuracy : 0.0279617834395 + - Percentage of time chosen : 0.961 + - On MiRNA__ : + - Mean average Accuracy : 0.028178343949 + - Percentage of time chosen : 0.026 + - On RANSeq_ : + - Mean average Accuracy : 0.0253566878981 + - Percentage of time chosen : 0.005 + - On Clinic_ : + - Mean average Accuracy : 0.0265031847134 + - Percentage of time chosen : 0.008 + + For each iteration : + - Iteration 1 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 2 + Fold 1 + Accuracy on train : 66.6666666667 + Accuracy on test : 69.6721311475 + Accuracy on validation : 72.8155339806 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 64.9681528662 + Accuracy on test : 73.7704918033 + Accuracy on validation : 74.7572815534 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 65.8174097665 + Accuracy on test : 71.7213114754 + - Iteration 3 + Fold 1 + Accuracy on train : 66.6666666667 + Accuracy on test : 69.6721311475 + Accuracy on validation : 72.8155339806 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 64.9681528662 + Accuracy on test : 73.7704918033 + Accuracy on validation : 74.7572815534 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 65.8174097665 + Accuracy on test : 71.7213114754 + - Iteration 4 + Fold 1 + Accuracy on train : 56.4102564103 + Accuracy on test : 65.5737704918 + Accuracy on validation : 66.0194174757 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 63.0573248408 + Accuracy on test : 72.9508196721 + Accuracy on validation : 76.6990291262 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 59.7337906255 + Accuracy on test : 69.262295082 + - Iteration 5 + Fold 1 + Accuracy on train : 66.0256410256 + Accuracy on test : 72.9508196721 + Accuracy on validation : 67.9611650485 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 72.8155339806 + Selected View : Clinic_ + - Mean : + Accuracy on train : 63.904540258 + Accuracy on test : 72.9508196721 + - Iteration 6 + Fold 1 + Accuracy on train : 65.3846153846 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 72.8155339806 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 63.5840274375 + Accuracy on test : 72.9508196721 + - Iteration 7 + Fold 1 + Accuracy on train : 68.5897435897 + Accuracy on test : 76.2295081967 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 63.6942675159 + Accuracy on test : 75.4098360656 + Accuracy on validation : 72.8155339806 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 66.1420055528 + Accuracy on test : 75.8196721311 + - Iteration 8 + Fold 1 + Accuracy on train : 66.0256410256 + Accuracy on test : 68.8524590164 + Accuracy on validation : 71.8446601942 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 62.4203821656 + Accuracy on test : 73.7704918033 + Accuracy on validation : 72.8155339806 + Selected View : Methyl_ + - Mean : + Accuracy on train : 64.2230115956 + Accuracy on test : 71.3114754098 + - Iteration 9 + Fold 1 + Accuracy on train : 73.0769230769 + Accuracy on test : 77.0491803279 + Accuracy on validation : 75.7281553398 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 62.4203821656 + Accuracy on test : 73.7704918033 + Accuracy on validation : 72.8155339806 + Selected View : Clinic_ + - Mean : + Accuracy on train : 67.7486526213 + Accuracy on test : 75.4098360656 + - Iteration 10 + Fold 1 + Accuracy on train : 73.7179487179 + Accuracy on test : 77.0491803279 + Accuracy on validation : 78.640776699 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 65.6050955414 + Accuracy on test : 77.0491803279 + Accuracy on validation : 71.8446601942 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 69.6615221297 + Accuracy on test : 77.0491803279 + - Iteration 11 + Fold 1 + Accuracy on train : 71.7948717949 + Accuracy on test : 77.868852459 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 65.6050955414 + Accuracy on test : 77.0491803279 + Accuracy on validation : 71.8446601942 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 68.6999836681 + Accuracy on test : 77.4590163934 + - Iteration 12 + Fold 1 + Accuracy on train : 69.8717948718 + Accuracy on test : 78.6885245902 + Accuracy on validation : 76.6990291262 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 71.3375796178 + Accuracy on test : 77.0491803279 + Accuracy on validation : 79.6116504854 + Selected View : Methyl_ + - Mean : + Accuracy on train : 70.6046872448 + Accuracy on test : 77.868852459 + - Iteration 13 + Fold 1 + Accuracy on train : 69.8717948718 + Accuracy on test : 76.2295081967 + Accuracy on validation : 76.6990291262 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 69.4267515924 + Accuracy on test : 77.0491803279 + Accuracy on validation : 77.6699029126 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 69.6492732321 + Accuracy on test : 76.6393442623 + - Iteration 14 + Fold 1 + Accuracy on train : 69.8717948718 + Accuracy on test : 75.4098360656 + Accuracy on validation : 75.7281553398 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 70.7006369427 + Accuracy on test : 77.868852459 + Accuracy on validation : 77.6699029126 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 70.2862159072 + Accuracy on test : 76.6393442623 + - Iteration 15 + Fold 1 + Accuracy on train : 70.5128205128 + Accuracy on test : 78.6885245902 + Accuracy on validation : 76.6990291262 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 68.7898089172 + Accuracy on test : 78.6885245902 + Accuracy on validation : 74.7572815534 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 69.651314715 + Accuracy on test : 78.6885245902 + - Iteration 16 + Fold 1 + Accuracy on train : 68.5897435897 + Accuracy on test : 77.0491803279 + Accuracy on validation : 74.7572815534 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 73.2484076433 + Accuracy on test : 78.6885245902 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 70.9190756165 + Accuracy on test : 77.868852459 + - Iteration 17 + Fold 1 + Accuracy on train : 67.3076923077 + Accuracy on test : 76.2295081967 + Accuracy on validation : 76.6990291262 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 66.8789808917 + Accuracy on test : 78.6885245902 + Accuracy on validation : 74.7572815534 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 67.0933365997 + Accuracy on test : 77.4590163934 + - Iteration 18 + Fold 1 + Accuracy on train : 62.8205128205 + Accuracy on test : 74.5901639344 + Accuracy on validation : 74.7572815534 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 67.5159235669 + Accuracy on test : 77.868852459 + Accuracy on validation : 76.6990291262 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 65.1682181937 + Accuracy on test : 76.2295081967 + - Iteration 19 + Fold 1 + Accuracy on train : 66.0256410256 + Accuracy on test : 76.2295081967 + Accuracy on validation : 74.7572815534 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 68.7898089172 + Accuracy on test : 77.868852459 + Accuracy on validation : 76.6990291262 + Selected View : Clinic_ + - Mean : + Accuracy on train : 67.4077249714 + Accuracy on test : 77.0491803279 + - Iteration 20 + Fold 1 + Accuracy on train : 68.5897435897 + Accuracy on test : 77.868852459 + Accuracy on validation : 75.7281553398 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 66.2420382166 + Accuracy on test : 78.6885245902 + Accuracy on validation : 76.6990291262 + Selected View : Clinic_ + - Mean : + Accuracy on train : 67.4158909032 + Accuracy on test : 78.2786885246 + - Iteration 21 + Fold 1 + Accuracy on train : 71.7948717949 + Accuracy on test : 78.6885245902 + Accuracy on validation : 76.6990291262 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 66.2420382166 + Accuracy on test : 77.868852459 + Accuracy on validation : 75.7281553398 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 69.0184550057 + Accuracy on test : 78.2786885246 + - Iteration 22 + Fold 1 + Accuracy on train : 73.7179487179 + Accuracy on test : 81.1475409836 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 68.152866242 + Accuracy on test : 78.6885245902 + Accuracy on validation : 77.6699029126 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 70.93540748 + Accuracy on test : 79.9180327869 + - Iteration 23 + Fold 1 + Accuracy on train : 71.7948717949 + Accuracy on test : 79.5081967213 + Accuracy on validation : 75.7281553398 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 66.2420382166 + Accuracy on test : 77.868852459 + Accuracy on validation : 75.7281553398 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 69.0184550057 + Accuracy on test : 78.6885245902 + - Iteration 24 + Fold 1 + Accuracy on train : 74.358974359 + Accuracy on test : 82.7868852459 + Accuracy on validation : 79.6116504854 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 65.6050955414 + Accuracy on test : 77.0491803279 + Accuracy on validation : 74.7572815534 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 69.9820349502 + Accuracy on test : 79.9180327869 + - Iteration 25 + Fold 1 + Accuracy on train : 74.358974359 + Accuracy on test : 82.7868852459 + Accuracy on validation : 79.6116504854 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 64.9681528662 + Accuracy on test : 77.868852459 + Accuracy on validation : 72.8155339806 + Selected View : Clinic_ + - Mean : + Accuracy on train : 69.6635636126 + Accuracy on test : 80.3278688525 + - Iteration 26 + Fold 1 + Accuracy on train : 78.2051282051 + Accuracy on test : 81.9672131148 + Accuracy on validation : 83.4951456311 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 67.5159235669 + Accuracy on test : 78.6885245902 + Accuracy on validation : 74.7572815534 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 72.860525886 + Accuracy on test : 80.3278688525 + - Iteration 27 + Fold 1 + Accuracy on train : 74.358974359 + Accuracy on test : 81.1475409836 + Accuracy on validation : 81.5533980583 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 67.5159235669 + Accuracy on test : 78.6885245902 + Accuracy on validation : 74.7572815534 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 70.9374489629 + Accuracy on test : 79.9180327869 + - Iteration 28 + Fold 1 + Accuracy on train : 75.641025641 + Accuracy on test : 82.7868852459 + Accuracy on validation : 82.5242718447 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 67.5159235669 + Accuracy on test : 77.868852459 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 71.578474604 + Accuracy on test : 80.3278688525 + - Iteration 29 + Fold 1 + Accuracy on train : 73.7179487179 + Accuracy on test : 80.3278688525 + Accuracy on validation : 79.6116504854 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 68.7898089172 + Accuracy on test : 78.6885245902 + Accuracy on validation : 75.7281553398 + Selected View : Methyl_ + - Mean : + Accuracy on train : 71.2538788176 + Accuracy on test : 79.5081967213 + - Iteration 30 + Fold 1 + Accuracy on train : 71.1538461538 + Accuracy on test : 79.5081967213 + Accuracy on validation : 78.640776699 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 71.3375796178 + Accuracy on test : 81.1475409836 + Accuracy on validation : 75.7281553398 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 71.2457128858 + Accuracy on test : 80.3278688525 + - Iteration 31 + Fold 1 + Accuracy on train : 75.0 + Accuracy on test : 81.9672131148 + Accuracy on validation : 81.5533980583 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 73.2484076433 + Accuracy on test : 81.1475409836 + Accuracy on validation : 78.640776699 + Selected View : Methyl_ + - Mean : + Accuracy on train : 74.1242038217 + Accuracy on test : 81.5573770492 + - Iteration 32 + Fold 1 + Accuracy on train : 75.641025641 + Accuracy on test : 81.1475409836 + Accuracy on validation : 81.5533980583 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 75.1592356688 + Accuracy on test : 81.1475409836 + Accuracy on validation : 79.6116504854 + Selected View : Methyl_ + - Mean : + Accuracy on train : 75.4001306549 + Accuracy on test : 81.1475409836 + - Iteration 33 + Fold 1 + Accuracy on train : 74.358974359 + Accuracy on test : 78.6885245902 + Accuracy on validation : 81.5533980583 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 71.974522293 + Accuracy on test : 81.1475409836 + Accuracy on validation : 77.6699029126 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 73.166748326 + Accuracy on test : 79.9180327869 + - Iteration 34 + Fold 1 + Accuracy on train : 71.1538461538 + Accuracy on test : 79.5081967213 + Accuracy on validation : 78.640776699 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 71.3375796178 + Accuracy on test : 79.5081967213 + Accuracy on validation : 75.7281553398 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 71.2457128858 + Accuracy on test : 79.5081967213 + - Iteration 35 + Fold 1 + Accuracy on train : 73.7179487179 + Accuracy on test : 78.6885245902 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 71.974522293 + Accuracy on test : 80.3278688525 + Accuracy on validation : 75.7281553398 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 72.8462355055 + Accuracy on test : 79.5081967213 + - Iteration 36 + Fold 1 + Accuracy on train : 72.4358974359 + Accuracy on test : 78.6885245902 + Accuracy on validation : 79.6116504854 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 70.7006369427 + Accuracy on test : 78.6885245902 + Accuracy on validation : 74.7572815534 + Selected View : Clinic_ + - Mean : + Accuracy on train : 71.5682671893 + Accuracy on test : 78.6885245902 + - Iteration 37 + Fold 1 + Accuracy on train : 73.0769230769 + Accuracy on test : 77.868852459 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 71.974522293 + Accuracy on test : 78.6885245902 + Accuracy on validation : 77.6699029126 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 72.525722685 + Accuracy on test : 78.2786885246 + - Iteration 38 + Fold 1 + Accuracy on train : 73.0769230769 + Accuracy on test : 77.868852459 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 73.2484076433 + Accuracy on test : 81.9672131148 + Accuracy on validation : 78.640776699 + Selected View : Clinic_ + - Mean : + Accuracy on train : 73.1626653601 + Accuracy on test : 79.9180327869 + - Iteration 39 + Fold 1 + Accuracy on train : 72.4358974359 + Accuracy on test : 77.868852459 + Accuracy on validation : 79.6116504854 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 74.5222929936 + Accuracy on test : 81.9672131148 + Accuracy on validation : 79.6116504854 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 73.4790952148 + Accuracy on test : 79.9180327869 + - Iteration 40 + Fold 1 + Accuracy on train : 73.0769230769 + Accuracy on test : 77.868852459 + Accuracy on validation : 79.6116504854 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 73.8853503185 + Accuracy on test : 83.606557377 + Accuracy on validation : 78.640776699 + Selected View : Methyl_ + - Mean : + Accuracy on train : 73.4811366977 + Accuracy on test : 80.737704918 + - Iteration 41 + Fold 1 + Accuracy on train : 71.7948717949 + Accuracy on test : 75.4098360656 + Accuracy on validation : 78.640776699 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 74.5222929936 + Accuracy on test : 81.1475409836 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 73.1585823943 + Accuracy on test : 78.2786885246 + - Iteration 42 + Fold 1 + Accuracy on train : 73.0769230769 + Accuracy on test : 77.0491803279 + Accuracy on validation : 79.6116504854 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 74.5222929936 + Accuracy on test : 83.606557377 + Accuracy on validation : 79.6116504854 + Selected View : Methyl_ + - Mean : + Accuracy on train : 73.7996080353 + Accuracy on test : 80.3278688525 + - Iteration 43 + Fold 1 + Accuracy on train : 72.4358974359 + Accuracy on test : 75.4098360656 + Accuracy on validation : 79.6116504854 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 73.8853503185 + Accuracy on test : 83.606557377 + Accuracy on validation : 79.6116504854 + Selected View : Methyl_ + - Mean : + Accuracy on train : 73.1606238772 + Accuracy on test : 79.5081967213 + - Iteration 44 + Fold 1 + Accuracy on train : 73.0769230769 + Accuracy on test : 77.868852459 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 73.2484076433 + Accuracy on test : 80.3278688525 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 73.1626653601 + Accuracy on test : 79.0983606557 + - Iteration 45 + Fold 1 + Accuracy on train : 73.0769230769 + Accuracy on test : 78.6885245902 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 73.8853503185 + Accuracy on test : 82.7868852459 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 73.4811366977 + Accuracy on test : 80.737704918 + - Iteration 46 + Fold 1 + Accuracy on train : 72.4358974359 + Accuracy on test : 77.868852459 + Accuracy on validation : 79.6116504854 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 73.2484076433 + Accuracy on test : 77.868852459 + Accuracy on validation : 80.5825242718 + Selected View : Clinic_ + - Mean : + Accuracy on train : 72.8421525396 + Accuracy on test : 77.868852459 + - Iteration 47 + Fold 1 + Accuracy on train : 71.7948717949 + Accuracy on test : 78.6885245902 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 73.8853503185 + Accuracy on test : 77.868852459 + Accuracy on validation : 80.5825242718 + Selected View : Methyl_ + - Mean : + Accuracy on train : 72.8401110567 + Accuracy on test : 78.2786885246 + - Iteration 48 + Fold 1 + Accuracy on train : 70.5128205128 + Accuracy on test : 77.868852459 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 73.8853503185 + Accuracy on test : 80.3278688525 + Accuracy on validation : 81.5533980583 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 72.1990854156 + Accuracy on test : 79.0983606557 + - Iteration 49 + Fold 1 + Accuracy on train : 72.4358974359 + Accuracy on test : 78.6885245902 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 73.8853503185 + Accuracy on test : 80.3278688525 + Accuracy on validation : 81.5533980583 + Selected View : Methyl_ + - Mean : + Accuracy on train : 73.1606238772 + Accuracy on test : 79.5081967213 + - Iteration 50 + Fold 1 + Accuracy on train : 71.1538461538 + Accuracy on test : 77.868852459 + Accuracy on validation : 80.5825242718 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 73.8853503185 + Accuracy on test : 79.5081967213 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 72.5195982362 + Accuracy on test : 78.6885245902 + - Iteration 51 + Fold 1 + Accuracy on train : 71.1538461538 + Accuracy on test : 78.6885245902 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 77.0700636943 + Accuracy on test : 81.9672131148 + Accuracy on validation : 83.4951456311 + Selected View : Methyl_ + - Mean : + Accuracy on train : 74.1119549241 + Accuracy on test : 80.3278688525 + - Iteration 52 + Fold 1 + Accuracy on train : 69.8717948718 + Accuracy on test : 77.0491803279 + Accuracy on validation : 78.640776699 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 78.3439490446 + Accuracy on test : 81.1475409836 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 74.1078719582 + Accuracy on test : 79.0983606557 + - Iteration 53 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 54 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 55 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 56 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 57 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 58 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 59 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 60 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 61 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 62 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 63 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 64 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 65 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 66 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 67 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 68 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 69 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 70 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 71 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 72 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 73 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 74 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 75 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 76 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 77 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 78 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 79 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 80 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 81 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 82 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 83 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 84 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 85 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 86 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 87 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 88 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 89 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 90 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 91 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 92 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 93 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 94 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 95 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 96 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 97 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 98 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 99 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 100 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 101 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 102 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 103 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 104 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 105 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 106 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 107 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 108 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 109 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 110 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 111 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 112 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 113 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 114 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 115 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 116 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 117 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 118 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 119 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 120 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 121 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 122 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 123 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 124 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 125 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 126 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 127 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 128 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 129 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 130 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 131 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 132 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 133 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 134 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 135 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 136 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 137 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 138 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 139 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 140 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 141 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 142 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 143 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 144 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 145 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 146 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 147 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 148 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 149 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 150 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 151 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 152 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 153 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 154 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 155 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 156 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 157 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 158 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 159 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 160 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 161 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 162 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 163 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 164 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 165 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 166 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 167 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 168 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 169 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 170 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 171 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 172 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 173 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 174 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 175 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 176 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 177 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 178 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 179 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 180 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 181 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 182 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 183 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 184 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 185 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 186 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 187 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 188 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 189 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 190 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 191 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 192 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 193 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 194 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 195 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 196 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 197 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 198 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 199 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 200 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 201 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 202 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 203 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 204 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 205 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 206 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 207 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 208 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 209 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 210 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 211 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 212 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 213 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 214 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 215 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 216 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 217 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 218 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 219 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 220 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 221 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 222 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 223 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 224 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 225 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 226 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 227 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 228 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 229 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 230 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 231 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 232 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 233 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 234 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 235 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 236 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 237 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 238 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 239 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 240 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 241 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 242 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 243 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 244 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 245 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 246 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 247 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 248 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 249 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 250 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 251 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 252 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 253 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 254 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 255 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 256 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 257 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 258 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 259 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 260 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 261 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 262 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 263 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 264 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 265 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 266 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 267 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 268 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 269 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 270 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 271 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 272 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 273 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 274 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 275 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 276 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 277 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 278 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 279 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 280 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 281 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 282 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 283 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 284 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 285 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 286 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 287 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 288 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 289 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 290 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 291 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 292 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 293 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 294 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 295 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 296 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 297 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 298 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 299 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 300 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 301 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 302 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 303 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 304 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 305 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 306 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 307 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 308 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 309 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 310 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 311 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 312 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 313 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 314 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 315 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 316 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 317 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 318 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 319 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 320 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 321 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 322 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 323 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 324 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 325 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 326 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 327 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 328 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 329 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 330 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 331 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 332 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 333 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 334 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 335 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 336 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 337 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 338 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 339 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 340 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 341 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 342 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 343 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 344 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 345 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 346 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 347 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 348 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 349 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 350 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 351 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 352 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 353 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 354 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 355 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 356 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 357 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 358 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 359 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 360 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 361 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 362 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 363 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 364 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 365 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 366 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 367 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 368 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 369 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 370 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 371 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 372 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 373 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 374 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 375 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 376 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 377 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 378 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 379 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 380 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 381 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 382 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 383 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 384 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 385 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 386 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 387 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 388 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 389 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 390 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 391 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 392 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 393 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 394 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 395 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 396 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 397 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 398 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 399 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 400 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 401 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 402 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 403 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 404 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 405 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 406 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 407 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 408 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 409 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 410 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 411 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 412 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 413 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 414 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 415 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 416 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 417 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 418 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 419 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 420 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 421 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 422 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 423 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 424 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 425 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 426 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 427 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 428 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 429 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 430 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 431 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 432 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 433 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 434 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 435 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 436 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 437 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 438 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 439 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 440 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 441 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 442 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 443 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 444 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 445 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 446 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 447 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 448 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 449 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 450 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 451 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 452 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 453 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 454 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 455 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 456 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 457 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 458 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 459 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 460 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 461 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 462 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 463 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 464 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 465 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 466 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 467 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 468 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 469 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 470 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 471 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 472 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 473 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 474 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 475 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 476 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 477 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 478 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 479 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 480 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 481 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 482 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 483 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 484 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 485 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 486 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 487 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 488 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 489 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 490 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 491 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 492 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 493 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 494 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 495 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 496 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 497 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 498 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 499 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 500 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 501 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 502 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 503 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 504 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 505 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 506 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 507 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 508 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 509 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 510 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 511 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 512 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 513 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 514 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 515 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 516 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 517 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 518 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 519 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 520 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 521 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 522 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 523 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 524 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 525 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 526 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 527 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 528 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 529 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 530 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 531 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 532 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 533 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 534 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 535 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 536 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 537 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 538 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 539 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 540 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 541 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 542 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 543 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 544 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 545 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 546 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 547 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 548 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 549 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 550 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 551 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 552 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 553 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 554 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 555 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 556 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 557 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 558 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 559 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 560 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 561 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 562 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 563 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 564 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 565 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 566 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 567 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 568 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 569 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 570 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 571 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 572 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 573 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 574 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 575 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 576 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 577 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 578 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 579 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 580 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 581 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 582 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 583 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 584 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 585 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 586 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 587 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 588 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 589 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 590 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 591 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 592 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 593 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 594 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 595 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 596 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 597 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 598 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 599 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 600 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 601 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 602 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 603 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 604 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 605 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 606 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 607 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 608 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 609 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 610 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 611 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 612 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 613 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 614 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 615 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 616 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 617 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 618 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 619 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 620 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 621 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 622 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 623 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 624 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 625 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 626 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 627 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 628 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 629 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 630 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 631 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 632 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 633 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 634 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 635 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 636 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 637 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 638 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 639 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 640 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 641 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 642 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 643 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 644 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 645 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 646 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 647 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 648 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 649 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 650 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 651 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 652 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 653 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 654 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 655 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 656 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 657 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 658 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 659 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 660 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 661 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 662 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 663 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 664 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 665 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 666 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 667 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 668 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 669 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 670 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 671 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 672 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 673 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 674 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 675 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 676 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 677 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 678 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 679 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 680 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 681 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 682 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 683 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 684 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 685 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 686 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 687 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 688 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 689 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 690 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 691 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 692 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 693 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 694 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 695 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 696 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 697 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 698 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 699 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 700 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 701 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 702 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 703 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 704 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 705 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 706 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 707 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 708 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 709 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 710 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 711 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 712 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 713 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 714 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 715 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 716 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 717 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 718 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 719 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 720 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 721 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 722 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 723 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 724 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 725 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 726 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 727 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 728 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 729 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 730 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 731 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 732 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 733 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 734 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 735 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 736 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 737 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 738 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 739 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 740 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 741 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 742 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 743 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 744 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 745 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 746 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 747 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 748 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 749 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 750 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 751 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 752 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 753 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 754 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 755 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 756 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 757 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 758 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 759 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 760 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 761 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 762 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 763 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 764 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 765 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 766 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 767 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 768 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 769 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 770 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 771 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 772 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 773 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 774 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 775 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 776 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 777 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 778 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 779 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 780 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 781 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 782 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 783 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 784 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 785 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 786 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 787 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 788 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 789 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 790 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 791 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 792 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 793 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 794 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 795 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 796 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 797 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 798 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 799 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 800 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 801 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 802 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 803 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 804 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 805 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 806 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 807 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 808 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 809 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 810 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 811 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 812 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 813 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 814 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 815 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 816 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 817 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 818 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 819 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 820 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 821 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 822 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 823 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 824 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 825 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 826 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 827 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 828 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 829 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 830 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 831 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 832 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 833 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 834 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 835 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 836 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 837 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 838 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 839 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 840 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 841 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 842 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 843 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 844 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 845 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 846 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 847 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 848 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 849 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 850 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 851 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 852 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 853 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 854 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 855 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 856 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 857 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 858 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 859 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 860 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 861 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 862 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 863 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 864 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 865 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 866 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 867 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 868 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 869 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 870 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 871 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 872 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 873 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 874 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 875 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 876 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 877 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 878 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 879 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 880 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 881 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 882 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 883 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 884 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 885 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 886 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 887 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 888 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 889 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 890 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 891 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 892 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 893 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 894 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 895 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 896 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 897 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 898 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 899 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 900 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 901 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 902 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 903 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 904 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 905 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 906 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 907 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 908 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 909 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 910 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 911 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 912 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 913 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 914 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 915 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 916 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 917 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 918 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 919 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 920 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 921 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 922 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 923 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 924 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 925 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 926 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 927 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 928 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 929 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 930 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 931 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 932 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 933 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 934 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 935 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 936 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 937 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 938 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 939 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 940 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 941 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 942 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 943 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 944 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 945 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 946 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 947 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 948 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 949 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 950 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 951 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 952 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 953 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 954 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 955 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 956 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 957 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 958 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 959 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 960 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 961 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 962 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 963 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 964 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 965 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 966 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 967 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 968 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 969 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 970 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 971 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 972 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 973 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 974 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 975 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 976 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 977 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 978 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 979 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 980 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 981 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 982 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 983 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 984 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 985 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 986 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 987 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 988 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 989 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 990 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 991 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 992 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 993 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 994 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 995 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 996 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 997 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 998 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 999 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 1000 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + +Computation time on 1 cores : + Database extraction time : 0:00:00 + Learn Prediction + Fold 1 0:02:40 0:00:07 + Fold 2 0:04:22 0:00:07 + Total 0:07:02 0:00:15 + So a total classification time of 0:04:29. + + +2016-08-24 09:38:43,134 INFO: Done: Result Analysis diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093842Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093842Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png new file mode 100644 index 0000000000000000000000000000000000000000..50c8876ea3458bb044bb4ed265a50cce6ac905b0 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093842Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png differ diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093842Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093842Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt new file mode 100644 index 0000000000000000000000000000000000000000..6a91f6d691bc3e2c7009838126628a0ae2baafd8 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093842Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt @@ -0,0 +1,14060 @@ + Result for Multiview classification with Mumbo + +Average accuracy : + -On Train : 74.1078719582 + -On Test : 79.0983606557 + -On Validation : 81.5533980583 + +Dataset info : + -Database name : ModifiedMultiOmic + -Labels : No, Yes + -Views : Methyl, MiRNA, RNASEQ, Clinical + -2 folds + - Validation set length : 103 for learning rate : 0.7 + +Classification configuration : + -Algorithm used : Mumbo + -Iterations : 1000 + -Weak Classifiers : DecisionTree with depth 1.0, sub-sampled at 0.0075 on Methyl + -DecisionTree with depth 1.0, sub-sampled at 0.007 on MiRNA + -DecisionTree with depth 1.0, sub-sampled at 0.006 on RNASEQ + -DecisionTree with depth 1.0, sub-sampled at 0.0075 on Clinical + + Mean average accuracies and stats for each fold : + - Fold 0 + - On Methyl_ : + - Mean average Accuracy : 0.0274615384615 + - Percentage of time chosen : 0.96 + - On MiRNA__ : + - Mean average Accuracy : 0.0292820512821 + - Percentage of time chosen : 0.028 + - On RANSeq_ : + - Mean average Accuracy : 0.0261987179487 + - Percentage of time chosen : 0.004 + - On Clinic_ : + - Mean average Accuracy : 0.027391025641 + - Percentage of time chosen : 0.008 + - Fold 1 + - On Methyl_ : + - Mean average Accuracy : 0.0279617834395 + - Percentage of time chosen : 0.961 + - On MiRNA__ : + - Mean average Accuracy : 0.028178343949 + - Percentage of time chosen : 0.026 + - On RANSeq_ : + - Mean average Accuracy : 0.0253566878981 + - Percentage of time chosen : 0.005 + - On Clinic_ : + - Mean average Accuracy : 0.0265031847134 + - Percentage of time chosen : 0.008 + + For each iteration : + - Iteration 1 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 2 + Fold 1 + Accuracy on train : 66.6666666667 + Accuracy on test : 69.6721311475 + Accuracy on validation : 72.8155339806 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 64.9681528662 + Accuracy on test : 73.7704918033 + Accuracy on validation : 74.7572815534 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 65.8174097665 + Accuracy on test : 71.7213114754 + - Iteration 3 + Fold 1 + Accuracy on train : 66.6666666667 + Accuracy on test : 69.6721311475 + Accuracy on validation : 72.8155339806 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 64.9681528662 + Accuracy on test : 73.7704918033 + Accuracy on validation : 74.7572815534 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 65.8174097665 + Accuracy on test : 71.7213114754 + - Iteration 4 + Fold 1 + Accuracy on train : 56.4102564103 + Accuracy on test : 65.5737704918 + Accuracy on validation : 66.0194174757 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 63.0573248408 + Accuracy on test : 72.9508196721 + Accuracy on validation : 76.6990291262 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 59.7337906255 + Accuracy on test : 69.262295082 + - Iteration 5 + Fold 1 + Accuracy on train : 66.0256410256 + Accuracy on test : 72.9508196721 + Accuracy on validation : 67.9611650485 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 72.8155339806 + Selected View : Clinic_ + - Mean : + Accuracy on train : 63.904540258 + Accuracy on test : 72.9508196721 + - Iteration 6 + Fold 1 + Accuracy on train : 65.3846153846 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 72.8155339806 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 63.5840274375 + Accuracy on test : 72.9508196721 + - Iteration 7 + Fold 1 + Accuracy on train : 68.5897435897 + Accuracy on test : 76.2295081967 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 63.6942675159 + Accuracy on test : 75.4098360656 + Accuracy on validation : 72.8155339806 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 66.1420055528 + Accuracy on test : 75.8196721311 + - Iteration 8 + Fold 1 + Accuracy on train : 66.0256410256 + Accuracy on test : 68.8524590164 + Accuracy on validation : 71.8446601942 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 62.4203821656 + Accuracy on test : 73.7704918033 + Accuracy on validation : 72.8155339806 + Selected View : Methyl_ + - Mean : + Accuracy on train : 64.2230115956 + Accuracy on test : 71.3114754098 + - Iteration 9 + Fold 1 + Accuracy on train : 73.0769230769 + Accuracy on test : 77.0491803279 + Accuracy on validation : 75.7281553398 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 62.4203821656 + Accuracy on test : 73.7704918033 + Accuracy on validation : 72.8155339806 + Selected View : Clinic_ + - Mean : + Accuracy on train : 67.7486526213 + Accuracy on test : 75.4098360656 + - Iteration 10 + Fold 1 + Accuracy on train : 73.7179487179 + Accuracy on test : 77.0491803279 + Accuracy on validation : 78.640776699 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 65.6050955414 + Accuracy on test : 77.0491803279 + Accuracy on validation : 71.8446601942 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 69.6615221297 + Accuracy on test : 77.0491803279 + - Iteration 11 + Fold 1 + Accuracy on train : 71.7948717949 + Accuracy on test : 77.868852459 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 65.6050955414 + Accuracy on test : 77.0491803279 + Accuracy on validation : 71.8446601942 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 68.6999836681 + Accuracy on test : 77.4590163934 + - Iteration 12 + Fold 1 + Accuracy on train : 69.8717948718 + Accuracy on test : 78.6885245902 + Accuracy on validation : 76.6990291262 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 71.3375796178 + Accuracy on test : 77.0491803279 + Accuracy on validation : 79.6116504854 + Selected View : Methyl_ + - Mean : + Accuracy on train : 70.6046872448 + Accuracy on test : 77.868852459 + - Iteration 13 + Fold 1 + Accuracy on train : 69.8717948718 + Accuracy on test : 76.2295081967 + Accuracy on validation : 76.6990291262 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 69.4267515924 + Accuracy on test : 77.0491803279 + Accuracy on validation : 77.6699029126 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 69.6492732321 + Accuracy on test : 76.6393442623 + - Iteration 14 + Fold 1 + Accuracy on train : 69.8717948718 + Accuracy on test : 75.4098360656 + Accuracy on validation : 75.7281553398 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 70.7006369427 + Accuracy on test : 77.868852459 + Accuracy on validation : 77.6699029126 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 70.2862159072 + Accuracy on test : 76.6393442623 + - Iteration 15 + Fold 1 + Accuracy on train : 70.5128205128 + Accuracy on test : 78.6885245902 + Accuracy on validation : 76.6990291262 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 68.7898089172 + Accuracy on test : 78.6885245902 + Accuracy on validation : 74.7572815534 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 69.651314715 + Accuracy on test : 78.6885245902 + - Iteration 16 + Fold 1 + Accuracy on train : 68.5897435897 + Accuracy on test : 77.0491803279 + Accuracy on validation : 74.7572815534 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 73.2484076433 + Accuracy on test : 78.6885245902 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 70.9190756165 + Accuracy on test : 77.868852459 + - Iteration 17 + Fold 1 + Accuracy on train : 67.3076923077 + Accuracy on test : 76.2295081967 + Accuracy on validation : 76.6990291262 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 66.8789808917 + Accuracy on test : 78.6885245902 + Accuracy on validation : 74.7572815534 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 67.0933365997 + Accuracy on test : 77.4590163934 + - Iteration 18 + Fold 1 + Accuracy on train : 62.8205128205 + Accuracy on test : 74.5901639344 + Accuracy on validation : 74.7572815534 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 67.5159235669 + Accuracy on test : 77.868852459 + Accuracy on validation : 76.6990291262 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 65.1682181937 + Accuracy on test : 76.2295081967 + - Iteration 19 + Fold 1 + Accuracy on train : 66.0256410256 + Accuracy on test : 76.2295081967 + Accuracy on validation : 74.7572815534 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 68.7898089172 + Accuracy on test : 77.868852459 + Accuracy on validation : 76.6990291262 + Selected View : Clinic_ + - Mean : + Accuracy on train : 67.4077249714 + Accuracy on test : 77.0491803279 + - Iteration 20 + Fold 1 + Accuracy on train : 68.5897435897 + Accuracy on test : 77.868852459 + Accuracy on validation : 75.7281553398 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 66.2420382166 + Accuracy on test : 78.6885245902 + Accuracy on validation : 76.6990291262 + Selected View : Clinic_ + - Mean : + Accuracy on train : 67.4158909032 + Accuracy on test : 78.2786885246 + - Iteration 21 + Fold 1 + Accuracy on train : 71.7948717949 + Accuracy on test : 78.6885245902 + Accuracy on validation : 76.6990291262 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 66.2420382166 + Accuracy on test : 77.868852459 + Accuracy on validation : 75.7281553398 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 69.0184550057 + Accuracy on test : 78.2786885246 + - Iteration 22 + Fold 1 + Accuracy on train : 73.7179487179 + Accuracy on test : 81.1475409836 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 68.152866242 + Accuracy on test : 78.6885245902 + Accuracy on validation : 77.6699029126 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 70.93540748 + Accuracy on test : 79.9180327869 + - Iteration 23 + Fold 1 + Accuracy on train : 71.7948717949 + Accuracy on test : 79.5081967213 + Accuracy on validation : 75.7281553398 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 66.2420382166 + Accuracy on test : 77.868852459 + Accuracy on validation : 75.7281553398 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 69.0184550057 + Accuracy on test : 78.6885245902 + - Iteration 24 + Fold 1 + Accuracy on train : 74.358974359 + Accuracy on test : 82.7868852459 + Accuracy on validation : 79.6116504854 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 65.6050955414 + Accuracy on test : 77.0491803279 + Accuracy on validation : 74.7572815534 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 69.9820349502 + Accuracy on test : 79.9180327869 + - Iteration 25 + Fold 1 + Accuracy on train : 74.358974359 + Accuracy on test : 82.7868852459 + Accuracy on validation : 79.6116504854 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 64.9681528662 + Accuracy on test : 77.868852459 + Accuracy on validation : 72.8155339806 + Selected View : Clinic_ + - Mean : + Accuracy on train : 69.6635636126 + Accuracy on test : 80.3278688525 + - Iteration 26 + Fold 1 + Accuracy on train : 78.2051282051 + Accuracy on test : 81.9672131148 + Accuracy on validation : 83.4951456311 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 67.5159235669 + Accuracy on test : 78.6885245902 + Accuracy on validation : 74.7572815534 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 72.860525886 + Accuracy on test : 80.3278688525 + - Iteration 27 + Fold 1 + Accuracy on train : 74.358974359 + Accuracy on test : 81.1475409836 + Accuracy on validation : 81.5533980583 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 67.5159235669 + Accuracy on test : 78.6885245902 + Accuracy on validation : 74.7572815534 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 70.9374489629 + Accuracy on test : 79.9180327869 + - Iteration 28 + Fold 1 + Accuracy on train : 75.641025641 + Accuracy on test : 82.7868852459 + Accuracy on validation : 82.5242718447 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 67.5159235669 + Accuracy on test : 77.868852459 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 71.578474604 + Accuracy on test : 80.3278688525 + - Iteration 29 + Fold 1 + Accuracy on train : 73.7179487179 + Accuracy on test : 80.3278688525 + Accuracy on validation : 79.6116504854 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 68.7898089172 + Accuracy on test : 78.6885245902 + Accuracy on validation : 75.7281553398 + Selected View : Methyl_ + - Mean : + Accuracy on train : 71.2538788176 + Accuracy on test : 79.5081967213 + - Iteration 30 + Fold 1 + Accuracy on train : 71.1538461538 + Accuracy on test : 79.5081967213 + Accuracy on validation : 78.640776699 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 71.3375796178 + Accuracy on test : 81.1475409836 + Accuracy on validation : 75.7281553398 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 71.2457128858 + Accuracy on test : 80.3278688525 + - Iteration 31 + Fold 1 + Accuracy on train : 75.0 + Accuracy on test : 81.9672131148 + Accuracy on validation : 81.5533980583 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 73.2484076433 + Accuracy on test : 81.1475409836 + Accuracy on validation : 78.640776699 + Selected View : Methyl_ + - Mean : + Accuracy on train : 74.1242038217 + Accuracy on test : 81.5573770492 + - Iteration 32 + Fold 1 + Accuracy on train : 75.641025641 + Accuracy on test : 81.1475409836 + Accuracy on validation : 81.5533980583 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 75.1592356688 + Accuracy on test : 81.1475409836 + Accuracy on validation : 79.6116504854 + Selected View : Methyl_ + - Mean : + Accuracy on train : 75.4001306549 + Accuracy on test : 81.1475409836 + - Iteration 33 + Fold 1 + Accuracy on train : 74.358974359 + Accuracy on test : 78.6885245902 + Accuracy on validation : 81.5533980583 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 71.974522293 + Accuracy on test : 81.1475409836 + Accuracy on validation : 77.6699029126 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 73.166748326 + Accuracy on test : 79.9180327869 + - Iteration 34 + Fold 1 + Accuracy on train : 71.1538461538 + Accuracy on test : 79.5081967213 + Accuracy on validation : 78.640776699 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 71.3375796178 + Accuracy on test : 79.5081967213 + Accuracy on validation : 75.7281553398 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 71.2457128858 + Accuracy on test : 79.5081967213 + - Iteration 35 + Fold 1 + Accuracy on train : 73.7179487179 + Accuracy on test : 78.6885245902 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 71.974522293 + Accuracy on test : 80.3278688525 + Accuracy on validation : 75.7281553398 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 72.8462355055 + Accuracy on test : 79.5081967213 + - Iteration 36 + Fold 1 + Accuracy on train : 72.4358974359 + Accuracy on test : 78.6885245902 + Accuracy on validation : 79.6116504854 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 70.7006369427 + Accuracy on test : 78.6885245902 + Accuracy on validation : 74.7572815534 + Selected View : Clinic_ + - Mean : + Accuracy on train : 71.5682671893 + Accuracy on test : 78.6885245902 + - Iteration 37 + Fold 1 + Accuracy on train : 73.0769230769 + Accuracy on test : 77.868852459 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 71.974522293 + Accuracy on test : 78.6885245902 + Accuracy on validation : 77.6699029126 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 72.525722685 + Accuracy on test : 78.2786885246 + - Iteration 38 + Fold 1 + Accuracy on train : 73.0769230769 + Accuracy on test : 77.868852459 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 73.2484076433 + Accuracy on test : 81.9672131148 + Accuracy on validation : 78.640776699 + Selected View : Clinic_ + - Mean : + Accuracy on train : 73.1626653601 + Accuracy on test : 79.9180327869 + - Iteration 39 + Fold 1 + Accuracy on train : 72.4358974359 + Accuracy on test : 77.868852459 + Accuracy on validation : 79.6116504854 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 74.5222929936 + Accuracy on test : 81.9672131148 + Accuracy on validation : 79.6116504854 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 73.4790952148 + Accuracy on test : 79.9180327869 + - Iteration 40 + Fold 1 + Accuracy on train : 73.0769230769 + Accuracy on test : 77.868852459 + Accuracy on validation : 79.6116504854 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 73.8853503185 + Accuracy on test : 83.606557377 + Accuracy on validation : 78.640776699 + Selected View : Methyl_ + - Mean : + Accuracy on train : 73.4811366977 + Accuracy on test : 80.737704918 + - Iteration 41 + Fold 1 + Accuracy on train : 71.7948717949 + Accuracy on test : 75.4098360656 + Accuracy on validation : 78.640776699 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 74.5222929936 + Accuracy on test : 81.1475409836 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 73.1585823943 + Accuracy on test : 78.2786885246 + - Iteration 42 + Fold 1 + Accuracy on train : 73.0769230769 + Accuracy on test : 77.0491803279 + Accuracy on validation : 79.6116504854 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 74.5222929936 + Accuracy on test : 83.606557377 + Accuracy on validation : 79.6116504854 + Selected View : Methyl_ + - Mean : + Accuracy on train : 73.7996080353 + Accuracy on test : 80.3278688525 + - Iteration 43 + Fold 1 + Accuracy on train : 72.4358974359 + Accuracy on test : 75.4098360656 + Accuracy on validation : 79.6116504854 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 73.8853503185 + Accuracy on test : 83.606557377 + Accuracy on validation : 79.6116504854 + Selected View : Methyl_ + - Mean : + Accuracy on train : 73.1606238772 + Accuracy on test : 79.5081967213 + - Iteration 44 + Fold 1 + Accuracy on train : 73.0769230769 + Accuracy on test : 77.868852459 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 73.2484076433 + Accuracy on test : 80.3278688525 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 73.1626653601 + Accuracy on test : 79.0983606557 + - Iteration 45 + Fold 1 + Accuracy on train : 73.0769230769 + Accuracy on test : 78.6885245902 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 73.8853503185 + Accuracy on test : 82.7868852459 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 73.4811366977 + Accuracy on test : 80.737704918 + - Iteration 46 + Fold 1 + Accuracy on train : 72.4358974359 + Accuracy on test : 77.868852459 + Accuracy on validation : 79.6116504854 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 73.2484076433 + Accuracy on test : 77.868852459 + Accuracy on validation : 80.5825242718 + Selected View : Clinic_ + - Mean : + Accuracy on train : 72.8421525396 + Accuracy on test : 77.868852459 + - Iteration 47 + Fold 1 + Accuracy on train : 71.7948717949 + Accuracy on test : 78.6885245902 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 73.8853503185 + Accuracy on test : 77.868852459 + Accuracy on validation : 80.5825242718 + Selected View : Methyl_ + - Mean : + Accuracy on train : 72.8401110567 + Accuracy on test : 78.2786885246 + - Iteration 48 + Fold 1 + Accuracy on train : 70.5128205128 + Accuracy on test : 77.868852459 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 73.8853503185 + Accuracy on test : 80.3278688525 + Accuracy on validation : 81.5533980583 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 72.1990854156 + Accuracy on test : 79.0983606557 + - Iteration 49 + Fold 1 + Accuracy on train : 72.4358974359 + Accuracy on test : 78.6885245902 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 73.8853503185 + Accuracy on test : 80.3278688525 + Accuracy on validation : 81.5533980583 + Selected View : Methyl_ + - Mean : + Accuracy on train : 73.1606238772 + Accuracy on test : 79.5081967213 + - Iteration 50 + Fold 1 + Accuracy on train : 71.1538461538 + Accuracy on test : 77.868852459 + Accuracy on validation : 80.5825242718 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 73.8853503185 + Accuracy on test : 79.5081967213 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 72.5195982362 + Accuracy on test : 78.6885245902 + - Iteration 51 + Fold 1 + Accuracy on train : 71.1538461538 + Accuracy on test : 78.6885245902 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 77.0700636943 + Accuracy on test : 81.9672131148 + Accuracy on validation : 83.4951456311 + Selected View : Methyl_ + - Mean : + Accuracy on train : 74.1119549241 + Accuracy on test : 80.3278688525 + - Iteration 52 + Fold 1 + Accuracy on train : 69.8717948718 + Accuracy on test : 77.0491803279 + Accuracy on validation : 78.640776699 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 78.3439490446 + Accuracy on test : 81.1475409836 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 74.1078719582 + Accuracy on test : 79.0983606557 + - Iteration 53 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 54 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 55 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 56 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 57 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 58 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 59 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 60 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 61 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 62 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 63 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 64 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 65 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 66 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 67 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 68 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 69 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 70 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 71 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 72 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 73 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 74 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 75 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 76 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 77 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 78 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 79 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 80 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 81 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 82 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 83 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 84 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 85 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 86 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 87 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 88 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 89 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 90 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 91 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 92 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 93 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 94 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 95 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 96 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 97 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 98 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 99 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 100 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 101 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 102 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 103 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 104 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 105 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 106 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 107 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 108 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 109 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 110 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 111 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 112 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 113 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 114 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 115 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 116 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 117 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 118 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 119 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 120 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 121 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 122 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 123 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 124 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 125 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 126 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 127 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 128 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 129 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 130 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 131 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 132 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 133 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 134 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 135 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 136 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 137 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 138 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 139 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 140 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 141 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 142 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 143 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 144 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 145 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 146 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 147 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 148 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 149 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 150 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 151 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 152 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 153 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 154 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 155 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 156 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 157 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 158 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 159 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 160 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 161 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 162 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 163 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 164 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 165 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 166 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 167 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 168 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 169 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 170 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 171 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 172 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 173 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 174 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 175 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 176 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 177 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 178 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 179 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 180 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 181 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 182 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 183 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 184 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 185 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 186 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 187 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 188 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 189 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 190 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 191 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 192 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 193 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 194 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 195 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 196 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 197 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 198 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 199 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 200 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 201 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 202 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 203 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 204 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 205 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 206 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 207 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 208 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 209 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 210 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 211 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 212 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 213 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 214 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 215 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 216 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 217 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 218 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 219 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 220 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 221 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 222 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 223 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 224 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 225 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 226 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 227 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 228 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 229 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 230 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 231 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 232 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 233 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 234 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 235 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 236 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 237 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 238 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 239 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 240 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 241 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 242 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 243 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 244 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 245 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 246 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 247 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 248 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 249 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 250 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 251 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 252 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 253 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 254 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 255 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 256 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 257 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 258 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 259 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 260 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 261 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 262 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 263 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 264 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 265 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 266 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 267 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 268 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 269 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 270 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 271 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 272 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 273 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 274 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 275 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 276 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 277 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 278 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 279 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 280 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 281 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 282 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 283 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 284 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 285 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 286 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 287 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 288 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 289 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 290 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 291 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 292 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 293 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 294 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 295 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 296 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 297 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 298 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 299 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 300 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 301 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 302 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 303 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 304 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 305 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 306 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 307 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 308 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 309 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 310 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 311 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 312 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 313 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 314 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 315 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 316 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 317 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 318 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 319 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 320 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 321 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 322 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 323 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 324 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 325 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 326 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 327 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 328 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 329 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 330 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 331 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 332 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 333 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 334 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 335 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 336 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 337 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 338 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 339 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 340 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 341 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 342 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 343 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 344 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 345 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 346 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 347 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 348 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 349 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 350 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 351 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 352 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 353 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 354 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 355 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 356 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 357 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 358 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 359 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 360 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 361 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 362 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 363 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 364 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 365 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 366 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 367 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 368 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 369 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 370 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 371 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 372 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 373 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 374 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 375 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 376 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 377 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 378 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 379 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 380 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 381 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 382 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 383 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 384 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 385 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 386 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 387 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 388 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 389 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 390 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 391 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 392 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 393 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 394 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 395 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 396 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 397 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 398 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 399 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 400 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 401 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 402 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 403 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 404 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 405 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 406 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 407 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 408 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 409 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 410 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 411 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 412 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 413 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 414 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 415 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 416 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 417 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 418 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 419 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 420 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 421 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 422 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 423 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 424 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 425 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 426 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 427 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 428 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 429 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 430 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 431 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 432 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 433 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 434 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 435 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 436 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 437 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 438 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 439 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 440 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 441 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 442 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 443 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 444 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 445 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 446 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 447 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 448 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 449 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 450 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 451 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 452 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 453 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 454 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 455 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 456 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 457 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 458 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 459 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 460 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 461 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 462 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 463 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 464 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 465 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 466 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 467 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 468 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 469 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 470 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 471 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 472 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 473 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 474 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 475 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 476 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 477 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 478 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 479 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 480 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 481 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 482 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 483 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 484 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 485 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 486 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 487 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 488 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 489 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 490 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 491 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 492 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 493 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 494 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 495 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 496 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 497 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 498 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 499 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 500 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 501 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 502 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 503 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 504 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 505 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 506 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 507 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 508 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 509 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 510 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 511 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 512 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 513 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 514 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 515 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 516 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 517 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 518 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 519 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 520 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 521 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 522 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 523 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 524 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 525 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 526 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 527 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 528 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 529 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 530 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 531 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 532 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 533 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 534 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 535 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 536 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 537 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 538 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 539 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 540 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 541 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 542 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 543 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 544 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 545 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 546 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 547 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 548 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 549 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 550 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 551 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 552 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 553 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 554 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 555 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 556 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 557 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 558 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 559 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 560 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 561 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 562 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 563 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 564 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 565 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 566 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 567 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 568 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 569 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 570 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 571 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 572 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 573 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 574 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 575 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 576 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 577 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 578 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 579 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 580 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 581 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 582 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 583 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 584 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 585 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 586 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 587 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 588 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 589 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 590 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 591 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 592 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 593 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 594 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 595 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 596 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 597 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 598 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 599 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 600 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 601 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 602 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 603 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 604 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 605 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 606 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 607 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 608 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 609 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 610 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 611 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 612 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 613 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 614 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 615 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 616 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 617 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 618 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 619 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 620 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 621 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 622 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 623 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 624 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 625 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 626 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 627 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 628 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 629 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 630 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 631 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 632 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 633 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 634 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 635 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 636 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 637 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 638 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 639 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 640 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 641 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 642 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 643 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 644 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 645 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 646 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 647 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 648 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 649 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 650 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 651 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 652 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 653 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 654 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 655 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 656 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 657 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 658 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 659 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 660 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 661 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 662 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 663 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 664 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 665 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 666 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 667 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 668 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 669 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 670 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 671 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 672 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 673 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 674 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 675 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 676 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 677 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 678 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 679 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 680 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 681 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 682 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 683 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 684 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 685 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 686 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 687 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 688 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 689 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 690 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 691 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 692 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 693 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 694 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 695 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 696 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 697 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 698 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 699 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 700 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 701 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 702 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 703 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 704 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 705 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 706 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 707 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 708 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 709 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 710 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 711 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 712 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 713 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 714 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 715 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 716 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 717 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 718 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 719 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 720 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 721 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 722 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 723 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 724 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 725 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 726 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 727 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 728 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 729 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 730 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 731 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 732 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 733 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 734 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 735 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 736 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 737 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 738 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 739 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 740 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 741 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 742 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 743 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 744 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 745 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 746 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 747 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 748 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 749 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 750 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 751 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 752 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 753 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 754 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 755 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 756 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 757 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 758 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 759 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 760 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 761 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 762 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 763 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 764 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 765 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 766 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 767 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 768 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 769 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 770 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 771 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 772 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 773 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 774 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 775 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 776 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 777 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 778 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 779 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 780 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 781 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 782 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 783 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 784 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 785 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 786 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 787 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 788 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 789 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 790 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 791 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 792 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 793 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 794 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 795 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 796 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 797 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 798 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 799 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 800 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 801 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 802 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 803 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 804 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 805 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 806 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 807 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 808 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 809 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 810 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 811 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 812 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 813 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 814 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 815 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 816 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 817 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 818 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 819 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 820 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 821 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 822 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 823 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 824 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 825 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 826 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 827 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 828 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 829 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 830 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 831 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 832 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 833 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 834 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 835 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 836 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 837 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 838 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 839 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 840 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 841 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 842 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 843 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 844 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 845 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 846 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 847 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 848 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 849 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 850 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 851 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 852 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 853 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 854 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 855 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 856 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 857 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 858 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 859 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 860 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 861 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 862 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 863 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 864 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 865 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 866 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 867 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 868 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 869 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 870 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 871 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 872 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 873 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 874 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 875 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 876 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 877 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 878 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 879 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 880 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 881 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 882 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 883 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 884 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 885 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 886 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 887 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 888 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 889 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 890 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 891 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 892 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 893 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 894 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 895 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 896 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 897 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 898 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 899 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 900 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 901 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 902 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 903 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 904 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 905 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 906 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 907 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 908 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 909 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 910 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 911 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 912 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 913 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 914 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 915 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 916 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 917 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 918 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 919 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 920 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 921 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 922 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 923 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 924 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 925 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 926 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 927 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 928 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 929 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 930 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 931 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 932 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 933 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 934 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 935 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 936 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 937 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 938 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 939 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 940 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 941 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 942 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 943 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 944 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 945 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 946 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 947 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 948 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 949 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 950 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 951 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 952 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 953 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 954 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 955 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 956 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 957 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 958 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 959 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 960 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 961 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 962 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 963 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 964 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 965 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 966 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 967 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 968 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 969 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 970 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 971 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 972 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 973 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 974 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 975 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 976 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 977 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 978 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 979 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 980 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 981 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 982 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 983 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 984 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 985 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 986 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 987 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 988 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 989 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 990 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 991 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 992 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 993 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 994 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 995 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 996 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 997 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 998 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 999 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + - Iteration 1000 + Fold 1 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.7834394904 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.6609505145 + Accuracy on test : 72.9508196721 + +Computation time on 1 cores : + Database extraction time : 0:00:00 + Learn Prediction + Fold 1 0:02:40 0:00:07 + Fold 2 0:04:22 0:00:07 + Total 0:07:02 0:00:15 + So a total classification time of 0:04:29. + diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-094408-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-094408-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..f87aee135296c70980613b7e93a00eec9b073189 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-094408-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log @@ -0,0 +1,531 @@ +2016-08-24 09:44:08,361 INFO: Start: Read HDF5 Database Files for ModifiedMultiOmic +2016-08-24 09:44:08,361 INFO: Info: Labels used: No, Yes +2016-08-24 09:44:08,361 INFO: Info: Length of dataset:347 +2016-08-24 09:44:08,363 INFO: ### Main Programm for Multiview Classification +2016-08-24 09:44:08,363 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1 +2016-08-24 09:44:08,363 INFO: Info: Shape of Methyl_ :(347, 25978) +2016-08-24 09:44:08,364 INFO: Info: Shape of MiRNA__ :(347, 1046) +2016-08-24 09:44:08,364 INFO: Info: Shape of RANSeq_ :(347, 73599) +2016-08-24 09:44:08,365 INFO: Info: Shape of Clinic_ :(347, 127) +2016-08-24 09:44:08,365 INFO: Done: Read Database Files +2016-08-24 09:44:08,365 INFO: Start: Determine validation split for ratio 0.7 +2016-08-24 09:44:08,368 INFO: Done: Determine validation split +2016-08-24 09:44:08,368 INFO: Start: Determine 2 folds +2016-08-24 09:44:08,378 INFO: Info: Length of Learning Sets: 122 +2016-08-24 09:44:08,378 INFO: Info: Length of Testing Sets: 122 +2016-08-24 09:44:08,378 INFO: Info: Length of Validation Set: 103 +2016-08-24 09:44:08,379 INFO: Done: Determine folds +2016-08-24 09:44:08,379 INFO: Start: Learning with Mumbo and 2 folds +2016-08-24 09:44:08,379 INFO: Start: Gridsearching best settings for monoview classifiers +2016-08-24 09:44:08,379 DEBUG: Start: Gridsearch for DecisionTree on Methyl_ +2016-08-24 09:44:15,803 DEBUG: 0.585648414986Poulet +2016-08-24 09:44:15,803 DEBUG: 0.560864553314Poulet +2016-08-24 09:44:15,803 DEBUG: 0.511642651297Poulet +2016-08-24 09:44:15,803 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:44:15,804 DEBUG: Start: Gridsearch for DecisionTree on MiRNA__ +2016-08-24 09:44:17,725 DEBUG: 0.543054755043Poulet +2016-08-24 09:44:17,725 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:44:17,725 DEBUG: Start: Gridsearch for DecisionTree on RANSeq_ +2016-08-24 09:44:34,897 DEBUG: 0.577463976945Poulet +2016-08-24 09:44:34,898 DEBUG: 0.563400576369Poulet +2016-08-24 09:44:34,898 DEBUG: 0.511930835735Poulet +2016-08-24 09:44:34,899 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:44:34,899 DEBUG: Start: Gridsearch for DecisionTree on Clinic_ +2016-08-24 09:44:36,702 DEBUG: 0.56265129683Poulet +2016-08-24 09:44:36,702 DEBUG: 0.561383285303Poulet +2016-08-24 09:44:36,702 DEBUG: 0.501844380403Poulet +2016-08-24 09:44:36,702 DEBUG: 0.514351585014Poulet +2016-08-24 09:44:36,702 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:44:36,703 DEBUG: Start: Gridsearch for DecisionTree on MRNASeq +2016-08-24 09:45:24,687 DEBUG: 0.541556195965Poulet +2016-08-24 09:45:24,687 DEBUG: 0.528357348703Poulet +2016-08-24 09:45:24,689 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:45:24,689 INFO: Done: Gridsearching best settings for monoview classifiers +2016-08-24 09:45:24,689 INFO: Start: Fold number 1 +2016-08-24 09:45:26,374 DEBUG: Start: Iteration 1 +2016-08-24 09:45:26,392 DEBUG: View 0 : 0.379746835443 +2016-08-24 09:45:26,400 DEBUG: View 1 : 0.620253164557 +2016-08-24 09:45:26,431 DEBUG: View 2 : 0.620253164557 +2016-08-24 09:45:26,442 DEBUG: View 3 : 0.620253164557 +2016-08-24 09:45:26,485 DEBUG: Best view : MiRNA__ +2016-08-24 09:45:26,561 DEBUG: Start: Iteration 2 +2016-08-24 09:45:26,579 DEBUG: View 0 : 0.443037974684 +2016-08-24 09:45:26,587 DEBUG: View 1 : 0.563291139241 +2016-08-24 09:45:26,628 DEBUG: View 2 : 0.563291139241 +2016-08-24 09:45:26,636 DEBUG: View 3 : 0.651898734177 +2016-08-24 09:45:26,693 DEBUG: Best view : Clinic_ +2016-08-24 09:45:26,830 DEBUG: Start: Iteration 3 +2016-08-24 09:45:26,847 DEBUG: View 0 : 0.550632911392 +2016-08-24 09:45:26,855 DEBUG: View 1 : 0.563291139241 +2016-08-24 09:45:26,892 DEBUG: View 2 : 0.53164556962 +2016-08-24 09:45:26,902 DEBUG: View 3 : 0.462025316456 +2016-08-24 09:45:26,957 DEBUG: Best view : Clinic_ +2016-08-24 09:45:27,145 DEBUG: Start: Iteration 4 +2016-08-24 09:45:27,161 DEBUG: View 0 : 0.569620253165 +2016-08-24 09:45:27,169 DEBUG: View 1 : 0.329113924051 +2016-08-24 09:45:27,206 DEBUG: View 2 : 0.525316455696 +2016-08-24 09:45:27,214 DEBUG: View 3 : 0.588607594937 +2016-08-24 09:45:27,272 DEBUG: Best view : Clinic_ +2016-08-24 09:45:27,520 DEBUG: Start: Iteration 5 +2016-08-24 09:45:27,537 DEBUG: View 0 : 0.443037974684 +2016-08-24 09:45:27,545 DEBUG: View 1 : 0.569620253165 +2016-08-24 09:45:27,582 DEBUG: View 2 : 0.537974683544 +2016-08-24 09:45:27,590 DEBUG: View 3 : 0.518987341772 +2016-08-24 09:45:27,648 DEBUG: Best view : MiRNA__ +2016-08-24 09:45:27,951 DEBUG: Start: Iteration 6 +2016-08-24 09:45:27,968 DEBUG: View 0 : 0.386075949367 +2016-08-24 09:45:27,976 DEBUG: View 1 : 0.651898734177 +2016-08-24 09:45:28,012 DEBUG: View 2 : 0.430379746835 +2016-08-24 09:45:28,020 DEBUG: View 3 : 0.443037974684 +2016-08-24 09:45:28,080 DEBUG: Best view : MiRNA__ +2016-08-24 09:45:28,444 DEBUG: Start: Iteration 7 +2016-08-24 09:45:28,460 DEBUG: View 0 : 0.664556962025 +2016-08-24 09:45:28,468 DEBUG: View 1 : 0.443037974684 +2016-08-24 09:45:28,505 DEBUG: View 2 : 0.525316455696 +2016-08-24 09:45:28,512 DEBUG: View 3 : 0.487341772152 +2016-08-24 09:45:28,575 DEBUG: Best view : Methyl_ +2016-08-24 09:45:28,997 DEBUG: Start: Iteration 8 +2016-08-24 09:45:29,014 DEBUG: View 0 : 0.424050632911 +2016-08-24 09:45:29,021 DEBUG: View 1 : 0.417721518987 +2016-08-24 09:45:29,058 DEBUG: View 2 : 0.556962025316 +2016-08-24 09:45:29,066 DEBUG: View 3 : 0.594936708861 +2016-08-24 09:45:29,131 DEBUG: Best view : Clinic_ +2016-08-24 09:45:29,628 DEBUG: Start: Iteration 9 +2016-08-24 09:45:29,645 DEBUG: View 0 : 0.512658227848 +2016-08-24 09:45:29,653 DEBUG: View 1 : 0.417721518987 +2016-08-24 09:45:29,691 DEBUG: View 2 : 0.639240506329 +2016-08-24 09:45:29,699 DEBUG: View 3 : 0.411392405063 +2016-08-24 09:45:29,769 DEBUG: Best view : RANSeq_ +2016-08-24 09:45:30,333 DEBUG: Start: Iteration 10 +2016-08-24 09:45:30,349 DEBUG: View 0 : 0.506329113924 +2016-08-24 09:45:30,357 DEBUG: View 1 : 0.639240506329 +2016-08-24 09:45:30,394 DEBUG: View 2 : 0.424050632911 +2016-08-24 09:45:30,402 DEBUG: View 3 : 0.436708860759 +2016-08-24 09:45:30,471 DEBUG: Best view : MiRNA__ +2016-08-24 09:45:31,083 DEBUG: Start: Iteration 11 +2016-08-24 09:45:31,100 DEBUG: View 0 : 0.626582278481 +2016-08-24 09:45:31,107 DEBUG: View 1 : 0.354430379747 +2016-08-24 09:45:31,144 DEBUG: View 2 : 0.398734177215 +2016-08-24 09:45:31,152 DEBUG: View 3 : 0.607594936709 +2016-08-24 09:45:31,223 DEBUG: Best view : Methyl_ +2016-08-24 09:45:31,904 DEBUG: Start: Iteration 12 +2016-08-24 09:45:31,921 DEBUG: View 0 : 0.689873417722 +2016-08-24 09:45:31,929 DEBUG: View 1 : 0.481012658228 +2016-08-24 09:45:31,965 DEBUG: View 2 : 0.46835443038 +2016-08-24 09:45:31,973 DEBUG: View 3 : 0.493670886076 +2016-08-24 09:45:32,047 DEBUG: Best view : Methyl_ +2016-08-24 09:45:32,812 DEBUG: Start: Iteration 13 +2016-08-24 09:45:32,829 DEBUG: View 0 : 0.417721518987 +2016-08-24 09:45:32,837 DEBUG: View 1 : 0.639240506329 +2016-08-24 09:45:32,874 DEBUG: View 2 : 0.405063291139 +2016-08-24 09:45:32,882 DEBUG: View 3 : 0.620253164557 +2016-08-24 09:45:32,957 DEBUG: Best view : MiRNA__ +2016-08-24 09:45:33,749 DEBUG: Start: Iteration 14 +2016-08-24 09:45:33,765 DEBUG: View 0 : 0.481012658228 +2016-08-24 09:45:33,773 DEBUG: View 1 : 0.278481012658 +2016-08-24 09:45:33,809 DEBUG: View 2 : 0.379746835443 +2016-08-24 09:45:33,817 DEBUG: View 3 : 0.392405063291 +2016-08-24 09:45:33,818 WARNING: WARNING: All bad for iteration 13 +2016-08-24 09:45:33,896 DEBUG: Best view : Methyl_ +2016-08-24 09:45:34,783 DEBUG: Start: Iteration 15 +2016-08-24 09:45:34,801 DEBUG: View 0 : 0.436708860759 +2016-08-24 09:45:34,809 DEBUG: View 1 : 0.563291139241 +2016-08-24 09:45:34,849 DEBUG: View 2 : 0.544303797468 +2016-08-24 09:45:34,858 DEBUG: View 3 : 0.474683544304 +2016-08-24 09:45:34,952 DEBUG: Best view : MiRNA__ +2016-08-24 09:45:35,984 DEBUG: Start: Iteration 16 +2016-08-24 09:45:36,002 DEBUG: View 0 : 0.550632911392 +2016-08-24 09:45:36,010 DEBUG: View 1 : 0.443037974684 +2016-08-24 09:45:36,049 DEBUG: View 2 : 0.544303797468 +2016-08-24 09:45:36,057 DEBUG: View 3 : 0.506329113924 +2016-08-24 09:45:36,141 DEBUG: Best view : RANSeq_ +2016-08-24 09:45:37,137 DEBUG: Start: Iteration 17 +2016-08-24 09:45:37,154 DEBUG: View 0 : 0.392405063291 +2016-08-24 09:45:37,162 DEBUG: View 1 : 0.670886075949 +2016-08-24 09:45:37,199 DEBUG: View 2 : 0.443037974684 +2016-08-24 09:45:37,207 DEBUG: View 3 : 0.398734177215 +2016-08-24 09:45:37,294 DEBUG: Best view : MiRNA__ +2016-08-24 09:45:38,383 DEBUG: Start: Iteration 18 +2016-08-24 09:45:38,400 DEBUG: View 0 : 0.462025316456 +2016-08-24 09:45:38,407 DEBUG: View 1 : 0.620253164557 +2016-08-24 09:45:38,444 DEBUG: View 2 : 0.493670886076 +2016-08-24 09:45:38,452 DEBUG: View 3 : 0.556962025316 +2016-08-24 09:45:38,541 DEBUG: Best view : MiRNA__ +2016-08-24 09:45:39,640 DEBUG: Start: Iteration 19 +2016-08-24 09:45:39,656 DEBUG: View 0 : 0.689873417722 +2016-08-24 09:45:39,664 DEBUG: View 1 : 0.544303797468 +2016-08-24 09:45:39,701 DEBUG: View 2 : 0.594936708861 +2016-08-24 09:45:39,708 DEBUG: View 3 : 0.594936708861 +2016-08-24 09:45:39,799 DEBUG: Best view : Methyl_ +2016-08-24 09:45:40,989 DEBUG: Start: Iteration 20 +2016-08-24 09:45:41,005 DEBUG: View 0 : 0.550632911392 +2016-08-24 09:45:41,013 DEBUG: View 1 : 0.613924050633 +2016-08-24 09:45:41,050 DEBUG: View 2 : 0.613924050633 +2016-08-24 09:45:41,058 DEBUG: View 3 : 0.607594936709 +2016-08-24 09:45:41,151 DEBUG: Best view : MiRNA__ +2016-08-24 09:45:42,389 DEBUG: Start: Iteration 21 +2016-08-24 09:45:42,405 DEBUG: View 0 : 0.651898734177 +2016-08-24 09:45:42,413 DEBUG: View 1 : 0.664556962025 +2016-08-24 09:45:42,450 DEBUG: View 2 : 0.563291139241 +2016-08-24 09:45:42,458 DEBUG: View 3 : 0.417721518987 +2016-08-24 09:45:42,554 DEBUG: Best view : MiRNA__ +2016-08-24 09:45:43,837 DEBUG: Start: Iteration 22 +2016-08-24 09:45:43,853 DEBUG: View 0 : 0.537974683544 +2016-08-24 09:45:43,861 DEBUG: View 1 : 0.607594936709 +2016-08-24 09:45:43,899 DEBUG: View 2 : 0.582278481013 +2016-08-24 09:45:43,906 DEBUG: View 3 : 0.493670886076 +2016-08-24 09:45:44,006 DEBUG: Best view : MiRNA__ +2016-08-24 09:45:45,380 DEBUG: Start: Iteration 23 +2016-08-24 09:45:45,397 DEBUG: View 0 : 0.626582278481 +2016-08-24 09:45:45,405 DEBUG: View 1 : 0.462025316456 +2016-08-24 09:45:45,443 DEBUG: View 2 : 0.613924050633 +2016-08-24 09:45:45,451 DEBUG: View 3 : 0.487341772152 +2016-08-24 09:45:45,552 DEBUG: Best view : Methyl_ +2016-08-24 09:45:46,972 DEBUG: Start: Iteration 24 +2016-08-24 09:45:46,991 DEBUG: View 0 : 0.474683544304 +2016-08-24 09:45:46,999 DEBUG: View 1 : 0.607594936709 +2016-08-24 09:45:47,037 DEBUG: View 2 : 0.556962025316 +2016-08-24 09:45:47,045 DEBUG: View 3 : 0.405063291139 +2016-08-24 09:45:47,149 DEBUG: Best view : MiRNA__ +2016-08-24 09:45:48,783 DEBUG: Start: Iteration 25 +2016-08-24 09:45:48,799 DEBUG: View 0 : 0.5 +2016-08-24 09:45:48,807 DEBUG: View 1 : 0.512658227848 +2016-08-24 09:45:48,844 DEBUG: View 2 : 0.487341772152 +2016-08-24 09:45:48,852 DEBUG: View 3 : 0.474683544304 +2016-08-24 09:45:48,956 DEBUG: Best view : Methyl_ +2016-08-24 09:45:50,533 DEBUG: Start: Iteration 26 +2016-08-24 09:45:50,550 DEBUG: View 0 : 0.645569620253 +2016-08-24 09:45:50,558 DEBUG: View 1 : 0.651898734177 +2016-08-24 09:45:50,595 DEBUG: View 2 : 0.411392405063 +2016-08-24 09:45:50,603 DEBUG: View 3 : 0.582278481013 +2016-08-24 09:45:50,707 DEBUG: Best view : MiRNA__ +2016-08-24 09:45:52,409 DEBUG: Start: Iteration 27 +2016-08-24 09:45:52,430 DEBUG: View 0 : 0.588607594937 +2016-08-24 09:45:52,439 DEBUG: View 1 : 0.601265822785 +2016-08-24 09:45:52,483 DEBUG: View 2 : 0.588607594937 +2016-08-24 09:45:52,492 DEBUG: View 3 : 0.449367088608 +2016-08-24 09:45:52,615 DEBUG: Best view : MiRNA__ +2016-08-24 09:45:54,284 DEBUG: Start: Iteration 28 +2016-08-24 09:45:54,301 DEBUG: View 0 : 0.46835443038 +2016-08-24 09:45:54,309 DEBUG: View 1 : 0.405063291139 +2016-08-24 09:45:54,345 DEBUG: View 2 : 0.455696202532 +2016-08-24 09:45:54,353 DEBUG: View 3 : 0.436708860759 +2016-08-24 09:45:54,354 WARNING: WARNING: All bad for iteration 27 +2016-08-24 09:45:54,463 DEBUG: Best view : Methyl_ +2016-08-24 09:45:56,154 DEBUG: Start: Iteration 29 +2016-08-24 09:45:56,170 DEBUG: View 0 : 0.405063291139 +2016-08-24 09:45:56,178 DEBUG: View 1 : 0.632911392405 +2016-08-24 09:45:56,214 DEBUG: View 2 : 0.417721518987 +2016-08-24 09:45:56,222 DEBUG: View 3 : 0.474683544304 +2016-08-24 09:45:56,334 DEBUG: Best view : MiRNA__ +2016-08-24 09:45:58,088 DEBUG: Start: Iteration 30 +2016-08-24 09:45:58,104 DEBUG: View 0 : 0.5 +2016-08-24 09:45:58,112 DEBUG: View 1 : 0.398734177215 +2016-08-24 09:45:58,149 DEBUG: View 2 : 0.455696202532 +2016-08-24 09:45:58,157 DEBUG: View 3 : 0.417721518987 +2016-08-24 09:45:58,270 DEBUG: Best view : Methyl_ +2016-08-24 09:46:00,083 DEBUG: Start: Iteration 31 +2016-08-24 09:46:00,100 DEBUG: View 0 : 0.462025316456 +2016-08-24 09:46:00,108 DEBUG: View 1 : 0.424050632911 +2016-08-24 09:46:00,144 DEBUG: View 2 : 0.417721518987 +2016-08-24 09:46:00,152 DEBUG: View 3 : 0.436708860759 +2016-08-24 09:46:00,152 WARNING: WARNING: All bad for iteration 30 +2016-08-24 09:46:00,269 DEBUG: Best view : Methyl_ +2016-08-24 09:46:02,316 DEBUG: Start: Iteration 32 +2016-08-24 09:46:02,332 DEBUG: View 0 : 0.632911392405 +2016-08-24 09:46:02,340 DEBUG: View 1 : 0.727848101266 +2016-08-24 09:46:02,377 DEBUG: View 2 : 0.626582278481 +2016-08-24 09:46:02,385 DEBUG: View 3 : 0.449367088608 +2016-08-24 09:46:02,504 DEBUG: Best view : MiRNA__ +2016-08-24 09:46:04,444 DEBUG: Start: Iteration 33 +2016-08-24 09:46:04,461 DEBUG: View 0 : 0.556962025316 +2016-08-24 09:46:04,469 DEBUG: View 1 : 0.626582278481 +2016-08-24 09:46:04,505 DEBUG: View 2 : 0.506329113924 +2016-08-24 09:46:04,513 DEBUG: View 3 : 0.525316455696 +2016-08-24 09:46:04,633 DEBUG: Best view : MiRNA__ +2016-08-24 09:46:06,628 DEBUG: Start: Iteration 34 +2016-08-24 09:46:06,645 DEBUG: View 0 : 0.53164556962 +2016-08-24 09:46:06,652 DEBUG: View 1 : 0.506329113924 +2016-08-24 09:46:06,689 DEBUG: View 2 : 0.430379746835 +2016-08-24 09:46:06,697 DEBUG: View 3 : 0.481012658228 +2016-08-24 09:46:06,820 DEBUG: Best view : Methyl_ +2016-08-24 09:46:08,877 DEBUG: Start: Iteration 35 +2016-08-24 09:46:08,894 DEBUG: View 0 : 0.430379746835 +2016-08-24 09:46:08,901 DEBUG: View 1 : 0.544303797468 +2016-08-24 09:46:08,938 DEBUG: View 2 : 0.474683544304 +2016-08-24 09:46:08,945 DEBUG: View 3 : 0.405063291139 +2016-08-24 09:46:09,070 DEBUG: Best view : MiRNA__ +2016-08-24 09:46:11,182 DEBUG: Start: Iteration 36 +2016-08-24 09:46:11,198 DEBUG: View 0 : 0.569620253165 +2016-08-24 09:46:11,206 DEBUG: View 1 : 0.664556962025 +2016-08-24 09:46:11,243 DEBUG: View 2 : 0.651898734177 +2016-08-24 09:46:11,251 DEBUG: View 3 : 0.594936708861 +2016-08-24 09:46:11,378 DEBUG: Best view : MiRNA__ +2016-08-24 09:46:13,547 DEBUG: Start: Iteration 37 +2016-08-24 09:46:13,563 DEBUG: View 0 : 0.474683544304 +2016-08-24 09:46:13,571 DEBUG: View 1 : 0.651898734177 +2016-08-24 09:46:13,607 DEBUG: View 2 : 0.392405063291 +2016-08-24 09:46:13,615 DEBUG: View 3 : 0.392405063291 +2016-08-24 09:46:13,744 DEBUG: Best view : MiRNA__ +2016-08-24 09:46:15,973 DEBUG: Start: Iteration 38 +2016-08-24 09:46:15,989 DEBUG: View 0 : 0.651898734177 +2016-08-24 09:46:15,997 DEBUG: View 1 : 0.639240506329 +2016-08-24 09:46:16,034 DEBUG: View 2 : 0.487341772152 +2016-08-24 09:46:16,042 DEBUG: View 3 : 0.582278481013 +2016-08-24 09:46:16,175 DEBUG: Best view : Methyl_ +2016-08-24 09:46:18,469 DEBUG: Start: Iteration 39 +2016-08-24 09:46:18,485 DEBUG: View 0 : 0.537974683544 +2016-08-24 09:46:18,493 DEBUG: View 1 : 0.392405063291 +2016-08-24 09:46:18,529 DEBUG: View 2 : 0.525316455696 +2016-08-24 09:46:18,537 DEBUG: View 3 : 0.46835443038 +2016-08-24 09:46:18,671 DEBUG: Best view : Methyl_ +2016-08-24 09:46:21,024 DEBUG: Start: Iteration 40 +2016-08-24 09:46:21,041 DEBUG: View 0 : 0.639240506329 +2016-08-24 09:46:21,049 DEBUG: View 1 : 0.582278481013 +2016-08-24 09:46:21,085 DEBUG: View 2 : 0.474683544304 +2016-08-24 09:46:21,093 DEBUG: View 3 : 0.481012658228 +2016-08-24 09:46:21,229 DEBUG: Best view : Methyl_ +2016-08-24 09:46:23,647 DEBUG: Start: Iteration 41 +2016-08-24 09:46:23,663 DEBUG: View 0 : 0.481012658228 +2016-08-24 09:46:23,671 DEBUG: View 1 : 0.664556962025 +2016-08-24 09:46:23,708 DEBUG: View 2 : 0.5 +2016-08-24 09:46:23,715 DEBUG: View 3 : 0.392405063291 +2016-08-24 09:46:23,854 DEBUG: Best view : MiRNA__ +2016-08-24 09:46:26,328 DEBUG: Start: Iteration 42 +2016-08-24 09:46:26,345 DEBUG: View 0 : 0.506329113924 +2016-08-24 09:46:26,352 DEBUG: View 1 : 0.582278481013 +2016-08-24 09:46:26,389 DEBUG: View 2 : 0.430379746835 +2016-08-24 09:46:26,397 DEBUG: View 3 : 0.632911392405 +2016-08-24 09:46:26,539 DEBUG: Best view : Clinic_ +2016-08-24 09:46:29,075 DEBUG: Start: Iteration 43 +2016-08-24 09:46:29,091 DEBUG: View 0 : 0.398734177215 +2016-08-24 09:46:29,099 DEBUG: View 1 : 0.5 +2016-08-24 09:46:29,136 DEBUG: View 2 : 0.651898734177 +2016-08-24 09:46:29,143 DEBUG: View 3 : 0.424050632911 +2016-08-24 09:46:29,287 DEBUG: Best view : RANSeq_ +2016-08-24 09:46:31,887 DEBUG: Start: Iteration 44 +2016-08-24 09:46:31,904 DEBUG: View 0 : 0.506329113924 +2016-08-24 09:46:31,912 DEBUG: View 1 : 0.594936708861 +2016-08-24 09:46:31,949 DEBUG: View 2 : 0.348101265823 +2016-08-24 09:46:31,956 DEBUG: View 3 : 0.462025316456 +2016-08-24 09:46:32,102 DEBUG: Best view : MiRNA__ +2016-08-24 09:46:34,802 DEBUG: Start: Iteration 45 +2016-08-24 09:46:34,819 DEBUG: View 0 : 0.436708860759 +2016-08-24 09:46:34,826 DEBUG: View 1 : 0.601265822785 +2016-08-24 09:46:34,863 DEBUG: View 2 : 0.575949367089 +2016-08-24 09:46:34,870 DEBUG: View 3 : 0.537974683544 +2016-08-24 09:46:35,017 DEBUG: Best view : MiRNA__ +2016-08-24 09:46:37,732 DEBUG: Start: Iteration 46 +2016-08-24 09:46:37,748 DEBUG: View 0 : 0.430379746835 +2016-08-24 09:46:37,756 DEBUG: View 1 : 0.651898734177 +2016-08-24 09:46:37,792 DEBUG: View 2 : 0.398734177215 +2016-08-24 09:46:37,800 DEBUG: View 3 : 0.594936708861 +2016-08-24 09:46:37,949 DEBUG: Best view : MiRNA__ +2016-08-24 09:46:40,720 DEBUG: Start: Iteration 47 +2016-08-24 09:46:40,737 DEBUG: View 0 : 0.537974683544 +2016-08-24 09:46:40,744 DEBUG: View 1 : 0.373417721519 +2016-08-24 09:46:40,781 DEBUG: View 2 : 0.424050632911 +2016-08-24 09:46:40,789 DEBUG: View 3 : 0.506329113924 +2016-08-24 09:46:40,941 DEBUG: Best view : Methyl_ +2016-08-24 09:46:43,774 DEBUG: Start: Iteration 48 +2016-08-24 09:46:43,791 DEBUG: View 0 : 0.455696202532 +2016-08-24 09:46:43,799 DEBUG: View 1 : 0.677215189873 +2016-08-24 09:46:43,835 DEBUG: View 2 : 0.601265822785 +2016-08-24 09:46:43,843 DEBUG: View 3 : 0.443037974684 +2016-08-24 09:46:43,997 DEBUG: Best view : MiRNA__ +2016-08-24 09:46:46,889 DEBUG: Start: Iteration 49 +2016-08-24 09:46:46,906 DEBUG: View 0 : 0.443037974684 +2016-08-24 09:46:46,913 DEBUG: View 1 : 0.29746835443 +2016-08-24 09:46:46,950 DEBUG: View 2 : 0.582278481013 +2016-08-24 09:46:46,958 DEBUG: View 3 : 0.613924050633 +2016-08-24 09:46:47,114 DEBUG: Best view : Clinic_ +2016-08-24 09:46:50,150 DEBUG: Start: Iteration 50 +2016-08-24 09:46:50,167 DEBUG: View 0 : 0.436708860759 +2016-08-24 09:46:50,175 DEBUG: View 1 : 0.537974683544 +2016-08-24 09:46:50,211 DEBUG: View 2 : 0.569620253165 +2016-08-24 09:46:50,219 DEBUG: View 3 : 0.405063291139 +2016-08-24 09:46:50,378 DEBUG: Best view : RANSeq_ +2016-08-24 09:46:53,398 DEBUG: Start: Iteration 51 +2016-08-24 09:46:53,415 DEBUG: View 0 : 0.569620253165 +2016-08-24 09:46:53,423 DEBUG: View 1 : 0.417721518987 +2016-08-24 09:46:53,459 DEBUG: View 2 : 0.386075949367 +2016-08-24 09:46:53,467 DEBUG: View 3 : 0.563291139241 +2016-08-24 09:46:53,629 DEBUG: Best view : Methyl_ +2016-08-24 09:46:56,894 DEBUG: Start: Iteration 52 +2016-08-24 09:46:56,913 DEBUG: View 0 : 0.53164556962 +2016-08-24 09:46:56,921 DEBUG: View 1 : 0.405063291139 +2016-08-24 09:46:56,958 DEBUG: View 2 : 0.443037974684 +2016-08-24 09:46:56,966 DEBUG: View 3 : 0.405063291139 +2016-08-24 09:46:57,131 DEBUG: Best view : Methyl_ +2016-08-24 09:47:00,275 INFO: Start: Classification +2016-08-24 09:47:07,807 INFO: Done: Fold number 1 +2016-08-24 09:47:07,807 INFO: Start: Fold number 2 +2016-08-24 09:47:09,379 DEBUG: Start: Iteration 1 +2016-08-24 09:47:09,398 DEBUG: View 0 : 0.446540880503 +2016-08-24 09:47:09,405 DEBUG: View 1 : 0.377358490566 +2016-08-24 09:47:09,433 DEBUG: View 2 : 0.622641509434 +2016-08-24 09:47:09,441 DEBUG: View 3 : 0.622641509434 +2016-08-24 09:47:09,482 DEBUG: Best view : RANSeq_ +2016-08-24 09:47:09,568 DEBUG: Start: Iteration 2 +2016-08-24 09:47:09,585 DEBUG: View 0 : 0.459119496855 +2016-08-24 09:47:09,593 DEBUG: View 1 : 0.477987421384 +2016-08-24 09:47:09,630 DEBUG: View 2 : 0.572327044025 +2016-08-24 09:47:09,637 DEBUG: View 3 : 0.389937106918 +2016-08-24 09:47:09,682 DEBUG: Best view : RANSeq_ +2016-08-24 09:47:09,840 DEBUG: Start: Iteration 3 +2016-08-24 09:47:09,856 DEBUG: View 0 : 0.534591194969 +2016-08-24 09:47:09,864 DEBUG: View 1 : 0.610062893082 +2016-08-24 09:47:09,900 DEBUG: View 2 : 0.383647798742 +2016-08-24 09:47:09,908 DEBUG: View 3 : 0.452830188679 +2016-08-24 09:47:09,960 DEBUG: Best view : MiRNA__ +2016-08-24 09:47:10,177 DEBUG: Start: Iteration 4 +2016-08-24 09:47:10,194 DEBUG: View 0 : 0.566037735849 +2016-08-24 09:47:10,201 DEBUG: View 1 : 0.427672955975 +2016-08-24 09:47:10,239 DEBUG: View 2 : 0.408805031447 +2016-08-24 09:47:10,246 DEBUG: View 3 : 0.660377358491 +2016-08-24 09:47:10,301 DEBUG: Best view : Clinic_ +2016-08-24 09:47:10,577 DEBUG: Start: Iteration 5 +2016-08-24 09:47:10,594 DEBUG: View 0 : 0.509433962264 +2016-08-24 09:47:10,601 DEBUG: View 1 : 0.660377358491 +2016-08-24 09:47:10,638 DEBUG: View 2 : 0.490566037736 +2016-08-24 09:47:10,646 DEBUG: View 3 : 0.553459119497 +2016-08-24 09:47:10,703 DEBUG: Best view : MiRNA__ +2016-08-24 09:47:11,037 DEBUG: Start: Iteration 6 +2016-08-24 09:47:11,053 DEBUG: View 0 : 0.660377358491 +2016-08-24 09:47:11,061 DEBUG: View 1 : 0.396226415094 +2016-08-24 09:47:11,098 DEBUG: View 2 : 0.553459119497 +2016-08-24 09:47:11,106 DEBUG: View 3 : 0.540880503145 +2016-08-24 09:47:11,167 DEBUG: Best view : Methyl_ +2016-08-24 09:47:11,562 DEBUG: Start: Iteration 7 +2016-08-24 09:47:11,578 DEBUG: View 0 : 0.339622641509 +2016-08-24 09:47:11,586 DEBUG: View 1 : 0.62893081761 +2016-08-24 09:47:11,623 DEBUG: View 2 : 0.566037735849 +2016-08-24 09:47:11,630 DEBUG: View 3 : 0.465408805031 +2016-08-24 09:47:11,692 DEBUG: Best view : MiRNA__ +2016-08-24 09:47:12,144 DEBUG: Start: Iteration 8 +2016-08-24 09:47:12,160 DEBUG: View 0 : 0.471698113208 +2016-08-24 09:47:12,168 DEBUG: View 1 : 0.654088050314 +2016-08-24 09:47:12,205 DEBUG: View 2 : 0.383647798742 +2016-08-24 09:47:12,212 DEBUG: View 3 : 0.59748427673 +2016-08-24 09:47:12,276 DEBUG: Best view : MiRNA__ +2016-08-24 09:47:12,787 DEBUG: Start: Iteration 9 +2016-08-24 09:47:12,803 DEBUG: View 0 : 0.622641509434 +2016-08-24 09:47:12,811 DEBUG: View 1 : 0.383647798742 +2016-08-24 09:47:12,848 DEBUG: View 2 : 0.389937106918 +2016-08-24 09:47:12,856 DEBUG: View 3 : 0.584905660377 +2016-08-24 09:47:12,923 DEBUG: Best view : Methyl_ +2016-08-24 09:47:13,494 DEBUG: Start: Iteration 10 +2016-08-24 09:47:13,511 DEBUG: View 0 : 0.433962264151 +2016-08-24 09:47:13,519 DEBUG: View 1 : 0.685534591195 +2016-08-24 09:47:13,556 DEBUG: View 2 : 0.452830188679 +2016-08-24 09:47:13,563 DEBUG: View 3 : 0.40251572327 +2016-08-24 09:47:13,632 DEBUG: Best view : MiRNA__ +2016-08-24 09:47:14,261 DEBUG: Start: Iteration 11 +2016-08-24 09:47:14,278 DEBUG: View 0 : 0.584905660377 +2016-08-24 09:47:14,286 DEBUG: View 1 : 0.566037735849 +2016-08-24 09:47:14,322 DEBUG: View 2 : 0.477987421384 +2016-08-24 09:47:14,330 DEBUG: View 3 : 0.440251572327 +2016-08-24 09:47:14,401 DEBUG: Best view : Methyl_ +2016-08-24 09:47:15,092 DEBUG: Start: Iteration 12 +2016-08-24 09:47:15,109 DEBUG: View 0 : 0.301886792453 +2016-08-24 09:47:15,116 DEBUG: View 1 : 0.37106918239 +2016-08-24 09:47:15,153 DEBUG: View 2 : 0.59748427673 +2016-08-24 09:47:15,160 DEBUG: View 3 : 0.528301886792 +2016-08-24 09:47:15,233 DEBUG: Best view : RANSeq_ +2016-08-24 09:47:16,016 DEBUG: Start: Iteration 13 +2016-08-24 09:47:16,033 DEBUG: View 0 : 0.427672955975 +2016-08-24 09:47:16,040 DEBUG: View 1 : 0.660377358491 +2016-08-24 09:47:16,077 DEBUG: View 2 : 0.377358490566 +2016-08-24 09:47:16,084 DEBUG: View 3 : 0.452830188679 +2016-08-24 09:47:16,162 DEBUG: Best view : MiRNA__ +2016-08-24 09:47:17,170 DEBUG: Start: Iteration 14 +2016-08-24 09:47:17,190 DEBUG: View 0 : 0.622641509434 +2016-08-24 09:47:17,199 DEBUG: View 1 : 0.641509433962 +2016-08-24 09:47:17,242 DEBUG: View 2 : 0.584905660377 +2016-08-24 09:47:17,251 DEBUG: View 3 : 0.528301886792 +2016-08-24 09:47:17,335 DEBUG: Best view : MiRNA__ +2016-08-24 09:47:18,276 DEBUG: Start: Iteration 15 +2016-08-24 09:47:18,294 DEBUG: View 0 : 0.440251572327 +2016-08-24 09:47:18,302 DEBUG: View 1 : 0.283018867925 +2016-08-24 09:47:18,343 DEBUG: View 2 : 0.377358490566 +2016-08-24 09:47:18,351 DEBUG: View 3 : 0.522012578616 +2016-08-24 09:47:18,437 DEBUG: Best view : Clinic_ +2016-08-24 09:47:19,473 DEBUG: Start: Iteration 16 +2016-08-24 09:47:19,491 DEBUG: View 0 : 0.509433962264 +2016-08-24 09:47:19,499 DEBUG: View 1 : 0.522012578616 +2016-08-24 09:47:19,535 DEBUG: View 2 : 0.452830188679 +2016-08-24 09:47:19,543 DEBUG: View 3 : 0.40251572327 +2016-08-24 09:47:19,626 DEBUG: Best view : MiRNA__ +2016-08-24 09:47:20,644 DEBUG: Start: Iteration 17 +2016-08-24 09:47:20,661 DEBUG: View 0 : 0.415094339623 +2016-08-24 09:47:20,669 DEBUG: View 1 : 0.452830188679 +2016-08-24 09:47:20,707 DEBUG: View 2 : 0.471698113208 +2016-08-24 09:47:20,714 DEBUG: View 3 : 0.48427672956 +2016-08-24 09:47:20,715 WARNING: WARNING: All bad for iteration 16 +2016-08-24 09:47:20,803 DEBUG: Best view : Clinic_ +2016-08-24 09:47:21,871 DEBUG: Start: Iteration 18 +2016-08-24 09:47:21,889 DEBUG: View 0 : 0.396226415094 +2016-08-24 09:47:21,897 DEBUG: View 1 : 0.62893081761 +2016-08-24 09:47:21,935 DEBUG: View 2 : 0.553459119497 +2016-08-24 09:47:21,942 DEBUG: View 3 : 0.534591194969 +2016-08-24 09:47:22,033 DEBUG: Best view : MiRNA__ +2016-08-24 09:47:23,205 DEBUG: Start: Iteration 19 +2016-08-24 09:47:23,222 DEBUG: View 0 : 0.415094339623 +2016-08-24 09:47:23,230 DEBUG: View 1 : 0.710691823899 +2016-08-24 09:47:23,268 DEBUG: View 2 : 0.660377358491 +2016-08-24 09:47:23,276 DEBUG: View 3 : 0.534591194969 +2016-08-24 09:47:23,370 DEBUG: Best view : MiRNA__ +2016-08-24 09:47:24,573 DEBUG: Start: Iteration 20 +2016-08-24 09:47:24,590 DEBUG: View 0 : 0.459119496855 +2016-08-24 09:47:24,598 DEBUG: View 1 : 0.616352201258 +2016-08-24 09:47:24,636 DEBUG: View 2 : 0.465408805031 +2016-08-24 09:47:24,643 DEBUG: View 3 : 0.415094339623 +2016-08-24 09:47:24,737 DEBUG: Best view : MiRNA__ +2016-08-24 09:47:25,998 DEBUG: Start: Iteration 21 +2016-08-24 09:47:26,016 DEBUG: View 0 : 0.48427672956 +2016-08-24 09:47:26,024 DEBUG: View 1 : 0.616352201258 +2016-08-24 09:47:26,063 DEBUG: View 2 : 0.415094339623 +2016-08-24 09:47:26,071 DEBUG: View 3 : 0.553459119497 +2016-08-24 09:47:26,172 DEBUG: Best view : MiRNA__ +2016-08-24 09:47:27,510 DEBUG: Start: Iteration 22 +2016-08-24 09:47:27,527 DEBUG: View 0 : 0.547169811321 +2016-08-24 09:47:27,534 DEBUG: View 1 : 0.584905660377 +2016-08-24 09:47:27,571 DEBUG: View 2 : 0.540880503145 +2016-08-24 09:47:27,579 DEBUG: View 3 : 0.440251572327 +2016-08-24 09:47:27,682 DEBUG: Best view : MiRNA__ +2016-08-24 09:47:29,064 DEBUG: Start: Iteration 23 +2016-08-24 09:47:29,081 DEBUG: View 0 : 0.534591194969 +2016-08-24 09:47:29,088 DEBUG: View 1 : 0.704402515723 +2016-08-24 09:47:29,125 DEBUG: View 2 : 0.48427672956 +2016-08-24 09:47:29,132 DEBUG: View 3 : 0.471698113208 +2016-08-24 09:47:29,232 DEBUG: Best view : MiRNA__ +2016-08-24 09:47:30,679 DEBUG: Start: Iteration 24 +2016-08-24 09:47:30,696 DEBUG: View 0 : 0.679245283019 +2016-08-24 09:47:30,704 DEBUG: View 1 : 0.691823899371 +2016-08-24 09:47:30,742 DEBUG: View 2 : 0.559748427673 +2016-08-24 09:47:30,750 DEBUG: View 3 : 0.471698113208 +2016-08-24 09:47:30,856 DEBUG: Best view : MiRNA__ +2016-08-24 09:47:32,537 DEBUG: Start: Iteration 25 +2016-08-24 09:47:32,554 DEBUG: View 0 : 0.465408805031 +2016-08-24 09:47:32,562 DEBUG: View 1 : 0.452830188679 +2016-08-24 09:47:32,599 DEBUG: View 2 : 0.40251572327 +2016-08-24 09:47:32,606 DEBUG: View 3 : 0.540880503145 +2016-08-24 09:47:32,710 DEBUG: Best view : Clinic_ +2016-08-24 09:47:34,272 DEBUG: Start: Iteration 26 +2016-08-24 09:47:34,292 DEBUG: View 0 : 0.446540880503 +2016-08-24 09:47:34,303 DEBUG: View 1 : 0.389937106918 +2016-08-24 09:47:34,343 DEBUG: View 2 : 0.509433962264 +2016-08-24 09:47:34,351 DEBUG: View 3 : 0.553459119497 +2016-08-24 09:47:34,466 DEBUG: Best view : Clinic_ +2016-08-24 09:47:36,204 DEBUG: Start: Iteration 27 +2016-08-24 09:47:36,223 DEBUG: View 0 : 0.522012578616 +2016-08-24 09:47:36,234 DEBUG: View 1 : 0.685534591195 +2016-08-24 09:47:36,278 DEBUG: View 2 : 0.578616352201 +2016-08-24 09:47:36,287 DEBUG: View 3 : 0.496855345912 +2016-08-24 09:47:36,415 DEBUG: Best view : MiRNA__ +2016-08-24 09:47:38,235 DEBUG: Start: Iteration 28 +2016-08-24 09:47:38,252 DEBUG: View 0 : 0.660377358491 +2016-08-24 09:47:38,260 DEBUG: View 1 : 0.679245283019 +2016-08-24 09:47:38,297 DEBUG: View 2 : 0.559748427673 +2016-08-24 09:47:38,305 DEBUG: View 3 : 0.641509433962 +2016-08-24 09:47:38,415 DEBUG: Best view : MiRNA__ diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-094740-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-094740-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..34b92ceb01d8dbb452625738f7b5ad3c1007f8c8 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-094740-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log @@ -0,0 +1,15348 @@ +2016-08-24 09:47:40,713 INFO: Start: Read HDF5 Database Files for ModifiedMultiOmic +2016-08-24 09:47:40,714 INFO: Info: Labels used: No, Yes +2016-08-24 09:47:40,714 INFO: Info: Length of dataset:347 +2016-08-24 09:47:40,716 INFO: ### Main Programm for Multiview Classification +2016-08-24 09:47:40,716 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1 +2016-08-24 09:47:40,716 INFO: Info: Shape of Methyl_ :(347, 25978) +2016-08-24 09:47:40,717 INFO: Info: Shape of MiRNA__ :(347, 1046) +2016-08-24 09:47:40,717 INFO: Info: Shape of RANSeq_ :(347, 73599) +2016-08-24 09:47:40,718 INFO: Info: Shape of Clinic_ :(347, 127) +2016-08-24 09:47:40,718 INFO: Done: Read Database Files +2016-08-24 09:47:40,718 INFO: Start: Determine validation split for ratio 0.7 +2016-08-24 09:47:40,721 INFO: Done: Determine validation split +2016-08-24 09:47:40,721 INFO: Start: Determine 2 folds +2016-08-24 09:47:40,733 INFO: Info: Length of Learning Sets: 122 +2016-08-24 09:47:40,733 INFO: Info: Length of Testing Sets: 122 +2016-08-24 09:47:40,733 INFO: Info: Length of Validation Set: 103 +2016-08-24 09:47:40,733 INFO: Done: Determine folds +2016-08-24 09:47:40,733 INFO: Start: Learning with Mumbo and 2 folds +2016-08-24 09:47:40,733 INFO: Start: Gridsearching best settings for monoview classifiers +2016-08-24 09:47:40,733 DEBUG: Start: Gridsearch for DecisionTree on Methyl_ +2016-08-24 09:47:48,128 DEBUG: 0.589798270893Poulet +2016-08-24 09:47:48,128 DEBUG: 0.521498559078Poulet +2016-08-24 09:47:48,128 DEBUG: 0.521556195965Poulet +2016-08-24 09:47:48,128 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:47:48,129 DEBUG: Start: Gridsearch for DecisionTree on MiRNA__ +2016-08-24 09:47:50,083 DEBUG: 0.585360230548Poulet +2016-08-24 09:47:50,083 DEBUG: 0.573025936599Poulet +2016-08-24 09:47:50,083 DEBUG: 0.55613832853Poulet +2016-08-24 09:47:50,083 DEBUG: 0.54507204611Poulet +2016-08-24 09:47:50,083 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:47:50,084 DEBUG: Start: Gridsearch for DecisionTree on RANSeq_ +2016-08-24 09:48:06,845 DEBUG: 0.559365994236Poulet +2016-08-24 09:48:06,845 DEBUG: 0.530201729107Poulet +2016-08-24 09:48:06,846 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:48:06,847 DEBUG: Start: Gridsearch for DecisionTree on Clinic_ +2016-08-24 09:48:08,580 DEBUG: 0.584034582133Poulet +2016-08-24 09:48:08,580 DEBUG: 0.556945244957Poulet +2016-08-24 09:48:08,581 DEBUG: 0.508876080692Poulet +2016-08-24 09:48:08,581 DEBUG: 0.523170028818Poulet +2016-08-24 09:48:08,581 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:48:08,581 DEBUG: Start: Gridsearch for DecisionTree on MRNASeq +2016-08-24 09:49:01,049 DEBUG: 0.563976945245Poulet +2016-08-24 09:49:01,050 DEBUG: 0.553371757925Poulet +2016-08-24 09:49:01,050 DEBUG: 0.501268011527Poulet +2016-08-24 09:49:01,055 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 09:49:01,055 INFO: Done: Gridsearching best settings for monoview classifiers +2016-08-24 09:49:01,055 INFO: Start: Fold number 1 +2016-08-24 09:49:03,043 DEBUG: Start: Iteration 1 +2016-08-24 09:49:03,080 DEBUG: View 0 : 0.601226993865 +2016-08-24 09:49:03,088 DEBUG: View 1 : 0.631901840491 +2016-08-24 09:49:03,116 DEBUG: View 2 : 0.368098159509 +2016-08-24 09:49:03,124 DEBUG: View 3 : 0.368098159509 +2016-08-24 09:49:03,167 DEBUG: Best view : Methyl_ +2016-08-24 09:49:03,245 DEBUG: Start: Iteration 2 +2016-08-24 09:49:03,262 DEBUG: View 0 : 0.558282208589 +2016-08-24 09:49:03,270 DEBUG: View 1 : 0.625766871166 +2016-08-24 09:49:03,307 DEBUG: View 2 : 0.570552147239 +2016-08-24 09:49:03,315 DEBUG: View 3 : 0.466257668712 +2016-08-24 09:49:03,362 DEBUG: Best view : MiRNA__ +2016-08-24 09:49:03,499 DEBUG: Start: Iteration 3 +2016-08-24 09:49:03,516 DEBUG: View 0 : 0.460122699387 +2016-08-24 09:49:03,524 DEBUG: View 1 : 0.680981595092 +2016-08-24 09:49:03,561 DEBUG: View 2 : 0.435582822086 +2016-08-24 09:49:03,569 DEBUG: View 3 : 0.625766871166 +2016-08-24 09:49:03,624 DEBUG: Best view : MiRNA__ +2016-08-24 09:49:03,821 DEBUG: Start: Iteration 4 +2016-08-24 09:49:03,838 DEBUG: View 0 : 0.503067484663 +2016-08-24 09:49:03,846 DEBUG: View 1 : 0.546012269939 +2016-08-24 09:49:03,883 DEBUG: View 2 : 0.429447852761 +2016-08-24 09:49:03,890 DEBUG: View 3 : 0.533742331288 +2016-08-24 09:49:03,947 DEBUG: Best view : MiRNA__ +2016-08-24 09:49:04,204 DEBUG: Start: Iteration 5 +2016-08-24 09:49:04,221 DEBUG: View 0 : 0.662576687117 +2016-08-24 09:49:04,228 DEBUG: View 1 : 0.674846625767 +2016-08-24 09:49:04,266 DEBUG: View 2 : 0.466257668712 +2016-08-24 09:49:04,273 DEBUG: View 3 : 0.429447852761 +2016-08-24 09:49:04,332 DEBUG: Best view : MiRNA__ +2016-08-24 09:49:04,648 DEBUG: Start: Iteration 6 +2016-08-24 09:49:04,665 DEBUG: View 0 : 0.398773006135 +2016-08-24 09:49:04,673 DEBUG: View 1 : 0.527607361963 +2016-08-24 09:49:04,710 DEBUG: View 2 : 0.552147239264 +2016-08-24 09:49:04,717 DEBUG: View 3 : 0.625766871166 +2016-08-24 09:49:04,779 DEBUG: Best view : Clinic_ +2016-08-24 09:49:05,154 DEBUG: Start: Iteration 7 +2016-08-24 09:49:05,170 DEBUG: View 0 : 0.680981595092 +2016-08-24 09:49:05,178 DEBUG: View 1 : 0.478527607362 +2016-08-24 09:49:05,215 DEBUG: View 2 : 0.478527607362 +2016-08-24 09:49:05,223 DEBUG: View 3 : 0.429447852761 +2016-08-24 09:49:05,287 DEBUG: Best view : Methyl_ +2016-08-24 09:49:05,725 DEBUG: Start: Iteration 8 +2016-08-24 09:49:05,741 DEBUG: View 0 : 0.527607361963 +2016-08-24 09:49:05,749 DEBUG: View 1 : 0.429447852761 +2016-08-24 09:49:05,787 DEBUG: View 2 : 0.539877300613 +2016-08-24 09:49:05,795 DEBUG: View 3 : 0.472392638037 +2016-08-24 09:49:05,861 DEBUG: Best view : Methyl_ +2016-08-24 09:49:06,363 DEBUG: Start: Iteration 9 +2016-08-24 09:49:06,380 DEBUG: View 0 : 0.460122699387 +2016-08-24 09:49:06,388 DEBUG: View 1 : 0.546012269939 +2016-08-24 09:49:06,425 DEBUG: View 2 : 0.490797546012 +2016-08-24 09:49:06,433 DEBUG: View 3 : 0.398773006135 +2016-08-24 09:49:06,501 DEBUG: Best view : MiRNA__ +2016-08-24 09:49:07,061 DEBUG: Start: Iteration 10 +2016-08-24 09:49:07,077 DEBUG: View 0 : 0.558282208589 +2016-08-24 09:49:07,085 DEBUG: View 1 : 0.60736196319 +2016-08-24 09:49:07,123 DEBUG: View 2 : 0.41717791411 +2016-08-24 09:49:07,130 DEBUG: View 3 : 0.411042944785 +2016-08-24 09:49:07,201 DEBUG: Best view : MiRNA__ +2016-08-24 09:49:07,822 DEBUG: Start: Iteration 11 +2016-08-24 09:49:07,838 DEBUG: View 0 : 0.638036809816 +2016-08-24 09:49:07,846 DEBUG: View 1 : 0.40490797546 +2016-08-24 09:49:07,884 DEBUG: View 2 : 0.60736196319 +2016-08-24 09:49:07,891 DEBUG: View 3 : 0.429447852761 +2016-08-24 09:49:07,965 DEBUG: Best view : Methyl_ +2016-08-24 09:49:08,649 DEBUG: Start: Iteration 12 +2016-08-24 09:49:08,665 DEBUG: View 0 : 0.564417177914 +2016-08-24 09:49:08,673 DEBUG: View 1 : 0.429447852761 +2016-08-24 09:49:08,710 DEBUG: View 2 : 0.570552147239 +2016-08-24 09:49:08,718 DEBUG: View 3 : 0.601226993865 +2016-08-24 09:49:08,794 DEBUG: Best view : Methyl_ +2016-08-24 09:49:09,540 DEBUG: Start: Iteration 13 +2016-08-24 09:49:09,557 DEBUG: View 0 : 0.576687116564 +2016-08-24 09:49:09,565 DEBUG: View 1 : 0.625766871166 +2016-08-24 09:49:09,604 DEBUG: View 2 : 0.484662576687 +2016-08-24 09:49:09,612 DEBUG: View 3 : 0.552147239264 +2016-08-24 09:49:09,691 DEBUG: Best view : MiRNA__ +2016-08-24 09:49:10,498 DEBUG: Start: Iteration 14 +2016-08-24 09:49:10,515 DEBUG: View 0 : 0.39263803681 +2016-08-24 09:49:10,522 DEBUG: View 1 : 0.60736196319 +2016-08-24 09:49:10,562 DEBUG: View 2 : 0.40490797546 +2016-08-24 09:49:10,570 DEBUG: View 3 : 0.552147239264 +2016-08-24 09:49:10,650 DEBUG: Best view : MiRNA__ +2016-08-24 09:49:11,517 DEBUG: Start: Iteration 15 +2016-08-24 09:49:11,534 DEBUG: View 0 : 0.59509202454 +2016-08-24 09:49:11,541 DEBUG: View 1 : 0.288343558282 +2016-08-24 09:49:11,581 DEBUG: View 2 : 0.576687116564 +2016-08-24 09:49:11,589 DEBUG: View 3 : 0.41717791411 +2016-08-24 09:49:11,672 DEBUG: Best view : Methyl_ +2016-08-24 09:49:12,603 DEBUG: Start: Iteration 16 +2016-08-24 09:49:12,619 DEBUG: View 0 : 0.38036809816 +2016-08-24 09:49:12,627 DEBUG: View 1 : 0.58282208589 +2016-08-24 09:49:12,667 DEBUG: View 2 : 0.515337423313 +2016-08-24 09:49:12,675 DEBUG: View 3 : 0.466257668712 +2016-08-24 09:49:12,760 DEBUG: Best view : MiRNA__ +2016-08-24 09:49:13,748 DEBUG: Start: Iteration 17 +2016-08-24 09:49:13,764 DEBUG: View 0 : 0.441717791411 +2016-08-24 09:49:13,772 DEBUG: View 1 : 0.374233128834 +2016-08-24 09:49:13,812 DEBUG: View 2 : 0.478527607362 +2016-08-24 09:49:13,820 DEBUG: View 3 : 0.546012269939 +2016-08-24 09:49:13,907 DEBUG: Best view : Clinic_ +2016-08-24 09:49:14,953 DEBUG: Start: Iteration 18 +2016-08-24 09:49:14,970 DEBUG: View 0 : 0.650306748466 +2016-08-24 09:49:14,978 DEBUG: View 1 : 0.269938650307 +2016-08-24 09:49:15,018 DEBUG: View 2 : 0.644171779141 +2016-08-24 09:49:15,026 DEBUG: View 3 : 0.398773006135 +2016-08-24 09:49:15,115 DEBUG: Best view : Methyl_ +2016-08-24 09:49:16,227 DEBUG: Start: Iteration 19 +2016-08-24 09:49:16,244 DEBUG: View 0 : 0.662576687117 +2016-08-24 09:49:16,252 DEBUG: View 1 : 0.398773006135 +2016-08-24 09:49:16,291 DEBUG: View 2 : 0.411042944785 +2016-08-24 09:49:16,299 DEBUG: View 3 : 0.613496932515 +2016-08-24 09:49:16,391 DEBUG: Best view : Methyl_ +2016-08-24 09:49:17,580 DEBUG: Start: Iteration 20 +2016-08-24 09:49:17,597 DEBUG: View 0 : 0.588957055215 +2016-08-24 09:49:17,605 DEBUG: View 1 : 0.429447852761 +2016-08-24 09:49:17,645 DEBUG: View 2 : 0.601226993865 +2016-08-24 09:49:17,653 DEBUG: View 3 : 0.39263803681 +2016-08-24 09:49:17,747 DEBUG: Best view : Methyl_ +2016-08-24 09:49:18,983 DEBUG: Start: Iteration 21 +2016-08-24 09:49:19,000 DEBUG: View 0 : 0.41717791411 +2016-08-24 09:49:19,008 DEBUG: View 1 : 0.515337423313 +2016-08-24 09:49:19,048 DEBUG: View 2 : 0.515337423313 +2016-08-24 09:49:19,056 DEBUG: View 3 : 0.40490797546 +2016-08-24 09:49:19,152 DEBUG: Best view : MiRNA__ +2016-08-24 09:49:20,448 DEBUG: Start: Iteration 22 +2016-08-24 09:49:20,464 DEBUG: View 0 : 0.39263803681 +2016-08-24 09:49:20,472 DEBUG: View 1 : 0.730061349693 +2016-08-24 09:49:20,511 DEBUG: View 2 : 0.558282208589 +2016-08-24 09:49:20,520 DEBUG: View 3 : 0.650306748466 +2016-08-24 09:49:20,619 DEBUG: Best view : MiRNA__ +2016-08-24 09:49:21,975 DEBUG: Start: Iteration 23 +2016-08-24 09:49:21,992 DEBUG: View 0 : 0.527607361963 +2016-08-24 09:49:22,000 DEBUG: View 1 : 0.576687116564 +2016-08-24 09:49:22,039 DEBUG: View 2 : 0.631901840491 +2016-08-24 09:49:22,047 DEBUG: View 3 : 0.503067484663 +2016-08-24 09:49:22,149 DEBUG: Best view : RANSeq_ +2016-08-24 09:49:23,580 DEBUG: Start: Iteration 24 +2016-08-24 09:49:23,596 DEBUG: View 0 : 0.58282208589 +2016-08-24 09:49:23,604 DEBUG: View 1 : 0.533742331288 +2016-08-24 09:49:23,644 DEBUG: View 2 : 0.576687116564 +2016-08-24 09:49:23,653 DEBUG: View 3 : 0.447852760736 +2016-08-24 09:49:23,756 DEBUG: Best view : RANSeq_ +2016-08-24 09:49:25,260 DEBUG: Start: Iteration 25 +2016-08-24 09:49:25,277 DEBUG: View 0 : 0.58282208589 +2016-08-24 09:49:25,285 DEBUG: View 1 : 0.60736196319 +2016-08-24 09:49:25,324 DEBUG: View 2 : 0.423312883436 +2016-08-24 09:49:25,333 DEBUG: View 3 : 0.60736196319 +2016-08-24 09:49:25,439 DEBUG: Best view : MiRNA__ +2016-08-24 09:49:26,999 DEBUG: Start: Iteration 26 +2016-08-24 09:49:27,016 DEBUG: View 0 : 0.588957055215 +2016-08-24 09:49:27,024 DEBUG: View 1 : 0.539877300613 +2016-08-24 09:49:27,063 DEBUG: View 2 : 0.546012269939 +2016-08-24 09:49:27,071 DEBUG: View 3 : 0.625766871166 +2016-08-24 09:49:27,179 DEBUG: Best view : Clinic_ +2016-08-24 09:49:28,797 DEBUG: Start: Iteration 27 +2016-08-24 09:49:28,814 DEBUG: View 0 : 0.552147239264 +2016-08-24 09:49:28,822 DEBUG: View 1 : 0.674846625767 +2016-08-24 09:49:28,862 DEBUG: View 2 : 0.662576687117 +2016-08-24 09:49:28,870 DEBUG: View 3 : 0.496932515337 +2016-08-24 09:49:28,980 DEBUG: Best view : MiRNA__ +2016-08-24 09:49:30,657 DEBUG: Start: Iteration 28 +2016-08-24 09:49:30,674 DEBUG: View 0 : 0.472392638037 +2016-08-24 09:49:30,681 DEBUG: View 1 : 0.674846625767 +2016-08-24 09:49:30,721 DEBUG: View 2 : 0.588957055215 +2016-08-24 09:49:30,729 DEBUG: View 3 : 0.564417177914 +2016-08-24 09:49:30,841 DEBUG: Best view : MiRNA__ +2016-08-24 09:49:32,609 DEBUG: Start: Iteration 29 +2016-08-24 09:49:32,625 DEBUG: View 0 : 0.717791411043 +2016-08-24 09:49:32,633 DEBUG: View 1 : 0.650306748466 +2016-08-24 09:49:32,673 DEBUG: View 2 : 0.546012269939 +2016-08-24 09:49:32,681 DEBUG: View 3 : 0.411042944785 +2016-08-24 09:49:32,796 DEBUG: Best view : Methyl_ +2016-08-24 09:49:34,618 DEBUG: Start: Iteration 30 +2016-08-24 09:49:34,635 DEBUG: View 0 : 0.41717791411 +2016-08-24 09:49:34,643 DEBUG: View 1 : 0.355828220859 +2016-08-24 09:49:34,684 DEBUG: View 2 : 0.521472392638 +2016-08-24 09:49:34,692 DEBUG: View 3 : 0.509202453988 +2016-08-24 09:49:34,811 DEBUG: Best view : RANSeq_ +2016-08-24 09:49:36,776 DEBUG: Start: Iteration 31 +2016-08-24 09:49:36,793 DEBUG: View 0 : 0.539877300613 +2016-08-24 09:49:36,801 DEBUG: View 1 : 0.386503067485 +2016-08-24 09:49:36,841 DEBUG: View 2 : 0.374233128834 +2016-08-24 09:49:36,850 DEBUG: View 3 : 0.533742331288 +2016-08-24 09:49:36,978 DEBUG: Best view : Methyl_ +2016-08-24 09:49:38,949 DEBUG: Start: Iteration 32 +2016-08-24 09:49:38,966 DEBUG: View 0 : 0.423312883436 +2016-08-24 09:49:38,974 DEBUG: View 1 : 0.478527607362 +2016-08-24 09:49:39,014 DEBUG: View 2 : 0.466257668712 +2016-08-24 09:49:39,022 DEBUG: View 3 : 0.631901840491 +2016-08-24 09:49:39,143 DEBUG: Best view : Clinic_ +2016-08-24 09:49:41,144 DEBUG: Start: Iteration 33 +2016-08-24 09:49:41,161 DEBUG: View 0 : 0.515337423313 +2016-08-24 09:49:41,169 DEBUG: View 1 : 0.509202453988 +2016-08-24 09:49:41,208 DEBUG: View 2 : 0.447852760736 +2016-08-24 09:49:41,217 DEBUG: View 3 : 0.460122699387 +2016-08-24 09:49:41,341 DEBUG: Best view : MiRNA__ +2016-08-24 09:49:43,399 DEBUG: Start: Iteration 34 +2016-08-24 09:49:43,415 DEBUG: View 0 : 0.601226993865 +2016-08-24 09:49:43,423 DEBUG: View 1 : 0.613496932515 +2016-08-24 09:49:43,463 DEBUG: View 2 : 0.435582822086 +2016-08-24 09:49:43,471 DEBUG: View 3 : 0.39263803681 +2016-08-24 09:49:43,596 DEBUG: Best view : MiRNA__ +2016-08-24 09:49:45,710 DEBUG: Start: Iteration 35 +2016-08-24 09:49:45,726 DEBUG: View 0 : 0.521472392638 +2016-08-24 09:49:45,734 DEBUG: View 1 : 0.503067484663 +2016-08-24 09:49:45,774 DEBUG: View 2 : 0.386503067485 +2016-08-24 09:49:45,782 DEBUG: View 3 : 0.411042944785 +2016-08-24 09:49:45,910 DEBUG: Best view : Methyl_ +2016-08-24 09:49:48,090 DEBUG: Start: Iteration 36 +2016-08-24 09:49:48,107 DEBUG: View 0 : 0.539877300613 +2016-08-24 09:49:48,115 DEBUG: View 1 : 0.478527607362 +2016-08-24 09:49:48,155 DEBUG: View 2 : 0.576687116564 +2016-08-24 09:49:48,163 DEBUG: View 3 : 0.539877300613 +2016-08-24 09:49:48,293 DEBUG: Best view : RANSeq_ +2016-08-24 09:49:50,546 DEBUG: Start: Iteration 37 +2016-08-24 09:49:50,562 DEBUG: View 0 : 0.447852760736 +2016-08-24 09:49:50,570 DEBUG: View 1 : 0.705521472393 +2016-08-24 09:49:50,610 DEBUG: View 2 : 0.509202453988 +2016-08-24 09:49:50,618 DEBUG: View 3 : 0.570552147239 +2016-08-24 09:49:50,750 DEBUG: Best view : MiRNA__ +2016-08-24 09:49:53,060 DEBUG: Start: Iteration 38 +2016-08-24 09:49:53,077 DEBUG: View 0 : 0.509202453988 +2016-08-24 09:49:53,085 DEBUG: View 1 : 0.558282208589 +2016-08-24 09:49:53,124 DEBUG: View 2 : 0.423312883436 +2016-08-24 09:49:53,133 DEBUG: View 3 : 0.61963190184 +2016-08-24 09:49:53,267 DEBUG: Best view : Clinic_ +2016-08-24 09:49:55,637 DEBUG: Start: Iteration 39 +2016-08-24 09:49:55,653 DEBUG: View 0 : 0.337423312883 +2016-08-24 09:49:55,661 DEBUG: View 1 : 0.38036809816 +2016-08-24 09:49:55,701 DEBUG: View 2 : 0.423312883436 +2016-08-24 09:49:55,709 DEBUG: View 3 : 0.601226993865 +2016-08-24 09:49:55,846 DEBUG: Best view : Clinic_ +2016-08-24 09:49:58,274 DEBUG: Start: Iteration 40 +2016-08-24 09:49:58,290 DEBUG: View 0 : 0.60736196319 +2016-08-24 09:49:58,298 DEBUG: View 1 : 0.509202453988 +2016-08-24 09:49:58,338 DEBUG: View 2 : 0.631901840491 +2016-08-24 09:49:58,346 DEBUG: View 3 : 0.361963190184 +2016-08-24 09:49:58,485 DEBUG: Best view : Methyl_ +2016-08-24 09:50:00,977 DEBUG: Start: Iteration 41 +2016-08-24 09:50:00,993 DEBUG: View 0 : 0.496932515337 +2016-08-24 09:50:01,001 DEBUG: View 1 : 0.58282208589 +2016-08-24 09:50:01,042 DEBUG: View 2 : 0.411042944785 +2016-08-24 09:50:01,050 DEBUG: View 3 : 0.429447852761 +2016-08-24 09:50:01,192 DEBUG: Best view : MiRNA__ +2016-08-24 09:50:03,745 DEBUG: Start: Iteration 42 +2016-08-24 09:50:03,761 DEBUG: View 0 : 0.521472392638 +2016-08-24 09:50:03,769 DEBUG: View 1 : 0.650306748466 +2016-08-24 09:50:03,810 DEBUG: View 2 : 0.625766871166 +2016-08-24 09:50:03,818 DEBUG: View 3 : 0.539877300613 +2016-08-24 09:50:03,961 DEBUG: Best view : MiRNA__ +2016-08-24 09:50:06,572 DEBUG: Start: Iteration 43 +2016-08-24 09:50:06,589 DEBUG: View 0 : 0.521472392638 +2016-08-24 09:50:06,597 DEBUG: View 1 : 0.423312883436 +2016-08-24 09:50:06,637 DEBUG: View 2 : 0.441717791411 +2016-08-24 09:50:06,646 DEBUG: View 3 : 0.558282208589 +2016-08-24 09:50:06,792 DEBUG: Best view : Methyl_ +2016-08-24 09:50:09,466 DEBUG: Start: Iteration 44 +2016-08-24 09:50:09,483 DEBUG: View 0 : 0.466257668712 +2016-08-24 09:50:09,491 DEBUG: View 1 : 0.472392638037 +2016-08-24 09:50:09,532 DEBUG: View 2 : 0.441717791411 +2016-08-24 09:50:09,541 DEBUG: View 3 : 0.398773006135 +2016-08-24 09:50:09,541 WARNING: WARNING: All bad for iteration 43 +2016-08-24 09:50:09,689 DEBUG: Best view : MiRNA__ +2016-08-24 09:50:12,423 DEBUG: Start: Iteration 45 +2016-08-24 09:50:12,440 DEBUG: View 0 : 0.38036809816 +2016-08-24 09:50:12,447 DEBUG: View 1 : 0.558282208589 +2016-08-24 09:50:12,489 DEBUG: View 2 : 0.411042944785 +2016-08-24 09:50:12,498 DEBUG: View 3 : 0.625766871166 +2016-08-24 09:50:12,649 DEBUG: Best view : Clinic_ +2016-08-24 09:50:15,438 DEBUG: Start: Iteration 46 +2016-08-24 09:50:15,455 DEBUG: View 0 : 0.730061349693 +2016-08-24 09:50:15,463 DEBUG: View 1 : 0.374233128834 +2016-08-24 09:50:15,505 DEBUG: View 2 : 0.576687116564 +2016-08-24 09:50:15,514 DEBUG: View 3 : 0.613496932515 +2016-08-24 09:50:15,667 DEBUG: Best view : Methyl_ +2016-08-24 09:50:18,525 DEBUG: Start: Iteration 47 +2016-08-24 09:50:18,542 DEBUG: View 0 : 0.423312883436 +2016-08-24 09:50:18,549 DEBUG: View 1 : 0.656441717791 +2016-08-24 09:50:18,591 DEBUG: View 2 : 0.429447852761 +2016-08-24 09:50:18,600 DEBUG: View 3 : 0.460122699387 +2016-08-24 09:50:18,756 DEBUG: Best view : MiRNA__ +2016-08-24 09:50:21,672 DEBUG: Start: Iteration 48 +2016-08-24 09:50:21,688 DEBUG: View 0 : 0.355828220859 +2016-08-24 09:50:21,696 DEBUG: View 1 : 0.39263803681 +2016-08-24 09:50:21,740 DEBUG: View 2 : 0.411042944785 +2016-08-24 09:50:21,749 DEBUG: View 3 : 0.435582822086 +2016-08-24 09:50:21,749 WARNING: WARNING: All bad for iteration 47 +2016-08-24 09:50:21,907 DEBUG: Best view : Clinic_ +2016-08-24 09:50:24,889 DEBUG: Start: Iteration 49 +2016-08-24 09:50:24,906 DEBUG: View 0 : 0.521472392638 +2016-08-24 09:50:24,913 DEBUG: View 1 : 0.680981595092 +2016-08-24 09:50:24,957 DEBUG: View 2 : 0.38036809816 +2016-08-24 09:50:24,966 DEBUG: View 3 : 0.558282208589 +2016-08-24 09:50:25,137 DEBUG: Best view : MiRNA__ +2016-08-24 09:50:28,192 DEBUG: Start: Iteration 50 +2016-08-24 09:50:28,209 DEBUG: View 0 : 0.40490797546 +2016-08-24 09:50:28,217 DEBUG: View 1 : 0.650306748466 +2016-08-24 09:50:28,261 DEBUG: View 2 : 0.625766871166 +2016-08-24 09:50:28,270 DEBUG: View 3 : 0.429447852761 +2016-08-24 09:50:28,433 DEBUG: Best view : MiRNA__ +2016-08-24 09:50:31,590 DEBUG: Start: Iteration 51 +2016-08-24 09:50:31,607 DEBUG: View 0 : 0.40490797546 +2016-08-24 09:50:31,615 DEBUG: View 1 : 0.447852760736 +2016-08-24 09:50:31,660 DEBUG: View 2 : 0.490797546012 +2016-08-24 09:50:31,669 DEBUG: View 3 : 0.644171779141 +2016-08-24 09:50:31,836 DEBUG: Best view : Clinic_ +2016-08-24 09:50:35,243 DEBUG: Start: Iteration 52 +2016-08-24 09:50:35,259 DEBUG: View 0 : 0.588957055215 +2016-08-24 09:50:35,267 DEBUG: View 1 : 0.38036809816 +2016-08-24 09:50:35,313 DEBUG: View 2 : 0.509202453988 +2016-08-24 09:50:35,322 DEBUG: View 3 : 0.564417177914 +2016-08-24 09:50:35,492 DEBUG: Best view : Methyl_ +2016-08-24 09:50:38,719 DEBUG: Start: Iteration 53 +2016-08-24 09:50:38,736 DEBUG: View 0 : 0.521472392638 +2016-08-24 09:50:38,744 DEBUG: View 1 : 0.263803680982 +2016-08-24 09:50:38,789 DEBUG: View 2 : 0.453987730061 +2016-08-24 09:50:38,798 DEBUG: View 3 : 0.41717791411 +2016-08-24 09:50:38,970 DEBUG: Best view : Methyl_ +2016-08-24 09:50:42,262 DEBUG: Start: Iteration 54 +2016-08-24 09:50:42,278 DEBUG: View 0 : 0.546012269939 +2016-08-24 09:50:42,286 DEBUG: View 1 : 0.460122699387 +2016-08-24 09:50:42,334 DEBUG: View 2 : 0.539877300613 +2016-08-24 09:50:42,343 DEBUG: View 3 : 0.564417177914 +2016-08-24 09:50:42,517 DEBUG: Best view : Clinic_ +2016-08-24 09:50:45,859 DEBUG: Start: Iteration 55 +2016-08-24 09:50:45,876 DEBUG: View 0 : 0.38036809816 +2016-08-24 09:50:45,884 DEBUG: View 1 : 0.374233128834 +2016-08-24 09:50:45,932 DEBUG: View 2 : 0.484662576687 +2016-08-24 09:50:45,942 DEBUG: View 3 : 0.60736196319 +2016-08-24 09:50:46,117 DEBUG: Best view : Clinic_ +2016-08-24 09:50:49,519 DEBUG: Start: Iteration 56 +2016-08-24 09:50:49,536 DEBUG: View 0 : 0.564417177914 +2016-08-24 09:50:49,543 DEBUG: View 1 : 0.736196319018 +2016-08-24 09:50:49,592 DEBUG: View 2 : 0.515337423313 +2016-08-24 09:50:49,601 DEBUG: View 3 : 0.527607361963 +2016-08-24 09:50:49,778 DEBUG: Best view : MiRNA__ +2016-08-24 09:50:53,243 DEBUG: Start: Iteration 57 +2016-08-24 09:50:53,259 DEBUG: View 0 : 0.668711656442 +2016-08-24 09:50:53,267 DEBUG: View 1 : 0.687116564417 +2016-08-24 09:50:53,315 DEBUG: View 2 : 0.631901840491 +2016-08-24 09:50:53,325 DEBUG: View 3 : 0.576687116564 +2016-08-24 09:50:53,505 DEBUG: Best view : MiRNA__ +2016-08-24 09:50:57,031 DEBUG: Start: Iteration 58 +2016-08-24 09:50:57,047 DEBUG: View 0 : 0.466257668712 +2016-08-24 09:50:57,055 DEBUG: View 1 : 0.650306748466 +2016-08-24 09:50:57,104 DEBUG: View 2 : 0.503067484663 +2016-08-24 09:50:57,113 DEBUG: View 3 : 0.61963190184 +2016-08-24 09:50:57,296 DEBUG: Best view : MiRNA__ +2016-08-24 09:51:00,872 DEBUG: Start: Iteration 59 +2016-08-24 09:51:00,889 DEBUG: View 0 : 0.423312883436 +2016-08-24 09:51:00,897 DEBUG: View 1 : 0.472392638037 +2016-08-24 09:51:00,945 DEBUG: View 2 : 0.453987730061 +2016-08-24 09:51:00,954 DEBUG: View 3 : 0.39263803681 +2016-08-24 09:51:00,954 WARNING: WARNING: All bad for iteration 58 +2016-08-24 09:51:01,138 DEBUG: Best view : RANSeq_ +2016-08-24 09:51:04,914 DEBUG: Start: Iteration 60 +2016-08-24 09:51:04,931 DEBUG: View 0 : 0.570552147239 +2016-08-24 09:51:04,939 DEBUG: View 1 : 0.355828220859 +2016-08-24 09:51:04,987 DEBUG: View 2 : 0.552147239264 +2016-08-24 09:51:04,997 DEBUG: View 3 : 0.570552147239 +2016-08-24 09:51:05,188 DEBUG: Best view : Methyl_ +2016-08-24 09:51:08,910 DEBUG: Start: Iteration 61 +2016-08-24 09:51:08,927 DEBUG: View 0 : 0.58282208589 +2016-08-24 09:51:08,934 DEBUG: View 1 : 0.319018404908 +2016-08-24 09:51:08,981 DEBUG: View 2 : 0.374233128834 +2016-08-24 09:51:08,990 DEBUG: View 3 : 0.558282208589 +2016-08-24 09:51:09,179 DEBUG: Best view : Methyl_ +2016-08-24 09:51:12,965 DEBUG: Start: Iteration 62 +2016-08-24 09:51:12,981 DEBUG: View 0 : 0.570552147239 +2016-08-24 09:51:12,989 DEBUG: View 1 : 0.558282208589 +2016-08-24 09:51:13,036 DEBUG: View 2 : 0.503067484663 +2016-08-24 09:51:13,046 DEBUG: View 3 : 0.539877300613 +2016-08-24 09:51:13,236 DEBUG: Best view : Methyl_ +2016-08-24 09:51:17,077 DEBUG: Start: Iteration 63 +2016-08-24 09:51:17,094 DEBUG: View 0 : 0.441717791411 +2016-08-24 09:51:17,102 DEBUG: View 1 : 0.61963190184 +2016-08-24 09:51:17,150 DEBUG: View 2 : 0.472392638037 +2016-08-24 09:51:17,159 DEBUG: View 3 : 0.447852760736 +2016-08-24 09:51:17,355 DEBUG: Best view : MiRNA__ +2016-08-24 09:51:21,260 DEBUG: Start: Iteration 64 +2016-08-24 09:51:21,276 DEBUG: View 0 : 0.631901840491 +2016-08-24 09:51:21,284 DEBUG: View 1 : 0.631901840491 +2016-08-24 09:51:21,333 DEBUG: View 2 : 0.521472392638 +2016-08-24 09:51:21,342 DEBUG: View 3 : 0.472392638037 +2016-08-24 09:51:21,536 DEBUG: Best view : Methyl_ +2016-08-24 09:51:25,514 DEBUG: Start: Iteration 65 +2016-08-24 09:51:25,531 DEBUG: View 0 : 0.558282208589 +2016-08-24 09:51:25,538 DEBUG: View 1 : 0.472392638037 +2016-08-24 09:51:25,586 DEBUG: View 2 : 0.386503067485 +2016-08-24 09:51:25,595 DEBUG: View 3 : 0.613496932515 +2016-08-24 09:51:25,791 DEBUG: Best view : Clinic_ +2016-08-24 09:51:29,825 DEBUG: Start: Iteration 66 +2016-08-24 09:51:29,842 DEBUG: View 0 : 0.546012269939 +2016-08-24 09:51:29,850 DEBUG: View 1 : 0.466257668712 +2016-08-24 09:51:29,898 DEBUG: View 2 : 0.503067484663 +2016-08-24 09:51:29,907 DEBUG: View 3 : 0.374233128834 +2016-08-24 09:51:30,105 DEBUG: Best view : Methyl_ +2016-08-24 09:51:34,197 DEBUG: Start: Iteration 67 +2016-08-24 09:51:34,214 DEBUG: View 0 : 0.509202453988 +2016-08-24 09:51:34,222 DEBUG: View 1 : 0.625766871166 +2016-08-24 09:51:34,270 DEBUG: View 2 : 0.558282208589 +2016-08-24 09:51:34,279 DEBUG: View 3 : 0.60736196319 +2016-08-24 09:51:34,480 DEBUG: Best view : MiRNA__ +2016-08-24 09:51:38,632 DEBUG: Start: Iteration 68 +2016-08-24 09:51:38,649 DEBUG: View 0 : 0.662576687117 +2016-08-24 09:51:38,657 DEBUG: View 1 : 0.662576687117 +2016-08-24 09:51:38,704 DEBUG: View 2 : 0.478527607362 +2016-08-24 09:51:38,713 DEBUG: View 3 : 0.447852760736 +2016-08-24 09:51:38,916 DEBUG: Best view : Methyl_ +2016-08-24 09:51:43,129 DEBUG: Start: Iteration 69 +2016-08-24 09:51:43,145 DEBUG: View 0 : 0.644171779141 +2016-08-24 09:51:43,153 DEBUG: View 1 : 0.355828220859 +2016-08-24 09:51:43,201 DEBUG: View 2 : 0.386503067485 +2016-08-24 09:51:43,210 DEBUG: View 3 : 0.59509202454 +2016-08-24 09:51:43,415 DEBUG: Best view : Methyl_ +2016-08-24 09:51:47,699 DEBUG: Start: Iteration 70 +2016-08-24 09:51:47,715 DEBUG: View 0 : 0.466257668712 +2016-08-24 09:51:47,723 DEBUG: View 1 : 0.717791411043 +2016-08-24 09:51:47,771 DEBUG: View 2 : 0.411042944785 +2016-08-24 09:51:47,780 DEBUG: View 3 : 0.472392638037 +2016-08-24 09:51:47,988 DEBUG: Best view : MiRNA__ +2016-08-24 09:51:52,330 DEBUG: Start: Iteration 71 +2016-08-24 09:51:52,347 DEBUG: View 0 : 0.411042944785 +2016-08-24 09:51:52,354 DEBUG: View 1 : 0.58282208589 +2016-08-24 09:51:52,402 DEBUG: View 2 : 0.490797546012 +2016-08-24 09:51:52,411 DEBUG: View 3 : 0.552147239264 +2016-08-24 09:51:52,621 DEBUG: Best view : MiRNA__ +2016-08-24 09:51:57,005 DEBUG: Start: Iteration 72 +2016-08-24 09:51:57,022 DEBUG: View 0 : 0.411042944785 +2016-08-24 09:51:57,030 DEBUG: View 1 : 0.705521472393 +2016-08-24 09:51:57,078 DEBUG: View 2 : 0.564417177914 +2016-08-24 09:51:57,087 DEBUG: View 3 : 0.613496932515 +2016-08-24 09:51:57,298 DEBUG: Best view : MiRNA__ +2016-08-24 09:52:01,758 DEBUG: Start: Iteration 73 +2016-08-24 09:52:01,774 DEBUG: View 0 : 0.564417177914 +2016-08-24 09:52:01,782 DEBUG: View 1 : 0.644171779141 +2016-08-24 09:52:01,828 DEBUG: View 2 : 0.533742331288 +2016-08-24 09:52:01,837 DEBUG: View 3 : 0.546012269939 +2016-08-24 09:52:02,052 DEBUG: Best view : MiRNA__ +2016-08-24 09:52:06,564 DEBUG: Start: Iteration 74 +2016-08-24 09:52:06,580 DEBUG: View 0 : 0.39263803681 +2016-08-24 09:52:06,588 DEBUG: View 1 : 0.251533742331 +2016-08-24 09:52:06,637 DEBUG: View 2 : 0.466257668712 +2016-08-24 09:52:06,646 DEBUG: View 3 : 0.601226993865 +2016-08-24 09:52:06,862 DEBUG: Best view : Clinic_ +2016-08-24 09:52:11,562 DEBUG: Start: Iteration 75 +2016-08-24 09:52:11,579 DEBUG: View 0 : 0.58282208589 +2016-08-24 09:52:11,588 DEBUG: View 1 : 0.650306748466 +2016-08-24 09:52:11,636 DEBUG: View 2 : 0.466257668712 +2016-08-24 09:52:11,646 DEBUG: View 3 : 0.564417177914 +2016-08-24 09:52:11,883 DEBUG: Best view : MiRNA__ +2016-08-24 09:52:17,020 DEBUG: Start: Iteration 76 +2016-08-24 09:52:17,038 DEBUG: View 0 : 0.447852760736 +2016-08-24 09:52:17,046 DEBUG: View 1 : 0.374233128834 +2016-08-24 09:52:17,097 DEBUG: View 2 : 0.564417177914 +2016-08-24 09:52:17,105 DEBUG: View 3 : 0.60736196319 +2016-08-24 09:52:17,339 DEBUG: Best view : Clinic_ +2016-08-24 09:52:22,234 DEBUG: Start: Iteration 77 +2016-08-24 09:52:22,251 DEBUG: View 0 : 0.588957055215 +2016-08-24 09:52:22,259 DEBUG: View 1 : 0.558282208589 +2016-08-24 09:52:22,297 DEBUG: View 2 : 0.656441717791 +2016-08-24 09:52:22,305 DEBUG: View 3 : 0.59509202454 +2016-08-24 09:52:22,535 DEBUG: Best view : RANSeq_ +2016-08-24 09:52:27,433 DEBUG: Start: Iteration 78 +2016-08-24 09:52:27,450 DEBUG: View 0 : 0.411042944785 +2016-08-24 09:52:27,458 DEBUG: View 1 : 0.484662576687 +2016-08-24 09:52:27,496 DEBUG: View 2 : 0.466257668712 +2016-08-24 09:52:27,503 DEBUG: View 3 : 0.58282208589 +2016-08-24 09:52:27,729 DEBUG: Best view : Clinic_ +2016-08-24 09:52:32,667 DEBUG: Start: Iteration 79 +2016-08-24 09:52:32,684 DEBUG: View 0 : 0.411042944785 +2016-08-24 09:52:32,692 DEBUG: View 1 : 0.59509202454 +2016-08-24 09:52:32,730 DEBUG: View 2 : 0.61963190184 +2016-08-24 09:52:32,737 DEBUG: View 3 : 0.613496932515 +2016-08-24 09:52:32,967 DEBUG: Best view : RANSeq_ +2016-08-24 09:52:38,035 DEBUG: Start: Iteration 80 +2016-08-24 09:52:38,053 DEBUG: View 0 : 0.503067484663 +2016-08-24 09:52:38,061 DEBUG: View 1 : 0.61963190184 +2016-08-24 09:52:38,101 DEBUG: View 2 : 0.558282208589 +2016-08-24 09:52:38,109 DEBUG: View 3 : 0.576687116564 +2016-08-24 09:52:38,351 DEBUG: Best view : MiRNA__ +2016-08-24 09:52:43,584 DEBUG: Start: Iteration 81 +2016-08-24 09:52:43,601 DEBUG: View 0 : 0.472392638037 +2016-08-24 09:52:43,609 DEBUG: View 1 : 0.509202453988 +2016-08-24 09:52:43,648 DEBUG: View 2 : 0.386503067485 +2016-08-24 09:52:43,656 DEBUG: View 3 : 0.564417177914 +2016-08-24 09:52:43,897 DEBUG: Best view : Clinic_ +2016-08-24 09:52:49,124 DEBUG: Start: Iteration 82 +2016-08-24 09:52:49,141 DEBUG: View 0 : 0.398773006135 +2016-08-24 09:52:49,150 DEBUG: View 1 : 0.625766871166 +2016-08-24 09:52:49,191 DEBUG: View 2 : 0.59509202454 +2016-08-24 09:52:49,199 DEBUG: View 3 : 0.58282208589 +2016-08-24 09:52:49,451 DEBUG: Best view : MiRNA__ +2016-08-24 09:52:54,668 DEBUG: Start: Iteration 83 +2016-08-24 09:52:54,685 DEBUG: View 0 : 0.251533742331 +2016-08-24 09:52:54,693 DEBUG: View 1 : 0.539877300613 +2016-08-24 09:52:54,731 DEBUG: View 2 : 0.429447852761 +2016-08-24 09:52:54,739 DEBUG: View 3 : 0.423312883436 +2016-08-24 09:52:54,986 DEBUG: Best view : MiRNA__ +2016-08-24 09:53:00,332 DEBUG: Start: Iteration 84 +2016-08-24 09:53:00,349 DEBUG: View 0 : 0.411042944785 +2016-08-24 09:53:00,357 DEBUG: View 1 : 0.368098159509 +2016-08-24 09:53:00,394 DEBUG: View 2 : 0.521472392638 +2016-08-24 09:53:00,402 DEBUG: View 3 : 0.576687116564 +2016-08-24 09:53:00,642 DEBUG: Best view : Clinic_ +2016-08-24 09:53:05,890 DEBUG: Start: Iteration 85 +2016-08-24 09:53:05,908 DEBUG: View 0 : 0.343558282209 +2016-08-24 09:53:05,916 DEBUG: View 1 : 0.625766871166 +2016-08-24 09:53:05,955 DEBUG: View 2 : 0.472392638037 +2016-08-24 09:53:05,963 DEBUG: View 3 : 0.564417177914 +2016-08-24 09:53:06,217 DEBUG: Best view : MiRNA__ +2016-08-24 09:53:11,740 DEBUG: Start: Iteration 86 +2016-08-24 09:53:11,758 DEBUG: View 0 : 0.398773006135 +2016-08-24 09:53:11,766 DEBUG: View 1 : 0.539877300613 +2016-08-24 09:53:11,804 DEBUG: View 2 : 0.478527607362 +2016-08-24 09:53:11,812 DEBUG: View 3 : 0.429447852761 +2016-08-24 09:53:12,066 DEBUG: Best view : MiRNA__ +2016-08-24 09:53:17,553 DEBUG: Start: Iteration 87 +2016-08-24 09:53:17,570 DEBUG: View 0 : 0.386503067485 +2016-08-24 09:53:17,579 DEBUG: View 1 : 0.503067484663 +2016-08-24 09:53:17,617 DEBUG: View 2 : 0.539877300613 +2016-08-24 09:53:17,625 DEBUG: View 3 : 0.490797546012 +2016-08-24 09:53:17,893 DEBUG: Best view : MiRNA__ +2016-08-24 09:53:23,454 DEBUG: Start: Iteration 88 +2016-08-24 09:53:23,472 DEBUG: View 0 : 0.423312883436 +2016-08-24 09:53:23,480 DEBUG: View 1 : 0.705521472393 +2016-08-24 09:53:23,520 DEBUG: View 2 : 0.472392638037 +2016-08-24 09:53:23,528 DEBUG: View 3 : 0.41717791411 +2016-08-24 09:53:23,792 DEBUG: Best view : MiRNA__ +2016-08-24 09:53:29,579 DEBUG: Start: Iteration 89 +2016-08-24 09:53:29,598 DEBUG: View 0 : 0.38036809816 +2016-08-24 09:53:29,607 DEBUG: View 1 : 0.343558282209 +2016-08-24 09:53:29,663 DEBUG: View 2 : 0.429447852761 +2016-08-24 09:53:29,671 DEBUG: View 3 : 0.435582822086 +2016-08-24 09:53:29,671 WARNING: WARNING: All bad for iteration 88 +2016-08-24 09:53:29,966 DEBUG: Best view : Clinic_ +2016-08-24 09:53:35,846 DEBUG: Start: Iteration 90 +2016-08-24 09:53:35,863 DEBUG: View 0 : 0.601226993865 +2016-08-24 09:53:35,871 DEBUG: View 1 : 0.644171779141 +2016-08-24 09:53:35,919 DEBUG: View 2 : 0.478527607362 +2016-08-24 09:53:35,927 DEBUG: View 3 : 0.61963190184 +2016-08-24 09:53:36,194 DEBUG: Best view : MiRNA__ +2016-08-24 09:53:41,790 DEBUG: Start: Iteration 91 +2016-08-24 09:53:41,807 DEBUG: View 0 : 0.613496932515 +2016-08-24 09:53:41,815 DEBUG: View 1 : 0.558282208589 +2016-08-24 09:53:41,852 DEBUG: View 2 : 0.588957055215 +2016-08-24 09:53:41,860 DEBUG: View 3 : 0.441717791411 +2016-08-24 09:53:42,117 DEBUG: Best view : Methyl_ +2016-08-24 09:53:47,786 DEBUG: Start: Iteration 92 +2016-08-24 09:53:47,803 DEBUG: View 0 : 0.668711656442 +2016-08-24 09:53:47,811 DEBUG: View 1 : 0.515337423313 +2016-08-24 09:53:47,848 DEBUG: View 2 : 0.638036809816 +2016-08-24 09:53:47,856 DEBUG: View 3 : 0.38036809816 +2016-08-24 09:53:48,114 DEBUG: Best view : Methyl_ +2016-08-24 09:53:53,801 DEBUG: Start: Iteration 93 +2016-08-24 09:53:53,818 DEBUG: View 0 : 0.552147239264 +2016-08-24 09:53:53,825 DEBUG: View 1 : 0.631901840491 +2016-08-24 09:53:53,863 DEBUG: View 2 : 0.558282208589 +2016-08-24 09:53:53,871 DEBUG: View 3 : 0.447852760736 +2016-08-24 09:53:54,140 DEBUG: Best view : MiRNA__ +2016-08-24 09:53:59,928 DEBUG: Start: Iteration 94 +2016-08-24 09:53:59,945 DEBUG: View 0 : 0.460122699387 +2016-08-24 09:53:59,953 DEBUG: View 1 : 0.638036809816 +2016-08-24 09:53:59,990 DEBUG: View 2 : 0.576687116564 +2016-08-24 09:53:59,998 DEBUG: View 3 : 0.398773006135 +2016-08-24 09:54:00,264 DEBUG: Best view : MiRNA__ +2016-08-24 09:54:06,103 DEBUG: Start: Iteration 95 +2016-08-24 09:54:06,120 DEBUG: View 0 : 0.59509202454 +2016-08-24 09:54:06,128 DEBUG: View 1 : 0.638036809816 +2016-08-24 09:54:06,165 DEBUG: View 2 : 0.429447852761 +2016-08-24 09:54:06,173 DEBUG: View 3 : 0.496932515337 +2016-08-24 09:54:06,440 DEBUG: Best view : MiRNA__ +2016-08-24 09:54:12,344 DEBUG: Start: Iteration 96 +2016-08-24 09:54:12,361 DEBUG: View 0 : 0.601226993865 +2016-08-24 09:54:12,368 DEBUG: View 1 : 0.521472392638 +2016-08-24 09:54:12,406 DEBUG: View 2 : 0.58282208589 +2016-08-24 09:54:12,414 DEBUG: View 3 : 0.533742331288 +2016-08-24 09:54:12,683 DEBUG: Best view : Methyl_ +2016-08-24 09:54:18,660 DEBUG: Start: Iteration 97 +2016-08-24 09:54:18,677 DEBUG: View 0 : 0.374233128834 +2016-08-24 09:54:18,684 DEBUG: View 1 : 0.742331288344 +2016-08-24 09:54:18,722 DEBUG: View 2 : 0.423312883436 +2016-08-24 09:54:18,730 DEBUG: View 3 : 0.638036809816 +2016-08-24 09:54:19,002 DEBUG: Best view : MiRNA__ +2016-08-24 09:54:25,028 DEBUG: Start: Iteration 98 +2016-08-24 09:54:25,045 DEBUG: View 0 : 0.355828220859 +2016-08-24 09:54:25,053 DEBUG: View 1 : 0.558282208589 +2016-08-24 09:54:25,096 DEBUG: View 2 : 0.472392638037 +2016-08-24 09:54:25,104 DEBUG: View 3 : 0.558282208589 +2016-08-24 09:54:25,377 DEBUG: Best view : MiRNA__ +2016-08-24 09:54:31,445 DEBUG: Start: Iteration 99 +2016-08-24 09:54:31,462 DEBUG: View 0 : 0.58282208589 +2016-08-24 09:54:31,469 DEBUG: View 1 : 0.58282208589 +2016-08-24 09:54:31,507 DEBUG: View 2 : 0.58282208589 +2016-08-24 09:54:31,515 DEBUG: View 3 : 0.564417177914 +2016-08-24 09:54:31,788 DEBUG: Best view : Methyl_ +2016-08-24 09:54:37,994 DEBUG: Start: Iteration 100 +2016-08-24 09:54:38,010 DEBUG: View 0 : 0.496932515337 +2016-08-24 09:54:38,018 DEBUG: View 1 : 0.546012269939 +2016-08-24 09:54:38,056 DEBUG: View 2 : 0.521472392638 +2016-08-24 09:54:38,064 DEBUG: View 3 : 0.40490797546 +2016-08-24 09:54:38,339 DEBUG: Best view : MiRNA__ +2016-08-24 09:54:44,470 DEBUG: Start: Iteration 101 +2016-08-24 09:54:44,487 DEBUG: View 0 : 0.490797546012 +2016-08-24 09:54:44,495 DEBUG: View 1 : 0.533742331288 +2016-08-24 09:54:44,532 DEBUG: View 2 : 0.490797546012 +2016-08-24 09:54:44,539 DEBUG: View 3 : 0.546012269939 +2016-08-24 09:54:44,817 DEBUG: Best view : MiRNA__ +2016-08-24 09:54:51,232 DEBUG: Start: Iteration 102 +2016-08-24 09:54:51,252 DEBUG: View 0 : 0.300613496933 +2016-08-24 09:54:51,261 DEBUG: View 1 : 0.368098159509 +2016-08-24 09:54:51,315 DEBUG: View 2 : 0.509202453988 +2016-08-24 09:54:51,324 DEBUG: View 3 : 0.60736196319 +2016-08-24 09:54:51,621 DEBUG: Best view : Clinic_ +2016-08-24 09:54:57,874 INFO: Start: Classification +2016-08-24 09:55:12,569 INFO: Done: Fold number 1 +2016-08-24 09:55:12,569 INFO: Start: Fold number 2 +2016-08-24 09:55:14,073 DEBUG: Start: Iteration 1 +2016-08-24 09:55:14,088 DEBUG: View 0 : 0.602649006623 +2016-08-24 09:55:14,095 DEBUG: View 1 : 0.602649006623 +2016-08-24 09:55:14,126 DEBUG: View 2 : 0.602649006623 +2016-08-24 09:55:14,133 DEBUG: View 3 : 0.602649006623 +2016-08-24 09:55:14,172 DEBUG: Best view : Methyl_ +2016-08-24 09:55:14,242 DEBUG: Start: Iteration 2 +2016-08-24 09:55:14,258 DEBUG: View 0 : 0.331125827815 +2016-08-24 09:55:14,265 DEBUG: View 1 : 0.251655629139 +2016-08-24 09:55:14,301 DEBUG: View 2 : 0.390728476821 +2016-08-24 09:55:14,308 DEBUG: View 3 : 0.384105960265 +2016-08-24 09:55:14,308 WARNING: WARNING: All bad for iteration 1 +2016-08-24 09:55:14,351 DEBUG: Best view : RANSeq_ +2016-08-24 09:55:14,492 DEBUG: Start: Iteration 3 +2016-08-24 09:55:14,508 DEBUG: View 0 : 0.53642384106 +2016-08-24 09:55:14,515 DEBUG: View 1 : 0.735099337748 +2016-08-24 09:55:14,550 DEBUG: View 2 : 0.516556291391 +2016-08-24 09:55:14,558 DEBUG: View 3 : 0.456953642384 +2016-08-24 09:55:14,603 DEBUG: Best view : MiRNA__ +2016-08-24 09:55:14,797 DEBUG: Start: Iteration 4 +2016-08-24 09:55:14,813 DEBUG: View 0 : 0.814569536424 +2016-08-24 09:55:14,820 DEBUG: View 1 : 0.377483443709 +2016-08-24 09:55:14,856 DEBUG: View 2 : 0.523178807947 +2016-08-24 09:55:14,863 DEBUG: View 3 : 0.443708609272 +2016-08-24 09:55:14,916 DEBUG: Best view : Methyl_ +2016-08-24 09:55:15,168 DEBUG: Start: Iteration 5 +2016-08-24 09:55:15,184 DEBUG: View 0 : 0.609271523179 +2016-08-24 09:55:15,192 DEBUG: View 1 : 0.708609271523 +2016-08-24 09:55:15,227 DEBUG: View 2 : 0.516556291391 +2016-08-24 09:55:15,234 DEBUG: View 3 : 0.456953642384 +2016-08-24 09:55:15,288 DEBUG: Best view : MiRNA__ +2016-08-24 09:55:15,596 DEBUG: Start: Iteration 6 +2016-08-24 09:55:15,612 DEBUG: View 0 : 0.615894039735 +2016-08-24 09:55:15,619 DEBUG: View 1 : 0.635761589404 +2016-08-24 09:55:15,654 DEBUG: View 2 : 0.503311258278 +2016-08-24 09:55:15,661 DEBUG: View 3 : 0.476821192053 +2016-08-24 09:55:15,717 DEBUG: Best view : Methyl_ +2016-08-24 09:55:16,081 DEBUG: Start: Iteration 7 +2016-08-24 09:55:16,097 DEBUG: View 0 : 0.384105960265 +2016-08-24 09:55:16,104 DEBUG: View 1 : 0.53642384106 +2016-08-24 09:55:16,140 DEBUG: View 2 : 0.476821192053 +2016-08-24 09:55:16,147 DEBUG: View 3 : 0.549668874172 +2016-08-24 09:55:16,206 DEBUG: Best view : MiRNA__ +2016-08-24 09:55:16,624 DEBUG: Start: Iteration 8 +2016-08-24 09:55:16,639 DEBUG: View 0 : 0.456953642384 +2016-08-24 09:55:16,647 DEBUG: View 1 : 0.470198675497 +2016-08-24 09:55:16,682 DEBUG: View 2 : 0.450331125828 +2016-08-24 09:55:16,689 DEBUG: View 3 : 0.450331125828 +2016-08-24 09:55:16,689 WARNING: WARNING: All bad for iteration 7 +2016-08-24 09:55:16,751 DEBUG: Best view : MiRNA__ +2016-08-24 09:55:17,223 DEBUG: Start: Iteration 9 +2016-08-24 09:55:17,239 DEBUG: View 0 : 0.456953642384 +2016-08-24 09:55:17,247 DEBUG: View 1 : 0.602649006623 +2016-08-24 09:55:17,282 DEBUG: View 2 : 0.569536423841 +2016-08-24 09:55:17,289 DEBUG: View 3 : 0.430463576159 +2016-08-24 09:55:17,353 DEBUG: Best view : MiRNA__ +2016-08-24 09:55:17,881 DEBUG: Start: Iteration 10 +2016-08-24 09:55:17,896 DEBUG: View 0 : 0.622516556291 +2016-08-24 09:55:17,904 DEBUG: View 1 : 0.58940397351 +2016-08-24 09:55:17,939 DEBUG: View 2 : 0.543046357616 +2016-08-24 09:55:17,947 DEBUG: View 3 : 0.562913907285 +2016-08-24 09:55:18,013 DEBUG: Best view : Methyl_ +2016-08-24 09:55:18,596 DEBUG: Start: Iteration 11 +2016-08-24 09:55:18,613 DEBUG: View 0 : 0.450331125828 +2016-08-24 09:55:18,620 DEBUG: View 1 : 0.622516556291 +2016-08-24 09:55:18,655 DEBUG: View 2 : 0.41059602649 +2016-08-24 09:55:18,662 DEBUG: View 3 : 0.417218543046 +2016-08-24 09:55:18,730 DEBUG: Best view : MiRNA__ +2016-08-24 09:55:19,382 DEBUG: Start: Iteration 12 +2016-08-24 09:55:19,398 DEBUG: View 0 : 0.562913907285 +2016-08-24 09:55:19,405 DEBUG: View 1 : 0.576158940397 +2016-08-24 09:55:19,441 DEBUG: View 2 : 0.456953642384 +2016-08-24 09:55:19,449 DEBUG: View 3 : 0.41059602649 +2016-08-24 09:55:19,519 DEBUG: Best view : MiRNA__ +2016-08-24 09:55:20,210 DEBUG: Start: Iteration 13 +2016-08-24 09:55:20,226 DEBUG: View 0 : 0.483443708609 +2016-08-24 09:55:20,233 DEBUG: View 1 : 0.635761589404 +2016-08-24 09:55:20,269 DEBUG: View 2 : 0.476821192053 +2016-08-24 09:55:20,276 DEBUG: View 3 : 0.483443708609 +2016-08-24 09:55:20,349 DEBUG: Best view : MiRNA__ +2016-08-24 09:55:21,098 DEBUG: Start: Iteration 14 +2016-08-24 09:55:21,114 DEBUG: View 0 : 0.523178807947 +2016-08-24 09:55:21,121 DEBUG: View 1 : 0.582781456954 +2016-08-24 09:55:21,157 DEBUG: View 2 : 0.470198675497 +2016-08-24 09:55:21,164 DEBUG: View 3 : 0.53642384106 +2016-08-24 09:55:21,239 DEBUG: Best view : MiRNA__ +2016-08-24 09:55:22,041 DEBUG: Start: Iteration 15 +2016-08-24 09:55:22,056 DEBUG: View 0 : 0.350993377483 +2016-08-24 09:55:22,064 DEBUG: View 1 : 0.668874172185 +2016-08-24 09:55:22,099 DEBUG: View 2 : 0.476821192053 +2016-08-24 09:55:22,106 DEBUG: View 3 : 0.569536423841 +2016-08-24 09:55:22,183 DEBUG: Best view : MiRNA__ +2016-08-24 09:55:23,038 DEBUG: Start: Iteration 16 +2016-08-24 09:55:23,054 DEBUG: View 0 : 0.596026490066 +2016-08-24 09:55:23,061 DEBUG: View 1 : 0.543046357616 +2016-08-24 09:55:23,097 DEBUG: View 2 : 0.629139072848 +2016-08-24 09:55:23,104 DEBUG: View 3 : 0.649006622517 +2016-08-24 09:55:23,183 DEBUG: Best view : Clinic_ +2016-08-24 09:55:24,094 DEBUG: Start: Iteration 17 +2016-08-24 09:55:24,111 DEBUG: View 0 : 0.456953642384 +2016-08-24 09:55:24,118 DEBUG: View 1 : 0.615894039735 +2016-08-24 09:55:24,154 DEBUG: View 2 : 0.490066225166 +2016-08-24 09:55:24,161 DEBUG: View 3 : 0.516556291391 +2016-08-24 09:55:24,242 DEBUG: Best view : MiRNA__ +2016-08-24 09:55:25,204 DEBUG: Start: Iteration 18 +2016-08-24 09:55:25,220 DEBUG: View 0 : 0.562913907285 +2016-08-24 09:55:25,227 DEBUG: View 1 : 0.450331125828 +2016-08-24 09:55:25,263 DEBUG: View 2 : 0.450331125828 +2016-08-24 09:55:25,270 DEBUG: View 3 : 0.483443708609 +2016-08-24 09:55:25,354 DEBUG: Best view : Methyl_ +2016-08-24 09:55:26,372 DEBUG: Start: Iteration 19 +2016-08-24 09:55:26,388 DEBUG: View 0 : 0.364238410596 +2016-08-24 09:55:26,396 DEBUG: View 1 : 0.668874172185 +2016-08-24 09:55:26,431 DEBUG: View 2 : 0.53642384106 +2016-08-24 09:55:26,438 DEBUG: View 3 : 0.529801324503 +2016-08-24 09:55:26,523 DEBUG: Best view : MiRNA__ +2016-08-24 09:55:27,596 DEBUG: Start: Iteration 20 +2016-08-24 09:55:27,612 DEBUG: View 0 : 0.317880794702 +2016-08-24 09:55:27,620 DEBUG: View 1 : 0.403973509934 +2016-08-24 09:55:27,655 DEBUG: View 2 : 0.529801324503 +2016-08-24 09:55:27,663 DEBUG: View 3 : 0.629139072848 +2016-08-24 09:55:27,751 DEBUG: Best view : Clinic_ +2016-08-24 09:55:28,884 DEBUG: Start: Iteration 21 +2016-08-24 09:55:28,900 DEBUG: View 0 : 0.549668874172 +2016-08-24 09:55:28,907 DEBUG: View 1 : 0.649006622517 +2016-08-24 09:55:28,945 DEBUG: View 2 : 0.529801324503 +2016-08-24 09:55:28,952 DEBUG: View 3 : 0.503311258278 +2016-08-24 09:55:29,041 DEBUG: Best view : MiRNA__ +2016-08-24 09:55:30,227 DEBUG: Start: Iteration 22 +2016-08-24 09:55:30,243 DEBUG: View 0 : 0.483443708609 +2016-08-24 09:55:30,250 DEBUG: View 1 : 0.556291390728 +2016-08-24 09:55:30,285 DEBUG: View 2 : 0.622516556291 +2016-08-24 09:55:30,293 DEBUG: View 3 : 0.46357615894 +2016-08-24 09:55:30,385 DEBUG: Best view : RANSeq_ +2016-08-24 09:55:31,630 DEBUG: Start: Iteration 23 +2016-08-24 09:55:31,646 DEBUG: View 0 : 0.609271523179 +2016-08-24 09:55:31,653 DEBUG: View 1 : 0.629139072848 +2016-08-24 09:55:31,688 DEBUG: View 2 : 0.556291390728 +2016-08-24 09:55:31,696 DEBUG: View 3 : 0.629139072848 +2016-08-24 09:55:31,789 DEBUG: Best view : MiRNA__ +2016-08-24 09:55:33,091 DEBUG: Start: Iteration 24 +2016-08-24 09:55:33,107 DEBUG: View 0 : 0.503311258278 +2016-08-24 09:55:33,114 DEBUG: View 1 : 0.668874172185 +2016-08-24 09:55:33,149 DEBUG: View 2 : 0.470198675497 +2016-08-24 09:55:33,157 DEBUG: View 3 : 0.476821192053 +2016-08-24 09:55:33,252 DEBUG: Best view : MiRNA__ +2016-08-24 09:55:34,607 DEBUG: Start: Iteration 25 +2016-08-24 09:55:34,623 DEBUG: View 0 : 0.562913907285 +2016-08-24 09:55:34,630 DEBUG: View 1 : 0.284768211921 +2016-08-24 09:55:34,666 DEBUG: View 2 : 0.556291390728 +2016-08-24 09:55:34,673 DEBUG: View 3 : 0.456953642384 +2016-08-24 09:55:34,771 DEBUG: Best view : Methyl_ +2016-08-24 09:55:36,182 DEBUG: Start: Iteration 26 +2016-08-24 09:55:36,198 DEBUG: View 0 : 0.390728476821 +2016-08-24 09:55:36,205 DEBUG: View 1 : 0.576158940397 +2016-08-24 09:55:36,241 DEBUG: View 2 : 0.390728476821 +2016-08-24 09:55:36,248 DEBUG: View 3 : 0.569536423841 +2016-08-24 09:55:36,348 DEBUG: Best view : MiRNA__ +2016-08-24 09:55:37,816 DEBUG: Start: Iteration 27 +2016-08-24 09:55:37,832 DEBUG: View 0 : 0.377483443709 +2016-08-24 09:55:37,839 DEBUG: View 1 : 0.509933774834 +2016-08-24 09:55:37,875 DEBUG: View 2 : 0.543046357616 +2016-08-24 09:55:37,882 DEBUG: View 3 : 0.417218543046 +2016-08-24 09:55:37,984 DEBUG: Best view : MiRNA__ +2016-08-24 09:55:39,506 DEBUG: Start: Iteration 28 +2016-08-24 09:55:39,522 DEBUG: View 0 : 0.556291390728 +2016-08-24 09:55:39,530 DEBUG: View 1 : 0.397350993377 +2016-08-24 09:55:39,565 DEBUG: View 2 : 0.576158940397 +2016-08-24 09:55:39,572 DEBUG: View 3 : 0.549668874172 +2016-08-24 09:55:39,676 DEBUG: Best view : RANSeq_ +2016-08-24 09:55:41,263 DEBUG: Start: Iteration 29 +2016-08-24 09:55:41,279 DEBUG: View 0 : 0.655629139073 +2016-08-24 09:55:41,286 DEBUG: View 1 : 0.728476821192 +2016-08-24 09:55:41,321 DEBUG: View 2 : 0.615894039735 +2016-08-24 09:55:41,329 DEBUG: View 3 : 0.470198675497 +2016-08-24 09:55:41,436 DEBUG: Best view : MiRNA__ +2016-08-24 09:55:43,079 DEBUG: Start: Iteration 30 +2016-08-24 09:55:43,095 DEBUG: View 0 : 0.569536423841 +2016-08-24 09:55:43,102 DEBUG: View 1 : 0.344370860927 +2016-08-24 09:55:43,137 DEBUG: View 2 : 0.470198675497 +2016-08-24 09:55:43,144 DEBUG: View 3 : 0.470198675497 +2016-08-24 09:55:43,253 DEBUG: Best view : Methyl_ +2016-08-24 09:55:44,951 DEBUG: Start: Iteration 31 +2016-08-24 09:55:44,967 DEBUG: View 0 : 0.562913907285 +2016-08-24 09:55:44,975 DEBUG: View 1 : 0.218543046358 +2016-08-24 09:55:45,009 DEBUG: View 2 : 0.53642384106 +2016-08-24 09:55:45,017 DEBUG: View 3 : 0.516556291391 +2016-08-24 09:55:45,128 DEBUG: Best view : Methyl_ +2016-08-24 09:55:46,886 DEBUG: Start: Iteration 32 +2016-08-24 09:55:46,902 DEBUG: View 0 : 0.470198675497 +2016-08-24 09:55:46,909 DEBUG: View 1 : 0.35761589404 +2016-08-24 09:55:46,944 DEBUG: View 2 : 0.509933774834 +2016-08-24 09:55:46,952 DEBUG: View 3 : 0.549668874172 +2016-08-24 09:55:47,064 DEBUG: Best view : Clinic_ +2016-08-24 09:55:48,874 DEBUG: Start: Iteration 33 +2016-08-24 09:55:48,889 DEBUG: View 0 : 0.569536423841 +2016-08-24 09:55:48,897 DEBUG: View 1 : 0.596026490066 +2016-08-24 09:55:48,932 DEBUG: View 2 : 0.377483443709 +2016-08-24 09:55:48,939 DEBUG: View 3 : 0.556291390728 +2016-08-24 09:55:49,054 DEBUG: Best view : MiRNA__ +2016-08-24 09:55:50,918 DEBUG: Start: Iteration 34 +2016-08-24 09:55:50,934 DEBUG: View 0 : 0.450331125828 +2016-08-24 09:55:50,942 DEBUG: View 1 : 0.549668874172 +2016-08-24 09:55:50,976 DEBUG: View 2 : 0.503311258278 +2016-08-24 09:55:50,984 DEBUG: View 3 : 0.41059602649 +2016-08-24 09:55:51,099 DEBUG: Best view : MiRNA__ +2016-08-24 09:55:53,017 DEBUG: Start: Iteration 35 +2016-08-24 09:55:53,032 DEBUG: View 0 : 0.430463576159 +2016-08-24 09:55:53,040 DEBUG: View 1 : 0.668874172185 +2016-08-24 09:55:53,075 DEBUG: View 2 : 0.596026490066 +2016-08-24 09:55:53,082 DEBUG: View 3 : 0.423841059603 +2016-08-24 09:55:53,199 DEBUG: Best view : MiRNA__ +2016-08-24 09:55:55,212 DEBUG: Start: Iteration 36 +2016-08-24 09:55:55,229 DEBUG: View 0 : 0.675496688742 +2016-08-24 09:55:55,236 DEBUG: View 1 : 0.450331125828 +2016-08-24 09:55:55,271 DEBUG: View 2 : 0.576158940397 +2016-08-24 09:55:55,279 DEBUG: View 3 : 0.58940397351 +2016-08-24 09:55:55,400 DEBUG: Best view : Methyl_ +2016-08-24 09:55:57,436 DEBUG: Start: Iteration 37 +2016-08-24 09:55:57,451 DEBUG: View 0 : 0.569536423841 +2016-08-24 09:55:57,459 DEBUG: View 1 : 0.649006622517 +2016-08-24 09:55:57,494 DEBUG: View 2 : 0.543046357616 +2016-08-24 09:55:57,501 DEBUG: View 3 : 0.490066225166 +2016-08-24 09:55:57,623 DEBUG: Best view : MiRNA__ +2016-08-24 09:55:59,706 DEBUG: Start: Iteration 38 +2016-08-24 09:55:59,722 DEBUG: View 0 : 0.549668874172 +2016-08-24 09:55:59,730 DEBUG: View 1 : 0.64238410596 +2016-08-24 09:55:59,765 DEBUG: View 2 : 0.490066225166 +2016-08-24 09:55:59,773 DEBUG: View 3 : 0.403973509934 +2016-08-24 09:55:59,897 DEBUG: Best view : MiRNA__ +2016-08-24 09:56:02,038 DEBUG: Start: Iteration 39 +2016-08-24 09:56:02,053 DEBUG: View 0 : 0.476821192053 +2016-08-24 09:56:02,061 DEBUG: View 1 : 0.622516556291 +2016-08-24 09:56:02,096 DEBUG: View 2 : 0.602649006623 +2016-08-24 09:56:02,103 DEBUG: View 3 : 0.496688741722 +2016-08-24 09:56:02,230 DEBUG: Best view : MiRNA__ +2016-08-24 09:56:04,427 DEBUG: Start: Iteration 40 +2016-08-24 09:56:04,443 DEBUG: View 0 : 0.476821192053 +2016-08-24 09:56:04,451 DEBUG: View 1 : 0.569536423841 +2016-08-24 09:56:04,486 DEBUG: View 2 : 0.576158940397 +2016-08-24 09:56:04,493 DEBUG: View 3 : 0.549668874172 +2016-08-24 09:56:04,621 DEBUG: Best view : RANSeq_ +2016-08-24 09:56:06,880 DEBUG: Start: Iteration 41 +2016-08-24 09:56:06,896 DEBUG: View 0 : 0.556291390728 +2016-08-24 09:56:06,903 DEBUG: View 1 : 0.668874172185 +2016-08-24 09:56:06,939 DEBUG: View 2 : 0.596026490066 +2016-08-24 09:56:06,946 DEBUG: View 3 : 0.569536423841 +2016-08-24 09:56:07,075 DEBUG: Best view : MiRNA__ +2016-08-24 09:56:09,389 DEBUG: Start: Iteration 42 +2016-08-24 09:56:09,405 DEBUG: View 0 : 0.543046357616 +2016-08-24 09:56:09,413 DEBUG: View 1 : 0.344370860927 +2016-08-24 09:56:09,448 DEBUG: View 2 : 0.437086092715 +2016-08-24 09:56:09,455 DEBUG: View 3 : 0.490066225166 +2016-08-24 09:56:09,587 DEBUG: Best view : Methyl_ +2016-08-24 09:56:11,958 DEBUG: Start: Iteration 43 +2016-08-24 09:56:11,973 DEBUG: View 0 : 0.596026490066 +2016-08-24 09:56:11,981 DEBUG: View 1 : 0.668874172185 +2016-08-24 09:56:12,016 DEBUG: View 2 : 0.456953642384 +2016-08-24 09:56:12,024 DEBUG: View 3 : 0.556291390728 +2016-08-24 09:56:12,158 DEBUG: Best view : MiRNA__ +2016-08-24 09:56:14,594 DEBUG: Start: Iteration 44 +2016-08-24 09:56:14,610 DEBUG: View 0 : 0.430463576159 +2016-08-24 09:56:14,617 DEBUG: View 1 : 0.483443708609 +2016-08-24 09:56:14,653 DEBUG: View 2 : 0.430463576159 +2016-08-24 09:56:14,660 DEBUG: View 3 : 0.476821192053 +2016-08-24 09:56:14,660 WARNING: WARNING: All bad for iteration 43 +2016-08-24 09:56:14,797 DEBUG: Best view : MiRNA__ +2016-08-24 09:56:17,274 DEBUG: Start: Iteration 45 +2016-08-24 09:56:17,291 DEBUG: View 0 : 0.470198675497 +2016-08-24 09:56:17,298 DEBUG: View 1 : 0.443708609272 +2016-08-24 09:56:17,333 DEBUG: View 2 : 0.58940397351 +2016-08-24 09:56:17,341 DEBUG: View 3 : 0.496688741722 +2016-08-24 09:56:17,480 DEBUG: Best view : RANSeq_ +2016-08-24 09:56:20,029 DEBUG: Start: Iteration 46 +2016-08-24 09:56:20,045 DEBUG: View 0 : 0.496688741722 +2016-08-24 09:56:20,052 DEBUG: View 1 : 0.576158940397 +2016-08-24 09:56:20,088 DEBUG: View 2 : 0.423841059603 +2016-08-24 09:56:20,095 DEBUG: View 3 : 0.423841059603 +2016-08-24 09:56:20,235 DEBUG: Best view : MiRNA__ +2016-08-24 09:56:22,835 DEBUG: Start: Iteration 47 +2016-08-24 09:56:22,851 DEBUG: View 0 : 0.337748344371 +2016-08-24 09:56:22,858 DEBUG: View 1 : 0.145695364238 +2016-08-24 09:56:22,894 DEBUG: View 2 : 0.523178807947 +2016-08-24 09:56:22,901 DEBUG: View 3 : 0.556291390728 +2016-08-24 09:56:23,043 DEBUG: Best view : Clinic_ +2016-08-24 09:56:25,695 DEBUG: Start: Iteration 48 +2016-08-24 09:56:25,710 DEBUG: View 0 : 0.476821192053 +2016-08-24 09:56:25,718 DEBUG: View 1 : 0.35761589404 +2016-08-24 09:56:25,753 DEBUG: View 2 : 0.483443708609 +2016-08-24 09:56:25,760 DEBUG: View 3 : 0.549668874172 +2016-08-24 09:56:25,906 DEBUG: Best view : Clinic_ +2016-08-24 09:56:28,607 DEBUG: Start: Iteration 49 +2016-08-24 09:56:28,623 DEBUG: View 0 : 0.390728476821 +2016-08-24 09:56:28,631 DEBUG: View 1 : 0.668874172185 +2016-08-24 09:56:28,665 DEBUG: View 2 : 0.490066225166 +2016-08-24 09:56:28,673 DEBUG: View 3 : 0.490066225166 +2016-08-24 09:56:28,820 DEBUG: Best view : MiRNA__ +2016-08-24 09:56:31,591 DEBUG: Start: Iteration 50 +2016-08-24 09:56:31,607 DEBUG: View 0 : 0.46357615894 +2016-08-24 09:56:31,614 DEBUG: View 1 : 0.496688741722 +2016-08-24 09:56:31,651 DEBUG: View 2 : 0.516556291391 +2016-08-24 09:56:31,658 DEBUG: View 3 : 0.496688741722 +2016-08-24 09:56:31,807 DEBUG: Best view : MiRNA__ +2016-08-24 09:56:34,616 DEBUG: Start: Iteration 51 +2016-08-24 09:56:34,632 DEBUG: View 0 : 0.529801324503 +2016-08-24 09:56:34,639 DEBUG: View 1 : 0.609271523179 +2016-08-24 09:56:34,674 DEBUG: View 2 : 0.569536423841 +2016-08-24 09:56:34,682 DEBUG: View 3 : 0.46357615894 +2016-08-24 09:56:34,832 DEBUG: Best view : MiRNA__ +2016-08-24 09:56:37,700 DEBUG: Start: Iteration 52 +2016-08-24 09:56:37,715 DEBUG: View 0 : 0.516556291391 +2016-08-24 09:56:37,723 DEBUG: View 1 : 0.337748344371 +2016-08-24 09:56:37,758 DEBUG: View 2 : 0.596026490066 +2016-08-24 09:56:37,765 DEBUG: View 3 : 0.58940397351 +2016-08-24 09:56:37,918 DEBUG: Best view : RANSeq_ +2016-08-24 09:56:40,853 DEBUG: Start: Iteration 53 +2016-08-24 09:56:40,869 DEBUG: View 0 : 0.503311258278 +2016-08-24 09:56:40,877 DEBUG: View 1 : 0.53642384106 +2016-08-24 09:56:40,913 DEBUG: View 2 : 0.490066225166 +2016-08-24 09:56:40,920 DEBUG: View 3 : 0.403973509934 +2016-08-24 09:56:41,076 DEBUG: Best view : MiRNA__ +2016-08-24 09:56:44,061 DEBUG: Start: Iteration 54 +2016-08-24 09:56:44,077 DEBUG: View 0 : 0.576158940397 +2016-08-24 09:56:44,085 DEBUG: View 1 : 0.509933774834 +2016-08-24 09:56:44,120 DEBUG: View 2 : 0.430463576159 +2016-08-24 09:56:44,128 DEBUG: View 3 : 0.456953642384 +2016-08-24 09:56:44,286 DEBUG: Best view : Methyl_ +2016-08-24 09:56:47,328 DEBUG: Start: Iteration 55 +2016-08-24 09:56:47,344 DEBUG: View 0 : 0.483443708609 +2016-08-24 09:56:47,351 DEBUG: View 1 : 0.317880794702 +2016-08-24 09:56:47,387 DEBUG: View 2 : 0.622516556291 +2016-08-24 09:56:47,394 DEBUG: View 3 : 0.483443708609 +2016-08-24 09:56:47,552 DEBUG: Best view : RANSeq_ +2016-08-24 09:56:50,670 DEBUG: Start: Iteration 56 +2016-08-24 09:56:50,686 DEBUG: View 0 : 0.53642384106 +2016-08-24 09:56:50,693 DEBUG: View 1 : 0.53642384106 +2016-08-24 09:56:50,728 DEBUG: View 2 : 0.622516556291 +2016-08-24 09:56:50,736 DEBUG: View 3 : 0.549668874172 +2016-08-24 09:56:50,897 DEBUG: Best view : RANSeq_ +2016-08-24 09:56:54,078 DEBUG: Start: Iteration 57 +2016-08-24 09:56:54,094 DEBUG: View 0 : 0.53642384106 +2016-08-24 09:56:54,102 DEBUG: View 1 : 0.708609271523 +2016-08-24 09:56:54,137 DEBUG: View 2 : 0.450331125828 +2016-08-24 09:56:54,144 DEBUG: View 3 : 0.523178807947 +2016-08-24 09:56:54,307 DEBUG: Best view : MiRNA__ +2016-08-24 09:56:57,540 DEBUG: Start: Iteration 58 +2016-08-24 09:56:57,556 DEBUG: View 0 : 0.582781456954 +2016-08-24 09:56:57,563 DEBUG: View 1 : 0.602649006623 +2016-08-24 09:56:57,598 DEBUG: View 2 : 0.576158940397 +2016-08-24 09:56:57,605 DEBUG: View 3 : 0.496688741722 +2016-08-24 09:56:57,771 DEBUG: Best view : MiRNA__ +2016-08-24 09:57:01,055 DEBUG: Start: Iteration 59 +2016-08-24 09:57:01,071 DEBUG: View 0 : 0.615894039735 +2016-08-24 09:57:01,078 DEBUG: View 1 : 0.284768211921 +2016-08-24 09:57:01,114 DEBUG: View 2 : 0.569536423841 +2016-08-24 09:57:01,121 DEBUG: View 3 : 0.503311258278 +2016-08-24 09:57:01,288 DEBUG: Best view : Methyl_ +2016-08-24 09:57:04,633 DEBUG: Start: Iteration 60 +2016-08-24 09:57:04,648 DEBUG: View 0 : 0.543046357616 +2016-08-24 09:57:04,656 DEBUG: View 1 : 0.615894039735 +2016-08-24 09:57:04,691 DEBUG: View 2 : 0.582781456954 +2016-08-24 09:57:04,699 DEBUG: View 3 : 0.582781456954 +2016-08-24 09:57:04,868 DEBUG: Best view : MiRNA__ +2016-08-24 09:57:08,269 DEBUG: Start: Iteration 61 +2016-08-24 09:57:08,284 DEBUG: View 0 : 0.529801324503 +2016-08-24 09:57:08,291 DEBUG: View 1 : 0.715231788079 +2016-08-24 09:57:08,327 DEBUG: View 2 : 0.562913907285 +2016-08-24 09:57:08,334 DEBUG: View 3 : 0.423841059603 +2016-08-24 09:57:08,506 DEBUG: Best view : MiRNA__ +2016-08-24 09:57:11,957 DEBUG: Start: Iteration 62 +2016-08-24 09:57:11,973 DEBUG: View 0 : 0.523178807947 +2016-08-24 09:57:11,980 DEBUG: View 1 : 0.350993377483 +2016-08-24 09:57:12,023 DEBUG: View 2 : 0.456953642384 +2016-08-24 09:57:12,030 DEBUG: View 3 : 0.483443708609 +2016-08-24 09:57:12,204 DEBUG: Best view : Methyl_ +2016-08-24 09:57:15,727 DEBUG: Start: Iteration 63 +2016-08-24 09:57:15,743 DEBUG: View 0 : 0.331125827815 +2016-08-24 09:57:15,750 DEBUG: View 1 : 0.688741721854 +2016-08-24 09:57:15,785 DEBUG: View 2 : 0.64238410596 +2016-08-24 09:57:15,793 DEBUG: View 3 : 0.503311258278 +2016-08-24 09:57:15,968 DEBUG: Best view : MiRNA__ +2016-08-24 09:57:19,529 DEBUG: Start: Iteration 64 +2016-08-24 09:57:19,545 DEBUG: View 0 : 0.58940397351 +2016-08-24 09:57:19,552 DEBUG: View 1 : 0.596026490066 +2016-08-24 09:57:19,591 DEBUG: View 2 : 0.503311258278 +2016-08-24 09:57:19,598 DEBUG: View 3 : 0.596026490066 +2016-08-24 09:57:19,775 DEBUG: Best view : Methyl_ +2016-08-24 09:57:23,387 DEBUG: Start: Iteration 65 +2016-08-24 09:57:23,403 DEBUG: View 0 : 0.470198675497 +2016-08-24 09:57:23,411 DEBUG: View 1 : 0.41059602649 +2016-08-24 09:57:23,446 DEBUG: View 2 : 0.523178807947 +2016-08-24 09:57:23,454 DEBUG: View 3 : 0.417218543046 +2016-08-24 09:57:23,632 DEBUG: Best view : RANSeq_ +2016-08-24 09:57:27,319 DEBUG: Start: Iteration 66 +2016-08-24 09:57:27,335 DEBUG: View 0 : 0.728476821192 +2016-08-24 09:57:27,343 DEBUG: View 1 : 0.523178807947 +2016-08-24 09:57:27,379 DEBUG: View 2 : 0.562913907285 +2016-08-24 09:57:27,386 DEBUG: View 3 : 0.41059602649 +2016-08-24 09:57:27,568 DEBUG: Best view : Methyl_ +2016-08-24 09:57:31,325 DEBUG: Start: Iteration 67 +2016-08-24 09:57:31,341 DEBUG: View 0 : 0.450331125828 +2016-08-24 09:57:31,348 DEBUG: View 1 : 0.649006622517 +2016-08-24 09:57:31,383 DEBUG: View 2 : 0.569536423841 +2016-08-24 09:57:31,391 DEBUG: View 3 : 0.483443708609 +2016-08-24 09:57:31,574 DEBUG: Best view : MiRNA__ +2016-08-24 09:57:35,371 DEBUG: Start: Iteration 68 +2016-08-24 09:57:35,386 DEBUG: View 0 : 0.443708609272 +2016-08-24 09:57:35,394 DEBUG: View 1 : 0.509933774834 +2016-08-24 09:57:35,429 DEBUG: View 2 : 0.635761589404 +2016-08-24 09:57:35,436 DEBUG: View 3 : 0.46357615894 +2016-08-24 09:57:35,622 DEBUG: Best view : RANSeq_ +2016-08-24 09:57:39,510 DEBUG: Start: Iteration 69 +2016-08-24 09:57:39,526 DEBUG: View 0 : 0.344370860927 +2016-08-24 09:57:39,533 DEBUG: View 1 : 0.708609271523 +2016-08-24 09:57:39,568 DEBUG: View 2 : 0.423841059603 +2016-08-24 09:57:39,576 DEBUG: View 3 : 0.417218543046 +2016-08-24 09:57:39,765 DEBUG: Best view : MiRNA__ +2016-08-24 09:57:43,687 DEBUG: Start: Iteration 70 +2016-08-24 09:57:43,703 DEBUG: View 0 : 0.701986754967 +2016-08-24 09:57:43,711 DEBUG: View 1 : 0.483443708609 +2016-08-24 09:57:43,746 DEBUG: View 2 : 0.562913907285 +2016-08-24 09:57:43,753 DEBUG: View 3 : 0.470198675497 +2016-08-24 09:57:43,943 DEBUG: Best view : Methyl_ +2016-08-24 09:57:47,935 DEBUG: Start: Iteration 71 +2016-08-24 09:57:47,951 DEBUG: View 0 : 0.569536423841 +2016-08-24 09:57:47,958 DEBUG: View 1 : 0.609271523179 +2016-08-24 09:57:47,993 DEBUG: View 2 : 0.417218543046 +2016-08-24 09:57:48,001 DEBUG: View 3 : 0.41059602649 +2016-08-24 09:57:48,193 DEBUG: Best view : MiRNA__ +2016-08-24 09:57:52,229 DEBUG: Start: Iteration 72 +2016-08-24 09:57:52,245 DEBUG: View 0 : 0.377483443709 +2016-08-24 09:57:52,252 DEBUG: View 1 : 0.662251655629 +2016-08-24 09:57:52,290 DEBUG: View 2 : 0.569536423841 +2016-08-24 09:57:52,297 DEBUG: View 3 : 0.503311258278 +2016-08-24 09:57:52,491 DEBUG: Best view : MiRNA__ +2016-08-24 09:57:56,588 DEBUG: Start: Iteration 73 +2016-08-24 09:57:56,604 DEBUG: View 0 : 0.46357615894 +2016-08-24 09:57:56,612 DEBUG: View 1 : 0.615894039735 +2016-08-24 09:57:56,647 DEBUG: View 2 : 0.609271523179 +2016-08-24 09:57:56,654 DEBUG: View 3 : 0.403973509934 +2016-08-24 09:57:56,850 DEBUG: Best view : MiRNA__ +2016-08-24 09:58:00,989 DEBUG: Start: Iteration 74 +2016-08-24 09:58:01,005 DEBUG: View 0 : 0.602649006623 +2016-08-24 09:58:01,012 DEBUG: View 1 : 0.741721854305 +2016-08-24 09:58:01,054 DEBUG: View 2 : 0.58940397351 +2016-08-24 09:58:01,061 DEBUG: View 3 : 0.53642384106 +2016-08-24 09:58:01,259 DEBUG: Best view : MiRNA__ +2016-08-24 09:58:05,450 DEBUG: Start: Iteration 75 +2016-08-24 09:58:05,466 DEBUG: View 0 : 0.549668874172 +2016-08-24 09:58:05,473 DEBUG: View 1 : 0.662251655629 +2016-08-24 09:58:05,513 DEBUG: View 2 : 0.562913907285 +2016-08-24 09:58:05,520 DEBUG: View 3 : 0.450331125828 +2016-08-24 09:58:05,721 DEBUG: Best view : MiRNA__ +2016-08-24 09:58:09,965 DEBUG: Start: Iteration 76 +2016-08-24 09:58:09,981 DEBUG: View 0 : 0.529801324503 +2016-08-24 09:58:09,988 DEBUG: View 1 : 0.576158940397 +2016-08-24 09:58:10,029 DEBUG: View 2 : 0.569536423841 +2016-08-24 09:58:10,037 DEBUG: View 3 : 0.582781456954 +2016-08-24 09:58:10,238 DEBUG: Best view : MiRNA__ +2016-08-24 09:58:14,540 DEBUG: Start: Iteration 77 +2016-08-24 09:58:14,556 DEBUG: View 0 : 0.503311258278 +2016-08-24 09:58:14,564 DEBUG: View 1 : 0.701986754967 +2016-08-24 09:58:14,604 DEBUG: View 2 : 0.509933774834 +2016-08-24 09:58:14,612 DEBUG: View 3 : 0.53642384106 +2016-08-24 09:58:14,817 DEBUG: Best view : MiRNA__ +2016-08-24 09:58:19,168 DEBUG: Start: Iteration 78 +2016-08-24 09:58:19,183 DEBUG: View 0 : 0.735099337748 +2016-08-24 09:58:19,191 DEBUG: View 1 : 0.576158940397 +2016-08-24 09:58:19,233 DEBUG: View 2 : 0.609271523179 +2016-08-24 09:58:19,242 DEBUG: View 3 : 0.556291390728 +2016-08-24 09:58:19,448 DEBUG: Best view : Methyl_ +2016-08-24 09:58:23,864 DEBUG: Start: Iteration 79 +2016-08-24 09:58:23,880 DEBUG: View 0 : 0.629139072848 +2016-08-24 09:58:23,887 DEBUG: View 1 : 0.655629139073 +2016-08-24 09:58:23,929 DEBUG: View 2 : 0.423841059603 +2016-08-24 09:58:23,938 DEBUG: View 3 : 0.549668874172 +2016-08-24 09:58:24,146 DEBUG: Best view : MiRNA__ +2016-08-24 09:58:28,610 DEBUG: Start: Iteration 80 +2016-08-24 09:58:28,626 DEBUG: View 0 : 0.562913907285 +2016-08-24 09:58:28,633 DEBUG: View 1 : 0.622516556291 +2016-08-24 09:58:28,676 DEBUG: View 2 : 0.490066225166 +2016-08-24 09:58:28,684 DEBUG: View 3 : 0.549668874172 +2016-08-24 09:58:28,895 DEBUG: Best view : MiRNA__ +2016-08-24 09:58:33,419 DEBUG: Start: Iteration 81 +2016-08-24 09:58:33,435 DEBUG: View 0 : 0.496688741722 +2016-08-24 09:58:33,442 DEBUG: View 1 : 0.41059602649 +2016-08-24 09:58:33,487 DEBUG: View 2 : 0.516556291391 +2016-08-24 09:58:33,495 DEBUG: View 3 : 0.576158940397 +2016-08-24 09:58:33,706 DEBUG: Best view : Clinic_ +2016-08-24 09:58:38,279 DEBUG: Start: Iteration 82 +2016-08-24 09:58:38,294 DEBUG: View 0 : 0.377483443709 +2016-08-24 09:58:38,302 DEBUG: View 1 : 0.516556291391 +2016-08-24 09:58:38,347 DEBUG: View 2 : 0.562913907285 +2016-08-24 09:58:38,355 DEBUG: View 3 : 0.46357615894 +2016-08-24 09:58:38,570 DEBUG: Best view : RANSeq_ +2016-08-24 09:58:43,207 DEBUG: Start: Iteration 83 +2016-08-24 09:58:43,222 DEBUG: View 0 : 0.456953642384 +2016-08-24 09:58:43,230 DEBUG: View 1 : 0.46357615894 +2016-08-24 09:58:43,275 DEBUG: View 2 : 0.523178807947 +2016-08-24 09:58:43,283 DEBUG: View 3 : 0.350993377483 +2016-08-24 09:58:43,501 DEBUG: Best view : RANSeq_ +2016-08-24 09:58:48,208 DEBUG: Start: Iteration 84 +2016-08-24 09:58:48,224 DEBUG: View 0 : 0.470198675497 +2016-08-24 09:58:48,231 DEBUG: View 1 : 0.602649006623 +2016-08-24 09:58:48,276 DEBUG: View 2 : 0.41059602649 +2016-08-24 09:58:48,285 DEBUG: View 3 : 0.602649006623 +2016-08-24 09:58:48,504 DEBUG: Best view : MiRNA__ +2016-08-24 09:58:53,266 DEBUG: Start: Iteration 85 +2016-08-24 09:58:53,282 DEBUG: View 0 : 0.503311258278 +2016-08-24 09:58:53,290 DEBUG: View 1 : 0.337748344371 +2016-08-24 09:58:53,335 DEBUG: View 2 : 0.483443708609 +2016-08-24 09:58:53,344 DEBUG: View 3 : 0.483443708609 +2016-08-24 09:58:53,567 DEBUG: Best view : Methyl_ +2016-08-24 09:58:58,390 DEBUG: Start: Iteration 86 +2016-08-24 09:58:58,406 DEBUG: View 0 : 0.46357615894 +2016-08-24 09:58:58,414 DEBUG: View 1 : 0.615894039735 +2016-08-24 09:58:58,460 DEBUG: View 2 : 0.562913907285 +2016-08-24 09:58:58,469 DEBUG: View 3 : 0.476821192053 +2016-08-24 09:58:58,700 DEBUG: Best view : MiRNA__ +2016-08-24 09:59:03,579 DEBUG: Start: Iteration 87 +2016-08-24 09:59:03,595 DEBUG: View 0 : 0.622516556291 +2016-08-24 09:59:03,602 DEBUG: View 1 : 0.860927152318 +2016-08-24 09:59:03,647 DEBUG: View 2 : 0.456953642384 +2016-08-24 09:59:03,656 DEBUG: View 3 : 0.556291390728 +2016-08-24 09:59:03,881 DEBUG: Best view : MiRNA__ +2016-08-24 09:59:08,810 DEBUG: Start: Iteration 88 +2016-08-24 09:59:08,826 DEBUG: View 0 : 0.635761589404 +2016-08-24 09:59:08,833 DEBUG: View 1 : 0.403973509934 +2016-08-24 09:59:08,879 DEBUG: View 2 : 0.470198675497 +2016-08-24 09:59:08,888 DEBUG: View 3 : 0.516556291391 +2016-08-24 09:59:09,115 DEBUG: Best view : Methyl_ +2016-08-24 09:59:14,094 DEBUG: Start: Iteration 89 +2016-08-24 09:59:14,111 DEBUG: View 0 : 0.562913907285 +2016-08-24 09:59:14,118 DEBUG: View 1 : 0.735099337748 +2016-08-24 09:59:14,164 DEBUG: View 2 : 0.456953642384 +2016-08-24 09:59:14,172 DEBUG: View 3 : 0.576158940397 +2016-08-24 09:59:14,401 DEBUG: Best view : MiRNA__ +2016-08-24 09:59:19,446 DEBUG: Start: Iteration 90 +2016-08-24 09:59:19,461 DEBUG: View 0 : 0.549668874172 +2016-08-24 09:59:19,469 DEBUG: View 1 : 0.490066225166 +2016-08-24 09:59:19,515 DEBUG: View 2 : 0.509933774834 +2016-08-24 09:59:19,524 DEBUG: View 3 : 0.622516556291 +2016-08-24 09:59:19,755 DEBUG: Best view : Clinic_ +2016-08-24 09:59:24,857 DEBUG: Start: Iteration 91 +2016-08-24 09:59:24,873 DEBUG: View 0 : 0.523178807947 +2016-08-24 09:59:24,881 DEBUG: View 1 : 0.635761589404 +2016-08-24 09:59:24,926 DEBUG: View 2 : 0.609271523179 +2016-08-24 09:59:24,935 DEBUG: View 3 : 0.450331125828 +2016-08-24 09:59:25,168 DEBUG: Best view : MiRNA__ +2016-08-24 09:59:30,327 DEBUG: Start: Iteration 92 +2016-08-24 09:59:30,343 DEBUG: View 0 : 0.430463576159 +2016-08-24 09:59:30,350 DEBUG: View 1 : 0.655629139073 +2016-08-24 09:59:30,396 DEBUG: View 2 : 0.450331125828 +2016-08-24 09:59:30,405 DEBUG: View 3 : 0.476821192053 +2016-08-24 09:59:30,639 DEBUG: Best view : MiRNA__ +2016-08-24 09:59:35,851 DEBUG: Start: Iteration 93 +2016-08-24 09:59:35,867 DEBUG: View 0 : 0.596026490066 +2016-08-24 09:59:35,874 DEBUG: View 1 : 0.635761589404 +2016-08-24 09:59:35,929 DEBUG: View 2 : 0.423841059603 +2016-08-24 09:59:35,937 DEBUG: View 3 : 0.58940397351 +2016-08-24 09:59:36,174 DEBUG: Best view : MiRNA__ +2016-08-24 09:59:41,498 DEBUG: Start: Iteration 94 +2016-08-24 09:59:41,514 DEBUG: View 0 : 0.582781456954 +2016-08-24 09:59:41,522 DEBUG: View 1 : 0.562913907285 +2016-08-24 09:59:41,557 DEBUG: View 2 : 0.622516556291 +2016-08-24 09:59:41,565 DEBUG: View 3 : 0.476821192053 +2016-08-24 09:59:41,807 DEBUG: Best view : Methyl_ +2016-08-24 09:59:47,218 DEBUG: Start: Iteration 95 +2016-08-24 09:59:47,234 DEBUG: View 0 : 0.390728476821 +2016-08-24 09:59:47,242 DEBUG: View 1 : 0.430463576159 +2016-08-24 09:59:47,277 DEBUG: View 2 : 0.46357615894 +2016-08-24 09:59:47,284 DEBUG: View 3 : 0.602649006623 +2016-08-24 09:59:47,529 DEBUG: Best view : Clinic_ +2016-08-24 09:59:53,061 DEBUG: Start: Iteration 96 +2016-08-24 09:59:53,077 DEBUG: View 0 : 0.688741721854 +2016-08-24 09:59:53,085 DEBUG: View 1 : 0.556291390728 +2016-08-24 09:59:53,120 DEBUG: View 2 : 0.629139072848 +2016-08-24 09:59:53,128 DEBUG: View 3 : 0.53642384106 +2016-08-24 09:59:53,372 DEBUG: Best view : Methyl_ +2016-08-24 09:59:58,805 DEBUG: Start: Iteration 97 +2016-08-24 09:59:58,821 DEBUG: View 0 : 0.668874172185 +2016-08-24 09:59:58,828 DEBUG: View 1 : 0.443708609272 +2016-08-24 09:59:58,864 DEBUG: View 2 : 0.516556291391 +2016-08-24 09:59:58,871 DEBUG: View 3 : 0.53642384106 +2016-08-24 09:59:59,116 DEBUG: Best view : Methyl_ +2016-08-24 10:00:04,596 DEBUG: Start: Iteration 98 +2016-08-24 10:00:04,612 DEBUG: View 0 : 0.509933774834 +2016-08-24 10:00:04,620 DEBUG: View 1 : 0.675496688742 +2016-08-24 10:00:04,655 DEBUG: View 2 : 0.46357615894 +2016-08-24 10:00:04,662 DEBUG: View 3 : 0.417218543046 +2016-08-24 10:00:04,910 DEBUG: Best view : MiRNA__ +2016-08-24 10:00:10,446 DEBUG: Start: Iteration 99 +2016-08-24 10:00:10,462 DEBUG: View 0 : 0.569536423841 +2016-08-24 10:00:10,469 DEBUG: View 1 : 0.509933774834 +2016-08-24 10:00:10,505 DEBUG: View 2 : 0.476821192053 +2016-08-24 10:00:10,512 DEBUG: View 3 : 0.503311258278 +2016-08-24 10:00:10,761 DEBUG: Best view : Methyl_ +2016-08-24 10:00:16,350 DEBUG: Start: Iteration 100 +2016-08-24 10:00:16,366 DEBUG: View 0 : 0.437086092715 +2016-08-24 10:00:16,374 DEBUG: View 1 : 0.503311258278 +2016-08-24 10:00:16,409 DEBUG: View 2 : 0.417218543046 +2016-08-24 10:00:16,416 DEBUG: View 3 : 0.602649006623 +2016-08-24 10:00:16,668 DEBUG: Best view : Clinic_ +2016-08-24 10:00:22,325 DEBUG: Start: Iteration 101 +2016-08-24 10:00:22,341 DEBUG: View 0 : 0.516556291391 +2016-08-24 10:00:22,348 DEBUG: View 1 : 0.701986754967 +2016-08-24 10:00:22,384 DEBUG: View 2 : 0.483443708609 +2016-08-24 10:00:22,391 DEBUG: View 3 : 0.483443708609 +2016-08-24 10:00:22,646 DEBUG: Best view : MiRNA__ +2016-08-24 10:00:28,562 DEBUG: Start: Iteration 102 +2016-08-24 10:00:28,580 DEBUG: View 0 : 0.516556291391 +2016-08-24 10:00:28,589 DEBUG: View 1 : 0.403973509934 +2016-08-24 10:00:28,626 DEBUG: View 2 : 0.443708609272 +2016-08-24 10:00:28,633 DEBUG: View 3 : 0.443708609272 +2016-08-24 10:00:28,896 DEBUG: Best view : Methyl_ +2016-08-24 10:00:34,676 INFO: Start: Classification +2016-08-24 10:00:48,946 INFO: Done: Fold number 2 +2016-08-24 10:00:48,947 INFO: Done: Classification +2016-08-24 10:00:48,947 INFO: Info: Time for Classification: 788[s] +2016-08-24 10:00:48,947 INFO: Start: Result Analysis for Mumbo +2016-08-24 10:01:20,963 INFO: Result for Multiview classification with Mumbo + +Average accuracy : + -On Train : 73.3311664568 + -On Test : 76.2295081967 + -On Validation : 80.0970873786 + +Dataset info : + -Database name : ModifiedMultiOmic + -Labels : No, Yes + -Views : Methyl, MiRNA, RNASEQ, Clinical + -2 folds + - Validation set length : 103 for learning rate : 0.7 + +Classification configuration : + -Algorithm used : Mumbo + -Iterations : 1000 + -Weak Classifiers : DecisionTree with depth 1.0, sub-sampled at 0.006 on Methyl + -DecisionTree with depth 1.0, sub-sampled at 0.006 on MiRNA + -DecisionTree with depth 1.0, sub-sampled at 0.007 on RNASEQ + -DecisionTree with depth 1.0, sub-sampled at 0.006 on Clinical + + Mean average accuracies and stats for each fold : + - Fold 0 + - On Methyl_ : + - Mean average Accuracy : 0.0516503067485 + - Percentage of time chosen : 0.926 + - On MiRNA__ : + - Mean average Accuracy : 0.0545460122699 + - Percentage of time chosen : 0.048 + - On RANSeq_ : + - Mean average Accuracy : 0.0513374233129 + - Percentage of time chosen : 0.007 + - On Clinic_ : + - Mean average Accuracy : 0.0527116564417 + - Percentage of time chosen : 0.019 + - Fold 1 + - On Methyl_ : + - Mean average Accuracy : 0.0529801324503 + - Percentage of time chosen : 0.922 + - On MiRNA__ : + - Mean average Accuracy : 0.0560728476821 + - Percentage of time chosen : 0.057 + - On RANSeq_ : + - Mean average Accuracy : 0.0528675496689 + - Percentage of time chosen : 0.012 + - On Clinic_ : + - Mean average Accuracy : 0.0512847682119 + - Percentage of time chosen : 0.009 + + For each iteration : + - Iteration 1 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 2 + Fold 1 + Accuracy on train : 62.5766871166 + Accuracy on test : 59.8360655738 + Accuracy on validation : 52.427184466 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 61.4207938894 + Accuracy on test : 66.393442623 + - Iteration 3 + Fold 1 + Accuracy on train : 68.0981595092 + Accuracy on test : 68.0327868852 + Accuracy on validation : 64.0776699029 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 73.5099337748 + Accuracy on test : 73.7704918033 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 70.804046642 + Accuracy on test : 70.9016393443 + - Iteration 4 + Fold 1 + Accuracy on train : 66.2576687117 + Accuracy on test : 64.7540983607 + Accuracy on validation : 62.1359223301 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 81.4569536424 + Accuracy on test : 80.3278688525 + Accuracy on validation : 74.7572815534 + Selected View : Methyl_ + - Mean : + Accuracy on train : 73.857311177 + Accuracy on test : 72.5409836066 + - Iteration 5 + Fold 1 + Accuracy on train : 69.3251533742 + Accuracy on test : 72.9508196721 + Accuracy on validation : 67.9611650485 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 84.1059602649 + Accuracy on test : 83.606557377 + Accuracy on validation : 78.640776699 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 76.7155568196 + Accuracy on test : 78.2786885246 + - Iteration 6 + Fold 1 + Accuracy on train : 68.0981595092 + Accuracy on test : 77.0491803279 + Accuracy on validation : 68.932038835 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 84.1059602649 + Accuracy on test : 83.606557377 + Accuracy on validation : 80.5825242718 + Selected View : Methyl_ + - Mean : + Accuracy on train : 76.1020598871 + Accuracy on test : 80.3278688525 + - Iteration 7 + Fold 1 + Accuracy on train : 73.6196319018 + Accuracy on test : 74.5901639344 + Accuracy on validation : 70.8737864078 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 83.4437086093 + Accuracy on test : 83.606557377 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 78.5316702556 + Accuracy on test : 79.0983606557 + - Iteration 8 + Fold 1 + Accuracy on train : 73.6196319018 + Accuracy on test : 74.5901639344 + Accuracy on validation : 72.8155339806 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 83.4437086093 + Accuracy on test : 83.606557377 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 78.5316702556 + Accuracy on test : 79.0983606557 + - Iteration 9 + Fold 1 + Accuracy on train : 76.0736196319 + Accuracy on test : 77.0491803279 + Accuracy on validation : 73.786407767 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 84.1059602649 + Accuracy on test : 85.2459016393 + Accuracy on validation : 77.6699029126 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 80.0897899484 + Accuracy on test : 81.1475409836 + - Iteration 10 + Fold 1 + Accuracy on train : 73.6196319018 + Accuracy on test : 73.7704918033 + Accuracy on validation : 70.8737864078 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 81.4569536424 + Accuracy on test : 82.7868852459 + Accuracy on validation : 80.5825242718 + Selected View : Methyl_ + - Mean : + Accuracy on train : 77.5382927721 + Accuracy on test : 78.2786885246 + - Iteration 11 + Fold 1 + Accuracy on train : 73.0061349693 + Accuracy on test : 77.0491803279 + Accuracy on validation : 72.8155339806 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 81.4569536424 + Accuracy on test : 83.606557377 + Accuracy on validation : 78.640776699 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 77.2315443059 + Accuracy on test : 80.3278688525 + - Iteration 12 + Fold 1 + Accuracy on train : 70.5521472393 + Accuracy on test : 77.0491803279 + Accuracy on validation : 75.7281553398 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 76.821192053 + Accuracy on test : 77.868852459 + Accuracy on validation : 82.5242718447 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 73.6866696461 + Accuracy on test : 77.4590163934 + - Iteration 13 + Fold 1 + Accuracy on train : 73.0061349693 + Accuracy on test : 77.868852459 + Accuracy on validation : 75.7281553398 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 84.1059602649 + Accuracy on test : 81.1475409836 + Accuracy on validation : 82.5242718447 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 78.5560476171 + Accuracy on test : 79.5081967213 + - Iteration 14 + Fold 1 + Accuracy on train : 72.3926380368 + Accuracy on test : 76.2295081967 + Accuracy on validation : 74.7572815534 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 82.119205298 + Accuracy on test : 79.5081967213 + Accuracy on validation : 86.4077669903 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 77.2559216674 + Accuracy on test : 77.868852459 + - Iteration 15 + Fold 1 + Accuracy on train : 71.7791411043 + Accuracy on test : 76.2295081967 + Accuracy on validation : 72.8155339806 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 84.1059602649 + Accuracy on test : 81.1475409836 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 77.9425506846 + Accuracy on test : 78.6885245902 + - Iteration 16 + Fold 1 + Accuracy on train : 71.1656441718 + Accuracy on test : 75.4098360656 + Accuracy on validation : 69.9029126214 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 84.7682119205 + Accuracy on test : 77.0491803279 + Accuracy on validation : 89.3203883495 + Selected View : Clinic_ + - Mean : + Accuracy on train : 77.9669280462 + Accuracy on test : 76.2295081967 + - Iteration 17 + Fold 1 + Accuracy on train : 72.3926380368 + Accuracy on test : 75.4098360656 + Accuracy on validation : 70.8737864078 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 84.7682119205 + Accuracy on test : 80.3278688525 + Accuracy on validation : 87.3786407767 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 78.5804249787 + Accuracy on test : 77.868852459 + - Iteration 18 + Fold 1 + Accuracy on train : 72.3926380368 + Accuracy on test : 78.6885245902 + Accuracy on validation : 71.8446601942 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 85.4304635762 + Accuracy on test : 79.5081967213 + Accuracy on validation : 86.4077669903 + Selected View : Methyl_ + - Mean : + Accuracy on train : 78.9115508065 + Accuracy on test : 79.0983606557 + - Iteration 19 + Fold 1 + Accuracy on train : 74.8466257669 + Accuracy on test : 78.6885245902 + Accuracy on validation : 76.6990291262 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 85.4304635762 + Accuracy on test : 77.0491803279 + Accuracy on validation : 86.4077669903 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 80.1385446715 + Accuracy on test : 77.868852459 + - Iteration 20 + Fold 1 + Accuracy on train : 74.8466257669 + Accuracy on test : 80.3278688525 + Accuracy on validation : 75.7281553398 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 86.0927152318 + Accuracy on test : 72.9508196721 + Accuracy on validation : 87.3786407767 + Selected View : Clinic_ + - Mean : + Accuracy on train : 80.4696704993 + Accuracy on test : 76.6393442623 + - Iteration 21 + Fold 1 + Accuracy on train : 73.6196319018 + Accuracy on test : 81.1475409836 + Accuracy on validation : 75.7281553398 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 85.4304635762 + Accuracy on test : 77.0491803279 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 79.525047739 + Accuracy on test : 79.0983606557 + - Iteration 22 + Fold 1 + Accuracy on train : 76.6871165644 + Accuracy on test : 78.6885245902 + Accuracy on validation : 78.640776699 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 83.4437086093 + Accuracy on test : 75.4098360656 + Accuracy on validation : 88.3495145631 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 80.0654125868 + Accuracy on test : 77.0491803279 + - Iteration 23 + Fold 1 + Accuracy on train : 75.4601226994 + Accuracy on test : 79.5081967213 + Accuracy on validation : 77.6699029126 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 84.7682119205 + Accuracy on test : 77.0491803279 + Accuracy on validation : 87.3786407767 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 80.11416731 + Accuracy on test : 78.2786885246 + - Iteration 24 + Fold 1 + Accuracy on train : 76.6871165644 + Accuracy on test : 78.6885245902 + Accuracy on validation : 78.640776699 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 84.1059602649 + Accuracy on test : 75.4098360656 + Accuracy on validation : 87.3786407767 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 80.3965384147 + Accuracy on test : 77.0491803279 + - Iteration 25 + Fold 1 + Accuracy on train : 77.9141104294 + Accuracy on test : 77.0491803279 + Accuracy on validation : 78.640776699 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 84.7682119205 + Accuracy on test : 77.868852459 + Accuracy on validation : 86.4077669903 + Selected View : Methyl_ + - Mean : + Accuracy on train : 81.341161175 + Accuracy on test : 77.4590163934 + - Iteration 26 + Fold 1 + Accuracy on train : 74.8466257669 + Accuracy on test : 77.868852459 + Accuracy on validation : 77.6699029126 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 84.7682119205 + Accuracy on test : 76.2295081967 + Accuracy on validation : 86.4077669903 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 79.8074188437 + Accuracy on test : 77.0491803279 + - Iteration 27 + Fold 1 + Accuracy on train : 73.6196319018 + Accuracy on test : 77.0491803279 + Accuracy on validation : 78.640776699 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 82.7814569536 + Accuracy on test : 76.2295081967 + Accuracy on validation : 83.4951456311 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 78.2005444277 + Accuracy on test : 76.6393442623 + - Iteration 28 + Fold 1 + Accuracy on train : 74.8466257669 + Accuracy on test : 77.868852459 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 83.4437086093 + Accuracy on test : 77.0491803279 + Accuracy on validation : 85.4368932039 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 79.1451671881 + Accuracy on test : 77.4590163934 + - Iteration 29 + Fold 1 + Accuracy on train : 73.0061349693 + Accuracy on test : 78.6885245902 + Accuracy on validation : 78.640776699 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 84.1059602649 + Accuracy on test : 77.0491803279 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 78.5560476171 + Accuracy on test : 77.868852459 + - Iteration 30 + Fold 1 + Accuracy on train : 74.8466257669 + Accuracy on test : 77.0491803279 + Accuracy on validation : 80.5825242718 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 84.7682119205 + Accuracy on test : 77.0491803279 + Accuracy on validation : 85.4368932039 + Selected View : Methyl_ + - Mean : + Accuracy on train : 79.8074188437 + Accuracy on test : 77.0491803279 + - Iteration 31 + Fold 1 + Accuracy on train : 74.8466257669 + Accuracy on test : 77.868852459 + Accuracy on validation : 79.6116504854 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 82.119205298 + Accuracy on test : 77.0491803279 + Accuracy on validation : 84.4660194175 + Selected View : Methyl_ + - Mean : + Accuracy on train : 78.4829155324 + Accuracy on test : 77.4590163934 + - Iteration 32 + Fold 1 + Accuracy on train : 74.8466257669 + Accuracy on test : 76.2295081967 + Accuracy on validation : 79.6116504854 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 84.7682119205 + Accuracy on test : 75.4098360656 + Accuracy on validation : 85.4368932039 + Selected View : Clinic_ + - Mean : + Accuracy on train : 79.8074188437 + Accuracy on test : 75.8196721311 + - Iteration 33 + Fold 1 + Accuracy on train : 74.2331288344 + Accuracy on test : 77.0491803279 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 82.119205298 + Accuracy on test : 78.6885245902 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 78.1761670662 + Accuracy on test : 77.868852459 + - Iteration 34 + Fold 1 + Accuracy on train : 74.8466257669 + Accuracy on test : 78.6885245902 + Accuracy on validation : 78.640776699 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 84.7682119205 + Accuracy on test : 77.0491803279 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 79.8074188437 + Accuracy on test : 77.868852459 + - Iteration 35 + Fold 1 + Accuracy on train : 75.4601226994 + Accuracy on test : 79.5081967213 + Accuracy on validation : 79.6116504854 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 84.7682119205 + Accuracy on test : 79.5081967213 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 80.11416731 + Accuracy on test : 79.5081967213 + - Iteration 36 + Fold 1 + Accuracy on train : 74.8466257669 + Accuracy on test : 78.6885245902 + Accuracy on validation : 78.640776699 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 87.417218543 + Accuracy on test : 78.6885245902 + Accuracy on validation : 88.3495145631 + Selected View : Methyl_ + - Mean : + Accuracy on train : 81.131922155 + Accuracy on test : 78.6885245902 + - Iteration 37 + Fold 1 + Accuracy on train : 73.0061349693 + Accuracy on test : 78.6885245902 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 83.4437086093 + Accuracy on test : 81.1475409836 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 78.2249217893 + Accuracy on test : 79.9180327869 + - Iteration 38 + Fold 1 + Accuracy on train : 73.0061349693 + Accuracy on test : 79.5081967213 + Accuracy on validation : 78.640776699 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 86.7549668874 + Accuracy on test : 79.5081967213 + Accuracy on validation : 88.3495145631 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 79.8805509284 + Accuracy on test : 79.5081967213 + - Iteration 39 + Fold 1 + Accuracy on train : 74.2331288344 + Accuracy on test : 78.6885245902 + Accuracy on validation : 80.5825242718 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 82.7814569536 + Accuracy on test : 79.5081967213 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 78.507292894 + Accuracy on test : 79.0983606557 + - Iteration 40 + Fold 1 + Accuracy on train : 74.2331288344 + Accuracy on test : 79.5081967213 + Accuracy on validation : 79.6116504854 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 82.7814569536 + Accuracy on test : 76.2295081967 + Accuracy on validation : 85.4368932039 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 78.507292894 + Accuracy on test : 77.868852459 + - Iteration 41 + Fold 1 + Accuracy on train : 74.8466257669 + Accuracy on test : 79.5081967213 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 82.7814569536 + Accuracy on test : 79.5081967213 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 78.8140413603 + Accuracy on test : 79.5081967213 + - Iteration 42 + Fold 1 + Accuracy on train : 72.3926380368 + Accuracy on test : 77.868852459 + Accuracy on validation : 76.6990291262 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 81.4569536424 + Accuracy on test : 78.6885245902 + Accuracy on validation : 86.4077669903 + Selected View : Methyl_ + - Mean : + Accuracy on train : 76.9247958396 + Accuracy on test : 78.2786885246 + - Iteration 43 + Fold 1 + Accuracy on train : 73.6196319018 + Accuracy on test : 79.5081967213 + Accuracy on validation : 78.640776699 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 84.7682119205 + Accuracy on test : 80.3278688525 + Accuracy on validation : 87.3786407767 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 79.1939219112 + Accuracy on test : 79.9180327869 + - Iteration 44 + Fold 1 + Accuracy on train : 73.6196319018 + Accuracy on test : 79.5081967213 + Accuracy on validation : 78.640776699 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 84.7682119205 + Accuracy on test : 80.3278688525 + Accuracy on validation : 87.3786407767 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 79.1939219112 + Accuracy on test : 79.9180327869 + - Iteration 45 + Fold 1 + Accuracy on train : 72.3926380368 + Accuracy on test : 77.0491803279 + Accuracy on validation : 76.6990291262 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 83.4437086093 + Accuracy on test : 78.6885245902 + Accuracy on validation : 87.3786407767 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 77.918173323 + Accuracy on test : 77.868852459 + - Iteration 46 + Fold 1 + Accuracy on train : 70.5521472393 + Accuracy on test : 78.6885245902 + Accuracy on validation : 76.6990291262 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 81.4569536424 + Accuracy on test : 75.4098360656 + Accuracy on validation : 87.3786407767 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 76.0045504408 + Accuracy on test : 77.0491803279 + - Iteration 47 + Fold 1 + Accuracy on train : 71.1656441718 + Accuracy on test : 77.868852459 + Accuracy on validation : 78.640776699 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 79.4701986755 + Accuracy on test : 75.4098360656 + Accuracy on validation : 86.4077669903 + Selected View : Clinic_ + - Mean : + Accuracy on train : 75.3179214236 + Accuracy on test : 76.6393442623 + - Iteration 48 + Fold 1 + Accuracy on train : 71.1656441718 + Accuracy on test : 77.868852459 + Accuracy on validation : 78.640776699 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 79.4701986755 + Accuracy on test : 77.868852459 + Accuracy on validation : 87.3786407767 + Selected View : Clinic_ + - Mean : + Accuracy on train : 75.3179214236 + Accuracy on test : 77.868852459 + - Iteration 49 + Fold 1 + Accuracy on train : 70.5521472393 + Accuracy on test : 78.6885245902 + Accuracy on validation : 77.6699029126 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 78.8079470199 + Accuracy on test : 75.4098360656 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 74.6800471296 + Accuracy on test : 77.0491803279 + - Iteration 50 + Fold 1 + Accuracy on train : 71.7791411043 + Accuracy on test : 79.5081967213 + Accuracy on validation : 77.6699029126 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 78.8079470199 + Accuracy on test : 75.4098360656 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 75.2935440621 + Accuracy on test : 77.4590163934 + - Iteration 51 + Fold 1 + Accuracy on train : 69.9386503067 + Accuracy on test : 78.6885245902 + Accuracy on validation : 76.6990291262 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 79.4701986755 + Accuracy on test : 76.2295081967 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 74.7044244911 + Accuracy on test : 77.4590163934 + - Iteration 52 + Fold 1 + Accuracy on train : 70.5521472393 + Accuracy on test : 78.6885245902 + Accuracy on validation : 77.6699029126 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 78.1456953642 + Accuracy on test : 76.2295081967 + Accuracy on validation : 84.4660194175 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 74.3489213018 + Accuracy on test : 77.4590163934 + - Iteration 53 + Fold 1 + Accuracy on train : 71.7791411043 + Accuracy on test : 77.0491803279 + Accuracy on validation : 79.6116504854 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 78.1456953642 + Accuracy on test : 75.4098360656 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 74.9624182343 + Accuracy on test : 76.2295081967 + - Iteration 54 + Fold 1 + Accuracy on train : 69.9386503067 + Accuracy on test : 78.6885245902 + Accuracy on validation : 78.640776699 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 76.821192053 + Accuracy on test : 76.2295081967 + Accuracy on validation : 84.4660194175 + Selected View : Methyl_ + - Mean : + Accuracy on train : 73.3799211799 + Accuracy on test : 77.4590163934 + - Iteration 55 + Fold 1 + Accuracy on train : 72.3926380368 + Accuracy on test : 77.0491803279 + Accuracy on validation : 79.6116504854 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 76.1589403974 + Accuracy on test : 75.4098360656 + Accuracy on validation : 85.4368932039 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 74.2757892171 + Accuracy on test : 76.2295081967 + - Iteration 56 + Fold 1 + Accuracy on train : 72.3926380368 + Accuracy on test : 78.6885245902 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 73.5099337748 + Accuracy on test : 74.5901639344 + Accuracy on validation : 82.5242718447 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 72.9512859058 + Accuracy on test : 76.6393442623 + - Iteration 57 + Fold 1 + Accuracy on train : 72.3926380368 + Accuracy on test : 77.0491803279 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 75.4966887417 + Accuracy on test : 77.0491803279 + Accuracy on validation : 82.5242718447 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 73.9446633893 + Accuracy on test : 77.0491803279 + - Iteration 58 + Fold 1 + Accuracy on train : 72.3926380368 + Accuracy on test : 78.6885245902 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 73.5099337748 + Accuracy on test : 75.4098360656 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 72.9512859058 + Accuracy on test : 77.0491803279 + - Iteration 59 + Fold 1 + Accuracy on train : 72.3926380368 + Accuracy on test : 78.6885245902 + Accuracy on validation : 79.6116504854 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 74.1721854305 + Accuracy on test : 75.4098360656 + Accuracy on validation : 81.5533980583 + Selected View : Methyl_ + - Mean : + Accuracy on train : 73.2824117336 + Accuracy on test : 77.0491803279 + - Iteration 60 + Fold 1 + Accuracy on train : 73.0061349693 + Accuracy on test : 78.6885245902 + Accuracy on validation : 78.640776699 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 74.1721854305 + Accuracy on test : 75.4098360656 + Accuracy on validation : 81.5533980583 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 73.5891601999 + Accuracy on test : 77.0491803279 + - Iteration 61 + Fold 1 + Accuracy on train : 72.3926380368 + Accuracy on test : 78.6885245902 + Accuracy on validation : 79.6116504854 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 74.1721854305 + Accuracy on test : 75.4098360656 + Accuracy on validation : 82.5242718447 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 73.2824117336 + Accuracy on test : 77.0491803279 + - Iteration 62 + Fold 1 + Accuracy on train : 73.0061349693 + Accuracy on test : 78.6885245902 + Accuracy on validation : 79.6116504854 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 74.1721854305 + Accuracy on test : 74.5901639344 + Accuracy on validation : 82.5242718447 + Selected View : Methyl_ + - Mean : + Accuracy on train : 73.5891601999 + Accuracy on test : 76.6393442623 + - Iteration 63 + Fold 1 + Accuracy on train : 72.3926380368 + Accuracy on test : 78.6885245902 + Accuracy on validation : 78.640776699 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 74.1721854305 + Accuracy on test : 77.868852459 + Accuracy on validation : 81.5533980583 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 73.2824117336 + Accuracy on test : 78.2786885246 + - Iteration 64 + Fold 1 + Accuracy on train : 73.6196319018 + Accuracy on test : 80.3278688525 + Accuracy on validation : 80.5825242718 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 73.5099337748 + Accuracy on test : 78.6885245902 + Accuracy on validation : 81.5533980583 + Selected View : Methyl_ + - Mean : + Accuracy on train : 73.5647828383 + Accuracy on test : 79.5081967213 + - Iteration 65 + Fold 1 + Accuracy on train : 72.3926380368 + Accuracy on test : 80.3278688525 + Accuracy on validation : 79.6116504854 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 75.4966887417 + Accuracy on test : 78.6885245902 + Accuracy on validation : 82.5242718447 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 73.9446633893 + Accuracy on test : 79.5081967213 + - Iteration 66 + Fold 1 + Accuracy on train : 71.7791411043 + Accuracy on test : 80.3278688525 + Accuracy on validation : 78.640776699 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 76.821192053 + Accuracy on test : 77.0491803279 + Accuracy on validation : 83.4951456311 + Selected View : Methyl_ + - Mean : + Accuracy on train : 74.3001665786 + Accuracy on test : 78.6885245902 + - Iteration 67 + Fold 1 + Accuracy on train : 72.3926380368 + Accuracy on test : 79.5081967213 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 76.1589403974 + Accuracy on test : 77.868852459 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 74.2757892171 + Accuracy on test : 78.6885245902 + - Iteration 68 + Fold 1 + Accuracy on train : 71.1656441718 + Accuracy on test : 78.6885245902 + Accuracy on validation : 78.640776699 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 76.1589403974 + Accuracy on test : 78.6885245902 + Accuracy on validation : 82.5242718447 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 73.6622922846 + Accuracy on test : 78.6885245902 + - Iteration 69 + Fold 1 + Accuracy on train : 71.7791411043 + Accuracy on test : 77.868852459 + Accuracy on validation : 79.6116504854 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 76.821192053 + Accuracy on test : 77.868852459 + Accuracy on validation : 82.5242718447 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 74.3001665786 + Accuracy on test : 77.868852459 + - Iteration 70 + Fold 1 + Accuracy on train : 71.7791411043 + Accuracy on test : 78.6885245902 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 74.8344370861 + Accuracy on test : 77.0491803279 + Accuracy on validation : 81.5533980583 + Selected View : Methyl_ + - Mean : + Accuracy on train : 73.3067890952 + Accuracy on test : 77.868852459 + - Iteration 71 + Fold 1 + Accuracy on train : 72.3926380368 + Accuracy on test : 79.5081967213 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 73.5099337748 + Accuracy on test : 75.4098360656 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 72.9512859058 + Accuracy on test : 77.4590163934 + - Iteration 72 + Fold 1 + Accuracy on train : 71.1656441718 + Accuracy on test : 79.5081967213 + Accuracy on validation : 78.640776699 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 71.5231788079 + Accuracy on test : 76.2295081967 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 71.3444114899 + Accuracy on test : 77.868852459 + - Iteration 73 + Fold 1 + Accuracy on train : 70.5521472393 + Accuracy on test : 77.868852459 + Accuracy on validation : 78.640776699 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 69.5364238411 + Accuracy on test : 74.5901639344 + Accuracy on validation : 78.640776699 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 70.0442855402 + Accuracy on test : 76.2295081967 + - Iteration 74 + Fold 1 + Accuracy on train : 70.5521472393 + Accuracy on test : 77.868852459 + Accuracy on validation : 77.6699029126 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 72.8476821192 + Accuracy on test : 76.2295081967 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 71.6999146792 + Accuracy on test : 77.0491803279 + - Iteration 75 + Fold 1 + Accuracy on train : 69.9386503067 + Accuracy on test : 77.868852459 + Accuracy on validation : 77.6699029126 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 72.1854304636 + Accuracy on test : 75.4098360656 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 71.0620403852 + Accuracy on test : 76.6393442623 + - Iteration 76 + Fold 1 + Accuracy on train : 69.9386503067 + Accuracy on test : 77.868852459 + Accuracy on validation : 77.6699029126 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 72.8476821192 + Accuracy on test : 74.5901639344 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 71.393166213 + Accuracy on test : 76.2295081967 + - Iteration 77 + Fold 1 + Accuracy on train : 69.3251533742 + Accuracy on test : 78.6885245902 + Accuracy on validation : 77.6699029126 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 72.1854304636 + Accuracy on test : 73.7704918033 + Accuracy on validation : 81.5533980583 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 70.7552919189 + Accuracy on test : 76.2295081967 + - Iteration 78 + Fold 1 + Accuracy on train : 68.7116564417 + Accuracy on test : 77.868852459 + Accuracy on validation : 76.6990291262 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 73.5099337748 + Accuracy on test : 75.4098360656 + Accuracy on validation : 80.5825242718 + Selected View : Methyl_ + - Mean : + Accuracy on train : 71.1107951083 + Accuracy on test : 76.6393442623 + - Iteration 79 + Fold 1 + Accuracy on train : 69.3251533742 + Accuracy on test : 77.868852459 + Accuracy on validation : 77.6699029126 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 75.4966887417 + Accuracy on test : 76.2295081967 + Accuracy on validation : 81.5533980583 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 72.410921058 + Accuracy on test : 77.0491803279 + - Iteration 80 + Fold 1 + Accuracy on train : 69.3251533742 + Accuracy on test : 77.0491803279 + Accuracy on validation : 77.6699029126 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 74.1721854305 + Accuracy on test : 75.4098360656 + Accuracy on validation : 81.5533980583 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 71.7486694023 + Accuracy on test : 76.2295081967 + - Iteration 81 + Fold 1 + Accuracy on train : 69.3251533742 + Accuracy on test : 78.6885245902 + Accuracy on validation : 77.6699029126 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 75.4966887417 + Accuracy on test : 76.2295081967 + Accuracy on validation : 81.5533980583 + Selected View : Clinic_ + - Mean : + Accuracy on train : 72.410921058 + Accuracy on test : 77.4590163934 + - Iteration 82 + Fold 1 + Accuracy on train : 68.7116564417 + Accuracy on test : 77.0491803279 + Accuracy on validation : 77.6699029126 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 74.8344370861 + Accuracy on test : 76.2295081967 + Accuracy on validation : 81.5533980583 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 71.7730467639 + Accuracy on test : 76.6393442623 + - Iteration 83 + Fold 1 + Accuracy on train : 68.7116564417 + Accuracy on test : 77.868852459 + Accuracy on validation : 77.6699029126 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 74.8344370861 + Accuracy on test : 76.2295081967 + Accuracy on validation : 81.5533980583 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 71.7730467639 + Accuracy on test : 77.0491803279 + - Iteration 84 + Fold 1 + Accuracy on train : 68.7116564417 + Accuracy on test : 77.0491803279 + Accuracy on validation : 77.6699029126 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 75.4966887417 + Accuracy on test : 76.2295081967 + Accuracy on validation : 81.5533980583 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 72.1041725917 + Accuracy on test : 76.6393442623 + - Iteration 85 + Fold 1 + Accuracy on train : 67.4846625767 + Accuracy on test : 77.0491803279 + Accuracy on validation : 76.6990291262 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 76.1589403974 + Accuracy on test : 75.4098360656 + Accuracy on validation : 81.5533980583 + Selected View : Methyl_ + - Mean : + Accuracy on train : 71.821801487 + Accuracy on test : 76.2295081967 + - Iteration 86 + Fold 1 + Accuracy on train : 68.7116564417 + Accuracy on test : 77.868852459 + Accuracy on validation : 77.6699029126 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 74.1721854305 + Accuracy on test : 74.5901639344 + Accuracy on validation : 81.5533980583 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 71.4419209361 + Accuracy on test : 76.2295081967 + - Iteration 87 + Fold 1 + Accuracy on train : 68.7116564417 + Accuracy on test : 77.868852459 + Accuracy on validation : 77.6699029126 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 76.821192053 + Accuracy on test : 76.2295081967 + Accuracy on validation : 82.5242718447 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 72.7664242473 + Accuracy on test : 77.0491803279 + - Iteration 88 + Fold 1 + Accuracy on train : 68.7116564417 + Accuracy on test : 77.868852459 + Accuracy on validation : 77.6699029126 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 76.1589403974 + Accuracy on test : 76.2295081967 + Accuracy on validation : 81.5533980583 + Selected View : Methyl_ + - Mean : + Accuracy on train : 72.4352984195 + Accuracy on test : 77.0491803279 + - Iteration 89 + Fold 1 + Accuracy on train : 68.7116564417 + Accuracy on test : 77.868852459 + Accuracy on validation : 77.6699029126 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 75.4966887417 + Accuracy on test : 75.4098360656 + Accuracy on validation : 81.5533980583 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 72.1041725917 + Accuracy on test : 76.6393442623 + - Iteration 90 + Fold 1 + Accuracy on train : 68.0981595092 + Accuracy on test : 77.868852459 + Accuracy on validation : 76.6990291262 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 74.8344370861 + Accuracy on test : 76.2295081967 + Accuracy on validation : 81.5533980583 + Selected View : Clinic_ + - Mean : + Accuracy on train : 71.4662982976 + Accuracy on test : 77.0491803279 + - Iteration 91 + Fold 1 + Accuracy on train : 68.0981595092 + Accuracy on test : 77.868852459 + Accuracy on validation : 76.6990291262 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 76.1589403974 + Accuracy on test : 75.4098360656 + Accuracy on validation : 82.5242718447 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 72.1285499533 + Accuracy on test : 76.6393442623 + - Iteration 92 + Fold 1 + Accuracy on train : 68.7116564417 + Accuracy on test : 78.6885245902 + Accuracy on validation : 76.6990291262 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 74.8344370861 + Accuracy on test : 75.4098360656 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 71.7730467639 + Accuracy on test : 77.0491803279 + - Iteration 93 + Fold 1 + Accuracy on train : 68.0981595092 + Accuracy on test : 78.6885245902 + Accuracy on validation : 76.6990291262 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 75.4966887417 + Accuracy on test : 73.7704918033 + Accuracy on validation : 82.5242718447 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 71.7974241255 + Accuracy on test : 76.2295081967 + - Iteration 94 + Fold 1 + Accuracy on train : 68.0981595092 + Accuracy on test : 77.0491803279 + Accuracy on validation : 76.6990291262 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 75.4966887417 + Accuracy on test : 75.4098360656 + Accuracy on validation : 82.5242718447 + Selected View : Methyl_ + - Mean : + Accuracy on train : 71.7974241255 + Accuracy on test : 76.2295081967 + - Iteration 95 + Fold 1 + Accuracy on train : 68.7116564417 + Accuracy on test : 77.868852459 + Accuracy on validation : 77.6699029126 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 75.4966887417 + Accuracy on test : 75.4098360656 + Accuracy on validation : 82.5242718447 + Selected View : Clinic_ + - Mean : + Accuracy on train : 72.1041725917 + Accuracy on test : 76.6393442623 + - Iteration 96 + Fold 1 + Accuracy on train : 68.7116564417 + Accuracy on test : 78.6885245902 + Accuracy on validation : 77.6699029126 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 74.8344370861 + Accuracy on test : 75.4098360656 + Accuracy on validation : 81.5533980583 + Selected View : Methyl_ + - Mean : + Accuracy on train : 71.7730467639 + Accuracy on test : 77.0491803279 + - Iteration 97 + Fold 1 + Accuracy on train : 69.9386503067 + Accuracy on test : 78.6885245902 + Accuracy on validation : 78.640776699 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 75.4966887417 + Accuracy on test : 74.5901639344 + Accuracy on validation : 82.5242718447 + Selected View : Methyl_ + - Mean : + Accuracy on train : 72.7176695242 + Accuracy on test : 76.6393442623 + - Iteration 98 + Fold 1 + Accuracy on train : 69.3251533742 + Accuracy on test : 77.868852459 + Accuracy on validation : 78.640776699 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 75.4966887417 + Accuracy on test : 74.5901639344 + Accuracy on validation : 81.5533980583 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 72.410921058 + Accuracy on test : 76.2295081967 + - Iteration 99 + Fold 1 + Accuracy on train : 69.9386503067 + Accuracy on test : 77.868852459 + Accuracy on validation : 78.640776699 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 76.1589403974 + Accuracy on test : 74.5901639344 + Accuracy on validation : 81.5533980583 + Selected View : Methyl_ + - Mean : + Accuracy on train : 73.048795352 + Accuracy on test : 76.2295081967 + - Iteration 100 + Fold 1 + Accuracy on train : 70.5521472393 + Accuracy on test : 77.868852459 + Accuracy on validation : 78.640776699 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 76.1589403974 + Accuracy on test : 73.7704918033 + Accuracy on validation : 82.5242718447 + Selected View : Clinic_ + - Mean : + Accuracy on train : 73.3555438183 + Accuracy on test : 75.8196721311 + - Iteration 101 + Fold 1 + Accuracy on train : 69.9386503067 + Accuracy on test : 78.6885245902 + Accuracy on validation : 77.6699029126 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 76.1589403974 + Accuracy on test : 73.7704918033 + Accuracy on validation : 82.5242718447 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 73.048795352 + Accuracy on test : 76.2295081967 + - Iteration 102 + Fold 1 + Accuracy on train : 71.1656441718 + Accuracy on test : 78.6885245902 + Accuracy on validation : 78.640776699 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 75.4966887417 + Accuracy on test : 73.7704918033 + Accuracy on validation : 81.5533980583 + Selected View : Methyl_ + - Mean : + Accuracy on train : 73.3311664568 + Accuracy on test : 76.2295081967 + - Iteration 103 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 104 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 105 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 106 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 107 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 108 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 109 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 110 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 111 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 112 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 113 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 114 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 115 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 116 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 117 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 118 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 119 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 120 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 121 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 122 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 123 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 124 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 125 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 126 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 127 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 128 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 129 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 130 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 131 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 132 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 133 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 134 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 135 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 136 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 137 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 138 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 139 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 140 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 141 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 142 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 143 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 144 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 145 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 146 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 147 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 148 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 149 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 150 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 151 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 152 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 153 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 154 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 155 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 156 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 157 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 158 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 159 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 160 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 161 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 162 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 163 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 164 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 165 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 166 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 167 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 168 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 169 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 170 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 171 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 172 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 173 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 174 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 175 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 176 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 177 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 178 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 179 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 180 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 181 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 182 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 183 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 184 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 185 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 186 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 187 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 188 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 189 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 190 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 191 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 192 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 193 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 194 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 195 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 196 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 197 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 198 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 199 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 200 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 201 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 202 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 203 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 204 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 205 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 206 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 207 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 208 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 209 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 210 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 211 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 212 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 213 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 214 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 215 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 216 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 217 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 218 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 219 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 220 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 221 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 222 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 223 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 224 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 225 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 226 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 227 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 228 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 229 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 230 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 231 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 232 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 233 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 234 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 235 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 236 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 237 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 238 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 239 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 240 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 241 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 242 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 243 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 244 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 245 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 246 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 247 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 248 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 249 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 250 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 251 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 252 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 253 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 254 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 255 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 256 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 257 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 258 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 259 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 260 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 261 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 262 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 263 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 264 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 265 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 266 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 267 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 268 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 269 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 270 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 271 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 272 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 273 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 274 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 275 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 276 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 277 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 278 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 279 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 280 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 281 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 282 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 283 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 284 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 285 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 286 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 287 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 288 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 289 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 290 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 291 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 292 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 293 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 294 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 295 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 296 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 297 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 298 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 299 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 300 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 301 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 302 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 303 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 304 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 305 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 306 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 307 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 308 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 309 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 310 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 311 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 312 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 313 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 314 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 315 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 316 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 317 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 318 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 319 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 320 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 321 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 322 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 323 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 324 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 325 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 326 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 327 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 328 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 329 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 330 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 331 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 332 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 333 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 334 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 335 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 336 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 337 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 338 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 339 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 340 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 341 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 342 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 343 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 344 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 345 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 346 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 347 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 348 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 349 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 350 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 351 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 352 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 353 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 354 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 355 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 356 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 357 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 358 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 359 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 360 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 361 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 362 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 363 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 364 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 365 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 366 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 367 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 368 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 369 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 370 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 371 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 372 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 373 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 374 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 375 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 376 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 377 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 378 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 379 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 380 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 381 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 382 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 383 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 384 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 385 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 386 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 387 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 388 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 389 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 390 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 391 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 392 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 393 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 394 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 395 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 396 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 397 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 398 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 399 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 400 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 401 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 402 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 403 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 404 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 405 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 406 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 407 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 408 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 409 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 410 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 411 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 412 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 413 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 414 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 415 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 416 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 417 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 418 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 419 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 420 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 421 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 422 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 423 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 424 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 425 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 426 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 427 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 428 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 429 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 430 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 431 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 432 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 433 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 434 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 435 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 436 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 437 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 438 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 439 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 440 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 441 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 442 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 443 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 444 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 445 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 446 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 447 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 448 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 449 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 450 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 451 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 452 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 453 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 454 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 455 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 456 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 457 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 458 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 459 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 460 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 461 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 462 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 463 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 464 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 465 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 466 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 467 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 468 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 469 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 470 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 471 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 472 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 473 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 474 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 475 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 476 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 477 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 478 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 479 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 480 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 481 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 482 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 483 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 484 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 485 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 486 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 487 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 488 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 489 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 490 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 491 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 492 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 493 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 494 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 495 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 496 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 497 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 498 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 499 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 500 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 501 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 502 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 503 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 504 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 505 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 506 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 507 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 508 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 509 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 510 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 511 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 512 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 513 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 514 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 515 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 516 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 517 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 518 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 519 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 520 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 521 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 522 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 523 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 524 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 525 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 526 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 527 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 528 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 529 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 530 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 531 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 532 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 533 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 534 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 535 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 536 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 537 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 538 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 539 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 540 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 541 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 542 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 543 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 544 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 545 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 546 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 547 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 548 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 549 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 550 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 551 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 552 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 553 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 554 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 555 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 556 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 557 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 558 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 559 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 560 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 561 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 562 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 563 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 564 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 565 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 566 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 567 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 568 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 569 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 570 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 571 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 572 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 573 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 574 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 575 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 576 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 577 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 578 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 579 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 580 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 581 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 582 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 583 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 584 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 585 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 586 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 587 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 588 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 589 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 590 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 591 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 592 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 593 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 594 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 595 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 596 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 597 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 598 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 599 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 600 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 601 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 602 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 603 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 604 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 605 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 606 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 607 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 608 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 609 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 610 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 611 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 612 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 613 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 614 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 615 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 616 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 617 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 618 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 619 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 620 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 621 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 622 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 623 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 624 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 625 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 626 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 627 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 628 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 629 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 630 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 631 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 632 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 633 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 634 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 635 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 636 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 637 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 638 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 639 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 640 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 641 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 642 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 643 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 644 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 645 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 646 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 647 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 648 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 649 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 650 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 651 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 652 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 653 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 654 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 655 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 656 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 657 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 658 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 659 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 660 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 661 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 662 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 663 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 664 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 665 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 666 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 667 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 668 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 669 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 670 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 671 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 672 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 673 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 674 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 675 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 676 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 677 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 678 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 679 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 680 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 681 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 682 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 683 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 684 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 685 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 686 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 687 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 688 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 689 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 690 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 691 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 692 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 693 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 694 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 695 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 696 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 697 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 698 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 699 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 700 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 701 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 702 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 703 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 704 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 705 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 706 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 707 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 708 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 709 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 710 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 711 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 712 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 713 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 714 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 715 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 716 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 717 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 718 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 719 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 720 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 721 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 722 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 723 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 724 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 725 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 726 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 727 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 728 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 729 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 730 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 731 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 732 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 733 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 734 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 735 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 736 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 737 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 738 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 739 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 740 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 741 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 742 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 743 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 744 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 745 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 746 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 747 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 748 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 749 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 750 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 751 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 752 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 753 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 754 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 755 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 756 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 757 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 758 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 759 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 760 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 761 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 762 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 763 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 764 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 765 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 766 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 767 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 768 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 769 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 770 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 771 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 772 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 773 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 774 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 775 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 776 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 777 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 778 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 779 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 780 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 781 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 782 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 783 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 784 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 785 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 786 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 787 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 788 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 789 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 790 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 791 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 792 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 793 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 794 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 795 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 796 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 797 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 798 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 799 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 800 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 801 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 802 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 803 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 804 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 805 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 806 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 807 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 808 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 809 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 810 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 811 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 812 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 813 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 814 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 815 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 816 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 817 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 818 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 819 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 820 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 821 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 822 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 823 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 824 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 825 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 826 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 827 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 828 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 829 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 830 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 831 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 832 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 833 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 834 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 835 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 836 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 837 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 838 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 839 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 840 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 841 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 842 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 843 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 844 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 845 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 846 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 847 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 848 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 849 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 850 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 851 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 852 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 853 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 854 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 855 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 856 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 857 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 858 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 859 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 860 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 861 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 862 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 863 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 864 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 865 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 866 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 867 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 868 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 869 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 870 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 871 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 872 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 873 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 874 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 875 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 876 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 877 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 878 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 879 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 880 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 881 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 882 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 883 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 884 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 885 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 886 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 887 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 888 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 889 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 890 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 891 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 892 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 893 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 894 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 895 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 896 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 897 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 898 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 899 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 900 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 901 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 902 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 903 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 904 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 905 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 906 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 907 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 908 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 909 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 910 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 911 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 912 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 913 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 914 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 915 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 916 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 917 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 918 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 919 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 920 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 921 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 922 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 923 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 924 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 925 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 926 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 927 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 928 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 929 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 930 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 931 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 932 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 933 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 934 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 935 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 936 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 937 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 938 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 939 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 940 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 941 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 942 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 943 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 944 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 945 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 946 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 947 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 948 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 949 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 950 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 951 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 952 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 953 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 954 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 955 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 956 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 957 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 958 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 959 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 960 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 961 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 962 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 963 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 964 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 965 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 966 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 967 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 968 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 969 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 970 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 971 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 972 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 973 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 974 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 975 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 976 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 977 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 978 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 979 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 980 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 981 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 982 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 983 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 984 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 985 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 986 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 987 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 988 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 989 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 990 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 991 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 992 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 993 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 994 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 995 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 996 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 997 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 998 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 999 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 1000 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + +Computation time on 1 cores : + Database extraction time : 0:00:00 + Learn Prediction + Fold 1 0:07:17 0:00:14 + Fold 2 0:12:53 0:00:14 + Total 0:20:11 0:00:28 + So a total classification time of 0:13:08. + + +2016-08-24 10:01:21,935 INFO: Done: Result Analysis diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-100121Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-100121Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png new file mode 100644 index 0000000000000000000000000000000000000000..450d6bb8864e93756a693840a8d4617a48cb2648 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-100121Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png differ diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-100121Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-100121Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt new file mode 100644 index 0000000000000000000000000000000000000000..d4524b7cad5c93d0b97531bca46a172c9385b74c --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-100121Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt @@ -0,0 +1,14060 @@ + Result for Multiview classification with Mumbo + +Average accuracy : + -On Train : 73.3311664568 + -On Test : 76.2295081967 + -On Validation : 80.0970873786 + +Dataset info : + -Database name : ModifiedMultiOmic + -Labels : No, Yes + -Views : Methyl, MiRNA, RNASEQ, Clinical + -2 folds + - Validation set length : 103 for learning rate : 0.7 + +Classification configuration : + -Algorithm used : Mumbo + -Iterations : 1000 + -Weak Classifiers : DecisionTree with depth 1.0, sub-sampled at 0.006 on Methyl + -DecisionTree with depth 1.0, sub-sampled at 0.006 on MiRNA + -DecisionTree with depth 1.0, sub-sampled at 0.007 on RNASEQ + -DecisionTree with depth 1.0, sub-sampled at 0.006 on Clinical + + Mean average accuracies and stats for each fold : + - Fold 0 + - On Methyl_ : + - Mean average Accuracy : 0.0516503067485 + - Percentage of time chosen : 0.926 + - On MiRNA__ : + - Mean average Accuracy : 0.0545460122699 + - Percentage of time chosen : 0.048 + - On RANSeq_ : + - Mean average Accuracy : 0.0513374233129 + - Percentage of time chosen : 0.007 + - On Clinic_ : + - Mean average Accuracy : 0.0527116564417 + - Percentage of time chosen : 0.019 + - Fold 1 + - On Methyl_ : + - Mean average Accuracy : 0.0529801324503 + - Percentage of time chosen : 0.922 + - On MiRNA__ : + - Mean average Accuracy : 0.0560728476821 + - Percentage of time chosen : 0.057 + - On RANSeq_ : + - Mean average Accuracy : 0.0528675496689 + - Percentage of time chosen : 0.012 + - On Clinic_ : + - Mean average Accuracy : 0.0512847682119 + - Percentage of time chosen : 0.009 + + For each iteration : + - Iteration 1 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 2 + Fold 1 + Accuracy on train : 62.5766871166 + Accuracy on test : 59.8360655738 + Accuracy on validation : 52.427184466 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 61.4207938894 + Accuracy on test : 66.393442623 + - Iteration 3 + Fold 1 + Accuracy on train : 68.0981595092 + Accuracy on test : 68.0327868852 + Accuracy on validation : 64.0776699029 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 73.5099337748 + Accuracy on test : 73.7704918033 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 70.804046642 + Accuracy on test : 70.9016393443 + - Iteration 4 + Fold 1 + Accuracy on train : 66.2576687117 + Accuracy on test : 64.7540983607 + Accuracy on validation : 62.1359223301 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 81.4569536424 + Accuracy on test : 80.3278688525 + Accuracy on validation : 74.7572815534 + Selected View : Methyl_ + - Mean : + Accuracy on train : 73.857311177 + Accuracy on test : 72.5409836066 + - Iteration 5 + Fold 1 + Accuracy on train : 69.3251533742 + Accuracy on test : 72.9508196721 + Accuracy on validation : 67.9611650485 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 84.1059602649 + Accuracy on test : 83.606557377 + Accuracy on validation : 78.640776699 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 76.7155568196 + Accuracy on test : 78.2786885246 + - Iteration 6 + Fold 1 + Accuracy on train : 68.0981595092 + Accuracy on test : 77.0491803279 + Accuracy on validation : 68.932038835 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 84.1059602649 + Accuracy on test : 83.606557377 + Accuracy on validation : 80.5825242718 + Selected View : Methyl_ + - Mean : + Accuracy on train : 76.1020598871 + Accuracy on test : 80.3278688525 + - Iteration 7 + Fold 1 + Accuracy on train : 73.6196319018 + Accuracy on test : 74.5901639344 + Accuracy on validation : 70.8737864078 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 83.4437086093 + Accuracy on test : 83.606557377 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 78.5316702556 + Accuracy on test : 79.0983606557 + - Iteration 8 + Fold 1 + Accuracy on train : 73.6196319018 + Accuracy on test : 74.5901639344 + Accuracy on validation : 72.8155339806 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 83.4437086093 + Accuracy on test : 83.606557377 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 78.5316702556 + Accuracy on test : 79.0983606557 + - Iteration 9 + Fold 1 + Accuracy on train : 76.0736196319 + Accuracy on test : 77.0491803279 + Accuracy on validation : 73.786407767 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 84.1059602649 + Accuracy on test : 85.2459016393 + Accuracy on validation : 77.6699029126 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 80.0897899484 + Accuracy on test : 81.1475409836 + - Iteration 10 + Fold 1 + Accuracy on train : 73.6196319018 + Accuracy on test : 73.7704918033 + Accuracy on validation : 70.8737864078 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 81.4569536424 + Accuracy on test : 82.7868852459 + Accuracy on validation : 80.5825242718 + Selected View : Methyl_ + - Mean : + Accuracy on train : 77.5382927721 + Accuracy on test : 78.2786885246 + - Iteration 11 + Fold 1 + Accuracy on train : 73.0061349693 + Accuracy on test : 77.0491803279 + Accuracy on validation : 72.8155339806 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 81.4569536424 + Accuracy on test : 83.606557377 + Accuracy on validation : 78.640776699 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 77.2315443059 + Accuracy on test : 80.3278688525 + - Iteration 12 + Fold 1 + Accuracy on train : 70.5521472393 + Accuracy on test : 77.0491803279 + Accuracy on validation : 75.7281553398 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 76.821192053 + Accuracy on test : 77.868852459 + Accuracy on validation : 82.5242718447 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 73.6866696461 + Accuracy on test : 77.4590163934 + - Iteration 13 + Fold 1 + Accuracy on train : 73.0061349693 + Accuracy on test : 77.868852459 + Accuracy on validation : 75.7281553398 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 84.1059602649 + Accuracy on test : 81.1475409836 + Accuracy on validation : 82.5242718447 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 78.5560476171 + Accuracy on test : 79.5081967213 + - Iteration 14 + Fold 1 + Accuracy on train : 72.3926380368 + Accuracy on test : 76.2295081967 + Accuracy on validation : 74.7572815534 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 82.119205298 + Accuracy on test : 79.5081967213 + Accuracy on validation : 86.4077669903 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 77.2559216674 + Accuracy on test : 77.868852459 + - Iteration 15 + Fold 1 + Accuracy on train : 71.7791411043 + Accuracy on test : 76.2295081967 + Accuracy on validation : 72.8155339806 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 84.1059602649 + Accuracy on test : 81.1475409836 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 77.9425506846 + Accuracy on test : 78.6885245902 + - Iteration 16 + Fold 1 + Accuracy on train : 71.1656441718 + Accuracy on test : 75.4098360656 + Accuracy on validation : 69.9029126214 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 84.7682119205 + Accuracy on test : 77.0491803279 + Accuracy on validation : 89.3203883495 + Selected View : Clinic_ + - Mean : + Accuracy on train : 77.9669280462 + Accuracy on test : 76.2295081967 + - Iteration 17 + Fold 1 + Accuracy on train : 72.3926380368 + Accuracy on test : 75.4098360656 + Accuracy on validation : 70.8737864078 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 84.7682119205 + Accuracy on test : 80.3278688525 + Accuracy on validation : 87.3786407767 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 78.5804249787 + Accuracy on test : 77.868852459 + - Iteration 18 + Fold 1 + Accuracy on train : 72.3926380368 + Accuracy on test : 78.6885245902 + Accuracy on validation : 71.8446601942 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 85.4304635762 + Accuracy on test : 79.5081967213 + Accuracy on validation : 86.4077669903 + Selected View : Methyl_ + - Mean : + Accuracy on train : 78.9115508065 + Accuracy on test : 79.0983606557 + - Iteration 19 + Fold 1 + Accuracy on train : 74.8466257669 + Accuracy on test : 78.6885245902 + Accuracy on validation : 76.6990291262 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 85.4304635762 + Accuracy on test : 77.0491803279 + Accuracy on validation : 86.4077669903 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 80.1385446715 + Accuracy on test : 77.868852459 + - Iteration 20 + Fold 1 + Accuracy on train : 74.8466257669 + Accuracy on test : 80.3278688525 + Accuracy on validation : 75.7281553398 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 86.0927152318 + Accuracy on test : 72.9508196721 + Accuracy on validation : 87.3786407767 + Selected View : Clinic_ + - Mean : + Accuracy on train : 80.4696704993 + Accuracy on test : 76.6393442623 + - Iteration 21 + Fold 1 + Accuracy on train : 73.6196319018 + Accuracy on test : 81.1475409836 + Accuracy on validation : 75.7281553398 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 85.4304635762 + Accuracy on test : 77.0491803279 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 79.525047739 + Accuracy on test : 79.0983606557 + - Iteration 22 + Fold 1 + Accuracy on train : 76.6871165644 + Accuracy on test : 78.6885245902 + Accuracy on validation : 78.640776699 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 83.4437086093 + Accuracy on test : 75.4098360656 + Accuracy on validation : 88.3495145631 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 80.0654125868 + Accuracy on test : 77.0491803279 + - Iteration 23 + Fold 1 + Accuracy on train : 75.4601226994 + Accuracy on test : 79.5081967213 + Accuracy on validation : 77.6699029126 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 84.7682119205 + Accuracy on test : 77.0491803279 + Accuracy on validation : 87.3786407767 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 80.11416731 + Accuracy on test : 78.2786885246 + - Iteration 24 + Fold 1 + Accuracy on train : 76.6871165644 + Accuracy on test : 78.6885245902 + Accuracy on validation : 78.640776699 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 84.1059602649 + Accuracy on test : 75.4098360656 + Accuracy on validation : 87.3786407767 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 80.3965384147 + Accuracy on test : 77.0491803279 + - Iteration 25 + Fold 1 + Accuracy on train : 77.9141104294 + Accuracy on test : 77.0491803279 + Accuracy on validation : 78.640776699 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 84.7682119205 + Accuracy on test : 77.868852459 + Accuracy on validation : 86.4077669903 + Selected View : Methyl_ + - Mean : + Accuracy on train : 81.341161175 + Accuracy on test : 77.4590163934 + - Iteration 26 + Fold 1 + Accuracy on train : 74.8466257669 + Accuracy on test : 77.868852459 + Accuracy on validation : 77.6699029126 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 84.7682119205 + Accuracy on test : 76.2295081967 + Accuracy on validation : 86.4077669903 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 79.8074188437 + Accuracy on test : 77.0491803279 + - Iteration 27 + Fold 1 + Accuracy on train : 73.6196319018 + Accuracy on test : 77.0491803279 + Accuracy on validation : 78.640776699 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 82.7814569536 + Accuracy on test : 76.2295081967 + Accuracy on validation : 83.4951456311 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 78.2005444277 + Accuracy on test : 76.6393442623 + - Iteration 28 + Fold 1 + Accuracy on train : 74.8466257669 + Accuracy on test : 77.868852459 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 83.4437086093 + Accuracy on test : 77.0491803279 + Accuracy on validation : 85.4368932039 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 79.1451671881 + Accuracy on test : 77.4590163934 + - Iteration 29 + Fold 1 + Accuracy on train : 73.0061349693 + Accuracy on test : 78.6885245902 + Accuracy on validation : 78.640776699 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 84.1059602649 + Accuracy on test : 77.0491803279 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 78.5560476171 + Accuracy on test : 77.868852459 + - Iteration 30 + Fold 1 + Accuracy on train : 74.8466257669 + Accuracy on test : 77.0491803279 + Accuracy on validation : 80.5825242718 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 84.7682119205 + Accuracy on test : 77.0491803279 + Accuracy on validation : 85.4368932039 + Selected View : Methyl_ + - Mean : + Accuracy on train : 79.8074188437 + Accuracy on test : 77.0491803279 + - Iteration 31 + Fold 1 + Accuracy on train : 74.8466257669 + Accuracy on test : 77.868852459 + Accuracy on validation : 79.6116504854 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 82.119205298 + Accuracy on test : 77.0491803279 + Accuracy on validation : 84.4660194175 + Selected View : Methyl_ + - Mean : + Accuracy on train : 78.4829155324 + Accuracy on test : 77.4590163934 + - Iteration 32 + Fold 1 + Accuracy on train : 74.8466257669 + Accuracy on test : 76.2295081967 + Accuracy on validation : 79.6116504854 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 84.7682119205 + Accuracy on test : 75.4098360656 + Accuracy on validation : 85.4368932039 + Selected View : Clinic_ + - Mean : + Accuracy on train : 79.8074188437 + Accuracy on test : 75.8196721311 + - Iteration 33 + Fold 1 + Accuracy on train : 74.2331288344 + Accuracy on test : 77.0491803279 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 82.119205298 + Accuracy on test : 78.6885245902 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 78.1761670662 + Accuracy on test : 77.868852459 + - Iteration 34 + Fold 1 + Accuracy on train : 74.8466257669 + Accuracy on test : 78.6885245902 + Accuracy on validation : 78.640776699 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 84.7682119205 + Accuracy on test : 77.0491803279 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 79.8074188437 + Accuracy on test : 77.868852459 + - Iteration 35 + Fold 1 + Accuracy on train : 75.4601226994 + Accuracy on test : 79.5081967213 + Accuracy on validation : 79.6116504854 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 84.7682119205 + Accuracy on test : 79.5081967213 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 80.11416731 + Accuracy on test : 79.5081967213 + - Iteration 36 + Fold 1 + Accuracy on train : 74.8466257669 + Accuracy on test : 78.6885245902 + Accuracy on validation : 78.640776699 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 87.417218543 + Accuracy on test : 78.6885245902 + Accuracy on validation : 88.3495145631 + Selected View : Methyl_ + - Mean : + Accuracy on train : 81.131922155 + Accuracy on test : 78.6885245902 + - Iteration 37 + Fold 1 + Accuracy on train : 73.0061349693 + Accuracy on test : 78.6885245902 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 83.4437086093 + Accuracy on test : 81.1475409836 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 78.2249217893 + Accuracy on test : 79.9180327869 + - Iteration 38 + Fold 1 + Accuracy on train : 73.0061349693 + Accuracy on test : 79.5081967213 + Accuracy on validation : 78.640776699 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 86.7549668874 + Accuracy on test : 79.5081967213 + Accuracy on validation : 88.3495145631 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 79.8805509284 + Accuracy on test : 79.5081967213 + - Iteration 39 + Fold 1 + Accuracy on train : 74.2331288344 + Accuracy on test : 78.6885245902 + Accuracy on validation : 80.5825242718 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 82.7814569536 + Accuracy on test : 79.5081967213 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 78.507292894 + Accuracy on test : 79.0983606557 + - Iteration 40 + Fold 1 + Accuracy on train : 74.2331288344 + Accuracy on test : 79.5081967213 + Accuracy on validation : 79.6116504854 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 82.7814569536 + Accuracy on test : 76.2295081967 + Accuracy on validation : 85.4368932039 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 78.507292894 + Accuracy on test : 77.868852459 + - Iteration 41 + Fold 1 + Accuracy on train : 74.8466257669 + Accuracy on test : 79.5081967213 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 82.7814569536 + Accuracy on test : 79.5081967213 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 78.8140413603 + Accuracy on test : 79.5081967213 + - Iteration 42 + Fold 1 + Accuracy on train : 72.3926380368 + Accuracy on test : 77.868852459 + Accuracy on validation : 76.6990291262 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 81.4569536424 + Accuracy on test : 78.6885245902 + Accuracy on validation : 86.4077669903 + Selected View : Methyl_ + - Mean : + Accuracy on train : 76.9247958396 + Accuracy on test : 78.2786885246 + - Iteration 43 + Fold 1 + Accuracy on train : 73.6196319018 + Accuracy on test : 79.5081967213 + Accuracy on validation : 78.640776699 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 84.7682119205 + Accuracy on test : 80.3278688525 + Accuracy on validation : 87.3786407767 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 79.1939219112 + Accuracy on test : 79.9180327869 + - Iteration 44 + Fold 1 + Accuracy on train : 73.6196319018 + Accuracy on test : 79.5081967213 + Accuracy on validation : 78.640776699 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 84.7682119205 + Accuracy on test : 80.3278688525 + Accuracy on validation : 87.3786407767 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 79.1939219112 + Accuracy on test : 79.9180327869 + - Iteration 45 + Fold 1 + Accuracy on train : 72.3926380368 + Accuracy on test : 77.0491803279 + Accuracy on validation : 76.6990291262 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 83.4437086093 + Accuracy on test : 78.6885245902 + Accuracy on validation : 87.3786407767 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 77.918173323 + Accuracy on test : 77.868852459 + - Iteration 46 + Fold 1 + Accuracy on train : 70.5521472393 + Accuracy on test : 78.6885245902 + Accuracy on validation : 76.6990291262 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 81.4569536424 + Accuracy on test : 75.4098360656 + Accuracy on validation : 87.3786407767 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 76.0045504408 + Accuracy on test : 77.0491803279 + - Iteration 47 + Fold 1 + Accuracy on train : 71.1656441718 + Accuracy on test : 77.868852459 + Accuracy on validation : 78.640776699 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 79.4701986755 + Accuracy on test : 75.4098360656 + Accuracy on validation : 86.4077669903 + Selected View : Clinic_ + - Mean : + Accuracy on train : 75.3179214236 + Accuracy on test : 76.6393442623 + - Iteration 48 + Fold 1 + Accuracy on train : 71.1656441718 + Accuracy on test : 77.868852459 + Accuracy on validation : 78.640776699 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 79.4701986755 + Accuracy on test : 77.868852459 + Accuracy on validation : 87.3786407767 + Selected View : Clinic_ + - Mean : + Accuracy on train : 75.3179214236 + Accuracy on test : 77.868852459 + - Iteration 49 + Fold 1 + Accuracy on train : 70.5521472393 + Accuracy on test : 78.6885245902 + Accuracy on validation : 77.6699029126 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 78.8079470199 + Accuracy on test : 75.4098360656 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 74.6800471296 + Accuracy on test : 77.0491803279 + - Iteration 50 + Fold 1 + Accuracy on train : 71.7791411043 + Accuracy on test : 79.5081967213 + Accuracy on validation : 77.6699029126 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 78.8079470199 + Accuracy on test : 75.4098360656 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 75.2935440621 + Accuracy on test : 77.4590163934 + - Iteration 51 + Fold 1 + Accuracy on train : 69.9386503067 + Accuracy on test : 78.6885245902 + Accuracy on validation : 76.6990291262 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 79.4701986755 + Accuracy on test : 76.2295081967 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 74.7044244911 + Accuracy on test : 77.4590163934 + - Iteration 52 + Fold 1 + Accuracy on train : 70.5521472393 + Accuracy on test : 78.6885245902 + Accuracy on validation : 77.6699029126 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 78.1456953642 + Accuracy on test : 76.2295081967 + Accuracy on validation : 84.4660194175 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 74.3489213018 + Accuracy on test : 77.4590163934 + - Iteration 53 + Fold 1 + Accuracy on train : 71.7791411043 + Accuracy on test : 77.0491803279 + Accuracy on validation : 79.6116504854 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 78.1456953642 + Accuracy on test : 75.4098360656 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 74.9624182343 + Accuracy on test : 76.2295081967 + - Iteration 54 + Fold 1 + Accuracy on train : 69.9386503067 + Accuracy on test : 78.6885245902 + Accuracy on validation : 78.640776699 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 76.821192053 + Accuracy on test : 76.2295081967 + Accuracy on validation : 84.4660194175 + Selected View : Methyl_ + - Mean : + Accuracy on train : 73.3799211799 + Accuracy on test : 77.4590163934 + - Iteration 55 + Fold 1 + Accuracy on train : 72.3926380368 + Accuracy on test : 77.0491803279 + Accuracy on validation : 79.6116504854 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 76.1589403974 + Accuracy on test : 75.4098360656 + Accuracy on validation : 85.4368932039 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 74.2757892171 + Accuracy on test : 76.2295081967 + - Iteration 56 + Fold 1 + Accuracy on train : 72.3926380368 + Accuracy on test : 78.6885245902 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 73.5099337748 + Accuracy on test : 74.5901639344 + Accuracy on validation : 82.5242718447 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 72.9512859058 + Accuracy on test : 76.6393442623 + - Iteration 57 + Fold 1 + Accuracy on train : 72.3926380368 + Accuracy on test : 77.0491803279 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 75.4966887417 + Accuracy on test : 77.0491803279 + Accuracy on validation : 82.5242718447 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 73.9446633893 + Accuracy on test : 77.0491803279 + - Iteration 58 + Fold 1 + Accuracy on train : 72.3926380368 + Accuracy on test : 78.6885245902 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 73.5099337748 + Accuracy on test : 75.4098360656 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 72.9512859058 + Accuracy on test : 77.0491803279 + - Iteration 59 + Fold 1 + Accuracy on train : 72.3926380368 + Accuracy on test : 78.6885245902 + Accuracy on validation : 79.6116504854 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 74.1721854305 + Accuracy on test : 75.4098360656 + Accuracy on validation : 81.5533980583 + Selected View : Methyl_ + - Mean : + Accuracy on train : 73.2824117336 + Accuracy on test : 77.0491803279 + - Iteration 60 + Fold 1 + Accuracy on train : 73.0061349693 + Accuracy on test : 78.6885245902 + Accuracy on validation : 78.640776699 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 74.1721854305 + Accuracy on test : 75.4098360656 + Accuracy on validation : 81.5533980583 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 73.5891601999 + Accuracy on test : 77.0491803279 + - Iteration 61 + Fold 1 + Accuracy on train : 72.3926380368 + Accuracy on test : 78.6885245902 + Accuracy on validation : 79.6116504854 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 74.1721854305 + Accuracy on test : 75.4098360656 + Accuracy on validation : 82.5242718447 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 73.2824117336 + Accuracy on test : 77.0491803279 + - Iteration 62 + Fold 1 + Accuracy on train : 73.0061349693 + Accuracy on test : 78.6885245902 + Accuracy on validation : 79.6116504854 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 74.1721854305 + Accuracy on test : 74.5901639344 + Accuracy on validation : 82.5242718447 + Selected View : Methyl_ + - Mean : + Accuracy on train : 73.5891601999 + Accuracy on test : 76.6393442623 + - Iteration 63 + Fold 1 + Accuracy on train : 72.3926380368 + Accuracy on test : 78.6885245902 + Accuracy on validation : 78.640776699 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 74.1721854305 + Accuracy on test : 77.868852459 + Accuracy on validation : 81.5533980583 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 73.2824117336 + Accuracy on test : 78.2786885246 + - Iteration 64 + Fold 1 + Accuracy on train : 73.6196319018 + Accuracy on test : 80.3278688525 + Accuracy on validation : 80.5825242718 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 73.5099337748 + Accuracy on test : 78.6885245902 + Accuracy on validation : 81.5533980583 + Selected View : Methyl_ + - Mean : + Accuracy on train : 73.5647828383 + Accuracy on test : 79.5081967213 + - Iteration 65 + Fold 1 + Accuracy on train : 72.3926380368 + Accuracy on test : 80.3278688525 + Accuracy on validation : 79.6116504854 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 75.4966887417 + Accuracy on test : 78.6885245902 + Accuracy on validation : 82.5242718447 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 73.9446633893 + Accuracy on test : 79.5081967213 + - Iteration 66 + Fold 1 + Accuracy on train : 71.7791411043 + Accuracy on test : 80.3278688525 + Accuracy on validation : 78.640776699 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 76.821192053 + Accuracy on test : 77.0491803279 + Accuracy on validation : 83.4951456311 + Selected View : Methyl_ + - Mean : + Accuracy on train : 74.3001665786 + Accuracy on test : 78.6885245902 + - Iteration 67 + Fold 1 + Accuracy on train : 72.3926380368 + Accuracy on test : 79.5081967213 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 76.1589403974 + Accuracy on test : 77.868852459 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 74.2757892171 + Accuracy on test : 78.6885245902 + - Iteration 68 + Fold 1 + Accuracy on train : 71.1656441718 + Accuracy on test : 78.6885245902 + Accuracy on validation : 78.640776699 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 76.1589403974 + Accuracy on test : 78.6885245902 + Accuracy on validation : 82.5242718447 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 73.6622922846 + Accuracy on test : 78.6885245902 + - Iteration 69 + Fold 1 + Accuracy on train : 71.7791411043 + Accuracy on test : 77.868852459 + Accuracy on validation : 79.6116504854 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 76.821192053 + Accuracy on test : 77.868852459 + Accuracy on validation : 82.5242718447 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 74.3001665786 + Accuracy on test : 77.868852459 + - Iteration 70 + Fold 1 + Accuracy on train : 71.7791411043 + Accuracy on test : 78.6885245902 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 74.8344370861 + Accuracy on test : 77.0491803279 + Accuracy on validation : 81.5533980583 + Selected View : Methyl_ + - Mean : + Accuracy on train : 73.3067890952 + Accuracy on test : 77.868852459 + - Iteration 71 + Fold 1 + Accuracy on train : 72.3926380368 + Accuracy on test : 79.5081967213 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 73.5099337748 + Accuracy on test : 75.4098360656 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 72.9512859058 + Accuracy on test : 77.4590163934 + - Iteration 72 + Fold 1 + Accuracy on train : 71.1656441718 + Accuracy on test : 79.5081967213 + Accuracy on validation : 78.640776699 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 71.5231788079 + Accuracy on test : 76.2295081967 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 71.3444114899 + Accuracy on test : 77.868852459 + - Iteration 73 + Fold 1 + Accuracy on train : 70.5521472393 + Accuracy on test : 77.868852459 + Accuracy on validation : 78.640776699 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 69.5364238411 + Accuracy on test : 74.5901639344 + Accuracy on validation : 78.640776699 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 70.0442855402 + Accuracy on test : 76.2295081967 + - Iteration 74 + Fold 1 + Accuracy on train : 70.5521472393 + Accuracy on test : 77.868852459 + Accuracy on validation : 77.6699029126 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 72.8476821192 + Accuracy on test : 76.2295081967 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 71.6999146792 + Accuracy on test : 77.0491803279 + - Iteration 75 + Fold 1 + Accuracy on train : 69.9386503067 + Accuracy on test : 77.868852459 + Accuracy on validation : 77.6699029126 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 72.1854304636 + Accuracy on test : 75.4098360656 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 71.0620403852 + Accuracy on test : 76.6393442623 + - Iteration 76 + Fold 1 + Accuracy on train : 69.9386503067 + Accuracy on test : 77.868852459 + Accuracy on validation : 77.6699029126 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 72.8476821192 + Accuracy on test : 74.5901639344 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 71.393166213 + Accuracy on test : 76.2295081967 + - Iteration 77 + Fold 1 + Accuracy on train : 69.3251533742 + Accuracy on test : 78.6885245902 + Accuracy on validation : 77.6699029126 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 72.1854304636 + Accuracy on test : 73.7704918033 + Accuracy on validation : 81.5533980583 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 70.7552919189 + Accuracy on test : 76.2295081967 + - Iteration 78 + Fold 1 + Accuracy on train : 68.7116564417 + Accuracy on test : 77.868852459 + Accuracy on validation : 76.6990291262 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 73.5099337748 + Accuracy on test : 75.4098360656 + Accuracy on validation : 80.5825242718 + Selected View : Methyl_ + - Mean : + Accuracy on train : 71.1107951083 + Accuracy on test : 76.6393442623 + - Iteration 79 + Fold 1 + Accuracy on train : 69.3251533742 + Accuracy on test : 77.868852459 + Accuracy on validation : 77.6699029126 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 75.4966887417 + Accuracy on test : 76.2295081967 + Accuracy on validation : 81.5533980583 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 72.410921058 + Accuracy on test : 77.0491803279 + - Iteration 80 + Fold 1 + Accuracy on train : 69.3251533742 + Accuracy on test : 77.0491803279 + Accuracy on validation : 77.6699029126 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 74.1721854305 + Accuracy on test : 75.4098360656 + Accuracy on validation : 81.5533980583 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 71.7486694023 + Accuracy on test : 76.2295081967 + - Iteration 81 + Fold 1 + Accuracy on train : 69.3251533742 + Accuracy on test : 78.6885245902 + Accuracy on validation : 77.6699029126 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 75.4966887417 + Accuracy on test : 76.2295081967 + Accuracy on validation : 81.5533980583 + Selected View : Clinic_ + - Mean : + Accuracy on train : 72.410921058 + Accuracy on test : 77.4590163934 + - Iteration 82 + Fold 1 + Accuracy on train : 68.7116564417 + Accuracy on test : 77.0491803279 + Accuracy on validation : 77.6699029126 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 74.8344370861 + Accuracy on test : 76.2295081967 + Accuracy on validation : 81.5533980583 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 71.7730467639 + Accuracy on test : 76.6393442623 + - Iteration 83 + Fold 1 + Accuracy on train : 68.7116564417 + Accuracy on test : 77.868852459 + Accuracy on validation : 77.6699029126 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 74.8344370861 + Accuracy on test : 76.2295081967 + Accuracy on validation : 81.5533980583 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 71.7730467639 + Accuracy on test : 77.0491803279 + - Iteration 84 + Fold 1 + Accuracy on train : 68.7116564417 + Accuracy on test : 77.0491803279 + Accuracy on validation : 77.6699029126 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 75.4966887417 + Accuracy on test : 76.2295081967 + Accuracy on validation : 81.5533980583 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 72.1041725917 + Accuracy on test : 76.6393442623 + - Iteration 85 + Fold 1 + Accuracy on train : 67.4846625767 + Accuracy on test : 77.0491803279 + Accuracy on validation : 76.6990291262 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 76.1589403974 + Accuracy on test : 75.4098360656 + Accuracy on validation : 81.5533980583 + Selected View : Methyl_ + - Mean : + Accuracy on train : 71.821801487 + Accuracy on test : 76.2295081967 + - Iteration 86 + Fold 1 + Accuracy on train : 68.7116564417 + Accuracy on test : 77.868852459 + Accuracy on validation : 77.6699029126 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 74.1721854305 + Accuracy on test : 74.5901639344 + Accuracy on validation : 81.5533980583 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 71.4419209361 + Accuracy on test : 76.2295081967 + - Iteration 87 + Fold 1 + Accuracy on train : 68.7116564417 + Accuracy on test : 77.868852459 + Accuracy on validation : 77.6699029126 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 76.821192053 + Accuracy on test : 76.2295081967 + Accuracy on validation : 82.5242718447 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 72.7664242473 + Accuracy on test : 77.0491803279 + - Iteration 88 + Fold 1 + Accuracy on train : 68.7116564417 + Accuracy on test : 77.868852459 + Accuracy on validation : 77.6699029126 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 76.1589403974 + Accuracy on test : 76.2295081967 + Accuracy on validation : 81.5533980583 + Selected View : Methyl_ + - Mean : + Accuracy on train : 72.4352984195 + Accuracy on test : 77.0491803279 + - Iteration 89 + Fold 1 + Accuracy on train : 68.7116564417 + Accuracy on test : 77.868852459 + Accuracy on validation : 77.6699029126 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 75.4966887417 + Accuracy on test : 75.4098360656 + Accuracy on validation : 81.5533980583 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 72.1041725917 + Accuracy on test : 76.6393442623 + - Iteration 90 + Fold 1 + Accuracy on train : 68.0981595092 + Accuracy on test : 77.868852459 + Accuracy on validation : 76.6990291262 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 74.8344370861 + Accuracy on test : 76.2295081967 + Accuracy on validation : 81.5533980583 + Selected View : Clinic_ + - Mean : + Accuracy on train : 71.4662982976 + Accuracy on test : 77.0491803279 + - Iteration 91 + Fold 1 + Accuracy on train : 68.0981595092 + Accuracy on test : 77.868852459 + Accuracy on validation : 76.6990291262 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 76.1589403974 + Accuracy on test : 75.4098360656 + Accuracy on validation : 82.5242718447 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 72.1285499533 + Accuracy on test : 76.6393442623 + - Iteration 92 + Fold 1 + Accuracy on train : 68.7116564417 + Accuracy on test : 78.6885245902 + Accuracy on validation : 76.6990291262 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 74.8344370861 + Accuracy on test : 75.4098360656 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 71.7730467639 + Accuracy on test : 77.0491803279 + - Iteration 93 + Fold 1 + Accuracy on train : 68.0981595092 + Accuracy on test : 78.6885245902 + Accuracy on validation : 76.6990291262 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 75.4966887417 + Accuracy on test : 73.7704918033 + Accuracy on validation : 82.5242718447 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 71.7974241255 + Accuracy on test : 76.2295081967 + - Iteration 94 + Fold 1 + Accuracy on train : 68.0981595092 + Accuracy on test : 77.0491803279 + Accuracy on validation : 76.6990291262 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 75.4966887417 + Accuracy on test : 75.4098360656 + Accuracy on validation : 82.5242718447 + Selected View : Methyl_ + - Mean : + Accuracy on train : 71.7974241255 + Accuracy on test : 76.2295081967 + - Iteration 95 + Fold 1 + Accuracy on train : 68.7116564417 + Accuracy on test : 77.868852459 + Accuracy on validation : 77.6699029126 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 75.4966887417 + Accuracy on test : 75.4098360656 + Accuracy on validation : 82.5242718447 + Selected View : Clinic_ + - Mean : + Accuracy on train : 72.1041725917 + Accuracy on test : 76.6393442623 + - Iteration 96 + Fold 1 + Accuracy on train : 68.7116564417 + Accuracy on test : 78.6885245902 + Accuracy on validation : 77.6699029126 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 74.8344370861 + Accuracy on test : 75.4098360656 + Accuracy on validation : 81.5533980583 + Selected View : Methyl_ + - Mean : + Accuracy on train : 71.7730467639 + Accuracy on test : 77.0491803279 + - Iteration 97 + Fold 1 + Accuracy on train : 69.9386503067 + Accuracy on test : 78.6885245902 + Accuracy on validation : 78.640776699 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 75.4966887417 + Accuracy on test : 74.5901639344 + Accuracy on validation : 82.5242718447 + Selected View : Methyl_ + - Mean : + Accuracy on train : 72.7176695242 + Accuracy on test : 76.6393442623 + - Iteration 98 + Fold 1 + Accuracy on train : 69.3251533742 + Accuracy on test : 77.868852459 + Accuracy on validation : 78.640776699 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 75.4966887417 + Accuracy on test : 74.5901639344 + Accuracy on validation : 81.5533980583 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 72.410921058 + Accuracy on test : 76.2295081967 + - Iteration 99 + Fold 1 + Accuracy on train : 69.9386503067 + Accuracy on test : 77.868852459 + Accuracy on validation : 78.640776699 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 76.1589403974 + Accuracy on test : 74.5901639344 + Accuracy on validation : 81.5533980583 + Selected View : Methyl_ + - Mean : + Accuracy on train : 73.048795352 + Accuracy on test : 76.2295081967 + - Iteration 100 + Fold 1 + Accuracy on train : 70.5521472393 + Accuracy on test : 77.868852459 + Accuracy on validation : 78.640776699 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 76.1589403974 + Accuracy on test : 73.7704918033 + Accuracy on validation : 82.5242718447 + Selected View : Clinic_ + - Mean : + Accuracy on train : 73.3555438183 + Accuracy on test : 75.8196721311 + - Iteration 101 + Fold 1 + Accuracy on train : 69.9386503067 + Accuracy on test : 78.6885245902 + Accuracy on validation : 77.6699029126 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 76.1589403974 + Accuracy on test : 73.7704918033 + Accuracy on validation : 82.5242718447 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 73.048795352 + Accuracy on test : 76.2295081967 + - Iteration 102 + Fold 1 + Accuracy on train : 71.1656441718 + Accuracy on test : 78.6885245902 + Accuracy on validation : 78.640776699 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 75.4966887417 + Accuracy on test : 73.7704918033 + Accuracy on validation : 81.5533980583 + Selected View : Methyl_ + - Mean : + Accuracy on train : 73.3311664568 + Accuracy on test : 76.2295081967 + - Iteration 103 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 104 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 105 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 106 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 107 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 108 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 109 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 110 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 111 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 112 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 113 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 114 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 115 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 116 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 117 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 118 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 119 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 120 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 121 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 122 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 123 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 124 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 125 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 126 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 127 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 128 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 129 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 130 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 131 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 132 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 133 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 134 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 135 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 136 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 137 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 138 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 139 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 140 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 141 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 142 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 143 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 144 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 145 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 146 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 147 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 148 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 149 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 150 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 151 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 152 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 153 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 154 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 155 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 156 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 157 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 158 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 159 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 160 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 161 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 162 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 163 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 164 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 165 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 166 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 167 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 168 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 169 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 170 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 171 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 172 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 173 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 174 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 175 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 176 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 177 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 178 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 179 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 180 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 181 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 182 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 183 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 184 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 185 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 186 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 187 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 188 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 189 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 190 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 191 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 192 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 193 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 194 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 195 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 196 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 197 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 198 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 199 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 200 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 201 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 202 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 203 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 204 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 205 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 206 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 207 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 208 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 209 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 210 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 211 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 212 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 213 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 214 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 215 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 216 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 217 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 218 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 219 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 220 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 221 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 222 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 223 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 224 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 225 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 226 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 227 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 228 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 229 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 230 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 231 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 232 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 233 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 234 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 235 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 236 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 237 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 238 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 239 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 240 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 241 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 242 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 243 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 244 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 245 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 246 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 247 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 248 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 249 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 250 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 251 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 252 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 253 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 254 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 255 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 256 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 257 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 258 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 259 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 260 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 261 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 262 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 263 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 264 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 265 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 266 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 267 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 268 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 269 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 270 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 271 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 272 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 273 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 274 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 275 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 276 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 277 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 278 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 279 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 280 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 281 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 282 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 283 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 284 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 285 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 286 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 287 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 288 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 289 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 290 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 291 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 292 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 293 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 294 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 295 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 296 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 297 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 298 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 299 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 300 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 301 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 302 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 303 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 304 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 305 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 306 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 307 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 308 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 309 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 310 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 311 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 312 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 313 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 314 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 315 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 316 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 317 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 318 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 319 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 320 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 321 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 322 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 323 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 324 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 325 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 326 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 327 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 328 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 329 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 330 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 331 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 332 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 333 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 334 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 335 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 336 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 337 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 338 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 339 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 340 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 341 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 342 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 343 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 344 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 345 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 346 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 347 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 348 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 349 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 350 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 351 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 352 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 353 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 354 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 355 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 356 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 357 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 358 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 359 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 360 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 361 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 362 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 363 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 364 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 365 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 366 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 367 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 368 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 369 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 370 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 371 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 372 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 373 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 374 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 375 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 376 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 377 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 378 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 379 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 380 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 381 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 382 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 383 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 384 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 385 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 386 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 387 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 388 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 389 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 390 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 391 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 392 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 393 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 394 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 395 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 396 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 397 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 398 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 399 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 400 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 401 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 402 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 403 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 404 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 405 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 406 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 407 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 408 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 409 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 410 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 411 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 412 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 413 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 414 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 415 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 416 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 417 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 418 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 419 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 420 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 421 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 422 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 423 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 424 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 425 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 426 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 427 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 428 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 429 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 430 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 431 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 432 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 433 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 434 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 435 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 436 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 437 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 438 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 439 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 440 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 441 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 442 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 443 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 444 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 445 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 446 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 447 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 448 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 449 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 450 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 451 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 452 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 453 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 454 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 455 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 456 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 457 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 458 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 459 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 460 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 461 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 462 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 463 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 464 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 465 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 466 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 467 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 468 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 469 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 470 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 471 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 472 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 473 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 474 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 475 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 476 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 477 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 478 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 479 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 480 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 481 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 482 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 483 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 484 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 485 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 486 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 487 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 488 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 489 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 490 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 491 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 492 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 493 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 494 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 495 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 496 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 497 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 498 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 499 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 500 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 501 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 502 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 503 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 504 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 505 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 506 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 507 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 508 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 509 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 510 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 511 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 512 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 513 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 514 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 515 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 516 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 517 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 518 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 519 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 520 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 521 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 522 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 523 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 524 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 525 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 526 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 527 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 528 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 529 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 530 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 531 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 532 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 533 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 534 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 535 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 536 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 537 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 538 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 539 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 540 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 541 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 542 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 543 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 544 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 545 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 546 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 547 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 548 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 549 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 550 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 551 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 552 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 553 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 554 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 555 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 556 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 557 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 558 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 559 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 560 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 561 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 562 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 563 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 564 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 565 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 566 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 567 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 568 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 569 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 570 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 571 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 572 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 573 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 574 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 575 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 576 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 577 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 578 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 579 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 580 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 581 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 582 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 583 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 584 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 585 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 586 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 587 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 588 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 589 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 590 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 591 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 592 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 593 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 594 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 595 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 596 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 597 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 598 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 599 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 600 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 601 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 602 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 603 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 604 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 605 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 606 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 607 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 608 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 609 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 610 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 611 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 612 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 613 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 614 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 615 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 616 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 617 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 618 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 619 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 620 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 621 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 622 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 623 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 624 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 625 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 626 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 627 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 628 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 629 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 630 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 631 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 632 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 633 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 634 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 635 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 636 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 637 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 638 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 639 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 640 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 641 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 642 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 643 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 644 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 645 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 646 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 647 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 648 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 649 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 650 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 651 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 652 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 653 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 654 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 655 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 656 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 657 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 658 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 659 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 660 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 661 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 662 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 663 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 664 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 665 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 666 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 667 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 668 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 669 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 670 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 671 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 672 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 673 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 674 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 675 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 676 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 677 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 678 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 679 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 680 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 681 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 682 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 683 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 684 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 685 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 686 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 687 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 688 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 689 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 690 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 691 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 692 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 693 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 694 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 695 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 696 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 697 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 698 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 699 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 700 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 701 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 702 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 703 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 704 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 705 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 706 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 707 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 708 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 709 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 710 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 711 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 712 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 713 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 714 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 715 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 716 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 717 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 718 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 719 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 720 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 721 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 722 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 723 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 724 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 725 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 726 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 727 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 728 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 729 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 730 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 731 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 732 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 733 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 734 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 735 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 736 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 737 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 738 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 739 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 740 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 741 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 742 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 743 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 744 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 745 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 746 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 747 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 748 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 749 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 750 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 751 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 752 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 753 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 754 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 755 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 756 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 757 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 758 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 759 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 760 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 761 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 762 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 763 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 764 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 765 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 766 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 767 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 768 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 769 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 770 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 771 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 772 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 773 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 774 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 775 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 776 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 777 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 778 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 779 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 780 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 781 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 782 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 783 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 784 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 785 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 786 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 787 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 788 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 789 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 790 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 791 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 792 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 793 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 794 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 795 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 796 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 797 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 798 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 799 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 800 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 801 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 802 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 803 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 804 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 805 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 806 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 807 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 808 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 809 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 810 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 811 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 812 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 813 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 814 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 815 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 816 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 817 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 818 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 819 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 820 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 821 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 822 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 823 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 824 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 825 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 826 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 827 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 828 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 829 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 830 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 831 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 832 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 833 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 834 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 835 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 836 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 837 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 838 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 839 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 840 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 841 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 842 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 843 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 844 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 845 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 846 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 847 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 848 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 849 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 850 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 851 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 852 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 853 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 854 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 855 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 856 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 857 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 858 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 859 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 860 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 861 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 862 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 863 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 864 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 865 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 866 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 867 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 868 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 869 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 870 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 871 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 872 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 873 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 874 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 875 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 876 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 877 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 878 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 879 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 880 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 881 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 882 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 883 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 884 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 885 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 886 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 887 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 888 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 889 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 890 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 891 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 892 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 893 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 894 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 895 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 896 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 897 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 898 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 899 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 900 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 901 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 902 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 903 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 904 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 905 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 906 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 907 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 908 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 909 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 910 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 911 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 912 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 913 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 914 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 915 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 916 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 917 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 918 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 919 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 920 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 921 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 922 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 923 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 924 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 925 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 926 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 927 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 928 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 929 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 930 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 931 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 932 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 933 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 934 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 935 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 936 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 937 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 938 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 939 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 940 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 941 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 942 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 943 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 944 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 945 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 946 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 947 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 948 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 949 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 950 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 951 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 952 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 953 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 954 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 955 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 956 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 957 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 958 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 959 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 960 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 961 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 962 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 963 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 964 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 965 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 966 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 967 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 968 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 969 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 970 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 971 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 972 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 973 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 974 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 975 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 976 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 977 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 978 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 979 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 980 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 981 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 982 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 983 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 984 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 985 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 986 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 987 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 988 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 989 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 990 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 991 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 992 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 993 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 994 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 995 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 996 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 997 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 998 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 999 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + - Iteration 1000 + Fold 1 + Accuracy on train : 63.1901840491 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 60.2649006623 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.7275423557 + Accuracy on test : 72.9508196721 + +Computation time on 1 cores : + Database extraction time : 0:00:00 + Learn Prediction + Fold 1 0:07:17 0:00:14 + Fold 2 0:12:53 0:00:14 + Total 0:20:11 0:00:28 + So a total classification time of 0:13:08. + diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-110726-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-110726-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..31fcc1255c209af41f94916c315fd74958fdfdea --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-110726-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log @@ -0,0 +1,390 @@ +2016-08-24 11:07:26,238 INFO: Start: Read HDF5 Database Files for ModifiedMultiOmic +2016-08-24 11:07:26,238 INFO: Info: Labels used: No, Yes +2016-08-24 11:07:26,239 INFO: Info: Length of dataset:347 +2016-08-24 11:07:26,240 INFO: ### Main Programm for Multiview Classification +2016-08-24 11:07:26,240 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1 +2016-08-24 11:07:26,241 INFO: Info: Shape of Methyl_ :(347, 25978) +2016-08-24 11:07:26,241 INFO: Info: Shape of MiRNA__ :(347, 1046) +2016-08-24 11:07:26,242 INFO: Info: Shape of RANSeq_ :(347, 73599) +2016-08-24 11:07:26,242 INFO: Info: Shape of Clinic_ :(347, 127) +2016-08-24 11:07:26,242 INFO: Done: Read Database Files +2016-08-24 11:07:26,242 INFO: Start: Determine validation split for ratio 0.7 +2016-08-24 11:07:26,246 INFO: Done: Determine validation split +2016-08-24 11:07:26,246 INFO: Start: Determine 2 folds +2016-08-24 11:07:26,254 INFO: Info: Length of Learning Sets: 122 +2016-08-24 11:07:26,254 INFO: Info: Length of Testing Sets: 122 +2016-08-24 11:07:26,254 INFO: Info: Length of Validation Set: 103 +2016-08-24 11:07:26,254 INFO: Done: Determine folds +2016-08-24 11:07:26,254 INFO: Start: Learning with Mumbo and 2 folds +2016-08-24 11:07:26,254 INFO: Start: Gridsearching best settings for monoview classifiers +2016-08-24 11:07:26,254 DEBUG: Start: Gridsearch for DecisionTree on Methyl_ +2016-08-24 11:07:33,791 DEBUG: 0.558270893372Poulet +2016-08-24 11:07:33,791 DEBUG: 0.521268011527Poulet +2016-08-24 11:07:33,791 DEBUG: 0.521556195965Poulet +2016-08-24 11:07:33,792 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 11:07:33,792 DEBUG: Start: Gridsearch for DecisionTree on MiRNA__ +2016-08-24 11:07:35,798 DEBUG: 0.530893371758Poulet +2016-08-24 11:07:35,798 DEBUG: 0.530720461095Poulet +2016-08-24 11:07:35,798 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 11:07:35,799 DEBUG: Start: Gridsearch for DecisionTree on RANSeq_ +2016-08-24 11:07:52,803 DEBUG: 0.583227665706Poulet +2016-08-24 11:07:52,803 DEBUG: 0.569798270893Poulet +2016-08-24 11:07:52,803 DEBUG: 0.543746397695Poulet +2016-08-24 11:07:52,803 DEBUG: 0.520749279539Poulet +2016-08-24 11:07:52,803 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 11:07:52,804 DEBUG: Start: Gridsearch for DecisionTree on Clinic_ +2016-08-24 11:07:54,548 DEBUG: 0.559827089337Poulet +2016-08-24 11:07:54,549 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 11:07:54,549 DEBUG: Start: Gridsearch for DecisionTree on MRNASeq +2016-08-24 11:08:34,507 DEBUG: 0.561383285303Poulet +2016-08-24 11:08:34,507 DEBUG: 0.549337175793Poulet +2016-08-24 11:08:34,508 DEBUG: 0.511930835735Poulet +2016-08-24 11:08:34,508 DEBUG: 0.514524495677Poulet +2016-08-24 11:08:34,508 DEBUG: 0.514755043228Poulet +2016-08-24 11:08:34,512 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 11:08:34,512 INFO: Done: Gridsearching best settings for monoview classifiers +2016-08-24 11:08:34,512 INFO: Start: Fold number 1 +2016-08-24 11:08:36,691 DEBUG: Start: Iteration 1 +2016-08-24 11:08:36,707 DEBUG: View 0 : 0.620253164557 +2016-08-24 11:08:36,715 DEBUG: View 1 : 0.26582278481 +2016-08-24 11:08:36,744 DEBUG: View 2 : 0.620253164557 +2016-08-24 11:08:36,751 DEBUG: View 3 : 0.569620253165 +2016-08-24 11:08:36,793 DEBUG: Best view : Clinic_ +2016-08-24 11:08:36,864 DEBUG: Start: Iteration 2 +2016-08-24 11:08:36,881 DEBUG: View 0 : 0.436708860759 +2016-08-24 11:08:36,888 DEBUG: View 1 : 0.481012658228 +2016-08-24 11:08:36,925 DEBUG: View 2 : 0.405063291139 +2016-08-24 11:08:36,932 DEBUG: View 3 : 0.626582278481 +2016-08-24 11:08:36,977 DEBUG: Best view : Clinic_ +2016-08-24 11:08:37,106 DEBUG: Start: Iteration 3 +2016-08-24 11:08:37,122 DEBUG: View 0 : 0.53164556962 +2016-08-24 11:08:37,130 DEBUG: View 1 : 0.626582278481 +2016-08-24 11:08:37,168 DEBUG: View 2 : 0.518987341772 +2016-08-24 11:08:37,176 DEBUG: View 3 : 0.575949367089 +2016-08-24 11:08:37,230 DEBUG: Best view : MiRNA__ +2016-08-24 11:08:37,420 DEBUG: Start: Iteration 4 +2016-08-24 11:08:37,437 DEBUG: View 0 : 0.677215189873 +2016-08-24 11:08:37,445 DEBUG: View 1 : 0.588607594937 +2016-08-24 11:08:37,482 DEBUG: View 2 : 0.436708860759 +2016-08-24 11:08:37,489 DEBUG: View 3 : 0.411392405063 +2016-08-24 11:08:37,546 DEBUG: Best view : Methyl_ +2016-08-24 11:08:37,798 DEBUG: Start: Iteration 5 +2016-08-24 11:08:37,815 DEBUG: View 0 : 0.506329113924 +2016-08-24 11:08:37,823 DEBUG: View 1 : 0.474683544304 +2016-08-24 11:08:37,861 DEBUG: View 2 : 0.392405063291 +2016-08-24 11:08:37,868 DEBUG: View 3 : 0.436708860759 +2016-08-24 11:08:37,927 DEBUG: Best view : MiRNA__ +2016-08-24 11:08:38,240 DEBUG: Start: Iteration 6 +2016-08-24 11:08:38,256 DEBUG: View 0 : 0.449367088608 +2016-08-24 11:08:38,264 DEBUG: View 1 : 0.626582278481 +2016-08-24 11:08:38,302 DEBUG: View 2 : 0.417721518987 +2016-08-24 11:08:38,309 DEBUG: View 3 : 0.53164556962 +2016-08-24 11:08:38,371 DEBUG: Best view : Clinic_ +2016-08-24 11:08:38,740 DEBUG: Start: Iteration 7 +2016-08-24 11:08:38,756 DEBUG: View 0 : 0.443037974684 +2016-08-24 11:08:38,764 DEBUG: View 1 : 0.487341772152 +2016-08-24 11:08:38,800 DEBUG: View 2 : 0.582278481013 +2016-08-24 11:08:38,808 DEBUG: View 3 : 0.512658227848 +2016-08-24 11:08:38,871 DEBUG: Best view : RANSeq_ +2016-08-24 11:08:39,315 DEBUG: Start: Iteration 8 +2016-08-24 11:08:39,332 DEBUG: View 0 : 0.417721518987 +2016-08-24 11:08:39,339 DEBUG: View 1 : 0.462025316456 +2016-08-24 11:08:39,377 DEBUG: View 2 : 0.474683544304 +2016-08-24 11:08:39,384 DEBUG: View 3 : 0.556962025316 +2016-08-24 11:08:39,450 DEBUG: Best view : Clinic_ +2016-08-24 11:08:39,972 DEBUG: Start: Iteration 9 +2016-08-24 11:08:39,990 DEBUG: View 0 : 0.5 +2016-08-24 11:08:39,998 DEBUG: View 1 : 0.651898734177 +2016-08-24 11:08:40,037 DEBUG: View 2 : 0.537974683544 +2016-08-24 11:08:40,045 DEBUG: View 3 : 0.392405063291 +2016-08-24 11:08:40,115 DEBUG: Best view : MiRNA__ +2016-08-24 11:08:40,698 DEBUG: Start: Iteration 10 +2016-08-24 11:08:40,715 DEBUG: View 0 : 0.594936708861 +2016-08-24 11:08:40,723 DEBUG: View 1 : 0.354430379747 +2016-08-24 11:08:40,760 DEBUG: View 2 : 0.613924050633 +2016-08-24 11:08:40,768 DEBUG: View 3 : 0.544303797468 +2016-08-24 11:08:40,837 DEBUG: Best view : RANSeq_ +2016-08-24 11:08:41,469 DEBUG: Start: Iteration 11 +2016-08-24 11:08:41,485 DEBUG: View 0 : 0.367088607595 +2016-08-24 11:08:41,493 DEBUG: View 1 : 0.658227848101 +2016-08-24 11:08:41,530 DEBUG: View 2 : 0.537974683544 +2016-08-24 11:08:41,537 DEBUG: View 3 : 0.582278481013 +2016-08-24 11:08:41,610 DEBUG: Best view : MiRNA__ +2016-08-24 11:08:42,303 DEBUG: Start: Iteration 12 +2016-08-24 11:08:42,319 DEBUG: View 0 : 0.424050632911 +2016-08-24 11:08:42,327 DEBUG: View 1 : 0.373417721519 +2016-08-24 11:08:42,364 DEBUG: View 2 : 0.462025316456 +2016-08-24 11:08:42,371 DEBUG: View 3 : 0.588607594937 +2016-08-24 11:08:42,445 DEBUG: Best view : Clinic_ +2016-08-24 11:08:43,193 DEBUG: Start: Iteration 13 +2016-08-24 11:08:43,209 DEBUG: View 0 : 0.474683544304 +2016-08-24 11:08:43,217 DEBUG: View 1 : 0.575949367089 +2016-08-24 11:08:43,253 DEBUG: View 2 : 0.411392405063 +2016-08-24 11:08:43,261 DEBUG: View 3 : 0.386075949367 +2016-08-24 11:08:43,339 DEBUG: Best view : MiRNA__ +2016-08-24 11:08:44,142 DEBUG: Start: Iteration 14 +2016-08-24 11:08:44,159 DEBUG: View 0 : 0.620253164557 +2016-08-24 11:08:44,166 DEBUG: View 1 : 0.493670886076 +2016-08-24 11:08:44,203 DEBUG: View 2 : 0.575949367089 +2016-08-24 11:08:44,211 DEBUG: View 3 : 0.658227848101 +2016-08-24 11:08:44,291 DEBUG: Best view : Clinic_ +2016-08-24 11:08:45,149 DEBUG: Start: Iteration 15 +2016-08-24 11:08:45,165 DEBUG: View 0 : 0.518987341772 +2016-08-24 11:08:45,173 DEBUG: View 1 : 0.46835443038 +2016-08-24 11:08:45,210 DEBUG: View 2 : 0.392405063291 +2016-08-24 11:08:45,218 DEBUG: View 3 : 0.443037974684 +2016-08-24 11:08:45,299 DEBUG: Best view : MiRNA__ +2016-08-24 11:08:46,226 DEBUG: Start: Iteration 16 +2016-08-24 11:08:46,243 DEBUG: View 0 : 0.556962025316 +2016-08-24 11:08:46,251 DEBUG: View 1 : 0.398734177215 +2016-08-24 11:08:46,287 DEBUG: View 2 : 0.550632911392 +2016-08-24 11:08:46,294 DEBUG: View 3 : 0.664556962025 +2016-08-24 11:08:46,380 DEBUG: Best view : Clinic_ +2016-08-24 11:08:47,364 DEBUG: Start: Iteration 17 +2016-08-24 11:08:47,380 DEBUG: View 0 : 0.626582278481 +2016-08-24 11:08:47,389 DEBUG: View 1 : 0.506329113924 +2016-08-24 11:08:47,428 DEBUG: View 2 : 0.474683544304 +2016-08-24 11:08:47,436 DEBUG: View 3 : 0.455696202532 +2016-08-24 11:08:47,522 DEBUG: Best view : Methyl_ +2016-08-24 11:08:48,613 DEBUG: Start: Iteration 18 +2016-08-24 11:08:48,629 DEBUG: View 0 : 0.525316455696 +2016-08-24 11:08:48,636 DEBUG: View 1 : 0.715189873418 +2016-08-24 11:08:48,673 DEBUG: View 2 : 0.386075949367 +2016-08-24 11:08:48,681 DEBUG: View 3 : 0.455696202532 +2016-08-24 11:08:48,770 DEBUG: Best view : MiRNA__ +2016-08-24 11:08:49,927 DEBUG: Start: Iteration 19 +2016-08-24 11:08:49,947 DEBUG: View 0 : 0.550632911392 +2016-08-24 11:08:49,955 DEBUG: View 1 : 0.569620253165 +2016-08-24 11:08:49,992 DEBUG: View 2 : 0.405063291139 +2016-08-24 11:08:50,000 DEBUG: View 3 : 0.575949367089 +2016-08-24 11:08:50,090 DEBUG: Best view : Clinic_ +2016-08-24 11:08:51,285 DEBUG: Start: Iteration 20 +2016-08-24 11:08:51,304 DEBUG: View 0 : 0.424050632911 +2016-08-24 11:08:51,313 DEBUG: View 1 : 0.354430379747 +2016-08-24 11:08:51,355 DEBUG: View 2 : 0.474683544304 +2016-08-24 11:08:51,363 DEBUG: View 3 : 0.436708860759 +2016-08-24 11:08:51,363 WARNING: WARNING: All bad for iteration 19 +2016-08-24 11:08:51,460 DEBUG: Best view : RANSeq_ +2016-08-24 11:08:52,684 DEBUG: Start: Iteration 21 +2016-08-24 11:08:52,701 DEBUG: View 0 : 0.563291139241 +2016-08-24 11:08:52,708 DEBUG: View 1 : 0.29746835443 +2016-08-24 11:08:52,745 DEBUG: View 2 : 0.487341772152 +2016-08-24 11:08:52,753 DEBUG: View 3 : 0.462025316456 +2016-08-24 11:08:52,849 DEBUG: Best view : Methyl_ +2016-08-24 11:08:54,166 DEBUG: Start: Iteration 22 +2016-08-24 11:08:54,182 DEBUG: View 0 : 0.563291139241 +2016-08-24 11:08:54,190 DEBUG: View 1 : 0.392405063291 +2016-08-24 11:08:54,232 DEBUG: View 2 : 0.518987341772 +2016-08-24 11:08:54,239 DEBUG: View 3 : 0.658227848101 +2016-08-24 11:08:54,339 DEBUG: Best view : Clinic_ +2016-08-24 11:08:55,764 DEBUG: Start: Iteration 23 +2016-08-24 11:08:55,784 DEBUG: View 0 : 0.405063291139 +2016-08-24 11:08:55,796 DEBUG: View 1 : 0.696202531646 +2016-08-24 11:08:55,833 DEBUG: View 2 : 0.512658227848 +2016-08-24 11:08:55,840 DEBUG: View 3 : 0.481012658228 +2016-08-24 11:08:55,941 DEBUG: Best view : MiRNA__ +2016-08-24 11:08:57,391 DEBUG: Start: Iteration 24 +2016-08-24 11:08:57,408 DEBUG: View 0 : 0.563291139241 +2016-08-24 11:08:57,416 DEBUG: View 1 : 0.512658227848 +2016-08-24 11:08:57,455 DEBUG: View 2 : 0.626582278481 +2016-08-24 11:08:57,465 DEBUG: View 3 : 0.556962025316 +2016-08-24 11:08:57,578 DEBUG: Best view : RANSeq_ +2016-08-24 11:08:59,113 DEBUG: Start: Iteration 25 +2016-08-24 11:08:59,129 DEBUG: View 0 : 0.462025316456 +2016-08-24 11:08:59,137 DEBUG: View 1 : 0.626582278481 +2016-08-24 11:08:59,174 DEBUG: View 2 : 0.462025316456 +2016-08-24 11:08:59,181 DEBUG: View 3 : 0.474683544304 +2016-08-24 11:08:59,294 DEBUG: Best view : MiRNA__ +2016-08-24 11:09:00,911 DEBUG: Start: Iteration 26 +2016-08-24 11:09:00,929 DEBUG: View 0 : 0.316455696203 +2016-08-24 11:09:00,937 DEBUG: View 1 : 0.29746835443 +2016-08-24 11:09:00,974 DEBUG: View 2 : 0.632911392405 +2016-08-24 11:09:00,981 DEBUG: View 3 : 0.544303797468 +2016-08-24 11:09:01,092 DEBUG: Best view : RANSeq_ +2016-08-24 11:09:02,722 DEBUG: Start: Iteration 27 +2016-08-24 11:09:02,739 DEBUG: View 0 : 0.53164556962 +2016-08-24 11:09:02,747 DEBUG: View 1 : 0.620253164557 +2016-08-24 11:09:02,783 DEBUG: View 2 : 0.594936708861 +2016-08-24 11:09:02,791 DEBUG: View 3 : 0.53164556962 +2016-08-24 11:09:02,898 DEBUG: Best view : MiRNA__ +2016-08-24 11:09:04,562 DEBUG: Start: Iteration 28 +2016-08-24 11:09:04,579 DEBUG: View 0 : 0.398734177215 +2016-08-24 11:09:04,587 DEBUG: View 1 : 0.487341772152 +2016-08-24 11:09:04,623 DEBUG: View 2 : 0.449367088608 +2016-08-24 11:09:04,631 DEBUG: View 3 : 0.537974683544 +2016-08-24 11:09:04,742 DEBUG: Best view : Clinic_ +2016-08-24 11:09:06,650 DEBUG: Start: Iteration 29 +2016-08-24 11:09:06,666 DEBUG: View 0 : 0.544303797468 +2016-08-24 11:09:06,674 DEBUG: View 1 : 0.708860759494 +2016-08-24 11:09:06,711 DEBUG: View 2 : 0.462025316456 +2016-08-24 11:09:06,719 DEBUG: View 3 : 0.575949367089 +2016-08-24 11:09:06,836 DEBUG: Best view : MiRNA__ +2016-08-24 11:09:08,697 DEBUG: Start: Iteration 30 +2016-08-24 11:09:08,714 DEBUG: View 0 : 0.46835443038 +2016-08-24 11:09:08,721 DEBUG: View 1 : 0.512658227848 +2016-08-24 11:09:08,759 DEBUG: View 2 : 0.424050632911 +2016-08-24 11:09:08,766 DEBUG: View 3 : 0.462025316456 +2016-08-24 11:09:08,882 DEBUG: Best view : MiRNA__ +2016-08-24 11:09:10,855 DEBUG: Start: Iteration 31 +2016-08-24 11:09:10,874 DEBUG: View 0 : 0.563291139241 +2016-08-24 11:09:10,882 DEBUG: View 1 : 0.335443037975 +2016-08-24 11:09:10,922 DEBUG: View 2 : 0.512658227848 +2016-08-24 11:09:10,930 DEBUG: View 3 : 0.487341772152 +2016-08-24 11:09:11,065 DEBUG: Best view : Methyl_ +2016-08-24 11:09:13,022 DEBUG: Start: Iteration 32 +2016-08-24 11:09:13,039 DEBUG: View 0 : 0.424050632911 +2016-08-24 11:09:13,047 DEBUG: View 1 : 0.632911392405 +2016-08-24 11:09:13,089 DEBUG: View 2 : 0.474683544304 +2016-08-24 11:09:13,097 DEBUG: View 3 : 0.582278481013 +2016-08-24 11:09:13,225 DEBUG: Best view : MiRNA__ +2016-08-24 11:09:15,276 DEBUG: Start: Iteration 33 +2016-08-24 11:09:15,292 DEBUG: View 0 : 0.493670886076 +2016-08-24 11:09:15,300 DEBUG: View 1 : 0.651898734177 +2016-08-24 11:09:15,340 DEBUG: View 2 : 0.462025316456 +2016-08-24 11:09:15,349 DEBUG: View 3 : 0.367088607595 +2016-08-24 11:09:15,480 DEBUG: Best view : MiRNA__ +2016-08-24 11:09:17,640 DEBUG: Start: Iteration 34 +2016-08-24 11:09:17,656 DEBUG: View 0 : 0.455696202532 +2016-08-24 11:09:17,664 DEBUG: View 1 : 0.79746835443 +2016-08-24 11:09:17,701 DEBUG: View 2 : 0.594936708861 +2016-08-24 11:09:17,708 DEBUG: View 3 : 0.594936708861 +2016-08-24 11:09:17,832 DEBUG: Best view : MiRNA__ +2016-08-24 11:09:19,911 DEBUG: Start: Iteration 35 +2016-08-24 11:09:19,928 DEBUG: View 0 : 0.575949367089 +2016-08-24 11:09:19,935 DEBUG: View 1 : 0.601265822785 +2016-08-24 11:09:19,971 DEBUG: View 2 : 0.613924050633 +2016-08-24 11:09:19,979 DEBUG: View 3 : 0.443037974684 +2016-08-24 11:09:20,105 DEBUG: Best view : MiRNA__ +2016-08-24 11:09:22,296 DEBUG: Start: Iteration 36 +2016-08-24 11:09:22,312 DEBUG: View 0 : 0.639240506329 +2016-08-24 11:09:22,320 DEBUG: View 1 : 0.550632911392 +2016-08-24 11:09:22,357 DEBUG: View 2 : 0.424050632911 +2016-08-24 11:09:22,365 DEBUG: View 3 : 0.474683544304 +2016-08-24 11:09:22,498 DEBUG: Best view : Methyl_ +2016-08-24 11:09:24,768 DEBUG: Start: Iteration 37 +2016-08-24 11:09:24,785 DEBUG: View 0 : 0.455696202532 +2016-08-24 11:09:24,792 DEBUG: View 1 : 0.677215189873 +2016-08-24 11:09:24,831 DEBUG: View 2 : 0.46835443038 +2016-08-24 11:09:24,838 DEBUG: View 3 : 0.518987341772 +2016-08-24 11:09:24,970 DEBUG: Best view : MiRNA__ +2016-08-24 11:09:27,288 DEBUG: Start: Iteration 38 +2016-08-24 11:09:27,305 DEBUG: View 0 : 0.411392405063 +2016-08-24 11:09:27,313 DEBUG: View 1 : 0.46835443038 +2016-08-24 11:09:27,350 DEBUG: View 2 : 0.436708860759 +2016-08-24 11:09:27,357 DEBUG: View 3 : 0.474683544304 +2016-08-24 11:09:27,358 WARNING: WARNING: All bad for iteration 37 +2016-08-24 11:09:27,495 DEBUG: Best view : Clinic_ +2016-08-24 11:09:29,938 DEBUG: Start: Iteration 39 +2016-08-24 11:09:29,954 DEBUG: View 0 : 0.563291139241 +2016-08-24 11:09:29,962 DEBUG: View 1 : 0.379746835443 +2016-08-24 11:09:29,998 DEBUG: View 2 : 0.430379746835 +2016-08-24 11:09:30,006 DEBUG: View 3 : 0.443037974684 +2016-08-24 11:09:30,143 DEBUG: Best view : Methyl_ +2016-08-24 11:09:32,730 DEBUG: Start: Iteration 40 +2016-08-24 11:09:32,748 DEBUG: View 0 : 0.462025316456 +2016-08-24 11:09:32,755 DEBUG: View 1 : 0.626582278481 +2016-08-24 11:09:32,797 DEBUG: View 2 : 0.411392405063 +2016-08-24 11:09:32,804 DEBUG: View 3 : 0.53164556962 +2016-08-24 11:09:32,941 DEBUG: Best view : MiRNA__ +2016-08-24 11:09:35,450 DEBUG: Start: Iteration 41 +2016-08-24 11:09:35,467 DEBUG: View 0 : 0.556962025316 +2016-08-24 11:09:35,474 DEBUG: View 1 : 0.620253164557 +2016-08-24 11:09:35,511 DEBUG: View 2 : 0.443037974684 +2016-08-24 11:09:35,518 DEBUG: View 3 : 0.594936708861 +2016-08-24 11:09:35,658 DEBUG: Best view : MiRNA__ +2016-08-24 11:09:38,266 DEBUG: Start: Iteration 42 +2016-08-24 11:09:38,283 DEBUG: View 0 : 0.632911392405 +2016-08-24 11:09:38,290 DEBUG: View 1 : 0.582278481013 +2016-08-24 11:09:38,328 DEBUG: View 2 : 0.550632911392 +2016-08-24 11:09:38,335 DEBUG: View 3 : 0.398734177215 +2016-08-24 11:09:38,481 DEBUG: Best view : Methyl_ +2016-08-24 11:09:41,096 DEBUG: Start: Iteration 43 +2016-08-24 11:09:41,113 DEBUG: View 0 : 0.430379746835 +2016-08-24 11:09:41,121 DEBUG: View 1 : 0.613924050633 +2016-08-24 11:09:41,158 DEBUG: View 2 : 0.474683544304 +2016-08-24 11:09:41,165 DEBUG: View 3 : 0.512658227848 +2016-08-24 11:09:41,315 DEBUG: Best view : MiRNA__ +2016-08-24 11:09:43,945 DEBUG: Start: Iteration 44 +2016-08-24 11:09:43,961 DEBUG: View 0 : 0.462025316456 +2016-08-24 11:09:43,969 DEBUG: View 1 : 0.537974683544 +2016-08-24 11:09:44,024 DEBUG: View 2 : 0.594936708861 +2016-08-24 11:09:44,038 DEBUG: View 3 : 0.411392405063 +2016-08-24 11:09:44,211 DEBUG: Best view : RANSeq_ +2016-08-24 11:09:46,944 DEBUG: Start: Iteration 45 +2016-08-24 11:09:46,961 DEBUG: View 0 : 0.53164556962 +2016-08-24 11:09:46,968 DEBUG: View 1 : 0.626582278481 +2016-08-24 11:09:47,006 DEBUG: View 2 : 0.506329113924 +2016-08-24 11:09:47,014 DEBUG: View 3 : 0.462025316456 +2016-08-24 11:09:47,164 DEBUG: Best view : MiRNA__ +2016-08-24 11:09:49,893 DEBUG: Start: Iteration 46 +2016-08-24 11:09:49,910 DEBUG: View 0 : 0.348101265823 +2016-08-24 11:09:49,917 DEBUG: View 1 : 0.607594936709 +2016-08-24 11:09:49,954 DEBUG: View 2 : 0.632911392405 +2016-08-24 11:09:49,962 DEBUG: View 3 : 0.556962025316 +2016-08-24 11:09:50,111 DEBUG: Best view : RANSeq_ +2016-08-24 11:09:52,926 DEBUG: Start: Iteration 47 +2016-08-24 11:09:52,943 DEBUG: View 0 : 0.518987341772 +2016-08-24 11:09:52,951 DEBUG: View 1 : 0.664556962025 +2016-08-24 11:09:52,987 DEBUG: View 2 : 0.417721518987 +2016-08-24 11:09:52,995 DEBUG: View 3 : 0.582278481013 +2016-08-24 11:09:53,147 DEBUG: Best view : MiRNA__ +2016-08-24 11:09:56,001 DEBUG: Start: Iteration 48 +2016-08-24 11:09:56,017 DEBUG: View 0 : 0.487341772152 +2016-08-24 11:09:56,025 DEBUG: View 1 : 0.689873417722 +2016-08-24 11:09:56,063 DEBUG: View 2 : 0.411392405063 +2016-08-24 11:09:56,071 DEBUG: View 3 : 0.449367088608 +2016-08-24 11:09:56,226 DEBUG: Best view : MiRNA__ +2016-08-24 11:09:59,142 DEBUG: Start: Iteration 49 +2016-08-24 11:09:59,158 DEBUG: View 0 : 0.360759493671 +2016-08-24 11:09:59,166 DEBUG: View 1 : 0.392405063291 +2016-08-24 11:09:59,202 DEBUG: View 2 : 0.398734177215 +2016-08-24 11:09:59,210 DEBUG: View 3 : 0.607594936709 +2016-08-24 11:09:59,368 DEBUG: Best view : Clinic_ +2016-08-24 11:10:02,340 DEBUG: Start: Iteration 50 +2016-08-24 11:10:02,356 DEBUG: View 0 : 0.518987341772 +2016-08-24 11:10:02,364 DEBUG: View 1 : 0.5 +2016-08-24 11:10:02,400 DEBUG: View 2 : 0.430379746835 +2016-08-24 11:10:02,408 DEBUG: View 3 : 0.556962025316 +2016-08-24 11:10:02,569 DEBUG: Best view : MiRNA__ +2016-08-24 11:10:05,711 DEBUG: Start: Iteration 51 +2016-08-24 11:10:05,734 DEBUG: View 0 : 0.518987341772 +2016-08-24 11:10:05,747 DEBUG: View 1 : 0.373417721519 +2016-08-24 11:10:05,793 DEBUG: View 2 : 0.518987341772 +2016-08-24 11:10:05,801 DEBUG: View 3 : 0.556962025316 +2016-08-24 11:10:05,984 DEBUG: Best view : Clinic_ +2016-08-24 11:10:09,117 DEBUG: Start: Iteration 52 +2016-08-24 11:10:09,133 DEBUG: View 0 : 0.430379746835 +2016-08-24 11:10:09,141 DEBUG: View 1 : 0.645569620253 +2016-08-24 11:10:09,178 DEBUG: View 2 : 0.556962025316 +2016-08-24 11:10:09,185 DEBUG: View 3 : 0.658227848101 +2016-08-24 11:10:09,351 DEBUG: Best view : Clinic_ +2016-08-24 11:10:12,580 DEBUG: Start: Iteration 53 +2016-08-24 11:10:12,600 DEBUG: View 0 : 0.550632911392 +2016-08-24 11:10:12,609 DEBUG: View 1 : 0.639240506329 +2016-08-24 11:10:12,649 DEBUG: View 2 : 0.525316455696 +2016-08-24 11:10:12,657 DEBUG: View 3 : 0.487341772152 +2016-08-24 11:10:12,836 DEBUG: Best view : MiRNA__ +2016-08-24 11:10:16,117 DEBUG: Start: Iteration 54 +2016-08-24 11:10:16,135 DEBUG: View 0 : 0.481012658228 +2016-08-24 11:10:16,143 DEBUG: View 1 : 0.430379746835 +2016-08-24 11:10:16,180 DEBUG: View 2 : 0.607594936709 +2016-08-24 11:10:16,187 DEBUG: View 3 : 0.582278481013 +2016-08-24 11:10:16,358 DEBUG: Best view : RANSeq_ +2016-08-24 11:10:19,696 DEBUG: Start: Iteration 55 +2016-08-24 11:10:19,712 DEBUG: View 0 : 0.594936708861 +2016-08-24 11:10:19,720 DEBUG: View 1 : 0.607594936709 +2016-08-24 11:10:19,756 DEBUG: View 2 : 0.512658227848 +2016-08-24 11:10:19,764 DEBUG: View 3 : 0.5 +2016-08-24 11:10:19,935 DEBUG: Best view : Methyl_ +2016-08-24 11:10:23,272 DEBUG: Start: Iteration 56 +2016-08-24 11:10:23,289 DEBUG: View 0 : 0.563291139241 +2016-08-24 11:10:23,297 DEBUG: View 1 : 0.405063291139 +2016-08-24 11:10:23,334 DEBUG: View 2 : 0.575949367089 +2016-08-24 11:10:23,341 DEBUG: View 3 : 0.594936708861 +2016-08-24 11:10:23,515 DEBUG: Best view : Clinic_ +2016-08-24 11:10:26,942 DEBUG: Start: Iteration 57 +2016-08-24 11:10:26,959 DEBUG: View 0 : 0.481012658228 +2016-08-24 11:10:26,966 DEBUG: View 1 : 0.5 +2016-08-24 11:10:27,003 DEBUG: View 2 : 0.512658227848 +2016-08-24 11:10:27,011 DEBUG: View 3 : 0.563291139241 +2016-08-24 11:10:27,189 DEBUG: Best view : Clinic_ diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-111030-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-111030-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..eef88fa91eec1a705104f8e957e945116b464be1 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-111030-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log @@ -0,0 +1,32 @@ +2016-08-24 11:10:30,661 INFO: Start: Read HDF5 Database Files for ModifiedMultiOmic +2016-08-24 11:10:30,661 INFO: Info: Labels used: No, Yes +2016-08-24 11:10:30,662 INFO: Info: Length of dataset:347 +2016-08-24 11:10:30,663 INFO: ### Main Programm for Multiview Classification +2016-08-24 11:10:30,663 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1 +2016-08-24 11:10:30,664 INFO: Info: Shape of Methyl_ :(347, 25978) +2016-08-24 11:10:30,664 INFO: Info: Shape of MiRNA__ :(347, 1046) +2016-08-24 11:10:30,664 INFO: Info: Shape of RANSeq_ :(347, 73599) +2016-08-24 11:10:30,665 INFO: Info: Shape of Clinic_ :(347, 127) +2016-08-24 11:10:30,665 INFO: Done: Read Database Files +2016-08-24 11:10:30,665 INFO: Start: Determine validation split for ratio 0.7 +2016-08-24 11:10:30,668 INFO: Done: Determine validation split +2016-08-24 11:10:30,669 INFO: Start: Determine 2 folds +2016-08-24 11:10:30,679 INFO: Info: Length of Learning Sets: 122 +2016-08-24 11:10:30,679 INFO: Info: Length of Testing Sets: 122 +2016-08-24 11:10:30,679 INFO: Info: Length of Validation Set: 103 +2016-08-24 11:10:30,679 INFO: Done: Determine folds +2016-08-24 11:10:30,679 INFO: Start: Learning with Mumbo and 2 folds +2016-08-24 11:10:30,679 INFO: Start: Gridsearching best settings for monoview classifiers +2016-08-24 11:10:30,679 DEBUG: Start: Gridsearch for DecisionTree on Methyl_ +2016-08-24 11:10:38,124 DEBUG: Info: Best Reslut : 0.515158501441 +2016-08-24 11:10:38,124 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 11:10:38,125 DEBUG: Start: Gridsearch for DecisionTree on MiRNA__ +2016-08-24 11:10:40,053 DEBUG: Info: Best Reslut : 0.546397694524 +2016-08-24 11:10:40,053 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 11:10:40,053 DEBUG: Start: Gridsearch for DecisionTree on RANSeq_ +2016-08-24 11:10:57,326 DEBUG: Info: Best Reslut : 0.501268011527 +2016-08-24 11:10:57,327 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 11:10:57,327 DEBUG: Start: Gridsearch for DecisionTree on Clinic_ +2016-08-24 11:10:59,071 DEBUG: Info: Best Reslut : 0.510086455331 +2016-08-24 11:10:59,072 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 11:10:59,072 DEBUG: Start: Gridsearch for DecisionTree on MRNASeq diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-111136-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-111136-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..30b218573d57c9089f6b925e93d4e4a0f0836842 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-111136-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log @@ -0,0 +1,391 @@ +2016-08-24 11:11:36,038 INFO: Start: Read HDF5 Database Files for ModifiedMultiOmic +2016-08-24 11:11:36,039 INFO: Info: Labels used: No, Yes +2016-08-24 11:11:36,039 INFO: Info: Length of dataset:347 +2016-08-24 11:11:36,040 INFO: ### Main Programm for Multiview Classification +2016-08-24 11:11:36,041 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1 +2016-08-24 11:11:36,041 INFO: Info: Shape of Methyl_ :(347, 25978) +2016-08-24 11:11:36,041 INFO: Info: Shape of MiRNA__ :(347, 1046) +2016-08-24 11:11:36,042 INFO: Info: Shape of RANSeq_ :(347, 73599) +2016-08-24 11:11:36,042 INFO: Info: Shape of Clinic_ :(347, 127) +2016-08-24 11:11:36,042 INFO: Done: Read Database Files +2016-08-24 11:11:36,043 INFO: Start: Determine validation split for ratio 0.7 +2016-08-24 11:11:36,046 INFO: Done: Determine validation split +2016-08-24 11:11:36,046 INFO: Start: Determine 2 folds +2016-08-24 11:11:36,054 INFO: Info: Length of Learning Sets: 122 +2016-08-24 11:11:36,054 INFO: Info: Length of Testing Sets: 122 +2016-08-24 11:11:36,054 INFO: Info: Length of Validation Set: 103 +2016-08-24 11:11:36,054 INFO: Done: Determine folds +2016-08-24 11:11:36,054 INFO: Start: Learning with Mumbo and 2 folds +2016-08-24 11:11:36,054 INFO: Start: Gridsearching best settings for monoview classifiers +2016-08-24 11:11:36,055 DEBUG: Start: Gridsearch for DecisionTree on Methyl_ +2016-08-24 11:11:43,470 DEBUG: Info: Best Reslut : 0.506570605187 +2016-08-24 11:11:43,470 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 11:11:43,470 DEBUG: Start: Gridsearch for DecisionTree on MiRNA__ +2016-08-24 11:11:45,393 DEBUG: Info: Best Reslut : 0.596080691643 +2016-08-24 11:11:45,393 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 11:11:45,394 DEBUG: Start: Gridsearch for DecisionTree on RANSeq_ +2016-08-24 11:12:02,118 DEBUG: Info: Best Reslut : 0.520922190202 +2016-08-24 11:12:02,119 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 11:12:02,119 DEBUG: Start: Gridsearch for DecisionTree on Clinic_ +2016-08-24 11:12:03,876 DEBUG: Info: Best Reslut : 0.504553314121 +2016-08-24 11:12:03,877 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 11:12:03,877 DEBUG: Start: Gridsearch for DecisionTree on MRNASeq +2016-08-24 11:12:41,748 DEBUG: Info: Best Reslut : 0.515216138329 +2016-08-24 11:12:41,749 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 11:12:41,749 INFO: Done: Gridsearching best settings for monoview classifiers +2016-08-24 11:12:41,749 INFO: Start: Fold number 1 +2016-08-24 11:12:43,406 DEBUG: Start: Iteration 1 +2016-08-24 11:12:43,425 DEBUG: View 0 : 0.639240506329 +2016-08-24 11:12:43,433 DEBUG: View 1 : 0.620253164557 +2016-08-24 11:12:43,471 DEBUG: View 2 : 0.474683544304 +2016-08-24 11:12:43,479 DEBUG: View 3 : 0.379746835443 +2016-08-24 11:12:43,520 DEBUG: Best view : Methyl_ +2016-08-24 11:12:43,596 DEBUG: Start: Iteration 2 +2016-08-24 11:12:43,614 DEBUG: View 0 : 0.620253164557 +2016-08-24 11:12:43,621 DEBUG: View 1 : 0.398734177215 +2016-08-24 11:12:43,658 DEBUG: View 2 : 0.398734177215 +2016-08-24 11:12:43,666 DEBUG: View 3 : 0.518987341772 +2016-08-24 11:12:43,711 DEBUG: Best view : Methyl_ +2016-08-24 11:12:43,849 DEBUG: Start: Iteration 3 +2016-08-24 11:12:43,866 DEBUG: View 0 : 0.569620253165 +2016-08-24 11:12:43,874 DEBUG: View 1 : 0.436708860759 +2016-08-24 11:12:43,911 DEBUG: View 2 : 0.411392405063 +2016-08-24 11:12:43,918 DEBUG: View 3 : 0.430379746835 +2016-08-24 11:12:43,972 DEBUG: Best view : Methyl_ +2016-08-24 11:12:44,173 DEBUG: Start: Iteration 4 +2016-08-24 11:12:44,189 DEBUG: View 0 : 0.575949367089 +2016-08-24 11:12:44,197 DEBUG: View 1 : 0.512658227848 +2016-08-24 11:12:44,234 DEBUG: View 2 : 0.474683544304 +2016-08-24 11:12:44,242 DEBUG: View 3 : 0.411392405063 +2016-08-24 11:12:44,298 DEBUG: Best view : Methyl_ +2016-08-24 11:12:44,560 DEBUG: Start: Iteration 5 +2016-08-24 11:12:44,576 DEBUG: View 0 : 0.759493670886 +2016-08-24 11:12:44,584 DEBUG: View 1 : 0.569620253165 +2016-08-24 11:12:44,621 DEBUG: View 2 : 0.398734177215 +2016-08-24 11:12:44,628 DEBUG: View 3 : 0.518987341772 +2016-08-24 11:12:44,687 DEBUG: Best view : Methyl_ +2016-08-24 11:12:45,011 DEBUG: Start: Iteration 6 +2016-08-24 11:12:45,027 DEBUG: View 0 : 0.474683544304 +2016-08-24 11:12:45,035 DEBUG: View 1 : 0.46835443038 +2016-08-24 11:12:45,072 DEBUG: View 2 : 0.601265822785 +2016-08-24 11:12:45,080 DEBUG: View 3 : 0.53164556962 +2016-08-24 11:12:45,140 DEBUG: Best view : RANSeq_ +2016-08-24 11:12:45,549 DEBUG: Start: Iteration 7 +2016-08-24 11:12:45,565 DEBUG: View 0 : 0.620253164557 +2016-08-24 11:12:45,574 DEBUG: View 1 : 0.392405063291 +2016-08-24 11:12:45,610 DEBUG: View 2 : 0.53164556962 +2016-08-24 11:12:45,618 DEBUG: View 3 : 0.5 +2016-08-24 11:12:45,681 DEBUG: Best view : Methyl_ +2016-08-24 11:12:46,144 DEBUG: Start: Iteration 8 +2016-08-24 11:12:46,161 DEBUG: View 0 : 0.449367088608 +2016-08-24 11:12:46,169 DEBUG: View 1 : 0.436708860759 +2016-08-24 11:12:46,205 DEBUG: View 2 : 0.525316455696 +2016-08-24 11:12:46,213 DEBUG: View 3 : 0.506329113924 +2016-08-24 11:12:46,277 DEBUG: Best view : RANSeq_ +2016-08-24 11:12:46,809 DEBUG: Start: Iteration 9 +2016-08-24 11:12:46,825 DEBUG: View 0 : 0.487341772152 +2016-08-24 11:12:46,833 DEBUG: View 1 : 0.658227848101 +2016-08-24 11:12:46,870 DEBUG: View 2 : 0.462025316456 +2016-08-24 11:12:46,877 DEBUG: View 3 : 0.481012658228 +2016-08-24 11:12:46,944 DEBUG: Best view : MiRNA__ +2016-08-24 11:12:47,535 DEBUG: Start: Iteration 10 +2016-08-24 11:12:47,552 DEBUG: View 0 : 0.474683544304 +2016-08-24 11:12:47,560 DEBUG: View 1 : 0.588607594937 +2016-08-24 11:12:47,596 DEBUG: View 2 : 0.411392405063 +2016-08-24 11:12:47,604 DEBUG: View 3 : 0.525316455696 +2016-08-24 11:12:47,673 DEBUG: Best view : MiRNA__ +2016-08-24 11:12:48,319 DEBUG: Start: Iteration 11 +2016-08-24 11:12:48,336 DEBUG: View 0 : 0.46835443038 +2016-08-24 11:12:48,344 DEBUG: View 1 : 0.639240506329 +2016-08-24 11:12:48,380 DEBUG: View 2 : 0.537974683544 +2016-08-24 11:12:48,388 DEBUG: View 3 : 0.53164556962 +2016-08-24 11:12:48,460 DEBUG: Best view : MiRNA__ +2016-08-24 11:12:49,176 DEBUG: Start: Iteration 12 +2016-08-24 11:12:49,193 DEBUG: View 0 : 0.411392405063 +2016-08-24 11:12:49,201 DEBUG: View 1 : 0.626582278481 +2016-08-24 11:12:49,239 DEBUG: View 2 : 0.379746835443 +2016-08-24 11:12:49,247 DEBUG: View 3 : 0.607594936709 +2016-08-24 11:12:49,323 DEBUG: Best view : MiRNA__ +2016-08-24 11:12:50,095 DEBUG: Start: Iteration 13 +2016-08-24 11:12:50,112 DEBUG: View 0 : 0.46835443038 +2016-08-24 11:12:50,120 DEBUG: View 1 : 0.405063291139 +2016-08-24 11:12:50,157 DEBUG: View 2 : 0.474683544304 +2016-08-24 11:12:50,165 DEBUG: View 3 : 0.582278481013 +2016-08-24 11:12:50,241 DEBUG: Best view : Clinic_ +2016-08-24 11:12:51,101 DEBUG: Start: Iteration 14 +2016-08-24 11:12:51,117 DEBUG: View 0 : 0.569620253165 +2016-08-24 11:12:51,125 DEBUG: View 1 : 0.594936708861 +2016-08-24 11:12:51,162 DEBUG: View 2 : 0.424050632911 +2016-08-24 11:12:51,170 DEBUG: View 3 : 0.392405063291 +2016-08-24 11:12:51,248 DEBUG: Best view : MiRNA__ +2016-08-24 11:12:52,146 DEBUG: Start: Iteration 15 +2016-08-24 11:12:52,163 DEBUG: View 0 : 0.594936708861 +2016-08-24 11:12:52,171 DEBUG: View 1 : 0.651898734177 +2016-08-24 11:12:52,208 DEBUG: View 2 : 0.411392405063 +2016-08-24 11:12:52,215 DEBUG: View 3 : 0.5 +2016-08-24 11:12:52,297 DEBUG: Best view : MiRNA__ +2016-08-24 11:12:53,236 DEBUG: Start: Iteration 16 +2016-08-24 11:12:53,252 DEBUG: View 0 : 0.386075949367 +2016-08-24 11:12:53,260 DEBUG: View 1 : 0.518987341772 +2016-08-24 11:12:53,297 DEBUG: View 2 : 0.588607594937 +2016-08-24 11:12:53,305 DEBUG: View 3 : 0.53164556962 +2016-08-24 11:12:53,388 DEBUG: Best view : RANSeq_ +2016-08-24 11:12:54,407 DEBUG: Start: Iteration 17 +2016-08-24 11:12:54,424 DEBUG: View 0 : 0.626582278481 +2016-08-24 11:12:54,432 DEBUG: View 1 : 0.550632911392 +2016-08-24 11:12:54,469 DEBUG: View 2 : 0.5 +2016-08-24 11:12:54,476 DEBUG: View 3 : 0.373417721519 +2016-08-24 11:12:54,562 DEBUG: Best view : Methyl_ +2016-08-24 11:12:55,640 DEBUG: Start: Iteration 18 +2016-08-24 11:12:55,657 DEBUG: View 0 : 0.424050632911 +2016-08-24 11:12:55,665 DEBUG: View 1 : 0.398734177215 +2016-08-24 11:12:55,701 DEBUG: View 2 : 0.658227848101 +2016-08-24 11:12:55,709 DEBUG: View 3 : 0.525316455696 +2016-08-24 11:12:55,796 DEBUG: Best view : RANSeq_ +2016-08-24 11:12:56,943 DEBUG: Start: Iteration 19 +2016-08-24 11:12:56,960 DEBUG: View 0 : 0.556962025316 +2016-08-24 11:12:56,968 DEBUG: View 1 : 0.392405063291 +2016-08-24 11:12:57,005 DEBUG: View 2 : 0.613924050633 +2016-08-24 11:12:57,013 DEBUG: View 3 : 0.677215189873 +2016-08-24 11:12:57,105 DEBUG: Best view : Clinic_ +2016-08-24 11:12:58,305 DEBUG: Start: Iteration 20 +2016-08-24 11:12:58,322 DEBUG: View 0 : 0.417721518987 +2016-08-24 11:12:58,330 DEBUG: View 1 : 0.436708860759 +2016-08-24 11:12:58,367 DEBUG: View 2 : 0.411392405063 +2016-08-24 11:12:58,374 DEBUG: View 3 : 0.443037974684 +2016-08-24 11:12:58,374 WARNING: WARNING: All bad for iteration 19 +2016-08-24 11:12:58,467 DEBUG: Best view : Clinic_ +2016-08-24 11:12:59,738 DEBUG: Start: Iteration 21 +2016-08-24 11:12:59,755 DEBUG: View 0 : 0.430379746835 +2016-08-24 11:12:59,763 DEBUG: View 1 : 0.506329113924 +2016-08-24 11:12:59,800 DEBUG: View 2 : 0.493670886076 +2016-08-24 11:12:59,807 DEBUG: View 3 : 0.632911392405 +2016-08-24 11:12:59,904 DEBUG: Best view : Clinic_ +2016-08-24 11:13:01,234 DEBUG: Start: Iteration 22 +2016-08-24 11:13:01,251 DEBUG: View 0 : 0.462025316456 +2016-08-24 11:13:01,259 DEBUG: View 1 : 0.506329113924 +2016-08-24 11:13:01,296 DEBUG: View 2 : 0.620253164557 +2016-08-24 11:13:01,304 DEBUG: View 3 : 0.575949367089 +2016-08-24 11:13:01,401 DEBUG: Best view : RANSeq_ +2016-08-24 11:13:02,803 DEBUG: Start: Iteration 23 +2016-08-24 11:13:02,820 DEBUG: View 0 : 0.607594936709 +2016-08-24 11:13:02,828 DEBUG: View 1 : 0.518987341772 +2016-08-24 11:13:02,866 DEBUG: View 2 : 0.436708860759 +2016-08-24 11:13:02,874 DEBUG: View 3 : 0.436708860759 +2016-08-24 11:13:02,973 DEBUG: Best view : Methyl_ +2016-08-24 11:13:04,490 DEBUG: Start: Iteration 24 +2016-08-24 11:13:04,508 DEBUG: View 0 : 0.316455696203 +2016-08-24 11:13:04,515 DEBUG: View 1 : 0.373417721519 +2016-08-24 11:13:04,552 DEBUG: View 2 : 0.588607594937 +2016-08-24 11:13:04,560 DEBUG: View 3 : 0.487341772152 +2016-08-24 11:13:04,661 DEBUG: Best view : RANSeq_ +2016-08-24 11:13:06,180 DEBUG: Start: Iteration 25 +2016-08-24 11:13:06,198 DEBUG: View 0 : 0.569620253165 +2016-08-24 11:13:06,206 DEBUG: View 1 : 0.436708860759 +2016-08-24 11:13:06,243 DEBUG: View 2 : 0.556962025316 +2016-08-24 11:13:06,250 DEBUG: View 3 : 0.392405063291 +2016-08-24 11:13:06,355 DEBUG: Best view : Methyl_ +2016-08-24 11:13:07,932 DEBUG: Start: Iteration 26 +2016-08-24 11:13:07,948 DEBUG: View 0 : 0.512658227848 +2016-08-24 11:13:07,956 DEBUG: View 1 : 0.689873417722 +2016-08-24 11:13:07,993 DEBUG: View 2 : 0.537974683544 +2016-08-24 11:13:08,001 DEBUG: View 3 : 0.417721518987 +2016-08-24 11:13:08,107 DEBUG: Best view : MiRNA__ +2016-08-24 11:13:09,754 DEBUG: Start: Iteration 27 +2016-08-24 11:13:09,770 DEBUG: View 0 : 0.462025316456 +2016-08-24 11:13:09,778 DEBUG: View 1 : 0.588607594937 +2016-08-24 11:13:09,815 DEBUG: View 2 : 0.607594936709 +2016-08-24 11:13:09,823 DEBUG: View 3 : 0.46835443038 +2016-08-24 11:13:09,931 DEBUG: Best view : MiRNA__ +2016-08-24 11:13:11,652 DEBUG: Start: Iteration 28 +2016-08-24 11:13:11,668 DEBUG: View 0 : 0.588607594937 +2016-08-24 11:13:11,676 DEBUG: View 1 : 0.569620253165 +2016-08-24 11:13:11,714 DEBUG: View 2 : 0.582278481013 +2016-08-24 11:13:11,722 DEBUG: View 3 : 0.537974683544 +2016-08-24 11:13:11,832 DEBUG: Best view : MiRNA__ +2016-08-24 11:13:13,601 DEBUG: Start: Iteration 29 +2016-08-24 11:13:13,617 DEBUG: View 0 : 0.645569620253 +2016-08-24 11:13:13,625 DEBUG: View 1 : 0.5 +2016-08-24 11:13:13,663 DEBUG: View 2 : 0.556962025316 +2016-08-24 11:13:13,670 DEBUG: View 3 : 0.645569620253 +2016-08-24 11:13:13,786 DEBUG: Best view : Methyl_ +2016-08-24 11:13:15,623 DEBUG: Start: Iteration 30 +2016-08-24 11:13:15,640 DEBUG: View 0 : 0.518987341772 +2016-08-24 11:13:15,648 DEBUG: View 1 : 0.46835443038 +2016-08-24 11:13:15,685 DEBUG: View 2 : 0.506329113924 +2016-08-24 11:13:15,693 DEBUG: View 3 : 0.481012658228 +2016-08-24 11:13:15,810 DEBUG: Best view : Methyl_ +2016-08-24 11:13:17,695 DEBUG: Start: Iteration 31 +2016-08-24 11:13:17,711 DEBUG: View 0 : 0.645569620253 +2016-08-24 11:13:17,719 DEBUG: View 1 : 0.544303797468 +2016-08-24 11:13:17,755 DEBUG: View 2 : 0.493670886076 +2016-08-24 11:13:17,763 DEBUG: View 3 : 0.386075949367 +2016-08-24 11:13:17,880 DEBUG: Best view : Methyl_ +2016-08-24 11:13:19,816 DEBUG: Start: Iteration 32 +2016-08-24 11:13:19,832 DEBUG: View 0 : 0.436708860759 +2016-08-24 11:13:19,840 DEBUG: View 1 : 0.430379746835 +2016-08-24 11:13:19,877 DEBUG: View 2 : 0.569620253165 +2016-08-24 11:13:19,885 DEBUG: View 3 : 0.563291139241 +2016-08-24 11:13:20,004 DEBUG: Best view : Clinic_ +2016-08-24 11:13:21,998 DEBUG: Start: Iteration 33 +2016-08-24 11:13:22,015 DEBUG: View 0 : 0.487341772152 +2016-08-24 11:13:22,023 DEBUG: View 1 : 0.417721518987 +2016-08-24 11:13:22,060 DEBUG: View 2 : 0.506329113924 +2016-08-24 11:13:22,067 DEBUG: View 3 : 0.556962025316 +2016-08-24 11:13:22,189 DEBUG: Best view : Clinic_ +2016-08-24 11:13:24,238 DEBUG: Start: Iteration 34 +2016-08-24 11:13:24,255 DEBUG: View 0 : 0.582278481013 +2016-08-24 11:13:24,263 DEBUG: View 1 : 0.348101265823 +2016-08-24 11:13:24,299 DEBUG: View 2 : 0.462025316456 +2016-08-24 11:13:24,307 DEBUG: View 3 : 0.525316455696 +2016-08-24 11:13:24,431 DEBUG: Best view : Methyl_ +2016-08-24 11:13:26,552 DEBUG: Start: Iteration 35 +2016-08-24 11:13:26,568 DEBUG: View 0 : 0.367088607595 +2016-08-24 11:13:26,576 DEBUG: View 1 : 0.588607594937 +2016-08-24 11:13:26,613 DEBUG: View 2 : 0.398734177215 +2016-08-24 11:13:26,621 DEBUG: View 3 : 0.563291139241 +2016-08-24 11:13:26,747 DEBUG: Best view : MiRNA__ +2016-08-24 11:13:28,935 DEBUG: Start: Iteration 36 +2016-08-24 11:13:28,952 DEBUG: View 0 : 0.575949367089 +2016-08-24 11:13:28,960 DEBUG: View 1 : 0.518987341772 +2016-08-24 11:13:28,997 DEBUG: View 2 : 0.537974683544 +2016-08-24 11:13:29,004 DEBUG: View 3 : 0.46835443038 +2016-08-24 11:13:29,132 DEBUG: Best view : Methyl_ +2016-08-24 11:13:31,405 DEBUG: Start: Iteration 37 +2016-08-24 11:13:31,423 DEBUG: View 0 : 0.569620253165 +2016-08-24 11:13:31,431 DEBUG: View 1 : 0.556962025316 +2016-08-24 11:13:31,468 DEBUG: View 2 : 0.424050632911 +2016-08-24 11:13:31,476 DEBUG: View 3 : 0.563291139241 +2016-08-24 11:13:31,606 DEBUG: Best view : Methyl_ +2016-08-24 11:13:33,902 DEBUG: Start: Iteration 38 +2016-08-24 11:13:33,919 DEBUG: View 0 : 0.601265822785 +2016-08-24 11:13:33,927 DEBUG: View 1 : 0.367088607595 +2016-08-24 11:13:33,963 DEBUG: View 2 : 0.392405063291 +2016-08-24 11:13:33,971 DEBUG: View 3 : 0.639240506329 +2016-08-24 11:13:34,104 DEBUG: Best view : Clinic_ +2016-08-24 11:13:36,607 DEBUG: Start: Iteration 39 +2016-08-24 11:13:36,624 DEBUG: View 0 : 0.360759493671 +2016-08-24 11:13:36,631 DEBUG: View 1 : 0.405063291139 +2016-08-24 11:13:36,668 DEBUG: View 2 : 0.411392405063 +2016-08-24 11:13:36,676 DEBUG: View 3 : 0.575949367089 +2016-08-24 11:13:36,811 DEBUG: Best view : Clinic_ +2016-08-24 11:13:39,566 DEBUG: Start: Iteration 40 +2016-08-24 11:13:39,594 DEBUG: View 0 : 0.550632911392 +2016-08-24 11:13:39,608 DEBUG: View 1 : 0.449367088608 +2016-08-24 11:13:39,662 DEBUG: View 2 : 0.474683544304 +2016-08-24 11:13:39,675 DEBUG: View 3 : 0.493670886076 +2016-08-24 11:13:39,892 DEBUG: Best view : Methyl_ +2016-08-24 11:13:42,508 DEBUG: Start: Iteration 41 +2016-08-24 11:13:42,525 DEBUG: View 0 : 0.46835443038 +2016-08-24 11:13:42,533 DEBUG: View 1 : 0.506329113924 +2016-08-24 11:13:42,570 DEBUG: View 2 : 0.506329113924 +2016-08-24 11:13:42,578 DEBUG: View 3 : 0.53164556962 +2016-08-24 11:13:42,720 DEBUG: Best view : MiRNA__ +2016-08-24 11:13:45,271 DEBUG: Start: Iteration 42 +2016-08-24 11:13:45,289 DEBUG: View 0 : 0.53164556962 +2016-08-24 11:13:45,297 DEBUG: View 1 : 0.670886075949 +2016-08-24 11:13:45,334 DEBUG: View 2 : 0.537974683544 +2016-08-24 11:13:45,342 DEBUG: View 3 : 0.436708860759 +2016-08-24 11:13:45,484 DEBUG: Best view : MiRNA__ +2016-08-24 11:13:48,085 DEBUG: Start: Iteration 43 +2016-08-24 11:13:48,102 DEBUG: View 0 : 0.443037974684 +2016-08-24 11:13:48,110 DEBUG: View 1 : 0.607594936709 +2016-08-24 11:13:48,147 DEBUG: View 2 : 0.487341772152 +2016-08-24 11:13:48,155 DEBUG: View 3 : 0.424050632911 +2016-08-24 11:13:48,299 DEBUG: Best view : MiRNA__ +2016-08-24 11:13:50,954 DEBUG: Start: Iteration 44 +2016-08-24 11:13:50,970 DEBUG: View 0 : 0.443037974684 +2016-08-24 11:13:50,978 DEBUG: View 1 : 0.537974683544 +2016-08-24 11:13:51,016 DEBUG: View 2 : 0.481012658228 +2016-08-24 11:13:51,024 DEBUG: View 3 : 0.537974683544 +2016-08-24 11:13:51,170 DEBUG: Best view : MiRNA__ +2016-08-24 11:13:53,901 DEBUG: Start: Iteration 45 +2016-08-24 11:13:53,918 DEBUG: View 0 : 0.474683544304 +2016-08-24 11:13:53,926 DEBUG: View 1 : 0.664556962025 +2016-08-24 11:13:53,963 DEBUG: View 2 : 0.443037974684 +2016-08-24 11:13:53,971 DEBUG: View 3 : 0.632911392405 +2016-08-24 11:13:54,120 DEBUG: Best view : MiRNA__ +2016-08-24 11:13:57,012 DEBUG: Start: Iteration 46 +2016-08-24 11:13:57,030 DEBUG: View 0 : 0.411392405063 +2016-08-24 11:13:57,038 DEBUG: View 1 : 0.727848101266 +2016-08-24 11:13:57,077 DEBUG: View 2 : 0.436708860759 +2016-08-24 11:13:57,085 DEBUG: View 3 : 0.474683544304 +2016-08-24 11:13:57,239 DEBUG: Best view : MiRNA__ +2016-08-24 11:14:00,114 DEBUG: Start: Iteration 47 +2016-08-24 11:14:00,131 DEBUG: View 0 : 0.487341772152 +2016-08-24 11:14:00,138 DEBUG: View 1 : 0.607594936709 +2016-08-24 11:14:00,175 DEBUG: View 2 : 0.449367088608 +2016-08-24 11:14:00,183 DEBUG: View 3 : 0.525316455696 +2016-08-24 11:14:00,338 DEBUG: Best view : MiRNA__ +2016-08-24 11:14:03,280 DEBUG: Start: Iteration 48 +2016-08-24 11:14:03,297 DEBUG: View 0 : 0.544303797468 +2016-08-24 11:14:03,304 DEBUG: View 1 : 0.613924050633 +2016-08-24 11:14:03,341 DEBUG: View 2 : 0.518987341772 +2016-08-24 11:14:03,349 DEBUG: View 3 : 0.436708860759 +2016-08-24 11:14:03,509 DEBUG: Best view : MiRNA__ +2016-08-24 11:14:06,498 DEBUG: Start: Iteration 49 +2016-08-24 11:14:06,514 DEBUG: View 0 : 0.392405063291 +2016-08-24 11:14:06,522 DEBUG: View 1 : 0.721518987342 +2016-08-24 11:14:06,559 DEBUG: View 2 : 0.405063291139 +2016-08-24 11:14:06,567 DEBUG: View 3 : 0.518987341772 +2016-08-24 11:14:06,728 DEBUG: Best view : MiRNA__ +2016-08-24 11:14:09,769 DEBUG: Start: Iteration 50 +2016-08-24 11:14:09,789 DEBUG: View 0 : 0.462025316456 +2016-08-24 11:14:09,797 DEBUG: View 1 : 0.53164556962 +2016-08-24 11:14:09,839 DEBUG: View 2 : 0.53164556962 +2016-08-24 11:14:09,848 DEBUG: View 3 : 0.525316455696 +2016-08-24 11:14:10,022 DEBUG: Best view : MiRNA__ +2016-08-24 11:14:13,136 DEBUG: Start: Iteration 51 +2016-08-24 11:14:13,152 DEBUG: View 0 : 0.582278481013 +2016-08-24 11:14:13,160 DEBUG: View 1 : 0.46835443038 +2016-08-24 11:14:13,197 DEBUG: View 2 : 0.563291139241 +2016-08-24 11:14:13,205 DEBUG: View 3 : 0.518987341772 +2016-08-24 11:14:13,366 DEBUG: Best view : Methyl_ +2016-08-24 11:14:16,488 DEBUG: Start: Iteration 52 +2016-08-24 11:14:16,505 DEBUG: View 0 : 0.373417721519 +2016-08-24 11:14:16,513 DEBUG: View 1 : 0.518987341772 +2016-08-24 11:14:16,550 DEBUG: View 2 : 0.386075949367 +2016-08-24 11:14:16,558 DEBUG: View 3 : 0.487341772152 +2016-08-24 11:14:16,722 DEBUG: Best view : MiRNA__ +2016-08-24 11:14:19,893 DEBUG: Start: Iteration 53 +2016-08-24 11:14:19,910 DEBUG: View 0 : 0.563291139241 +2016-08-24 11:14:19,917 DEBUG: View 1 : 0.53164556962 +2016-08-24 11:14:19,954 DEBUG: View 2 : 0.537974683544 +2016-08-24 11:14:19,961 DEBUG: View 3 : 0.550632911392 +2016-08-24 11:14:20,128 DEBUG: Best view : Methyl_ +2016-08-24 11:14:23,363 DEBUG: Start: Iteration 54 +2016-08-24 11:14:23,380 DEBUG: View 0 : 0.613924050633 +2016-08-24 11:14:23,388 DEBUG: View 1 : 0.455696202532 +2016-08-24 11:14:23,425 DEBUG: View 2 : 0.601265822785 +2016-08-24 11:14:23,433 DEBUG: View 3 : 0.436708860759 +2016-08-24 11:14:23,601 DEBUG: Best view : Methyl_ +2016-08-24 11:14:26,896 DEBUG: Start: Iteration 55 +2016-08-24 11:14:26,913 DEBUG: View 0 : 0.493670886076 +2016-08-24 11:14:26,921 DEBUG: View 1 : 0.626582278481 +2016-08-24 11:14:26,958 DEBUG: View 2 : 0.455696202532 +2016-08-24 11:14:26,965 DEBUG: View 3 : 0.398734177215 +2016-08-24 11:14:27,137 DEBUG: Best view : MiRNA__ +2016-08-24 11:14:30,496 DEBUG: Start: Iteration 56 +2016-08-24 11:14:30,513 DEBUG: View 0 : 0.550632911392 +2016-08-24 11:14:30,521 DEBUG: View 1 : 0.664556962025 +2016-08-24 11:14:30,558 DEBUG: View 2 : 0.588607594937 +2016-08-24 11:14:30,565 DEBUG: View 3 : 0.645569620253 +2016-08-24 11:14:30,739 DEBUG: Best view : MiRNA__ +2016-08-24 11:14:34,390 DEBUG: Start: Iteration 57 +2016-08-24 11:14:34,414 DEBUG: View 0 : 0.506329113924 +2016-08-24 11:14:34,422 DEBUG: View 1 : 0.512658227848 +2016-08-24 11:14:34,460 DEBUG: View 2 : 0.46835443038 +2016-08-24 11:14:34,468 DEBUG: View 3 : 0.569620253165 +2016-08-24 11:14:34,648 DEBUG: Best view : Clinic_ +2016-08-24 11:14:38,374 DEBUG: Start: Iteration 58 +2016-08-24 11:14:38,391 DEBUG: View 0 : 0.639240506329 +2016-08-24 11:14:38,399 DEBUG: View 1 : 0.651898734177 +2016-08-24 11:14:38,436 DEBUG: View 2 : 0.398734177215 +2016-08-24 11:14:38,444 DEBUG: View 3 : 0.556962025316 +2016-08-24 11:14:38,627 DEBUG: Best view : MiRNA__ +2016-08-24 11:14:42,400 DEBUG: Start: Iteration 59 +2016-08-24 11:14:42,419 DEBUG: View 0 : 0.620253164557 +2016-08-24 11:14:42,428 DEBUG: View 1 : 0.677215189873 +2016-08-24 11:14:42,471 DEBUG: View 2 : 0.411392405063 +2016-08-24 11:14:42,480 DEBUG: View 3 : 0.512658227848 +2016-08-24 11:14:42,689 DEBUG: Best view : MiRNA__ diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-111445-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-111445-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..52ce30c5ad85ac008cf378c0daf65475f8d8d800 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-111445-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log @@ -0,0 +1,15314 @@ +2016-08-24 11:14:45,495 INFO: Start: Read HDF5 Database Files for ModifiedMultiOmic +2016-08-24 11:14:45,495 INFO: Info: Labels used: No, Yes +2016-08-24 11:14:45,496 INFO: Info: Length of dataset:347 +2016-08-24 11:14:45,497 INFO: ### Main Programm for Multiview Classification +2016-08-24 11:14:45,498 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1 +2016-08-24 11:14:45,498 INFO: Info: Shape of Methyl_ :(347, 25978) +2016-08-24 11:14:45,499 INFO: Info: Shape of MiRNA__ :(347, 1046) +2016-08-24 11:14:45,499 INFO: Info: Shape of RANSeq_ :(347, 73599) +2016-08-24 11:14:45,500 INFO: Info: Shape of Clinic_ :(347, 127) +2016-08-24 11:14:45,500 INFO: Done: Read Database Files +2016-08-24 11:14:45,500 INFO: Start: Determine validation split for ratio 0.7 +2016-08-24 11:14:45,506 INFO: Done: Determine validation split +2016-08-24 11:14:45,506 INFO: Start: Determine 2 folds +2016-08-24 11:14:45,517 INFO: Info: Length of Learning Sets: 122 +2016-08-24 11:14:45,517 INFO: Info: Length of Testing Sets: 122 +2016-08-24 11:14:45,517 INFO: Info: Length of Validation Set: 103 +2016-08-24 11:14:45,517 INFO: Done: Determine folds +2016-08-24 11:14:45,518 INFO: Start: Learning with Mumbo and 2 folds +2016-08-24 11:14:45,518 INFO: Start: Fold number 1 +2016-08-24 11:14:47,122 DEBUG: Start: Iteration 1 +2016-08-24 11:14:47,138 DEBUG: View 0 : 0.372670807453 +2016-08-24 11:14:47,146 DEBUG: View 1 : 0.627329192547 +2016-08-24 11:14:47,177 DEBUG: View 2 : 0.372670807453 +2016-08-24 11:14:47,185 DEBUG: View 3 : 0.627329192547 +2016-08-24 11:14:47,227 DEBUG: Best view : MiRNA__ +2016-08-24 11:14:47,301 DEBUG: Start: Iteration 2 +2016-08-24 11:14:47,320 DEBUG: View 0 : 0.608695652174 +2016-08-24 11:14:47,328 DEBUG: View 1 : 0.726708074534 +2016-08-24 11:14:47,423 DEBUG: View 2 : 0.627329192547 +2016-08-24 11:14:47,432 DEBUG: View 3 : 0.683229813665 +2016-08-24 11:14:47,478 DEBUG: Best view : MiRNA__ +2016-08-24 11:14:47,611 DEBUG: Start: Iteration 3 +2016-08-24 11:14:47,629 DEBUG: View 0 : 0.552795031056 +2016-08-24 11:14:47,637 DEBUG: View 1 : 0.645962732919 +2016-08-24 11:14:47,759 DEBUG: View 2 : 0.534161490683 +2016-08-24 11:14:47,771 DEBUG: View 3 : 0.633540372671 +2016-08-24 11:14:47,849 DEBUG: Best view : MiRNA__ +2016-08-24 11:14:48,046 DEBUG: Start: Iteration 4 +2016-08-24 11:14:48,064 DEBUG: View 0 : 0.577639751553 +2016-08-24 11:14:48,072 DEBUG: View 1 : 0.391304347826 +2016-08-24 11:14:48,164 DEBUG: View 2 : 0.527950310559 +2016-08-24 11:14:48,172 DEBUG: View 3 : 0.55900621118 +2016-08-24 11:14:48,228 DEBUG: Best view : RANSeq_ +2016-08-24 11:14:48,495 DEBUG: Start: Iteration 5 +2016-08-24 11:14:48,513 DEBUG: View 0 : 0.453416149068 +2016-08-24 11:14:48,521 DEBUG: View 1 : 0.689440993789 +2016-08-24 11:14:48,604 DEBUG: View 2 : 0.484472049689 +2016-08-24 11:14:48,612 DEBUG: View 3 : 0.577639751553 +2016-08-24 11:14:48,670 DEBUG: Best view : MiRNA__ +2016-08-24 11:14:48,996 DEBUG: Start: Iteration 6 +2016-08-24 11:14:49,014 DEBUG: View 0 : 0.596273291925 +2016-08-24 11:14:49,021 DEBUG: View 1 : 0.645962732919 +2016-08-24 11:14:49,113 DEBUG: View 2 : 0.577639751553 +2016-08-24 11:14:49,121 DEBUG: View 3 : 0.608695652174 +2016-08-24 11:14:49,182 DEBUG: Best view : Clinic_ +2016-08-24 11:14:49,566 DEBUG: Start: Iteration 7 +2016-08-24 11:14:49,584 DEBUG: View 0 : 0.509316770186 +2016-08-24 11:14:49,592 DEBUG: View 1 : 0.72049689441 +2016-08-24 11:14:49,679 DEBUG: View 2 : 0.577639751553 +2016-08-24 11:14:49,687 DEBUG: View 3 : 0.546583850932 +2016-08-24 11:14:49,750 DEBUG: Best view : MiRNA__ +2016-08-24 11:14:50,217 DEBUG: Start: Iteration 8 +2016-08-24 11:14:50,235 DEBUG: View 0 : 0.540372670807 +2016-08-24 11:14:50,243 DEBUG: View 1 : 0.639751552795 +2016-08-24 11:14:50,331 DEBUG: View 2 : 0.577639751553 +2016-08-24 11:14:50,339 DEBUG: View 3 : 0.621118012422 +2016-08-24 11:14:50,404 DEBUG: Best view : Clinic_ +2016-08-24 11:14:50,908 DEBUG: Start: Iteration 9 +2016-08-24 11:14:50,926 DEBUG: View 0 : 0.614906832298 +2016-08-24 11:14:50,934 DEBUG: View 1 : 0.571428571429 +2016-08-24 11:14:51,028 DEBUG: View 2 : 0.55900621118 +2016-08-24 11:14:51,036 DEBUG: View 3 : 0.565217391304 +2016-08-24 11:14:51,104 DEBUG: Best view : Clinic_ +2016-08-24 11:14:51,669 DEBUG: Start: Iteration 10 +2016-08-24 11:14:51,687 DEBUG: View 0 : 0.608695652174 +2016-08-24 11:14:51,695 DEBUG: View 1 : 0.689440993789 +2016-08-24 11:14:51,787 DEBUG: View 2 : 0.540372670807 +2016-08-24 11:14:51,795 DEBUG: View 3 : 0.639751552795 +2016-08-24 11:14:51,865 DEBUG: Best view : MiRNA__ +2016-08-24 11:14:52,493 DEBUG: Start: Iteration 11 +2016-08-24 11:14:52,511 DEBUG: View 0 : 0.596273291925 +2016-08-24 11:14:52,519 DEBUG: View 1 : 0.465838509317 +2016-08-24 11:14:52,606 DEBUG: View 2 : 0.565217391304 +2016-08-24 11:14:52,614 DEBUG: View 3 : 0.490683229814 +2016-08-24 11:14:52,687 DEBUG: Best view : RANSeq_ +2016-08-24 11:14:53,382 DEBUG: Start: Iteration 12 +2016-08-24 11:14:53,401 DEBUG: View 0 : 0.378881987578 +2016-08-24 11:14:53,409 DEBUG: View 1 : 0.614906832298 +2016-08-24 11:14:53,498 DEBUG: View 2 : 0.55900621118 +2016-08-24 11:14:53,506 DEBUG: View 3 : 0.633540372671 +2016-08-24 11:14:53,580 DEBUG: Best view : Clinic_ +2016-08-24 11:14:54,336 DEBUG: Start: Iteration 13 +2016-08-24 11:14:54,354 DEBUG: View 0 : 0.689440993789 +2016-08-24 11:14:54,362 DEBUG: View 1 : 0.577639751553 +2016-08-24 11:14:54,450 DEBUG: View 2 : 0.596273291925 +2016-08-24 11:14:54,458 DEBUG: View 3 : 0.683229813665 +2016-08-24 11:14:54,535 DEBUG: Best view : Clinic_ +2016-08-24 11:14:55,380 DEBUG: Start: Iteration 14 +2016-08-24 11:14:55,399 DEBUG: View 0 : 0.459627329193 +2016-08-24 11:14:55,408 DEBUG: View 1 : 0.546583850932 +2016-08-24 11:14:55,511 DEBUG: View 2 : 0.608695652174 +2016-08-24 11:14:55,520 DEBUG: View 3 : 0.621118012422 +2016-08-24 11:14:55,597 DEBUG: Best view : Clinic_ +2016-08-24 11:14:56,463 DEBUG: Start: Iteration 15 +2016-08-24 11:14:56,480 DEBUG: View 0 : 0.515527950311 +2016-08-24 11:14:56,488 DEBUG: View 1 : 0.633540372671 +2016-08-24 11:14:56,580 DEBUG: View 2 : 0.527950310559 +2016-08-24 11:14:56,588 DEBUG: View 3 : 0.484472049689 +2016-08-24 11:14:56,668 DEBUG: Best view : MiRNA__ +2016-08-24 11:14:57,608 DEBUG: Start: Iteration 16 +2016-08-24 11:14:57,628 DEBUG: View 0 : 0.484472049689 +2016-08-24 11:14:57,637 DEBUG: View 1 : 0.596273291925 +2016-08-24 11:14:57,734 DEBUG: View 2 : 0.608695652174 +2016-08-24 11:14:57,742 DEBUG: View 3 : 0.627329192547 +2016-08-24 11:14:57,824 DEBUG: Best view : Clinic_ +2016-08-24 11:14:58,815 DEBUG: Start: Iteration 17 +2016-08-24 11:14:58,833 DEBUG: View 0 : 0.459627329193 +2016-08-24 11:14:58,841 DEBUG: View 1 : 0.67701863354 +2016-08-24 11:14:58,934 DEBUG: View 2 : 0.621118012422 +2016-08-24 11:14:58,942 DEBUG: View 3 : 0.590062111801 +2016-08-24 11:14:59,028 DEBUG: Best view : MiRNA__ +2016-08-24 11:15:00,093 DEBUG: Start: Iteration 18 +2016-08-24 11:15:00,112 DEBUG: View 0 : 0.67701863354 +2016-08-24 11:15:00,120 DEBUG: View 1 : 0.608695652174 +2016-08-24 11:15:00,210 DEBUG: View 2 : 0.515527950311 +2016-08-24 11:15:00,217 DEBUG: View 3 : 0.708074534161 +2016-08-24 11:15:00,304 DEBUG: Best view : Clinic_ +2016-08-24 11:15:01,416 DEBUG: Start: Iteration 19 +2016-08-24 11:15:01,434 DEBUG: View 0 : 0.546583850932 +2016-08-24 11:15:01,442 DEBUG: View 1 : 0.701863354037 +2016-08-24 11:15:01,534 DEBUG: View 2 : 0.590062111801 +2016-08-24 11:15:01,542 DEBUG: View 3 : 0.639751552795 +2016-08-24 11:15:01,631 DEBUG: Best view : MiRNA__ +2016-08-24 11:15:02,804 DEBUG: Start: Iteration 20 +2016-08-24 11:15:02,826 DEBUG: View 0 : 0.484472049689 +2016-08-24 11:15:02,834 DEBUG: View 1 : 0.490683229814 +2016-08-24 11:15:02,941 DEBUG: View 2 : 0.577639751553 +2016-08-24 11:15:02,949 DEBUG: View 3 : 0.608695652174 +2016-08-24 11:15:03,045 DEBUG: Best view : Clinic_ +2016-08-24 11:15:04,267 DEBUG: Start: Iteration 21 +2016-08-24 11:15:04,286 DEBUG: View 0 : 0.621118012422 +2016-08-24 11:15:04,294 DEBUG: View 1 : 0.521739130435 +2016-08-24 11:15:04,382 DEBUG: View 2 : 0.60248447205 +2016-08-24 11:15:04,389 DEBUG: View 3 : 0.633540372671 +2016-08-24 11:15:04,483 DEBUG: Best view : Clinic_ +2016-08-24 11:15:05,775 DEBUG: Start: Iteration 22 +2016-08-24 11:15:05,793 DEBUG: View 0 : 0.540372670807 +2016-08-24 11:15:05,801 DEBUG: View 1 : 0.658385093168 +2016-08-24 11:15:05,889 DEBUG: View 2 : 0.608695652174 +2016-08-24 11:15:05,898 DEBUG: View 3 : 0.527950310559 +2016-08-24 11:15:05,993 DEBUG: Best view : MiRNA__ +2016-08-24 11:15:07,339 DEBUG: Start: Iteration 23 +2016-08-24 11:15:07,357 DEBUG: View 0 : 0.571428571429 +2016-08-24 11:15:07,364 DEBUG: View 1 : 0.534161490683 +2016-08-24 11:15:07,454 DEBUG: View 2 : 0.627329192547 +2016-08-24 11:15:07,462 DEBUG: View 3 : 0.72049689441 +2016-08-24 11:15:07,560 DEBUG: Best view : Clinic_ +2016-08-24 11:15:08,965 DEBUG: Start: Iteration 24 +2016-08-24 11:15:08,983 DEBUG: View 0 : 0.478260869565 +2016-08-24 11:15:08,990 DEBUG: View 1 : 0.39751552795 +2016-08-24 11:15:09,083 DEBUG: View 2 : 0.577639751553 +2016-08-24 11:15:09,091 DEBUG: View 3 : 0.614906832298 +2016-08-24 11:15:09,192 DEBUG: Best view : Clinic_ +2016-08-24 11:15:10,667 DEBUG: Start: Iteration 25 +2016-08-24 11:15:10,685 DEBUG: View 0 : 0.621118012422 +2016-08-24 11:15:10,692 DEBUG: View 1 : 0.385093167702 +2016-08-24 11:15:10,784 DEBUG: View 2 : 0.565217391304 +2016-08-24 11:15:10,791 DEBUG: View 3 : 0.552795031056 +2016-08-24 11:15:10,893 DEBUG: Best view : Methyl_ +2016-08-24 11:15:12,414 DEBUG: Start: Iteration 26 +2016-08-24 11:15:12,433 DEBUG: View 0 : 0.633540372671 +2016-08-24 11:15:12,440 DEBUG: View 1 : 0.577639751553 +2016-08-24 11:15:12,533 DEBUG: View 2 : 0.527950310559 +2016-08-24 11:15:12,541 DEBUG: View 3 : 0.67701863354 +2016-08-24 11:15:12,652 DEBUG: Best view : Clinic_ +2016-08-24 11:15:14,242 DEBUG: Start: Iteration 27 +2016-08-24 11:15:14,260 DEBUG: View 0 : 0.55900621118 +2016-08-24 11:15:14,268 DEBUG: View 1 : 0.614906832298 +2016-08-24 11:15:14,363 DEBUG: View 2 : 0.546583850932 +2016-08-24 11:15:14,371 DEBUG: View 3 : 0.546583850932 +2016-08-24 11:15:14,477 DEBUG: Best view : MiRNA__ +2016-08-24 11:15:16,122 DEBUG: Start: Iteration 28 +2016-08-24 11:15:16,140 DEBUG: View 0 : 0.583850931677 +2016-08-24 11:15:16,148 DEBUG: View 1 : 0.645962732919 +2016-08-24 11:15:16,243 DEBUG: View 2 : 0.565217391304 +2016-08-24 11:15:16,251 DEBUG: View 3 : 0.571428571429 +2016-08-24 11:15:16,360 DEBUG: Best view : MiRNA__ +2016-08-24 11:15:18,074 DEBUG: Start: Iteration 29 +2016-08-24 11:15:18,092 DEBUG: View 0 : 0.608695652174 +2016-08-24 11:15:18,100 DEBUG: View 1 : 0.627329192547 +2016-08-24 11:15:18,193 DEBUG: View 2 : 0.521739130435 +2016-08-24 11:15:18,201 DEBUG: View 3 : 0.664596273292 +2016-08-24 11:15:18,311 DEBUG: Best view : Clinic_ +2016-08-24 11:15:20,068 DEBUG: Start: Iteration 30 +2016-08-24 11:15:20,087 DEBUG: View 0 : 0.540372670807 +2016-08-24 11:15:20,095 DEBUG: View 1 : 0.639751552795 +2016-08-24 11:15:20,193 DEBUG: View 2 : 0.552795031056 +2016-08-24 11:15:20,201 DEBUG: View 3 : 0.627329192547 +2016-08-24 11:15:20,319 DEBUG: Best view : Clinic_ +2016-08-24 11:15:22,144 DEBUG: Start: Iteration 31 +2016-08-24 11:15:22,161 DEBUG: View 0 : 0.490683229814 +2016-08-24 11:15:22,169 DEBUG: View 1 : 0.360248447205 +2016-08-24 11:15:22,259 DEBUG: View 2 : 0.55900621118 +2016-08-24 11:15:22,267 DEBUG: View 3 : 0.534161490683 +2016-08-24 11:15:22,383 DEBUG: Best view : RANSeq_ +2016-08-24 11:15:24,278 DEBUG: Start: Iteration 32 +2016-08-24 11:15:24,297 DEBUG: View 0 : 0.534161490683 +2016-08-24 11:15:24,305 DEBUG: View 1 : 0.627329192547 +2016-08-24 11:15:24,397 DEBUG: View 2 : 0.639751552795 +2016-08-24 11:15:24,405 DEBUG: View 3 : 0.60248447205 +2016-08-24 11:15:24,524 DEBUG: Best view : RANSeq_ +2016-08-24 11:15:26,504 DEBUG: Start: Iteration 33 +2016-08-24 11:15:26,522 DEBUG: View 0 : 0.472049689441 +2016-08-24 11:15:26,529 DEBUG: View 1 : 0.639751552795 +2016-08-24 11:15:26,621 DEBUG: View 2 : 0.503105590062 +2016-08-24 11:15:26,629 DEBUG: View 3 : 0.664596273292 +2016-08-24 11:15:26,748 DEBUG: Best view : Clinic_ +2016-08-24 11:15:28,792 DEBUG: Start: Iteration 34 +2016-08-24 11:15:28,809 DEBUG: View 0 : 0.583850931677 +2016-08-24 11:15:28,817 DEBUG: View 1 : 0.55900621118 +2016-08-24 11:15:28,909 DEBUG: View 2 : 0.577639751553 +2016-08-24 11:15:28,917 DEBUG: View 3 : 0.621118012422 +2016-08-24 11:15:29,040 DEBUG: Best view : Clinic_ +2016-08-24 11:15:31,128 DEBUG: Start: Iteration 35 +2016-08-24 11:15:31,146 DEBUG: View 0 : 0.490683229814 +2016-08-24 11:15:31,153 DEBUG: View 1 : 0.571428571429 +2016-08-24 11:15:31,241 DEBUG: View 2 : 0.652173913043 +2016-08-24 11:15:31,248 DEBUG: View 3 : 0.596273291925 +2016-08-24 11:15:31,372 DEBUG: Best view : RANSeq_ +2016-08-24 11:15:33,543 DEBUG: Start: Iteration 36 +2016-08-24 11:15:33,561 DEBUG: View 0 : 0.614906832298 +2016-08-24 11:15:33,568 DEBUG: View 1 : 0.614906832298 +2016-08-24 11:15:33,651 DEBUG: View 2 : 0.515527950311 +2016-08-24 11:15:33,659 DEBUG: View 3 : 0.565217391304 +2016-08-24 11:15:33,785 DEBUG: Best view : MiRNA__ +2016-08-24 11:15:36,019 DEBUG: Start: Iteration 37 +2016-08-24 11:15:36,037 DEBUG: View 0 : 0.757763975155 +2016-08-24 11:15:36,045 DEBUG: View 1 : 0.60248447205 +2016-08-24 11:15:36,132 DEBUG: View 2 : 0.577639751553 +2016-08-24 11:15:36,140 DEBUG: View 3 : 0.490683229814 +2016-08-24 11:15:36,269 DEBUG: Best view : Methyl_ +2016-08-24 11:15:38,554 DEBUG: Start: Iteration 38 +2016-08-24 11:15:38,572 DEBUG: View 0 : 0.552795031056 +2016-08-24 11:15:38,579 DEBUG: View 1 : 0.683229813665 +2016-08-24 11:15:38,669 DEBUG: View 2 : 0.534161490683 +2016-08-24 11:15:38,677 DEBUG: View 3 : 0.571428571429 +2016-08-24 11:15:38,808 DEBUG: Best view : MiRNA__ +2016-08-24 11:15:41,153 DEBUG: Start: Iteration 39 +2016-08-24 11:15:41,170 DEBUG: View 0 : 0.652173913043 +2016-08-24 11:15:41,178 DEBUG: View 1 : 0.658385093168 +2016-08-24 11:15:41,265 DEBUG: View 2 : 0.658385093168 +2016-08-24 11:15:41,273 DEBUG: View 3 : 0.596273291925 +2016-08-24 11:15:41,405 DEBUG: Best view : RANSeq_ +2016-08-24 11:15:43,837 DEBUG: Start: Iteration 40 +2016-08-24 11:15:43,854 DEBUG: View 0 : 0.633540372671 +2016-08-24 11:15:43,862 DEBUG: View 1 : 0.39751552795 +2016-08-24 11:15:43,951 DEBUG: View 2 : 0.55900621118 +2016-08-24 11:15:43,959 DEBUG: View 3 : 0.590062111801 +2016-08-24 11:15:44,094 DEBUG: Best view : Methyl_ +2016-08-24 11:15:46,579 DEBUG: Start: Iteration 41 +2016-08-24 11:15:46,597 DEBUG: View 0 : 0.552795031056 +2016-08-24 11:15:46,605 DEBUG: View 1 : 0.639751552795 +2016-08-24 11:15:46,694 DEBUG: View 2 : 0.60248447205 +2016-08-24 11:15:46,702 DEBUG: View 3 : 0.478260869565 +2016-08-24 11:15:46,839 DEBUG: Best view : MiRNA__ +2016-08-24 11:15:49,378 DEBUG: Start: Iteration 42 +2016-08-24 11:15:49,396 DEBUG: View 0 : 0.565217391304 +2016-08-24 11:15:49,404 DEBUG: View 1 : 0.596273291925 +2016-08-24 11:15:49,491 DEBUG: View 2 : 0.608695652174 +2016-08-24 11:15:49,499 DEBUG: View 3 : 0.608695652174 +2016-08-24 11:15:49,638 DEBUG: Best view : Clinic_ +2016-08-24 11:15:52,257 DEBUG: Start: Iteration 43 +2016-08-24 11:15:52,275 DEBUG: View 0 : 0.701863354037 +2016-08-24 11:15:52,283 DEBUG: View 1 : 0.645962732919 +2016-08-24 11:15:52,377 DEBUG: View 2 : 0.627329192547 +2016-08-24 11:15:52,385 DEBUG: View 3 : 0.608695652174 +2016-08-24 11:15:52,526 DEBUG: Best view : Methyl_ +2016-08-24 11:15:55,194 DEBUG: Start: Iteration 44 +2016-08-24 11:15:55,213 DEBUG: View 0 : 0.472049689441 +2016-08-24 11:15:55,221 DEBUG: View 1 : 0.496894409938 +2016-08-24 11:15:55,316 DEBUG: View 2 : 0.509316770186 +2016-08-24 11:15:55,324 DEBUG: View 3 : 0.552795031056 +2016-08-24 11:15:55,466 DEBUG: Best view : Clinic_ +2016-08-24 11:15:58,192 DEBUG: Start: Iteration 45 +2016-08-24 11:15:58,210 DEBUG: View 0 : 0.484472049689 +2016-08-24 11:15:58,217 DEBUG: View 1 : 0.621118012422 +2016-08-24 11:15:58,311 DEBUG: View 2 : 0.583850931677 +2016-08-24 11:15:58,318 DEBUG: View 3 : 0.583850931677 +2016-08-24 11:15:58,464 DEBUG: Best view : MiRNA__ +2016-08-24 11:16:01,240 DEBUG: Start: Iteration 46 +2016-08-24 11:16:01,258 DEBUG: View 0 : 0.60248447205 +2016-08-24 11:16:01,265 DEBUG: View 1 : 0.639751552795 +2016-08-24 11:16:01,360 DEBUG: View 2 : 0.565217391304 +2016-08-24 11:16:01,368 DEBUG: View 3 : 0.521739130435 +2016-08-24 11:16:01,516 DEBUG: Best view : MiRNA__ +2016-08-24 11:16:04,354 DEBUG: Start: Iteration 47 +2016-08-24 11:16:04,372 DEBUG: View 0 : 0.639751552795 +2016-08-24 11:16:04,380 DEBUG: View 1 : 0.633540372671 +2016-08-24 11:16:04,472 DEBUG: View 2 : 0.521739130435 +2016-08-24 11:16:04,480 DEBUG: View 3 : 0.490683229814 +2016-08-24 11:16:04,629 DEBUG: Best view : Methyl_ +2016-08-24 11:16:07,543 DEBUG: Start: Iteration 48 +2016-08-24 11:16:07,561 DEBUG: View 0 : 0.577639751553 +2016-08-24 11:16:07,569 DEBUG: View 1 : 0.633540372671 +2016-08-24 11:16:07,661 DEBUG: View 2 : 0.60248447205 +2016-08-24 11:16:07,669 DEBUG: View 3 : 0.596273291925 +2016-08-24 11:16:07,822 DEBUG: Best view : Clinic_ +2016-08-24 11:16:10,789 DEBUG: Start: Iteration 49 +2016-08-24 11:16:10,807 DEBUG: View 0 : 0.453416149068 +2016-08-24 11:16:10,814 DEBUG: View 1 : 0.571428571429 +2016-08-24 11:16:10,907 DEBUG: View 2 : 0.639751552795 +2016-08-24 11:16:10,915 DEBUG: View 3 : 0.633540372671 +2016-08-24 11:16:11,069 DEBUG: Best view : Clinic_ +2016-08-24 11:16:14,095 DEBUG: Start: Iteration 50 +2016-08-24 11:16:14,112 DEBUG: View 0 : 0.670807453416 +2016-08-24 11:16:14,120 DEBUG: View 1 : 0.664596273292 +2016-08-24 11:16:14,200 DEBUG: View 2 : 0.596273291925 +2016-08-24 11:16:14,208 DEBUG: View 3 : 0.60248447205 +2016-08-24 11:16:14,365 DEBUG: Best view : Methyl_ +2016-08-24 11:16:17,472 DEBUG: Start: Iteration 51 +2016-08-24 11:16:17,490 DEBUG: View 0 : 0.652173913043 +2016-08-24 11:16:17,498 DEBUG: View 1 : 0.416149068323 +2016-08-24 11:16:17,602 DEBUG: View 2 : 0.484472049689 +2016-08-24 11:16:17,610 DEBUG: View 3 : 0.621118012422 +2016-08-24 11:16:17,772 DEBUG: Best view : Methyl_ +2016-08-24 11:16:20,914 DEBUG: Start: Iteration 52 +2016-08-24 11:16:20,932 DEBUG: View 0 : 0.689440993789 +2016-08-24 11:16:20,940 DEBUG: View 1 : 0.627329192547 +2016-08-24 11:16:21,034 DEBUG: View 2 : 0.552795031056 +2016-08-24 11:16:21,041 DEBUG: View 3 : 0.490683229814 +2016-08-24 11:16:21,205 DEBUG: Best view : Methyl_ +2016-08-24 11:16:24,426 DEBUG: Start: Iteration 53 +2016-08-24 11:16:24,443 DEBUG: View 0 : 0.565217391304 +2016-08-24 11:16:24,451 DEBUG: View 1 : 0.658385093168 +2016-08-24 11:16:24,538 DEBUG: View 2 : 0.590062111801 +2016-08-24 11:16:24,546 DEBUG: View 3 : 0.534161490683 +2016-08-24 11:16:24,710 DEBUG: Best view : MiRNA__ +2016-08-24 11:16:27,999 DEBUG: Start: Iteration 54 +2016-08-24 11:16:28,017 DEBUG: View 0 : 0.577639751553 +2016-08-24 11:16:28,025 DEBUG: View 1 : 0.434782608696 +2016-08-24 11:16:28,116 DEBUG: View 2 : 0.552795031056 +2016-08-24 11:16:28,124 DEBUG: View 3 : 0.534161490683 +2016-08-24 11:16:28,291 DEBUG: Best view : Methyl_ +2016-08-24 11:16:31,633 DEBUG: Start: Iteration 55 +2016-08-24 11:16:31,650 DEBUG: View 0 : 0.434782608696 +2016-08-24 11:16:31,658 DEBUG: View 1 : 0.645962732919 +2016-08-24 11:16:31,746 DEBUG: View 2 : 0.577639751553 +2016-08-24 11:16:31,754 DEBUG: View 3 : 0.689440993789 +2016-08-24 11:16:31,923 DEBUG: Best view : Clinic_ +2016-08-24 11:16:35,333 DEBUG: Start: Iteration 56 +2016-08-24 11:16:35,351 DEBUG: View 0 : 0.614906832298 +2016-08-24 11:16:35,359 DEBUG: View 1 : 0.857142857143 +2016-08-24 11:16:35,449 DEBUG: View 2 : 0.546583850932 +2016-08-24 11:16:35,456 DEBUG: View 3 : 0.627329192547 +2016-08-24 11:16:35,627 DEBUG: Best view : MiRNA__ +2016-08-24 11:16:39,082 DEBUG: Start: Iteration 57 +2016-08-24 11:16:39,100 DEBUG: View 0 : 0.527950310559 +2016-08-24 11:16:39,108 DEBUG: View 1 : 0.434782608696 +2016-08-24 11:16:39,201 DEBUG: View 2 : 0.621118012422 +2016-08-24 11:16:39,209 DEBUG: View 3 : 0.590062111801 +2016-08-24 11:16:39,381 DEBUG: Best view : RANSeq_ +2016-08-24 11:16:42,922 DEBUG: Start: Iteration 58 +2016-08-24 11:16:42,940 DEBUG: View 0 : 0.540372670807 +2016-08-24 11:16:42,948 DEBUG: View 1 : 0.534161490683 +2016-08-24 11:16:43,034 DEBUG: View 2 : 0.565217391304 +2016-08-24 11:16:43,041 DEBUG: View 3 : 0.490683229814 +2016-08-24 11:16:43,217 DEBUG: Best view : RANSeq_ +2016-08-24 11:16:46,827 DEBUG: Start: Iteration 59 +2016-08-24 11:16:46,845 DEBUG: View 0 : 0.55900621118 +2016-08-24 11:16:46,853 DEBUG: View 1 : 0.639751552795 +2016-08-24 11:16:46,947 DEBUG: View 2 : 0.627329192547 +2016-08-24 11:16:46,955 DEBUG: View 3 : 0.590062111801 +2016-08-24 11:16:47,141 DEBUG: Best view : RANSeq_ +2016-08-24 11:16:50,821 DEBUG: Start: Iteration 60 +2016-08-24 11:16:50,841 DEBUG: View 0 : 0.608695652174 +2016-08-24 11:16:50,848 DEBUG: View 1 : 0.478260869565 +2016-08-24 11:16:50,938 DEBUG: View 2 : 0.596273291925 +2016-08-24 11:16:50,947 DEBUG: View 3 : 0.55900621118 +2016-08-24 11:16:51,127 DEBUG: Best view : RANSeq_ +2016-08-24 11:16:54,882 DEBUG: Start: Iteration 61 +2016-08-24 11:16:54,900 DEBUG: View 0 : 0.403726708075 +2016-08-24 11:16:54,908 DEBUG: View 1 : 0.652173913043 +2016-08-24 11:16:54,998 DEBUG: View 2 : 0.60248447205 +2016-08-24 11:16:55,006 DEBUG: View 3 : 0.658385093168 +2016-08-24 11:16:55,186 DEBUG: Best view : Clinic_ +2016-08-24 11:16:58,982 DEBUG: Start: Iteration 62 +2016-08-24 11:16:59,000 DEBUG: View 0 : 0.509316770186 +2016-08-24 11:16:59,008 DEBUG: View 1 : 0.72049689441 +2016-08-24 11:16:59,102 DEBUG: View 2 : 0.633540372671 +2016-08-24 11:16:59,110 DEBUG: View 3 : 0.67701863354 +2016-08-24 11:16:59,295 DEBUG: Best view : MiRNA__ +2016-08-24 11:17:03,161 DEBUG: Start: Iteration 63 +2016-08-24 11:17:03,179 DEBUG: View 0 : 0.527950310559 +2016-08-24 11:17:03,187 DEBUG: View 1 : 0.484472049689 +2016-08-24 11:17:03,278 DEBUG: View 2 : 0.596273291925 +2016-08-24 11:17:03,286 DEBUG: View 3 : 0.639751552795 +2016-08-24 11:17:03,471 DEBUG: Best view : Clinic_ +2016-08-24 11:17:07,398 DEBUG: Start: Iteration 64 +2016-08-24 11:17:07,416 DEBUG: View 0 : 0.546583850932 +2016-08-24 11:17:07,425 DEBUG: View 1 : 0.633540372671 +2016-08-24 11:17:07,518 DEBUG: View 2 : 0.633540372671 +2016-08-24 11:17:07,526 DEBUG: View 3 : 0.509316770186 +2016-08-24 11:17:07,715 DEBUG: Best view : RANSeq_ +2016-08-24 11:17:11,730 DEBUG: Start: Iteration 65 +2016-08-24 11:17:11,749 DEBUG: View 0 : 0.447204968944 +2016-08-24 11:17:11,757 DEBUG: View 1 : 0.496894409938 +2016-08-24 11:17:11,849 DEBUG: View 2 : 0.614906832298 +2016-08-24 11:17:11,857 DEBUG: View 3 : 0.503105590062 +2016-08-24 11:17:12,055 DEBUG: Best view : RANSeq_ +2016-08-24 11:17:16,117 DEBUG: Start: Iteration 66 +2016-08-24 11:17:16,135 DEBUG: View 0 : 0.534161490683 +2016-08-24 11:17:16,143 DEBUG: View 1 : 0.614906832298 +2016-08-24 11:17:16,223 DEBUG: View 2 : 0.621118012422 +2016-08-24 11:17:16,231 DEBUG: View 3 : 0.683229813665 +2016-08-24 11:17:16,425 DEBUG: Best view : Clinic_ +2016-08-24 11:17:20,587 DEBUG: Start: Iteration 67 +2016-08-24 11:17:20,604 DEBUG: View 0 : 0.428571428571 +2016-08-24 11:17:20,612 DEBUG: View 1 : 0.496894409938 +2016-08-24 11:17:20,705 DEBUG: View 2 : 0.645962732919 +2016-08-24 11:17:20,713 DEBUG: View 3 : 0.60248447205 +2016-08-24 11:17:20,908 DEBUG: Best view : RANSeq_ +2016-08-24 11:17:25,155 DEBUG: Start: Iteration 68 +2016-08-24 11:17:25,173 DEBUG: View 0 : 0.534161490683 +2016-08-24 11:17:25,181 DEBUG: View 1 : 0.664596273292 +2016-08-24 11:17:25,267 DEBUG: View 2 : 0.627329192547 +2016-08-24 11:17:25,275 DEBUG: View 3 : 0.670807453416 +2016-08-24 11:17:25,469 DEBUG: Best view : Clinic_ +2016-08-24 11:17:29,738 DEBUG: Start: Iteration 69 +2016-08-24 11:17:29,756 DEBUG: View 0 : 0.465838509317 +2016-08-24 11:17:29,764 DEBUG: View 1 : 0.633540372671 +2016-08-24 11:17:29,858 DEBUG: View 2 : 0.652173913043 +2016-08-24 11:17:29,866 DEBUG: View 3 : 0.608695652174 +2016-08-24 11:17:30,064 DEBUG: Best view : RANSeq_ +2016-08-24 11:17:34,406 DEBUG: Start: Iteration 70 +2016-08-24 11:17:34,424 DEBUG: View 0 : 0.552795031056 +2016-08-24 11:17:34,432 DEBUG: View 1 : 0.596273291925 +2016-08-24 11:17:34,520 DEBUG: View 2 : 0.627329192547 +2016-08-24 11:17:34,528 DEBUG: View 3 : 0.608695652174 +2016-08-24 11:17:34,727 DEBUG: Best view : Clinic_ +2016-08-24 11:17:39,117 DEBUG: Start: Iteration 71 +2016-08-24 11:17:39,135 DEBUG: View 0 : 0.565217391304 +2016-08-24 11:17:39,143 DEBUG: View 1 : 0.515527950311 +2016-08-24 11:17:39,228 DEBUG: View 2 : 0.546583850932 +2016-08-24 11:17:39,236 DEBUG: View 3 : 0.621118012422 +2016-08-24 11:17:39,489 DEBUG: Best view : Clinic_ +2016-08-24 11:17:43,962 DEBUG: Start: Iteration 72 +2016-08-24 11:17:43,980 DEBUG: View 0 : 0.621118012422 +2016-08-24 11:17:43,987 DEBUG: View 1 : 0.565217391304 +2016-08-24 11:17:44,079 DEBUG: View 2 : 0.55900621118 +2016-08-24 11:17:44,088 DEBUG: View 3 : 0.577639751553 +2016-08-24 11:17:44,293 DEBUG: Best view : Methyl_ +2016-08-24 11:17:48,830 DEBUG: Start: Iteration 73 +2016-08-24 11:17:48,850 DEBUG: View 0 : 0.67701863354 +2016-08-24 11:17:48,860 DEBUG: View 1 : 0.540372670807 +2016-08-24 11:17:48,961 DEBUG: View 2 : 0.590062111801 +2016-08-24 11:17:48,968 DEBUG: View 3 : 0.633540372671 +2016-08-24 11:17:49,176 DEBUG: Best view : Clinic_ +2016-08-24 11:17:53,775 DEBUG: Start: Iteration 74 +2016-08-24 11:17:53,793 DEBUG: View 0 : 0.453416149068 +2016-08-24 11:17:53,800 DEBUG: View 1 : 0.652173913043 +2016-08-24 11:17:53,889 DEBUG: View 2 : 0.60248447205 +2016-08-24 11:17:53,897 DEBUG: View 3 : 0.503105590062 +2016-08-24 11:17:54,119 DEBUG: Best view : MiRNA__ +2016-08-24 11:17:58,762 DEBUG: Start: Iteration 75 +2016-08-24 11:17:58,780 DEBUG: View 0 : 0.503105590062 +2016-08-24 11:17:58,788 DEBUG: View 1 : 0.627329192547 +2016-08-24 11:17:58,880 DEBUG: View 2 : 0.652173913043 +2016-08-24 11:17:58,888 DEBUG: View 3 : 0.670807453416 +2016-08-24 11:17:59,101 DEBUG: Best view : Clinic_ +2016-08-24 11:18:03,812 DEBUG: Start: Iteration 76 +2016-08-24 11:18:03,829 DEBUG: View 0 : 0.478260869565 +2016-08-24 11:18:03,837 DEBUG: View 1 : 0.627329192547 +2016-08-24 11:18:03,929 DEBUG: View 2 : 0.596273291925 +2016-08-24 11:18:03,937 DEBUG: View 3 : 0.521739130435 +2016-08-24 11:18:04,151 DEBUG: Best view : RANSeq_ +2016-08-24 11:18:08,927 DEBUG: Start: Iteration 77 +2016-08-24 11:18:08,945 DEBUG: View 0 : 0.509316770186 +2016-08-24 11:18:08,953 DEBUG: View 1 : 0.465838509317 +2016-08-24 11:18:09,049 DEBUG: View 2 : 0.515527950311 +2016-08-24 11:18:09,057 DEBUG: View 3 : 0.552795031056 +2016-08-24 11:18:09,272 DEBUG: Best view : Clinic_ +2016-08-24 11:18:14,096 DEBUG: Start: Iteration 78 +2016-08-24 11:18:14,114 DEBUG: View 0 : 0.496894409938 +2016-08-24 11:18:14,122 DEBUG: View 1 : 0.614906832298 +2016-08-24 11:18:14,216 DEBUG: View 2 : 0.540372670807 +2016-08-24 11:18:14,223 DEBUG: View 3 : 0.583850931677 +2016-08-24 11:18:14,442 DEBUG: Best view : MiRNA__ +2016-08-24 11:18:19,347 DEBUG: Start: Iteration 79 +2016-08-24 11:18:19,365 DEBUG: View 0 : 0.608695652174 +2016-08-24 11:18:19,373 DEBUG: View 1 : 0.726708074534 +2016-08-24 11:18:19,461 DEBUG: View 2 : 0.621118012422 +2016-08-24 11:18:19,469 DEBUG: View 3 : 0.664596273292 +2016-08-24 11:18:19,693 DEBUG: Best view : MiRNA__ +2016-08-24 11:18:24,651 DEBUG: Start: Iteration 80 +2016-08-24 11:18:24,669 DEBUG: View 0 : 0.546583850932 +2016-08-24 11:18:24,676 DEBUG: View 1 : 0.633540372671 +2016-08-24 11:18:24,765 DEBUG: View 2 : 0.503105590062 +2016-08-24 11:18:24,773 DEBUG: View 3 : 0.670807453416 +2016-08-24 11:18:24,993 DEBUG: Best view : Clinic_ +2016-08-24 11:18:30,011 DEBUG: Start: Iteration 81 +2016-08-24 11:18:30,030 DEBUG: View 0 : 0.490683229814 +2016-08-24 11:18:30,038 DEBUG: View 1 : 0.577639751553 +2016-08-24 11:18:30,128 DEBUG: View 2 : 0.55900621118 +2016-08-24 11:18:30,137 DEBUG: View 3 : 0.596273291925 +2016-08-24 11:18:30,364 DEBUG: Best view : Clinic_ +2016-08-24 11:18:35,443 DEBUG: Start: Iteration 82 +2016-08-24 11:18:35,462 DEBUG: View 0 : 0.527950310559 +2016-08-24 11:18:35,470 DEBUG: View 1 : 0.608695652174 +2016-08-24 11:18:35,558 DEBUG: View 2 : 0.552795031056 +2016-08-24 11:18:35,567 DEBUG: View 3 : 0.652173913043 +2016-08-24 11:18:35,795 DEBUG: Best view : Clinic_ +2016-08-24 11:18:40,943 DEBUG: Start: Iteration 83 +2016-08-24 11:18:40,961 DEBUG: View 0 : 0.689440993789 +2016-08-24 11:18:40,969 DEBUG: View 1 : 0.658385093168 +2016-08-24 11:18:41,058 DEBUG: View 2 : 0.521739130435 +2016-08-24 11:18:41,066 DEBUG: View 3 : 0.645962732919 +2016-08-24 11:18:41,297 DEBUG: Best view : Methyl_ +2016-08-24 11:18:46,494 DEBUG: Start: Iteration 84 +2016-08-24 11:18:46,512 DEBUG: View 0 : 0.55900621118 +2016-08-24 11:18:46,520 DEBUG: View 1 : 0.652173913043 +2016-08-24 11:18:46,614 DEBUG: View 2 : 0.608695652174 +2016-08-24 11:18:46,622 DEBUG: View 3 : 0.546583850932 +2016-08-24 11:18:46,855 DEBUG: Best view : MiRNA__ +2016-08-24 11:18:52,119 DEBUG: Start: Iteration 85 +2016-08-24 11:18:52,137 DEBUG: View 0 : 0.515527950311 +2016-08-24 11:18:52,144 DEBUG: View 1 : 0.453416149068 +2016-08-24 11:18:52,235 DEBUG: View 2 : 0.633540372671 +2016-08-24 11:18:52,243 DEBUG: View 3 : 0.577639751553 +2016-08-24 11:18:52,479 DEBUG: Best view : RANSeq_ +2016-08-24 11:18:57,816 DEBUG: Start: Iteration 86 +2016-08-24 11:18:57,834 DEBUG: View 0 : 0.614906832298 +2016-08-24 11:18:57,842 DEBUG: View 1 : 0.608695652174 +2016-08-24 11:18:57,936 DEBUG: View 2 : 0.670807453416 +2016-08-24 11:18:57,944 DEBUG: View 3 : 0.608695652174 +2016-08-24 11:18:58,180 DEBUG: Best view : RANSeq_ +2016-08-24 11:19:03,593 DEBUG: Start: Iteration 87 +2016-08-24 11:19:03,611 DEBUG: View 0 : 0.60248447205 +2016-08-24 11:19:03,619 DEBUG: View 1 : 0.608695652174 +2016-08-24 11:19:03,713 DEBUG: View 2 : 0.627329192547 +2016-08-24 11:19:03,721 DEBUG: View 3 : 0.521739130435 +2016-08-24 11:19:03,959 DEBUG: Best view : RANSeq_ +2016-08-24 11:19:09,435 DEBUG: Start: Iteration 88 +2016-08-24 11:19:09,453 DEBUG: View 0 : 0.664596273292 +2016-08-24 11:19:09,461 DEBUG: View 1 : 0.534161490683 +2016-08-24 11:19:09,553 DEBUG: View 2 : 0.55900621118 +2016-08-24 11:19:09,560 DEBUG: View 3 : 0.596273291925 +2016-08-24 11:19:09,799 DEBUG: Best view : Methyl_ +2016-08-24 11:19:15,336 DEBUG: Start: Iteration 89 +2016-08-24 11:19:15,355 DEBUG: View 0 : 0.527950310559 +2016-08-24 11:19:15,363 DEBUG: View 1 : 0.515527950311 +2016-08-24 11:19:15,465 DEBUG: View 2 : 0.633540372671 +2016-08-24 11:19:15,473 DEBUG: View 3 : 0.652173913043 +2016-08-24 11:19:15,721 DEBUG: Best view : Clinic_ +2016-08-24 11:19:21,322 DEBUG: Start: Iteration 90 +2016-08-24 11:19:21,340 DEBUG: View 0 : 0.478260869565 +2016-08-24 11:19:21,348 DEBUG: View 1 : 0.670807453416 +2016-08-24 11:19:21,443 DEBUG: View 2 : 0.60248447205 +2016-08-24 11:19:21,450 DEBUG: View 3 : 0.577639751553 +2016-08-24 11:19:21,697 DEBUG: Best view : MiRNA__ +2016-08-24 11:19:27,356 DEBUG: Start: Iteration 91 +2016-08-24 11:19:27,374 DEBUG: View 0 : 0.521739130435 +2016-08-24 11:19:27,382 DEBUG: View 1 : 0.496894409938 +2016-08-24 11:19:27,473 DEBUG: View 2 : 0.627329192547 +2016-08-24 11:19:27,481 DEBUG: View 3 : 0.527950310559 +2016-08-24 11:19:27,732 DEBUG: Best view : RANSeq_ +2016-08-24 11:19:33,475 DEBUG: Start: Iteration 92 +2016-08-24 11:19:33,493 DEBUG: View 0 : 0.546583850932 +2016-08-24 11:19:33,501 DEBUG: View 1 : 0.55900621118 +2016-08-24 11:19:33,591 DEBUG: View 2 : 0.627329192547 +2016-08-24 11:19:33,600 DEBUG: View 3 : 0.583850931677 +2016-08-24 11:19:33,851 DEBUG: Best view : RANSeq_ +2016-08-24 11:19:39,661 DEBUG: Start: Iteration 93 +2016-08-24 11:19:39,679 DEBUG: View 0 : 0.590062111801 +2016-08-24 11:19:39,687 DEBUG: View 1 : 0.708074534161 +2016-08-24 11:19:39,775 DEBUG: View 2 : 0.521739130435 +2016-08-24 11:19:39,783 DEBUG: View 3 : 0.546583850932 +2016-08-24 11:19:40,039 DEBUG: Best view : MiRNA__ +2016-08-24 11:19:45,933 DEBUG: Start: Iteration 94 +2016-08-24 11:19:45,951 DEBUG: View 0 : 0.645962732919 +2016-08-24 11:19:45,959 DEBUG: View 1 : 0.409937888199 +2016-08-24 11:19:46,043 DEBUG: View 2 : 0.55900621118 +2016-08-24 11:19:46,051 DEBUG: View 3 : 0.639751552795 +2016-08-24 11:19:46,302 DEBUG: Best view : Clinic_ +2016-08-24 11:19:52,252 DEBUG: Start: Iteration 95 +2016-08-24 11:19:52,270 DEBUG: View 0 : 0.583850931677 +2016-08-24 11:19:52,278 DEBUG: View 1 : 0.552795031056 +2016-08-24 11:19:52,367 DEBUG: View 2 : 0.552795031056 +2016-08-24 11:19:52,375 DEBUG: View 3 : 0.596273291925 +2016-08-24 11:19:52,642 DEBUG: Best view : Clinic_ +2016-08-24 11:19:58,625 DEBUG: Start: Iteration 96 +2016-08-24 11:19:58,643 DEBUG: View 0 : 0.540372670807 +2016-08-24 11:19:58,651 DEBUG: View 1 : 0.496894409938 +2016-08-24 11:19:58,742 DEBUG: View 2 : 0.60248447205 +2016-08-24 11:19:58,749 DEBUG: View 3 : 0.465838509317 +2016-08-24 11:19:59,007 DEBUG: Best view : RANSeq_ +2016-08-24 11:20:05,084 DEBUG: Start: Iteration 97 +2016-08-24 11:20:05,103 DEBUG: View 0 : 0.577639751553 +2016-08-24 11:20:05,111 DEBUG: View 1 : 0.683229813665 +2016-08-24 11:20:05,209 DEBUG: View 2 : 0.509316770186 +2016-08-24 11:20:05,217 DEBUG: View 3 : 0.590062111801 +2016-08-24 11:20:05,489 DEBUG: Best view : MiRNA__ +2016-08-24 11:20:11,716 DEBUG: Start: Iteration 98 +2016-08-24 11:20:11,734 DEBUG: View 0 : 0.571428571429 +2016-08-24 11:20:11,743 DEBUG: View 1 : 0.621118012422 +2016-08-24 11:20:11,834 DEBUG: View 2 : 0.621118012422 +2016-08-24 11:20:11,842 DEBUG: View 3 : 0.478260869565 +2016-08-24 11:20:12,104 DEBUG: Best view : MiRNA__ +2016-08-24 11:20:18,337 DEBUG: Start: Iteration 99 +2016-08-24 11:20:18,355 DEBUG: View 0 : 0.596273291925 +2016-08-24 11:20:18,363 DEBUG: View 1 : 0.621118012422 +2016-08-24 11:20:18,460 DEBUG: View 2 : 0.571428571429 +2016-08-24 11:20:18,468 DEBUG: View 3 : 0.55900621118 +2016-08-24 11:20:18,734 DEBUG: Best view : MiRNA__ +2016-08-24 11:20:25,017 DEBUG: Start: Iteration 100 +2016-08-24 11:20:25,036 DEBUG: View 0 : 0.403726708075 +2016-08-24 11:20:25,044 DEBUG: View 1 : 0.590062111801 +2016-08-24 11:20:25,138 DEBUG: View 2 : 0.60248447205 +2016-08-24 11:20:25,146 DEBUG: View 3 : 0.540372670807 +2016-08-24 11:20:25,413 DEBUG: Best view : MiRNA__ +2016-08-24 11:20:31,776 DEBUG: Start: Iteration 101 +2016-08-24 11:20:31,794 DEBUG: View 0 : 0.496894409938 +2016-08-24 11:20:31,802 DEBUG: View 1 : 0.714285714286 +2016-08-24 11:20:31,895 DEBUG: View 2 : 0.503105590062 +2016-08-24 11:20:31,902 DEBUG: View 3 : 0.496894409938 +2016-08-24 11:20:32,172 DEBUG: Best view : MiRNA__ +2016-08-24 11:20:38,807 DEBUG: Start: Iteration 102 +2016-08-24 11:20:38,831 DEBUG: View 0 : 0.695652173913 +2016-08-24 11:20:38,843 DEBUG: View 1 : 0.403726708075 +2016-08-24 11:20:38,958 DEBUG: View 2 : 0.496894409938 +2016-08-24 11:20:38,968 DEBUG: View 3 : 0.683229813665 +2016-08-24 11:20:39,249 DEBUG: Best view : Clinic_ +2016-08-24 11:20:45,713 INFO: Start: Classification +2016-08-24 11:21:01,314 INFO: Done: Fold number 1 +2016-08-24 11:21:01,314 INFO: Start: Fold number 2 +2016-08-24 11:21:02,941 DEBUG: Start: Iteration 1 +2016-08-24 11:21:02,957 DEBUG: View 0 : 0.615384615385 +2016-08-24 11:21:02,965 DEBUG: View 1 : 0.615384615385 +2016-08-24 11:21:03,052 DEBUG: View 2 : 0.615384615385 +2016-08-24 11:21:03,060 DEBUG: View 3 : 0.615384615385 +2016-08-24 11:21:03,101 DEBUG: Best view : Methyl_ +2016-08-24 11:21:03,178 DEBUG: Start: Iteration 2 +2016-08-24 11:21:03,195 DEBUG: View 0 : 0.557692307692 +2016-08-24 11:21:03,203 DEBUG: View 1 : 0.455128205128 +2016-08-24 11:21:03,294 DEBUG: View 2 : 0.576923076923 +2016-08-24 11:21:03,301 DEBUG: View 3 : 0.608974358974 +2016-08-24 11:21:03,347 DEBUG: Best view : Clinic_ +2016-08-24 11:21:03,483 DEBUG: Start: Iteration 3 +2016-08-24 11:21:03,501 DEBUG: View 0 : 0.487179487179 +2016-08-24 11:21:03,509 DEBUG: View 1 : 0.570512820513 +2016-08-24 11:21:03,594 DEBUG: View 2 : 0.442307692308 +2016-08-24 11:21:03,602 DEBUG: View 3 : 0.474358974359 +2016-08-24 11:21:03,656 DEBUG: Best view : MiRNA__ +2016-08-24 11:21:03,847 DEBUG: Start: Iteration 4 +2016-08-24 11:21:03,863 DEBUG: View 0 : 0.487179487179 +2016-08-24 11:21:03,871 DEBUG: View 1 : 0.628205128205 +2016-08-24 11:21:03,953 DEBUG: View 2 : 0.564102564103 +2016-08-24 11:21:03,961 DEBUG: View 3 : 0.673076923077 +2016-08-24 11:21:04,015 DEBUG: Best view : Clinic_ +2016-08-24 11:21:04,261 DEBUG: Start: Iteration 5 +2016-08-24 11:21:04,278 DEBUG: View 0 : 0.467948717949 +2016-08-24 11:21:04,285 DEBUG: View 1 : 0.384615384615 +2016-08-24 11:21:04,372 DEBUG: View 2 : 0.589743589744 +2016-08-24 11:21:04,380 DEBUG: View 3 : 0.583333333333 +2016-08-24 11:21:04,437 DEBUG: Best view : RANSeq_ +2016-08-24 11:21:04,758 DEBUG: Start: Iteration 6 +2016-08-24 11:21:04,775 DEBUG: View 0 : 0.74358974359 +2016-08-24 11:21:04,783 DEBUG: View 1 : 0.538461538462 +2016-08-24 11:21:04,865 DEBUG: View 2 : 0.608974358974 +2016-08-24 11:21:04,873 DEBUG: View 3 : 0.544871794872 +2016-08-24 11:21:04,933 DEBUG: Best view : Methyl_ +2016-08-24 11:21:05,314 DEBUG: Start: Iteration 7 +2016-08-24 11:21:05,331 DEBUG: View 0 : 0.50641025641 +2016-08-24 11:21:05,338 DEBUG: View 1 : 0.628205128205 +2016-08-24 11:21:05,422 DEBUG: View 2 : 0.5 +2016-08-24 11:21:05,430 DEBUG: View 3 : 0.641025641026 +2016-08-24 11:21:05,491 DEBUG: Best view : Clinic_ +2016-08-24 11:21:05,935 DEBUG: Start: Iteration 8 +2016-08-24 11:21:05,952 DEBUG: View 0 : 0.487179487179 +2016-08-24 11:21:05,959 DEBUG: View 1 : 0.596153846154 +2016-08-24 11:21:06,054 DEBUG: View 2 : 0.564102564103 +2016-08-24 11:21:06,063 DEBUG: View 3 : 0.557692307692 +2016-08-24 11:21:06,129 DEBUG: Best view : MiRNA__ +2016-08-24 11:21:06,623 DEBUG: Start: Iteration 9 +2016-08-24 11:21:06,639 DEBUG: View 0 : 0.487179487179 +2016-08-24 11:21:06,647 DEBUG: View 1 : 0.596153846154 +2016-08-24 11:21:06,724 DEBUG: View 2 : 0.564102564103 +2016-08-24 11:21:06,731 DEBUG: View 3 : 0.596153846154 +2016-08-24 11:21:06,797 DEBUG: Best view : Clinic_ +2016-08-24 11:21:07,345 DEBUG: Start: Iteration 10 +2016-08-24 11:21:07,367 DEBUG: View 0 : 0.653846153846 +2016-08-24 11:21:07,375 DEBUG: View 1 : 0.608974358974 +2016-08-24 11:21:07,458 DEBUG: View 2 : 0.634615384615 +2016-08-24 11:21:07,466 DEBUG: View 3 : 0.673076923077 +2016-08-24 11:21:07,533 DEBUG: Best view : Clinic_ +2016-08-24 11:21:08,137 DEBUG: Start: Iteration 11 +2016-08-24 11:21:08,153 DEBUG: View 0 : 0.49358974359 +2016-08-24 11:21:08,162 DEBUG: View 1 : 0.24358974359 +2016-08-24 11:21:08,271 DEBUG: View 2 : 0.519230769231 +2016-08-24 11:21:08,280 DEBUG: View 3 : 0.634615384615 +2016-08-24 11:21:08,355 DEBUG: Best view : Clinic_ +2016-08-24 11:21:09,028 DEBUG: Start: Iteration 12 +2016-08-24 11:21:09,044 DEBUG: View 0 : 0.602564102564 +2016-08-24 11:21:09,051 DEBUG: View 1 : 0.564102564103 +2016-08-24 11:21:09,139 DEBUG: View 2 : 0.557692307692 +2016-08-24 11:21:09,146 DEBUG: View 3 : 0.583333333333 +2016-08-24 11:21:09,228 DEBUG: Best view : Clinic_ +2016-08-24 11:21:09,951 DEBUG: Start: Iteration 13 +2016-08-24 11:21:09,968 DEBUG: View 0 : 0.679487179487 +2016-08-24 11:21:09,976 DEBUG: View 1 : 0.615384615385 +2016-08-24 11:21:10,058 DEBUG: View 2 : 0.596153846154 +2016-08-24 11:21:10,066 DEBUG: View 3 : 0.570512820513 +2016-08-24 11:21:10,140 DEBUG: Best view : Methyl_ +2016-08-24 11:21:10,927 DEBUG: Start: Iteration 14 +2016-08-24 11:21:10,943 DEBUG: View 0 : 0.564102564103 +2016-08-24 11:21:10,952 DEBUG: View 1 : 0.621794871795 +2016-08-24 11:21:11,038 DEBUG: View 2 : 0.557692307692 +2016-08-24 11:21:11,045 DEBUG: View 3 : 0.602564102564 +2016-08-24 11:21:11,122 DEBUG: Best view : Clinic_ +2016-08-24 11:21:11,968 DEBUG: Start: Iteration 15 +2016-08-24 11:21:11,985 DEBUG: View 0 : 0.551282051282 +2016-08-24 11:21:11,992 DEBUG: View 1 : 0.634615384615 +2016-08-24 11:21:12,074 DEBUG: View 2 : 0.467948717949 +2016-08-24 11:21:12,082 DEBUG: View 3 : 0.596153846154 +2016-08-24 11:21:12,161 DEBUG: Best view : MiRNA__ +2016-08-24 11:21:13,061 DEBUG: Start: Iteration 16 +2016-08-24 11:21:13,078 DEBUG: View 0 : 0.679487179487 +2016-08-24 11:21:13,086 DEBUG: View 1 : 0.403846153846 +2016-08-24 11:21:13,172 DEBUG: View 2 : 0.628205128205 +2016-08-24 11:21:13,180 DEBUG: View 3 : 0.544871794872 +2016-08-24 11:21:13,262 DEBUG: Best view : Methyl_ +2016-08-24 11:21:14,233 DEBUG: Start: Iteration 17 +2016-08-24 11:21:14,250 DEBUG: View 0 : 0.621794871795 +2016-08-24 11:21:14,258 DEBUG: View 1 : 0.673076923077 +2016-08-24 11:21:14,340 DEBUG: View 2 : 0.602564102564 +2016-08-24 11:21:14,348 DEBUG: View 3 : 0.608974358974 +2016-08-24 11:21:14,431 DEBUG: Best view : MiRNA__ +2016-08-24 11:21:15,447 DEBUG: Start: Iteration 18 +2016-08-24 11:21:15,464 DEBUG: View 0 : 0.557692307692 +2016-08-24 11:21:15,471 DEBUG: View 1 : 0.641025641026 +2016-08-24 11:21:15,573 DEBUG: View 2 : 0.551282051282 +2016-08-24 11:21:15,582 DEBUG: View 3 : 0.608974358974 +2016-08-24 11:21:15,675 DEBUG: Best view : MiRNA__ +2016-08-24 11:21:16,754 DEBUG: Start: Iteration 19 +2016-08-24 11:21:16,770 DEBUG: View 0 : 0.461538461538 +2016-08-24 11:21:16,777 DEBUG: View 1 : 0.647435897436 +2016-08-24 11:21:16,859 DEBUG: View 2 : 0.538461538462 +2016-08-24 11:21:16,866 DEBUG: View 3 : 0.551282051282 +2016-08-24 11:21:16,954 DEBUG: Best view : MiRNA__ +2016-08-24 11:21:18,089 DEBUG: Start: Iteration 20 +2016-08-24 11:21:18,105 DEBUG: View 0 : 0.551282051282 +2016-08-24 11:21:18,113 DEBUG: View 1 : 0.371794871795 +2016-08-24 11:21:18,193 DEBUG: View 2 : 0.666666666667 +2016-08-24 11:21:18,201 DEBUG: View 3 : 0.596153846154 +2016-08-24 11:21:18,291 DEBUG: Best view : RANSeq_ +2016-08-24 11:21:19,495 DEBUG: Start: Iteration 21 +2016-08-24 11:21:19,512 DEBUG: View 0 : 0.365384615385 +2016-08-24 11:21:19,520 DEBUG: View 1 : 0.576923076923 +2016-08-24 11:21:19,609 DEBUG: View 2 : 0.557692307692 +2016-08-24 11:21:19,616 DEBUG: View 3 : 0.608974358974 +2016-08-24 11:21:19,709 DEBUG: Best view : Clinic_ +2016-08-24 11:21:20,977 DEBUG: Start: Iteration 22 +2016-08-24 11:21:20,994 DEBUG: View 0 : 0.660256410256 +2016-08-24 11:21:21,002 DEBUG: View 1 : 0.782051282051 +2016-08-24 11:21:21,090 DEBUG: View 2 : 0.602564102564 +2016-08-24 11:21:21,097 DEBUG: View 3 : 0.538461538462 +2016-08-24 11:21:21,191 DEBUG: Best view : MiRNA__ +2016-08-24 11:21:22,497 DEBUG: Start: Iteration 23 +2016-08-24 11:21:22,514 DEBUG: View 0 : 0.474358974359 +2016-08-24 11:21:22,522 DEBUG: View 1 : 0.314102564103 +2016-08-24 11:21:22,598 DEBUG: View 2 : 0.50641025641 +2016-08-24 11:21:22,605 DEBUG: View 3 : 0.602564102564 +2016-08-24 11:21:22,701 DEBUG: Best view : Clinic_ +2016-08-24 11:21:24,095 DEBUG: Start: Iteration 24 +2016-08-24 11:21:24,112 DEBUG: View 0 : 0.551282051282 +2016-08-24 11:21:24,120 DEBUG: View 1 : 0.429487179487 +2016-08-24 11:21:24,205 DEBUG: View 2 : 0.621794871795 +2016-08-24 11:21:24,214 DEBUG: View 3 : 0.653846153846 +2016-08-24 11:21:24,312 DEBUG: Best view : Clinic_ +2016-08-24 11:21:25,747 DEBUG: Start: Iteration 25 +2016-08-24 11:21:25,764 DEBUG: View 0 : 0.570512820513 +2016-08-24 11:21:25,772 DEBUG: View 1 : 0.519230769231 +2016-08-24 11:21:25,855 DEBUG: View 2 : 0.621794871795 +2016-08-24 11:21:25,863 DEBUG: View 3 : 0.596153846154 +2016-08-24 11:21:25,963 DEBUG: Best view : Clinic_ +2016-08-24 11:21:27,457 DEBUG: Start: Iteration 26 +2016-08-24 11:21:27,473 DEBUG: View 0 : 0.557692307692 +2016-08-24 11:21:27,481 DEBUG: View 1 : 0.378205128205 +2016-08-24 11:21:27,564 DEBUG: View 2 : 0.576923076923 +2016-08-24 11:21:27,572 DEBUG: View 3 : 0.692307692308 +2016-08-24 11:21:27,675 DEBUG: Best view : Clinic_ +2016-08-24 11:21:29,220 DEBUG: Start: Iteration 27 +2016-08-24 11:21:29,236 DEBUG: View 0 : 0.474358974359 +2016-08-24 11:21:29,244 DEBUG: View 1 : 0.564102564103 +2016-08-24 11:21:29,327 DEBUG: View 2 : 0.570512820513 +2016-08-24 11:21:29,335 DEBUG: View 3 : 0.564102564103 +2016-08-24 11:21:29,440 DEBUG: Best view : Clinic_ +2016-08-24 11:21:31,047 DEBUG: Start: Iteration 28 +2016-08-24 11:21:31,063 DEBUG: View 0 : 0.429487179487 +2016-08-24 11:21:31,071 DEBUG: View 1 : 0.75 +2016-08-24 11:21:31,155 DEBUG: View 2 : 0.564102564103 +2016-08-24 11:21:31,162 DEBUG: View 3 : 0.602564102564 +2016-08-24 11:21:31,270 DEBUG: Best view : MiRNA__ +2016-08-24 11:21:32,931 DEBUG: Start: Iteration 29 +2016-08-24 11:21:32,947 DEBUG: View 0 : 0.544871794872 +2016-08-24 11:21:32,955 DEBUG: View 1 : 0.576923076923 +2016-08-24 11:21:33,041 DEBUG: View 2 : 0.49358974359 +2016-08-24 11:21:33,049 DEBUG: View 3 : 0.5 +2016-08-24 11:21:33,161 DEBUG: Best view : MiRNA__ +2016-08-24 11:21:34,897 DEBUG: Start: Iteration 30 +2016-08-24 11:21:34,914 DEBUG: View 0 : 0.615384615385 +2016-08-24 11:21:34,921 DEBUG: View 1 : 0.621794871795 +2016-08-24 11:21:35,009 DEBUG: View 2 : 0.448717948718 +2016-08-24 11:21:35,016 DEBUG: View 3 : 0.538461538462 +2016-08-24 11:21:35,130 DEBUG: Best view : MiRNA__ +2016-08-24 11:21:36,907 DEBUG: Start: Iteration 31 +2016-08-24 11:21:36,923 DEBUG: View 0 : 0.480769230769 +2016-08-24 11:21:36,931 DEBUG: View 1 : 0.570512820513 +2016-08-24 11:21:37,013 DEBUG: View 2 : 0.589743589744 +2016-08-24 11:21:37,020 DEBUG: View 3 : 0.608974358974 +2016-08-24 11:21:37,135 DEBUG: Best view : Clinic_ +2016-08-24 11:21:38,986 DEBUG: Start: Iteration 32 +2016-08-24 11:21:39,003 DEBUG: View 0 : 0.410256410256 +2016-08-24 11:21:39,011 DEBUG: View 1 : 0.666666666667 +2016-08-24 11:21:39,094 DEBUG: View 2 : 0.570512820513 +2016-08-24 11:21:39,103 DEBUG: View 3 : 0.519230769231 +2016-08-24 11:21:39,220 DEBUG: Best view : MiRNA__ +2016-08-24 11:21:41,118 DEBUG: Start: Iteration 33 +2016-08-24 11:21:41,134 DEBUG: View 0 : 0.339743589744 +2016-08-24 11:21:41,142 DEBUG: View 1 : 0.525641025641 +2016-08-24 11:21:41,217 DEBUG: View 2 : 0.551282051282 +2016-08-24 11:21:41,225 DEBUG: View 3 : 0.442307692308 +2016-08-24 11:21:41,344 DEBUG: Best view : RANSeq_ +2016-08-24 11:21:43,320 DEBUG: Start: Iteration 34 +2016-08-24 11:21:43,336 DEBUG: View 0 : 0.519230769231 +2016-08-24 11:21:43,344 DEBUG: View 1 : 0.448717948718 +2016-08-24 11:21:43,426 DEBUG: View 2 : 0.628205128205 +2016-08-24 11:21:43,434 DEBUG: View 3 : 0.487179487179 +2016-08-24 11:21:43,554 DEBUG: Best view : RANSeq_ +2016-08-24 11:21:45,593 DEBUG: Start: Iteration 35 +2016-08-24 11:21:45,609 DEBUG: View 0 : 0.487179487179 +2016-08-24 11:21:45,617 DEBUG: View 1 : 0.673076923077 +2016-08-24 11:21:45,699 DEBUG: View 2 : 0.583333333333 +2016-08-24 11:21:45,707 DEBUG: View 3 : 0.576923076923 +2016-08-24 11:21:45,831 DEBUG: Best view : MiRNA__ +2016-08-24 11:21:47,920 DEBUG: Start: Iteration 36 +2016-08-24 11:21:47,936 DEBUG: View 0 : 0.416666666667 +2016-08-24 11:21:47,944 DEBUG: View 1 : 0.435897435897 +2016-08-24 11:21:48,029 DEBUG: View 2 : 0.570512820513 +2016-08-24 11:21:48,037 DEBUG: View 3 : 0.679487179487 +2016-08-24 11:21:48,164 DEBUG: Best view : Clinic_ +2016-08-24 11:21:50,319 DEBUG: Start: Iteration 37 +2016-08-24 11:21:50,335 DEBUG: View 0 : 0.525641025641 +2016-08-24 11:21:50,343 DEBUG: View 1 : 0.602564102564 +2016-08-24 11:21:50,429 DEBUG: View 2 : 0.615384615385 +2016-08-24 11:21:50,437 DEBUG: View 3 : 0.608974358974 +2016-08-24 11:21:50,563 DEBUG: Best view : MiRNA__ +2016-08-24 11:21:52,782 DEBUG: Start: Iteration 38 +2016-08-24 11:21:52,799 DEBUG: View 0 : 0.480769230769 +2016-08-24 11:21:52,807 DEBUG: View 1 : 0.576923076923 +2016-08-24 11:21:52,889 DEBUG: View 2 : 0.570512820513 +2016-08-24 11:21:52,896 DEBUG: View 3 : 0.532051282051 +2016-08-24 11:21:53,028 DEBUG: Best view : MiRNA__ +2016-08-24 11:21:55,289 DEBUG: Start: Iteration 39 +2016-08-24 11:21:55,306 DEBUG: View 0 : 0.410256410256 +2016-08-24 11:21:55,314 DEBUG: View 1 : 0.557692307692 +2016-08-24 11:21:55,401 DEBUG: View 2 : 0.570512820513 +2016-08-24 11:21:55,409 DEBUG: View 3 : 0.532051282051 +2016-08-24 11:21:55,541 DEBUG: Best view : RANSeq_ +2016-08-24 11:21:57,876 DEBUG: Start: Iteration 40 +2016-08-24 11:21:57,892 DEBUG: View 0 : 0.423076923077 +2016-08-24 11:21:57,900 DEBUG: View 1 : 0.50641025641 +2016-08-24 11:21:57,985 DEBUG: View 2 : 0.602564102564 +2016-08-24 11:21:57,993 DEBUG: View 3 : 0.5 +2016-08-24 11:21:58,126 DEBUG: Best view : RANSeq_ +2016-08-24 11:22:00,528 DEBUG: Start: Iteration 41 +2016-08-24 11:22:00,545 DEBUG: View 0 : 0.711538461538 +2016-08-24 11:22:00,552 DEBUG: View 1 : 0.641025641026 +2016-08-24 11:22:00,634 DEBUG: View 2 : 0.634615384615 +2016-08-24 11:22:00,642 DEBUG: View 3 : 0.621794871795 +2016-08-24 11:22:00,779 DEBUG: Best view : Methyl_ +2016-08-24 11:22:03,239 DEBUG: Start: Iteration 42 +2016-08-24 11:22:03,255 DEBUG: View 0 : 0.480769230769 +2016-08-24 11:22:03,263 DEBUG: View 1 : 0.551282051282 +2016-08-24 11:22:03,353 DEBUG: View 2 : 0.544871794872 +2016-08-24 11:22:03,360 DEBUG: View 3 : 0.666666666667 +2016-08-24 11:22:03,500 DEBUG: Best view : Clinic_ +2016-08-24 11:22:06,015 DEBUG: Start: Iteration 43 +2016-08-24 11:22:06,031 DEBUG: View 0 : 0.551282051282 +2016-08-24 11:22:06,039 DEBUG: View 1 : 0.564102564103 +2016-08-24 11:22:06,124 DEBUG: View 2 : 0.551282051282 +2016-08-24 11:22:06,132 DEBUG: View 3 : 0.641025641026 +2016-08-24 11:22:06,271 DEBUG: Best view : Clinic_ +2016-08-24 11:22:08,861 DEBUG: Start: Iteration 44 +2016-08-24 11:22:08,878 DEBUG: View 0 : 0.416666666667 +2016-08-24 11:22:08,885 DEBUG: View 1 : 0.647435897436 +2016-08-24 11:22:08,969 DEBUG: View 2 : 0.628205128205 +2016-08-24 11:22:08,976 DEBUG: View 3 : 0.660256410256 +2016-08-24 11:22:09,120 DEBUG: Best view : Clinic_ +2016-08-24 11:22:11,751 DEBUG: Start: Iteration 45 +2016-08-24 11:22:11,767 DEBUG: View 0 : 0.557692307692 +2016-08-24 11:22:11,775 DEBUG: View 1 : 0.365384615385 +2016-08-24 11:22:11,864 DEBUG: View 2 : 0.583333333333 +2016-08-24 11:22:11,871 DEBUG: View 3 : 0.525641025641 +2016-08-24 11:22:12,016 DEBUG: Best view : RANSeq_ +2016-08-24 11:22:14,742 DEBUG: Start: Iteration 46 +2016-08-24 11:22:14,758 DEBUG: View 0 : 0.570512820513 +2016-08-24 11:22:14,766 DEBUG: View 1 : 0.602564102564 +2016-08-24 11:22:14,854 DEBUG: View 2 : 0.564102564103 +2016-08-24 11:22:14,861 DEBUG: View 3 : 0.628205128205 +2016-08-24 11:22:15,009 DEBUG: Best view : Clinic_ +2016-08-24 11:22:17,777 DEBUG: Start: Iteration 47 +2016-08-24 11:22:17,794 DEBUG: View 0 : 0.480769230769 +2016-08-24 11:22:17,802 DEBUG: View 1 : 0.320512820513 +2016-08-24 11:22:17,884 DEBUG: View 2 : 0.49358974359 +2016-08-24 11:22:17,891 DEBUG: View 3 : 0.461538461538 +2016-08-24 11:22:17,891 WARNING: WARNING: All bad for iteration 46 +2016-08-24 11:22:18,042 DEBUG: Best view : RANSeq_ +2016-08-24 11:22:20,878 DEBUG: Start: Iteration 48 +2016-08-24 11:22:20,895 DEBUG: View 0 : 0.544871794872 +2016-08-24 11:22:20,902 DEBUG: View 1 : 0.397435897436 +2016-08-24 11:22:20,985 DEBUG: View 2 : 0.589743589744 +2016-08-24 11:22:20,993 DEBUG: View 3 : 0.621794871795 +2016-08-24 11:22:21,144 DEBUG: Best view : Clinic_ +2016-08-24 11:22:24,050 DEBUG: Start: Iteration 49 +2016-08-24 11:22:24,066 DEBUG: View 0 : 0.589743589744 +2016-08-24 11:22:24,074 DEBUG: View 1 : 0.333333333333 +2016-08-24 11:22:24,159 DEBUG: View 2 : 0.544871794872 +2016-08-24 11:22:24,166 DEBUG: View 3 : 0.512820512821 +2016-08-24 11:22:24,321 DEBUG: Best view : Methyl_ +2016-08-24 11:22:27,282 DEBUG: Start: Iteration 50 +2016-08-24 11:22:27,298 DEBUG: View 0 : 0.50641025641 +2016-08-24 11:22:27,306 DEBUG: View 1 : 0.576923076923 +2016-08-24 11:22:27,388 DEBUG: View 2 : 0.583333333333 +2016-08-24 11:22:27,396 DEBUG: View 3 : 0.589743589744 +2016-08-24 11:22:27,554 DEBUG: Best view : Clinic_ +2016-08-24 11:22:30,568 DEBUG: Start: Iteration 51 +2016-08-24 11:22:30,585 DEBUG: View 0 : 0.429487179487 +2016-08-24 11:22:30,592 DEBUG: View 1 : 0.423076923077 +2016-08-24 11:22:30,681 DEBUG: View 2 : 0.596153846154 +2016-08-24 11:22:30,688 DEBUG: View 3 : 0.583333333333 +2016-08-24 11:22:30,847 DEBUG: Best view : RANSeq_ +2016-08-24 11:22:33,933 DEBUG: Start: Iteration 52 +2016-08-24 11:22:33,950 DEBUG: View 0 : 0.570512820513 +2016-08-24 11:22:33,957 DEBUG: View 1 : 0.653846153846 +2016-08-24 11:22:34,040 DEBUG: View 2 : 0.615384615385 +2016-08-24 11:22:34,048 DEBUG: View 3 : 0.49358974359 +2016-08-24 11:22:34,211 DEBUG: Best view : MiRNA__ +2016-08-24 11:22:37,353 DEBUG: Start: Iteration 53 +2016-08-24 11:22:37,370 DEBUG: View 0 : 0.538461538462 +2016-08-24 11:22:37,378 DEBUG: View 1 : 0.628205128205 +2016-08-24 11:22:37,465 DEBUG: View 2 : 0.653846153846 +2016-08-24 11:22:37,473 DEBUG: View 3 : 0.525641025641 +2016-08-24 11:22:37,635 DEBUG: Best view : RANSeq_ +2016-08-24 11:22:40,837 DEBUG: Start: Iteration 54 +2016-08-24 11:22:40,854 DEBUG: View 0 : 0.589743589744 +2016-08-24 11:22:40,862 DEBUG: View 1 : 0.448717948718 +2016-08-24 11:22:40,943 DEBUG: View 2 : 0.50641025641 +2016-08-24 11:22:40,951 DEBUG: View 3 : 0.583333333333 +2016-08-24 11:22:41,117 DEBUG: Best view : Clinic_ +2016-08-24 11:22:44,382 DEBUG: Start: Iteration 55 +2016-08-24 11:22:44,398 DEBUG: View 0 : 0.634615384615 +2016-08-24 11:22:44,406 DEBUG: View 1 : 0.551282051282 +2016-08-24 11:22:44,485 DEBUG: View 2 : 0.564102564103 +2016-08-24 11:22:44,493 DEBUG: View 3 : 0.448717948718 +2016-08-24 11:22:44,658 DEBUG: Best view : Methyl_ +2016-08-24 11:22:47,984 DEBUG: Start: Iteration 56 +2016-08-24 11:22:48,000 DEBUG: View 0 : 0.544871794872 +2016-08-24 11:22:48,008 DEBUG: View 1 : 0.666666666667 +2016-08-24 11:22:48,091 DEBUG: View 2 : 0.525641025641 +2016-08-24 11:22:48,099 DEBUG: View 3 : 0.589743589744 +2016-08-24 11:22:48,265 DEBUG: Best view : MiRNA__ +2016-08-24 11:22:51,652 DEBUG: Start: Iteration 57 +2016-08-24 11:22:51,668 DEBUG: View 0 : 0.583333333333 +2016-08-24 11:22:51,676 DEBUG: View 1 : 0.397435897436 +2016-08-24 11:22:51,769 DEBUG: View 2 : 0.519230769231 +2016-08-24 11:22:51,776 DEBUG: View 3 : 0.538461538462 +2016-08-24 11:22:51,945 DEBUG: Best view : Methyl_ +2016-08-24 11:22:55,390 DEBUG: Start: Iteration 58 +2016-08-24 11:22:55,406 DEBUG: View 0 : 0.403846153846 +2016-08-24 11:22:55,414 DEBUG: View 1 : 0.410256410256 +2016-08-24 11:22:55,502 DEBUG: View 2 : 0.551282051282 +2016-08-24 11:22:55,510 DEBUG: View 3 : 0.602564102564 +2016-08-24 11:22:55,681 DEBUG: Best view : Clinic_ +2016-08-24 11:22:59,217 DEBUG: Start: Iteration 59 +2016-08-24 11:22:59,234 DEBUG: View 0 : 0.474358974359 +2016-08-24 11:22:59,242 DEBUG: View 1 : 0.512820512821 +2016-08-24 11:22:59,326 DEBUG: View 2 : 0.608974358974 +2016-08-24 11:22:59,333 DEBUG: View 3 : 0.512820512821 +2016-08-24 11:22:59,507 DEBUG: Best view : RANSeq_ +2016-08-24 11:23:03,084 DEBUG: Start: Iteration 60 +2016-08-24 11:23:03,101 DEBUG: View 0 : 0.397435897436 +2016-08-24 11:23:03,110 DEBUG: View 1 : 0.455128205128 +2016-08-24 11:23:03,196 DEBUG: View 2 : 0.653846153846 +2016-08-24 11:23:03,204 DEBUG: View 3 : 0.570512820513 +2016-08-24 11:23:03,381 DEBUG: Best view : RANSeq_ +2016-08-24 11:23:07,042 DEBUG: Start: Iteration 61 +2016-08-24 11:23:07,059 DEBUG: View 0 : 0.705128205128 +2016-08-24 11:23:07,066 DEBUG: View 1 : 0.442307692308 +2016-08-24 11:23:07,154 DEBUG: View 2 : 0.557692307692 +2016-08-24 11:23:07,162 DEBUG: View 3 : 0.621794871795 +2016-08-24 11:23:07,340 DEBUG: Best view : Methyl_ +2016-08-24 11:23:11,059 DEBUG: Start: Iteration 62 +2016-08-24 11:23:11,075 DEBUG: View 0 : 0.391025641026 +2016-08-24 11:23:11,083 DEBUG: View 1 : 0.666666666667 +2016-08-24 11:23:11,180 DEBUG: View 2 : 0.532051282051 +2016-08-24 11:23:11,188 DEBUG: View 3 : 0.570512820513 +2016-08-24 11:23:11,379 DEBUG: Best view : MiRNA__ +2016-08-24 11:23:15,148 DEBUG: Start: Iteration 63 +2016-08-24 11:23:15,164 DEBUG: View 0 : 0.384615384615 +2016-08-24 11:23:15,172 DEBUG: View 1 : 0.532051282051 +2016-08-24 11:23:15,256 DEBUG: View 2 : 0.49358974359 +2016-08-24 11:23:15,263 DEBUG: View 3 : 0.653846153846 +2016-08-24 11:23:15,447 DEBUG: Best view : Clinic_ +2016-08-24 11:23:19,280 DEBUG: Start: Iteration 64 +2016-08-24 11:23:19,296 DEBUG: View 0 : 0.551282051282 +2016-08-24 11:23:19,304 DEBUG: View 1 : 0.679487179487 +2016-08-24 11:23:19,391 DEBUG: View 2 : 0.551282051282 +2016-08-24 11:23:19,398 DEBUG: View 3 : 0.583333333333 +2016-08-24 11:23:19,582 DEBUG: Best view : MiRNA__ +2016-08-24 11:23:23,489 DEBUG: Start: Iteration 65 +2016-08-24 11:23:23,505 DEBUG: View 0 : 0.583333333333 +2016-08-24 11:23:23,513 DEBUG: View 1 : 0.525641025641 +2016-08-24 11:23:23,597 DEBUG: View 2 : 0.602564102564 +2016-08-24 11:23:23,604 DEBUG: View 3 : 0.602564102564 +2016-08-24 11:23:23,795 DEBUG: Best view : Clinic_ +2016-08-24 11:23:27,722 DEBUG: Start: Iteration 66 +2016-08-24 11:23:27,739 DEBUG: View 0 : 0.538461538462 +2016-08-24 11:23:27,746 DEBUG: View 1 : 0.538461538462 +2016-08-24 11:23:27,833 DEBUG: View 2 : 0.525641025641 +2016-08-24 11:23:27,840 DEBUG: View 3 : 0.5 +2016-08-24 11:23:28,046 DEBUG: Best view : MiRNA__ +2016-08-24 11:23:32,077 DEBUG: Start: Iteration 67 +2016-08-24 11:23:32,094 DEBUG: View 0 : 0.403846153846 +2016-08-24 11:23:32,102 DEBUG: View 1 : 0.49358974359 +2016-08-24 11:23:32,186 DEBUG: View 2 : 0.448717948718 +2016-08-24 11:23:32,194 DEBUG: View 3 : 0.615384615385 +2016-08-24 11:23:32,386 DEBUG: Best view : Clinic_ +2016-08-24 11:23:36,441 DEBUG: Start: Iteration 68 +2016-08-24 11:23:36,458 DEBUG: View 0 : 0.660256410256 +2016-08-24 11:23:36,466 DEBUG: View 1 : 0.339743589744 +2016-08-24 11:23:36,553 DEBUG: View 2 : 0.621794871795 +2016-08-24 11:23:36,560 DEBUG: View 3 : 0.685897435897 +2016-08-24 11:23:36,754 DEBUG: Best view : Clinic_ +2016-08-24 11:23:40,869 DEBUG: Start: Iteration 69 +2016-08-24 11:23:40,885 DEBUG: View 0 : 0.602564102564 +2016-08-24 11:23:40,893 DEBUG: View 1 : 0.442307692308 +2016-08-24 11:23:40,971 DEBUG: View 2 : 0.570512820513 +2016-08-24 11:23:40,979 DEBUG: View 3 : 0.596153846154 +2016-08-24 11:23:41,173 DEBUG: Best view : Clinic_ +2016-08-24 11:23:45,325 DEBUG: Start: Iteration 70 +2016-08-24 11:23:45,341 DEBUG: View 0 : 0.435897435897 +2016-08-24 11:23:45,349 DEBUG: View 1 : 0.525641025641 +2016-08-24 11:23:45,436 DEBUG: View 2 : 0.525641025641 +2016-08-24 11:23:45,443 DEBUG: View 3 : 0.621794871795 +2016-08-24 11:23:45,641 DEBUG: Best view : Clinic_ +2016-08-24 11:23:49,870 DEBUG: Start: Iteration 71 +2016-08-24 11:23:49,887 DEBUG: View 0 : 0.551282051282 +2016-08-24 11:23:49,895 DEBUG: View 1 : 0.621794871795 +2016-08-24 11:23:49,978 DEBUG: View 2 : 0.538461538462 +2016-08-24 11:23:49,986 DEBUG: View 3 : 0.634615384615 +2016-08-24 11:23:50,196 DEBUG: Best view : Clinic_ +2016-08-24 11:23:54,507 DEBUG: Start: Iteration 72 +2016-08-24 11:23:54,523 DEBUG: View 0 : 0.512820512821 +2016-08-24 11:23:54,531 DEBUG: View 1 : 0.455128205128 +2016-08-24 11:23:54,611 DEBUG: View 2 : 0.532051282051 +2016-08-24 11:23:54,619 DEBUG: View 3 : 0.551282051282 +2016-08-24 11:23:54,820 DEBUG: Best view : Clinic_ +2016-08-24 11:23:59,164 DEBUG: Start: Iteration 73 +2016-08-24 11:23:59,180 DEBUG: View 0 : 0.416666666667 +2016-08-24 11:23:59,188 DEBUG: View 1 : 0.474358974359 +2016-08-24 11:23:59,273 DEBUG: View 2 : 0.5 +2016-08-24 11:23:59,280 DEBUG: View 3 : 0.525641025641 +2016-08-24 11:23:59,485 DEBUG: Best view : Clinic_ +2016-08-24 11:24:03,917 DEBUG: Start: Iteration 74 +2016-08-24 11:24:03,934 DEBUG: View 0 : 0.564102564103 +2016-08-24 11:24:03,942 DEBUG: View 1 : 0.698717948718 +2016-08-24 11:24:04,029 DEBUG: View 2 : 0.564102564103 +2016-08-24 11:24:04,037 DEBUG: View 3 : 0.5 +2016-08-24 11:24:04,257 DEBUG: Best view : MiRNA__ +2016-08-24 11:24:08,879 DEBUG: Start: Iteration 75 +2016-08-24 11:24:08,896 DEBUG: View 0 : 0.647435897436 +2016-08-24 11:24:08,904 DEBUG: View 1 : 0.397435897436 +2016-08-24 11:24:08,992 DEBUG: View 2 : 0.589743589744 +2016-08-24 11:24:09,000 DEBUG: View 3 : 0.583333333333 +2016-08-24 11:24:09,218 DEBUG: Best view : Methyl_ +2016-08-24 11:24:13,834 DEBUG: Start: Iteration 76 +2016-08-24 11:24:13,851 DEBUG: View 0 : 0.564102564103 +2016-08-24 11:24:13,859 DEBUG: View 1 : 0.75 +2016-08-24 11:24:13,949 DEBUG: View 2 : 0.551282051282 +2016-08-24 11:24:13,957 DEBUG: View 3 : 0.602564102564 +2016-08-24 11:24:14,181 DEBUG: Best view : MiRNA__ +2016-08-24 11:24:18,999 DEBUG: Start: Iteration 77 +2016-08-24 11:24:19,016 DEBUG: View 0 : 0.641025641026 +2016-08-24 11:24:19,023 DEBUG: View 1 : 0.673076923077 +2016-08-24 11:24:19,111 DEBUG: View 2 : 0.519230769231 +2016-08-24 11:24:19,119 DEBUG: View 3 : 0.544871794872 +2016-08-24 11:24:19,332 DEBUG: Best view : MiRNA__ +2016-08-24 11:24:24,134 DEBUG: Start: Iteration 78 +2016-08-24 11:24:24,151 DEBUG: View 0 : 0.397435897436 +2016-08-24 11:24:24,159 DEBUG: View 1 : 0.282051282051 +2016-08-24 11:24:24,256 DEBUG: View 2 : 0.589743589744 +2016-08-24 11:24:24,264 DEBUG: View 3 : 0.653846153846 +2016-08-24 11:24:24,481 DEBUG: Best view : Clinic_ +2016-08-24 11:24:29,491 DEBUG: Start: Iteration 79 +2016-08-24 11:24:29,508 DEBUG: View 0 : 0.487179487179 +2016-08-24 11:24:29,516 DEBUG: View 1 : 0.564102564103 +2016-08-24 11:24:29,610 DEBUG: View 2 : 0.512820512821 +2016-08-24 11:24:29,618 DEBUG: View 3 : 0.621794871795 +2016-08-24 11:24:29,840 DEBUG: Best view : Clinic_ +2016-08-24 11:24:34,815 DEBUG: Start: Iteration 80 +2016-08-24 11:24:34,835 DEBUG: View 0 : 0.435897435897 +2016-08-24 11:24:34,844 DEBUG: View 1 : 0.711538461538 +2016-08-24 11:24:34,954 DEBUG: View 2 : 0.544871794872 +2016-08-24 11:24:34,964 DEBUG: View 3 : 0.551282051282 +2016-08-24 11:24:35,235 DEBUG: Best view : MiRNA__ +2016-08-24 11:24:40,456 DEBUG: Start: Iteration 81 +2016-08-24 11:24:40,474 DEBUG: View 0 : 0.576923076923 +2016-08-24 11:24:40,483 DEBUG: View 1 : 0.346153846154 +2016-08-24 11:24:40,571 DEBUG: View 2 : 0.557692307692 +2016-08-24 11:24:40,579 DEBUG: View 3 : 0.608974358974 +2016-08-24 11:24:40,814 DEBUG: Best view : Clinic_ +2016-08-24 11:24:45,879 DEBUG: Start: Iteration 82 +2016-08-24 11:24:45,896 DEBUG: View 0 : 0.474358974359 +2016-08-24 11:24:45,905 DEBUG: View 1 : 0.50641025641 +2016-08-24 11:24:45,988 DEBUG: View 2 : 0.653846153846 +2016-08-24 11:24:45,996 DEBUG: View 3 : 0.641025641026 +2016-08-24 11:24:46,222 DEBUG: Best view : RANSeq_ +2016-08-24 11:24:51,238 DEBUG: Start: Iteration 83 +2016-08-24 11:24:51,255 DEBUG: View 0 : 0.544871794872 +2016-08-24 11:24:51,264 DEBUG: View 1 : 0.692307692308 +2016-08-24 11:24:51,355 DEBUG: View 2 : 0.576923076923 +2016-08-24 11:24:51,363 DEBUG: View 3 : 0.602564102564 +2016-08-24 11:24:51,591 DEBUG: Best view : MiRNA__ +2016-08-24 11:24:56,849 DEBUG: Start: Iteration 84 +2016-08-24 11:24:56,866 DEBUG: View 0 : 0.602564102564 +2016-08-24 11:24:56,873 DEBUG: View 1 : 0.320512820513 +2016-08-24 11:24:56,962 DEBUG: View 2 : 0.647435897436 +2016-08-24 11:24:56,970 DEBUG: View 3 : 0.576923076923 +2016-08-24 11:24:57,226 DEBUG: Best view : RANSeq_ +2016-08-24 11:25:02,537 DEBUG: Start: Iteration 85 +2016-08-24 11:25:02,553 DEBUG: View 0 : 0.525641025641 +2016-08-24 11:25:02,561 DEBUG: View 1 : 0.615384615385 +2016-08-24 11:25:02,650 DEBUG: View 2 : 0.519230769231 +2016-08-24 11:25:02,657 DEBUG: View 3 : 0.660256410256 +2016-08-24 11:25:02,885 DEBUG: Best view : Clinic_ +2016-08-24 11:25:08,095 DEBUG: Start: Iteration 86 +2016-08-24 11:25:08,112 DEBUG: View 0 : 0.647435897436 +2016-08-24 11:25:08,120 DEBUG: View 1 : 0.525641025641 +2016-08-24 11:25:08,210 DEBUG: View 2 : 0.557692307692 +2016-08-24 11:25:08,218 DEBUG: View 3 : 0.641025641026 +2016-08-24 11:25:08,454 DEBUG: Best view : Clinic_ +2016-08-24 11:25:13,805 DEBUG: Start: Iteration 87 +2016-08-24 11:25:13,829 DEBUG: View 0 : 0.480769230769 +2016-08-24 11:25:13,844 DEBUG: View 1 : 0.628205128205 +2016-08-24 11:25:13,984 DEBUG: View 2 : 0.564102564103 +2016-08-24 11:25:13,998 DEBUG: View 3 : 0.49358974359 +2016-08-24 11:25:14,388 DEBUG: Best view : MiRNA__ +2016-08-24 11:25:19,842 DEBUG: Start: Iteration 88 +2016-08-24 11:25:19,859 DEBUG: View 0 : 0.583333333333 +2016-08-24 11:25:19,867 DEBUG: View 1 : 0.480769230769 +2016-08-24 11:25:19,951 DEBUG: View 2 : 0.551282051282 +2016-08-24 11:25:19,959 DEBUG: View 3 : 0.628205128205 +2016-08-24 11:25:20,266 DEBUG: Best view : Clinic_ +2016-08-24 11:25:25,733 DEBUG: Start: Iteration 89 +2016-08-24 11:25:25,749 DEBUG: View 0 : 0.544871794872 +2016-08-24 11:25:25,757 DEBUG: View 1 : 0.634615384615 +2016-08-24 11:25:25,843 DEBUG: View 2 : 0.50641025641 +2016-08-24 11:25:25,851 DEBUG: View 3 : 0.49358974359 +2016-08-24 11:25:26,091 DEBUG: Best view : MiRNA__ +2016-08-24 11:25:31,511 DEBUG: Start: Iteration 90 +2016-08-24 11:25:31,527 DEBUG: View 0 : 0.615384615385 +2016-08-24 11:25:31,535 DEBUG: View 1 : 0.685897435897 +2016-08-24 11:25:31,618 DEBUG: View 2 : 0.519230769231 +2016-08-24 11:25:31,626 DEBUG: View 3 : 0.564102564103 +2016-08-24 11:25:31,867 DEBUG: Best view : MiRNA__ +2016-08-24 11:25:37,241 DEBUG: Start: Iteration 91 +2016-08-24 11:25:37,257 DEBUG: View 0 : 0.50641025641 +2016-08-24 11:25:37,265 DEBUG: View 1 : 0.692307692308 +2016-08-24 11:25:37,352 DEBUG: View 2 : 0.557692307692 +2016-08-24 11:25:37,360 DEBUG: View 3 : 0.538461538462 +2016-08-24 11:25:37,600 DEBUG: Best view : MiRNA__ +2016-08-24 11:25:43,043 DEBUG: Start: Iteration 92 +2016-08-24 11:25:43,059 DEBUG: View 0 : 0.544871794872 +2016-08-24 11:25:43,067 DEBUG: View 1 : 0.474358974359 +2016-08-24 11:25:43,154 DEBUG: View 2 : 0.615384615385 +2016-08-24 11:25:43,162 DEBUG: View 3 : 0.634615384615 +2016-08-24 11:25:43,406 DEBUG: Best view : Clinic_ +2016-08-24 11:25:48,939 DEBUG: Start: Iteration 93 +2016-08-24 11:25:48,956 DEBUG: View 0 : 0.538461538462 +2016-08-24 11:25:48,964 DEBUG: View 1 : 0.589743589744 +2016-08-24 11:25:49,051 DEBUG: View 2 : 0.621794871795 +2016-08-24 11:25:49,058 DEBUG: View 3 : 0.570512820513 +2016-08-24 11:25:49,305 DEBUG: Best view : RANSeq_ +2016-08-24 11:25:54,890 DEBUG: Start: Iteration 94 +2016-08-24 11:25:54,907 DEBUG: View 0 : 0.435897435897 +2016-08-24 11:25:54,914 DEBUG: View 1 : 0.589743589744 +2016-08-24 11:25:54,997 DEBUG: View 2 : 0.5 +2016-08-24 11:25:55,004 DEBUG: View 3 : 0.608974358974 +2016-08-24 11:25:55,251 DEBUG: Best view : Clinic_ +2016-08-24 11:26:01,345 DEBUG: Start: Iteration 95 +2016-08-24 11:26:01,363 DEBUG: View 0 : 0.570512820513 +2016-08-24 11:26:01,371 DEBUG: View 1 : 0.448717948718 +2016-08-24 11:26:01,460 DEBUG: View 2 : 0.564102564103 +2016-08-24 11:26:01,468 DEBUG: View 3 : 0.544871794872 +2016-08-24 11:26:01,722 DEBUG: Best view : Clinic_ +2016-08-24 11:26:07,817 DEBUG: Start: Iteration 96 +2016-08-24 11:26:07,833 DEBUG: View 0 : 0.602564102564 +2016-08-24 11:26:07,841 DEBUG: View 1 : 0.410256410256 +2016-08-24 11:26:07,923 DEBUG: View 2 : 0.641025641026 +2016-08-24 11:26:07,931 DEBUG: View 3 : 0.653846153846 +2016-08-24 11:26:08,195 DEBUG: Best view : Clinic_ +2016-08-24 11:26:14,008 DEBUG: Start: Iteration 97 +2016-08-24 11:26:14,024 DEBUG: View 0 : 0.596153846154 +2016-08-24 11:26:14,032 DEBUG: View 1 : 0.384615384615 +2016-08-24 11:26:14,119 DEBUG: View 2 : 0.519230769231 +2016-08-24 11:26:14,126 DEBUG: View 3 : 0.621794871795 +2016-08-24 11:26:14,382 DEBUG: Best view : Clinic_ +2016-08-24 11:26:20,301 DEBUG: Start: Iteration 98 +2016-08-24 11:26:20,318 DEBUG: View 0 : 0.621794871795 +2016-08-24 11:26:20,326 DEBUG: View 1 : 0.391025641026 +2016-08-24 11:26:20,418 DEBUG: View 2 : 0.596153846154 +2016-08-24 11:26:20,426 DEBUG: View 3 : 0.653846153846 +2016-08-24 11:26:20,686 DEBUG: Best view : Clinic_ +2016-08-24 11:26:26,648 DEBUG: Start: Iteration 99 +2016-08-24 11:26:26,664 DEBUG: View 0 : 0.615384615385 +2016-08-24 11:26:26,672 DEBUG: View 1 : 0.391025641026 +2016-08-24 11:26:26,757 DEBUG: View 2 : 0.544871794872 +2016-08-24 11:26:26,765 DEBUG: View 3 : 0.628205128205 +2016-08-24 11:26:27,027 DEBUG: Best view : Clinic_ +2016-08-24 11:26:33,016 DEBUG: Start: Iteration 100 +2016-08-24 11:26:33,032 DEBUG: View 0 : 0.628205128205 +2016-08-24 11:26:33,040 DEBUG: View 1 : 0.602564102564 +2016-08-24 11:26:33,124 DEBUG: View 2 : 0.480769230769 +2016-08-24 11:26:33,132 DEBUG: View 3 : 0.647435897436 +2016-08-24 11:26:33,395 DEBUG: Best view : Clinic_ +2016-08-24 11:26:39,429 DEBUG: Start: Iteration 101 +2016-08-24 11:26:39,446 DEBUG: View 0 : 0.717948717949 +2016-08-24 11:26:39,453 DEBUG: View 1 : 0.634615384615 +2016-08-24 11:26:39,539 DEBUG: View 2 : 0.589743589744 +2016-08-24 11:26:39,546 DEBUG: View 3 : 0.628205128205 +2016-08-24 11:26:39,811 DEBUG: Best view : Methyl_ +2016-08-24 11:26:46,118 DEBUG: Start: Iteration 102 +2016-08-24 11:26:46,139 DEBUG: View 0 : 0.615384615385 +2016-08-24 11:26:46,148 DEBUG: View 1 : 0.628205128205 +2016-08-24 11:26:46,237 DEBUG: View 2 : 0.551282051282 +2016-08-24 11:26:46,244 DEBUG: View 3 : 0.634615384615 +2016-08-24 11:26:46,518 DEBUG: Best view : Clinic_ +2016-08-24 11:26:52,740 INFO: Start: Classification +2016-08-24 11:27:08,084 INFO: Done: Fold number 2 +2016-08-24 11:27:08,084 INFO: Done: Classification +2016-08-24 11:27:08,084 INFO: Info: Time for Classification: 742[s] +2016-08-24 11:27:08,084 INFO: Start: Result Analysis for Mumbo +2016-08-24 11:27:43,126 INFO: Result for Multiview classification with Mumbo + +Average accuracy : + -On Train : 79.5150501672 + -On Test : 79.9180327869 + -On Validation : 83.9805825243 + +Dataset info : + -Database name : ModifiedMultiOmic + -Labels : No, Yes + -Views : Methyl, MiRNA, RNASEQ, Clinical + -2 folds + - Validation set length : 103 for learning rate : 0.7 + +Classification configuration : + -Algorithm used : Mumbo + -Iterations : 1000 + -Weak Classifiers : DecisionTree with depth 1, sub-sampled at 0.02 on Methyl + -DecisionTree with depth 1, sub-sampled at 0.02 on MiRNA + -DecisionTree with depth 1, sub-sampled at 0.1 on RNASEQ + -DecisionTree with depth 2, sub-sampled at 0.1 on Clinical + + Mean average accuracies and stats for each fold : + - Fold 0 + - On Methyl_ : + - Mean average Accuracy : 0.0566086956522 + - Percentage of time chosen : 0.91 + - On MiRNA__ : + - Mean average Accuracy : 0.0601552795031 + - Percentage of time chosen : 0.031 + - On RANSeq_ : + - Mean average Accuracy : 0.0589378881988 + - Percentage of time chosen : 0.021 + - On Clinic_ : + - Mean average Accuracy : 0.0603664596273 + - Percentage of time chosen : 0.038 + - Fold 1 + - On Methyl_ : + - Mean average Accuracy : 0.0546346153846 + - Percentage of time chosen : 0.909 + - On MiRNA__ : + - Mean average Accuracy : 0.05475 + - Percentage of time chosen : 0.028 + - On RANSeq_ : + - Mean average Accuracy : 0.0575833333333 + - Percentage of time chosen : 0.015 + - On Clinic_ : + - Mean average Accuracy : 0.0597243589744 + - Percentage of time chosen : 0.048 + + For each iteration : + - Iteration 1 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 2 + Fold 1 + Accuracy on train : 72.6708074534 + Accuracy on test : 77.868852459 + Accuracy on validation : 74.7572815534 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 60.8974358974 + Accuracy on test : 53.2786885246 + Accuracy on validation : 63.1067961165 + Selected View : Clinic_ + - Mean : + Accuracy on train : 66.7841216754 + Accuracy on test : 65.5737704918 + - Iteration 3 + Fold 1 + Accuracy on train : 72.6708074534 + Accuracy on test : 77.868852459 + Accuracy on validation : 74.7572815534 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 60.8974358974 + Accuracy on test : 53.2786885246 + Accuracy on validation : 63.1067961165 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 66.7841216754 + Accuracy on test : 65.5737704918 + - Iteration 4 + Fold 1 + Accuracy on train : 72.6708074534 + Accuracy on test : 82.7868852459 + Accuracy on validation : 77.6699029126 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 66.0256410256 + Accuracy on test : 59.0163934426 + Accuracy on validation : 65.0485436893 + Selected View : Clinic_ + - Mean : + Accuracy on train : 69.3482242395 + Accuracy on test : 70.9016393443 + - Iteration 5 + Fold 1 + Accuracy on train : 71.4285714286 + Accuracy on test : 81.1475409836 + Accuracy on validation : 75.7281553398 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 69.2307692308 + Accuracy on test : 63.9344262295 + Accuracy on validation : 66.0194174757 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 70.3296703297 + Accuracy on test : 72.5409836066 + - Iteration 6 + Fold 1 + Accuracy on train : 71.4285714286 + Accuracy on test : 81.1475409836 + Accuracy on validation : 76.6990291262 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 78.8461538462 + Accuracy on test : 69.6721311475 + Accuracy on validation : 79.6116504854 + Selected View : Methyl_ + - Mean : + Accuracy on train : 75.1373626374 + Accuracy on test : 75.4098360656 + - Iteration 7 + Fold 1 + Accuracy on train : 75.7763975155 + Accuracy on test : 85.2459016393 + Accuracy on validation : 77.6699029126 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 78.2051282051 + Accuracy on test : 72.131147541 + Accuracy on validation : 80.5825242718 + Selected View : Clinic_ + - Mean : + Accuracy on train : 76.9907628603 + Accuracy on test : 78.6885245902 + - Iteration 8 + Fold 1 + Accuracy on train : 75.1552795031 + Accuracy on test : 80.3278688525 + Accuracy on validation : 77.6699029126 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 78.2051282051 + Accuracy on test : 72.9508196721 + Accuracy on validation : 81.5533980583 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 76.6802038541 + Accuracy on test : 76.6393442623 + - Iteration 9 + Fold 1 + Accuracy on train : 73.9130434783 + Accuracy on test : 80.3278688525 + Accuracy on validation : 76.6990291262 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 79.4871794872 + Accuracy on test : 72.131147541 + Accuracy on validation : 83.4951456311 + Selected View : Clinic_ + - Mean : + Accuracy on train : 76.7001114827 + Accuracy on test : 76.2295081967 + - Iteration 10 + Fold 1 + Accuracy on train : 75.7763975155 + Accuracy on test : 81.1475409836 + Accuracy on validation : 78.640776699 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 75.641025641 + Accuracy on test : 74.5901639344 + Accuracy on validation : 80.5825242718 + Selected View : Clinic_ + - Mean : + Accuracy on train : 75.7087115783 + Accuracy on test : 77.868852459 + - Iteration 11 + Fold 1 + Accuracy on train : 75.7763975155 + Accuracy on test : 82.7868852459 + Accuracy on validation : 74.7572815534 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 76.9230769231 + Accuracy on test : 74.5901639344 + Accuracy on validation : 79.6116504854 + Selected View : Clinic_ + - Mean : + Accuracy on train : 76.3497372193 + Accuracy on test : 78.6885245902 + - Iteration 12 + Fold 1 + Accuracy on train : 76.397515528 + Accuracy on test : 83.606557377 + Accuracy on validation : 76.6990291262 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 75.641025641 + Accuracy on test : 74.5901639344 + Accuracy on validation : 78.640776699 + Selected View : Clinic_ + - Mean : + Accuracy on train : 76.0192705845 + Accuracy on test : 79.0983606557 + - Iteration 13 + Fold 1 + Accuracy on train : 78.2608695652 + Accuracy on test : 81.1475409836 + Accuracy on validation : 78.640776699 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 77.5641025641 + Accuracy on test : 74.5901639344 + Accuracy on validation : 80.5825242718 + Selected View : Methyl_ + - Mean : + Accuracy on train : 77.9124860647 + Accuracy on test : 77.868852459 + - Iteration 14 + Fold 1 + Accuracy on train : 77.0186335404 + Accuracy on test : 81.1475409836 + Accuracy on validation : 79.6116504854 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 77.5641025641 + Accuracy on test : 73.7704918033 + Accuracy on validation : 80.5825242718 + Selected View : Clinic_ + - Mean : + Accuracy on train : 77.2913680522 + Accuracy on test : 77.4590163934 + - Iteration 15 + Fold 1 + Accuracy on train : 76.397515528 + Accuracy on test : 81.1475409836 + Accuracy on validation : 77.6699029126 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 75.641025641 + Accuracy on test : 77.0491803279 + Accuracy on validation : 77.6699029126 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 76.0192705845 + Accuracy on test : 79.0983606557 + - Iteration 16 + Fold 1 + Accuracy on train : 75.7763975155 + Accuracy on test : 81.1475409836 + Accuracy on validation : 77.6699029126 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 80.1282051282 + Accuracy on test : 77.868852459 + Accuracy on validation : 81.5533980583 + Selected View : Methyl_ + - Mean : + Accuracy on train : 77.9523013219 + Accuracy on test : 79.5081967213 + - Iteration 17 + Fold 1 + Accuracy on train : 76.397515528 + Accuracy on test : 85.2459016393 + Accuracy on validation : 78.640776699 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 78.2051282051 + Accuracy on test : 80.3278688525 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 77.3013218665 + Accuracy on test : 82.7868852459 + - Iteration 18 + Fold 1 + Accuracy on train : 77.0186335404 + Accuracy on test : 84.4262295082 + Accuracy on validation : 79.6116504854 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 79.4871794872 + Accuracy on test : 80.3278688525 + Accuracy on validation : 81.5533980583 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 78.2529065138 + Accuracy on test : 82.3770491803 + - Iteration 19 + Fold 1 + Accuracy on train : 78.2608695652 + Accuracy on test : 84.4262295082 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 81.4102564103 + Accuracy on test : 81.1475409836 + Accuracy on validation : 82.5242718447 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 79.8355629877 + Accuracy on test : 82.7868852459 + - Iteration 20 + Fold 1 + Accuracy on train : 78.2608695652 + Accuracy on test : 81.9672131148 + Accuracy on validation : 79.6116504854 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 80.1282051282 + Accuracy on test : 80.3278688525 + Accuracy on validation : 81.5533980583 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 79.1945373467 + Accuracy on test : 81.1475409836 + - Iteration 21 + Fold 1 + Accuracy on train : 78.2608695652 + Accuracy on test : 85.2459016393 + Accuracy on validation : 79.6116504854 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 79.4871794872 + Accuracy on test : 81.1475409836 + Accuracy on validation : 80.5825242718 + Selected View : Clinic_ + - Mean : + Accuracy on train : 78.8740245262 + Accuracy on test : 83.1967213115 + - Iteration 22 + Fold 1 + Accuracy on train : 77.6397515528 + Accuracy on test : 84.4262295082 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 77.5641025641 + Accuracy on test : 82.7868852459 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 77.6019270584 + Accuracy on test : 83.606557377 + - Iteration 23 + Fold 1 + Accuracy on train : 79.5031055901 + Accuracy on test : 82.7868852459 + Accuracy on validation : 82.5242718447 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 75.641025641 + Accuracy on test : 81.1475409836 + Accuracy on validation : 78.640776699 + Selected View : Clinic_ + - Mean : + Accuracy on train : 77.5720656155 + Accuracy on test : 81.9672131148 + - Iteration 24 + Fold 1 + Accuracy on train : 79.5031055901 + Accuracy on test : 84.4262295082 + Accuracy on validation : 82.5242718447 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 77.5641025641 + Accuracy on test : 81.1475409836 + Accuracy on validation : 81.5533980583 + Selected View : Clinic_ + - Mean : + Accuracy on train : 78.5336040771 + Accuracy on test : 82.7868852459 + - Iteration 25 + Fold 1 + Accuracy on train : 78.2608695652 + Accuracy on test : 82.7868852459 + Accuracy on validation : 80.5825242718 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 79.4871794872 + Accuracy on test : 81.1475409836 + Accuracy on validation : 83.4951456311 + Selected View : Clinic_ + - Mean : + Accuracy on train : 78.8740245262 + Accuracy on test : 81.9672131148 + - Iteration 26 + Fold 1 + Accuracy on train : 78.8819875776 + Accuracy on test : 83.606557377 + Accuracy on validation : 82.5242718447 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 80.1282051282 + Accuracy on test : 81.9672131148 + Accuracy on validation : 81.5533980583 + Selected View : Clinic_ + - Mean : + Accuracy on train : 79.5050963529 + Accuracy on test : 82.7868852459 + - Iteration 27 + Fold 1 + Accuracy on train : 79.5031055901 + Accuracy on test : 84.4262295082 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 82.0512820513 + Accuracy on test : 81.1475409836 + Accuracy on validation : 83.4951456311 + Selected View : Clinic_ + - Mean : + Accuracy on train : 80.7771938207 + Accuracy on test : 82.7868852459 + - Iteration 28 + Fold 1 + Accuracy on train : 78.8819875776 + Accuracy on test : 80.3278688525 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 85.8974358974 + Accuracy on test : 81.9672131148 + Accuracy on validation : 86.4077669903 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 82.3897117375 + Accuracy on test : 81.1475409836 + - Iteration 29 + Fold 1 + Accuracy on train : 77.6397515528 + Accuracy on test : 81.9672131148 + Accuracy on validation : 79.6116504854 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 83.3333333333 + Accuracy on test : 81.9672131148 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 80.4865424431 + Accuracy on test : 81.9672131148 + - Iteration 30 + Fold 1 + Accuracy on train : 78.2608695652 + Accuracy on test : 81.1475409836 + Accuracy on validation : 80.5825242718 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 82.0512820513 + Accuracy on test : 82.7868852459 + Accuracy on validation : 83.4951456311 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 80.1560758082 + Accuracy on test : 81.9672131148 + - Iteration 31 + Fold 1 + Accuracy on train : 76.397515528 + Accuracy on test : 79.5081967213 + Accuracy on validation : 78.640776699 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 82.0512820513 + Accuracy on test : 82.7868852459 + Accuracy on validation : 83.4951456311 + Selected View : Clinic_ + - Mean : + Accuracy on train : 79.2243987896 + Accuracy on test : 81.1475409836 + - Iteration 32 + Fold 1 + Accuracy on train : 77.0186335404 + Accuracy on test : 80.3278688525 + Accuracy on validation : 78.640776699 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 82.6923076923 + Accuracy on test : 83.606557377 + Accuracy on validation : 83.4951456311 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 79.8554706163 + Accuracy on test : 81.9672131148 + - Iteration 33 + Fold 1 + Accuracy on train : 78.2608695652 + Accuracy on test : 80.3278688525 + Accuracy on validation : 79.6116504854 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 82.0512820513 + Accuracy on test : 80.3278688525 + Accuracy on validation : 83.4951456311 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 80.1560758082 + Accuracy on test : 80.3278688525 + - Iteration 34 + Fold 1 + Accuracy on train : 77.0186335404 + Accuracy on test : 78.6885245902 + Accuracy on validation : 78.640776699 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 83.9743589744 + Accuracy on test : 82.7868852459 + Accuracy on validation : 85.4368932039 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 80.4964962574 + Accuracy on test : 80.737704918 + - Iteration 35 + Fold 1 + Accuracy on train : 76.397515528 + Accuracy on test : 79.5081967213 + Accuracy on validation : 77.6699029126 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 82.0512820513 + Accuracy on test : 80.3278688525 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 79.2243987896 + Accuracy on test : 79.9180327869 + - Iteration 36 + Fold 1 + Accuracy on train : 78.2608695652 + Accuracy on test : 79.5081967213 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 82.0512820513 + Accuracy on test : 81.9672131148 + Accuracy on validation : 85.4368932039 + Selected View : Clinic_ + - Mean : + Accuracy on train : 80.1560758082 + Accuracy on test : 80.737704918 + - Iteration 37 + Fold 1 + Accuracy on train : 79.5031055901 + Accuracy on test : 81.9672131148 + Accuracy on validation : 81.5533980583 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 83.9743589744 + Accuracy on test : 80.3278688525 + Accuracy on validation : 87.3786407767 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 81.7387322822 + Accuracy on test : 81.1475409836 + - Iteration 38 + Fold 1 + Accuracy on train : 78.2608695652 + Accuracy on test : 80.3278688525 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 82.6923076923 + Accuracy on test : 81.1475409836 + Accuracy on validation : 86.4077669903 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 80.4765886288 + Accuracy on test : 80.737704918 + - Iteration 39 + Fold 1 + Accuracy on train : 77.0186335404 + Accuracy on test : 81.9672131148 + Accuracy on validation : 81.5533980583 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 82.6923076923 + Accuracy on test : 81.1475409836 + Accuracy on validation : 86.4077669903 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 79.8554706163 + Accuracy on test : 81.5573770492 + - Iteration 40 + Fold 1 + Accuracy on train : 78.8819875776 + Accuracy on test : 81.9672131148 + Accuracy on validation : 81.5533980583 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 83.3333333333 + Accuracy on test : 80.3278688525 + Accuracy on validation : 86.4077669903 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 81.1076604555 + Accuracy on test : 81.1475409836 + - Iteration 41 + Fold 1 + Accuracy on train : 77.6397515528 + Accuracy on test : 81.9672131148 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 83.3333333333 + Accuracy on test : 79.5081967213 + Accuracy on validation : 86.4077669903 + Selected View : Methyl_ + - Mean : + Accuracy on train : 80.4865424431 + Accuracy on test : 80.737704918 + - Iteration 42 + Fold 1 + Accuracy on train : 77.6397515528 + Accuracy on test : 81.1475409836 + Accuracy on validation : 81.5533980583 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 83.3333333333 + Accuracy on test : 79.5081967213 + Accuracy on validation : 85.4368932039 + Selected View : Clinic_ + - Mean : + Accuracy on train : 80.4865424431 + Accuracy on test : 80.3278688525 + - Iteration 43 + Fold 1 + Accuracy on train : 80.7453416149 + Accuracy on test : 81.9672131148 + Accuracy on validation : 82.5242718447 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 85.2564102564 + Accuracy on test : 79.5081967213 + Accuracy on validation : 87.3786407767 + Selected View : Clinic_ + - Mean : + Accuracy on train : 83.0008759357 + Accuracy on test : 80.737704918 + - Iteration 44 + Fold 1 + Accuracy on train : 78.8819875776 + Accuracy on test : 81.9672131148 + Accuracy on validation : 82.5242718447 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 85.2564102564 + Accuracy on test : 79.5081967213 + Accuracy on validation : 86.4077669903 + Selected View : Clinic_ + - Mean : + Accuracy on train : 82.069198917 + Accuracy on test : 80.737704918 + - Iteration 45 + Fold 1 + Accuracy on train : 78.8819875776 + Accuracy on test : 82.7868852459 + Accuracy on validation : 81.5533980583 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 84.6153846154 + Accuracy on test : 79.5081967213 + Accuracy on validation : 86.4077669903 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 81.7486860965 + Accuracy on test : 81.1475409836 + - Iteration 46 + Fold 1 + Accuracy on train : 77.6397515528 + Accuracy on test : 83.606557377 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 85.8974358974 + Accuracy on test : 80.3278688525 + Accuracy on validation : 87.3786407767 + Selected View : Clinic_ + - Mean : + Accuracy on train : 81.7685937251 + Accuracy on test : 81.9672131148 + - Iteration 47 + Fold 1 + Accuracy on train : 78.2608695652 + Accuracy on test : 81.9672131148 + Accuracy on validation : 80.5825242718 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 85.8974358974 + Accuracy on test : 80.3278688525 + Accuracy on validation : 87.3786407767 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 82.0791527313 + Accuracy on test : 81.1475409836 + - Iteration 48 + Fold 1 + Accuracy on train : 77.6397515528 + Accuracy on test : 82.7868852459 + Accuracy on validation : 80.5825242718 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 86.5384615385 + Accuracy on test : 78.6885245902 + Accuracy on validation : 88.3495145631 + Selected View : Clinic_ + - Mean : + Accuracy on train : 82.0891065456 + Accuracy on test : 80.737704918 + - Iteration 49 + Fold 1 + Accuracy on train : 77.6397515528 + Accuracy on test : 81.1475409836 + Accuracy on validation : 80.5825242718 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 85.8974358974 + Accuracy on test : 79.5081967213 + Accuracy on validation : 87.3786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 81.7685937251 + Accuracy on test : 80.3278688525 + - Iteration 50 + Fold 1 + Accuracy on train : 77.0186335404 + Accuracy on test : 81.1475409836 + Accuracy on validation : 79.6116504854 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 85.2564102564 + Accuracy on test : 77.868852459 + Accuracy on validation : 86.4077669903 + Selected View : Clinic_ + - Mean : + Accuracy on train : 81.1375218984 + Accuracy on test : 79.5081967213 + - Iteration 51 + Fold 1 + Accuracy on train : 78.2608695652 + Accuracy on test : 81.9672131148 + Accuracy on validation : 81.5533980583 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 83.9743589744 + Accuracy on test : 78.6885245902 + Accuracy on validation : 86.4077669903 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 81.1176142698 + Accuracy on test : 80.3278688525 + - Iteration 52 + Fold 1 + Accuracy on train : 77.0186335404 + Accuracy on test : 81.1475409836 + Accuracy on validation : 78.640776699 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 83.9743589744 + Accuracy on test : 78.6885245902 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 80.4964962574 + Accuracy on test : 79.9180327869 + - Iteration 53 + Fold 1 + Accuracy on train : 77.6397515528 + Accuracy on test : 81.9672131148 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 83.9743589744 + Accuracy on test : 79.5081967213 + Accuracy on validation : 85.4368932039 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 80.8070552636 + Accuracy on test : 80.737704918 + - Iteration 54 + Fold 1 + Accuracy on train : 75.7763975155 + Accuracy on test : 81.9672131148 + Accuracy on validation : 78.640776699 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 83.3333333333 + Accuracy on test : 78.6885245902 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + - Mean : + Accuracy on train : 79.5548654244 + Accuracy on test : 80.3278688525 + - Iteration 55 + Fold 1 + Accuracy on train : 77.6397515528 + Accuracy on test : 81.1475409836 + Accuracy on validation : 81.5533980583 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 85.2564102564 + Accuracy on test : 77.0491803279 + Accuracy on validation : 87.3786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 81.4480809046 + Accuracy on test : 79.0983606557 + - Iteration 56 + Fold 1 + Accuracy on train : 81.3664596273 + Accuracy on test : 86.0655737705 + Accuracy on validation : 83.4951456311 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 83.9743589744 + Accuracy on test : 78.6885245902 + Accuracy on validation : 86.4077669903 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 82.6704093008 + Accuracy on test : 82.3770491803 + - Iteration 57 + Fold 1 + Accuracy on train : 81.3664596273 + Accuracy on test : 84.4262295082 + Accuracy on validation : 83.4951456311 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 83.9743589744 + Accuracy on test : 79.5081967213 + Accuracy on validation : 86.4077669903 + Selected View : Methyl_ + - Mean : + Accuracy on train : 82.6704093008 + Accuracy on test : 81.9672131148 + - Iteration 58 + Fold 1 + Accuracy on train : 80.1242236025 + Accuracy on test : 83.606557377 + Accuracy on validation : 81.5533980583 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 83.3333333333 + Accuracy on test : 78.6885245902 + Accuracy on validation : 85.4368932039 + Selected View : Clinic_ + - Mean : + Accuracy on train : 81.7287784679 + Accuracy on test : 81.1475409836 + - Iteration 59 + Fold 1 + Accuracy on train : 80.1242236025 + Accuracy on test : 82.7868852459 + Accuracy on validation : 81.5533980583 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 83.9743589744 + Accuracy on test : 79.5081967213 + Accuracy on validation : 85.4368932039 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 82.0492912884 + Accuracy on test : 81.1475409836 + - Iteration 60 + Fold 1 + Accuracy on train : 79.5031055901 + Accuracy on test : 83.606557377 + Accuracy on validation : 81.5533980583 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 83.3333333333 + Accuracy on test : 81.1475409836 + Accuracy on validation : 84.4660194175 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 81.4182194617 + Accuracy on test : 82.3770491803 + - Iteration 61 + Fold 1 + Accuracy on train : 80.7453416149 + Accuracy on test : 83.606557377 + Accuracy on validation : 83.4951456311 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 83.9743589744 + Accuracy on test : 81.9672131148 + Accuracy on validation : 84.4660194175 + Selected View : Methyl_ + - Mean : + Accuracy on train : 82.3598502946 + Accuracy on test : 82.7868852459 + - Iteration 62 + Fold 1 + Accuracy on train : 81.3664596273 + Accuracy on test : 82.7868852459 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 83.3333333333 + Accuracy on test : 81.9672131148 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 82.3498964803 + Accuracy on test : 82.3770491803 + - Iteration 63 + Fold 1 + Accuracy on train : 79.5031055901 + Accuracy on test : 81.9672131148 + Accuracy on validation : 83.4951456311 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 82.6923076923 + Accuracy on test : 81.1475409836 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + - Mean : + Accuracy on train : 81.0977066412 + Accuracy on test : 81.5573770492 + - Iteration 64 + Fold 1 + Accuracy on train : 80.7453416149 + Accuracy on test : 81.9672131148 + Accuracy on validation : 83.4951456311 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 82.0512820513 + Accuracy on test : 81.9672131148 + Accuracy on validation : 83.4951456311 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 81.3983118331 + Accuracy on test : 81.9672131148 + - Iteration 65 + Fold 1 + Accuracy on train : 80.1242236025 + Accuracy on test : 81.1475409836 + Accuracy on validation : 83.4951456311 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 81.4102564103 + Accuracy on test : 81.1475409836 + Accuracy on validation : 83.4951456311 + Selected View : Clinic_ + - Mean : + Accuracy on train : 80.7672400064 + Accuracy on test : 81.1475409836 + - Iteration 66 + Fold 1 + Accuracy on train : 80.7453416149 + Accuracy on test : 82.7868852459 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 82.0512820513 + Accuracy on test : 81.1475409836 + Accuracy on validation : 83.4951456311 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 81.3983118331 + Accuracy on test : 81.9672131148 + - Iteration 67 + Fold 1 + Accuracy on train : 80.7453416149 + Accuracy on test : 81.1475409836 + Accuracy on validation : 83.4951456311 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 80.7692307692 + Accuracy on test : 79.5081967213 + Accuracy on validation : 83.4951456311 + Selected View : Clinic_ + - Mean : + Accuracy on train : 80.7572861921 + Accuracy on test : 80.3278688525 + - Iteration 68 + Fold 1 + Accuracy on train : 82.6086956522 + Accuracy on test : 82.7868852459 + Accuracy on validation : 86.4077669903 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 82.6923076923 + Accuracy on test : 81.1475409836 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + - Mean : + Accuracy on train : 82.6505016722 + Accuracy on test : 81.9672131148 + - Iteration 69 + Fold 1 + Accuracy on train : 82.6086956522 + Accuracy on test : 81.9672131148 + Accuracy on validation : 85.4368932039 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 83.9743589744 + Accuracy on test : 81.1475409836 + Accuracy on validation : 85.4368932039 + Selected View : Clinic_ + - Mean : + Accuracy on train : 83.2915273133 + Accuracy on test : 81.5573770492 + - Iteration 70 + Fold 1 + Accuracy on train : 83.2298136646 + Accuracy on test : 82.7868852459 + Accuracy on validation : 86.4077669903 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 83.9743589744 + Accuracy on test : 81.1475409836 + Accuracy on validation : 85.4368932039 + Selected View : Clinic_ + - Mean : + Accuracy on train : 83.6020863195 + Accuracy on test : 81.9672131148 + - Iteration 71 + Fold 1 + Accuracy on train : 83.2298136646 + Accuracy on test : 82.7868852459 + Accuracy on validation : 86.4077669903 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 84.6153846154 + Accuracy on test : 80.3278688525 + Accuracy on validation : 85.4368932039 + Selected View : Clinic_ + - Mean : + Accuracy on train : 83.92259914 + Accuracy on test : 81.5573770492 + - Iteration 72 + Fold 1 + Accuracy on train : 83.2298136646 + Accuracy on test : 83.606557377 + Accuracy on validation : 85.4368932039 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 83.9743589744 + Accuracy on test : 79.5081967213 + Accuracy on validation : 85.4368932039 + Selected View : Clinic_ + - Mean : + Accuracy on train : 83.6020863195 + Accuracy on test : 81.5573770492 + - Iteration 73 + Fold 1 + Accuracy on train : 82.6086956522 + Accuracy on test : 83.606557377 + Accuracy on validation : 85.4368932039 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 82.6923076923 + Accuracy on test : 80.3278688525 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + - Mean : + Accuracy on train : 82.6505016722 + Accuracy on test : 81.9672131148 + - Iteration 74 + Fold 1 + Accuracy on train : 80.7453416149 + Accuracy on test : 82.7868852459 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 83.3333333333 + Accuracy on test : 80.3278688525 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 82.0393374741 + Accuracy on test : 81.5573770492 + - Iteration 75 + Fold 1 + Accuracy on train : 83.2298136646 + Accuracy on test : 83.606557377 + Accuracy on validation : 86.4077669903 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 82.0512820513 + Accuracy on test : 80.3278688525 + Accuracy on validation : 83.4951456311 + Selected View : Methyl_ + - Mean : + Accuracy on train : 82.6405478579 + Accuracy on test : 81.9672131148 + - Iteration 76 + Fold 1 + Accuracy on train : 81.3664596273 + Accuracy on test : 83.606557377 + Accuracy on validation : 85.4368932039 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 83.9743589744 + Accuracy on test : 77.868852459 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 82.6704093008 + Accuracy on test : 80.737704918 + - Iteration 77 + Fold 1 + Accuracy on train : 81.9875776398 + Accuracy on test : 84.4262295082 + Accuracy on validation : 85.4368932039 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 82.6923076923 + Accuracy on test : 77.0491803279 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 82.339942666 + Accuracy on test : 80.737704918 + - Iteration 78 + Fold 1 + Accuracy on train : 81.9875776398 + Accuracy on test : 83.606557377 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 82.6923076923 + Accuracy on test : 77.868852459 + Accuracy on validation : 85.4368932039 + Selected View : Clinic_ + - Mean : + Accuracy on train : 82.339942666 + Accuracy on test : 80.737704918 + - Iteration 79 + Fold 1 + Accuracy on train : 80.1242236025 + Accuracy on test : 84.4262295082 + Accuracy on validation : 83.4951456311 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 83.3333333333 + Accuracy on test : 77.868852459 + Accuracy on validation : 85.4368932039 + Selected View : Clinic_ + - Mean : + Accuracy on train : 81.7287784679 + Accuracy on test : 81.1475409836 + - Iteration 80 + Fold 1 + Accuracy on train : 80.7453416149 + Accuracy on test : 83.606557377 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 83.9743589744 + Accuracy on test : 78.6885245902 + Accuracy on validation : 86.4077669903 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 82.3598502946 + Accuracy on test : 81.1475409836 + - Iteration 81 + Fold 1 + Accuracy on train : 80.1242236025 + Accuracy on test : 84.4262295082 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 83.3333333333 + Accuracy on test : 78.6885245902 + Accuracy on validation : 85.4368932039 + Selected View : Clinic_ + - Mean : + Accuracy on train : 81.7287784679 + Accuracy on test : 81.5573770492 + - Iteration 82 + Fold 1 + Accuracy on train : 80.7453416149 + Accuracy on test : 83.606557377 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 81.4102564103 + Accuracy on test : 77.868852459 + Accuracy on validation : 83.4951456311 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 81.0777990126 + Accuracy on test : 80.737704918 + - Iteration 83 + Fold 1 + Accuracy on train : 80.1242236025 + Accuracy on test : 82.7868852459 + Accuracy on validation : 84.4660194175 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 83.3333333333 + Accuracy on test : 79.5081967213 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 81.7287784679 + Accuracy on test : 81.1475409836 + - Iteration 84 + Fold 1 + Accuracy on train : 81.3664596273 + Accuracy on test : 81.9672131148 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 81.4102564103 + Accuracy on test : 78.6885245902 + Accuracy on validation : 83.4951456311 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 81.3883580188 + Accuracy on test : 80.3278688525 + - Iteration 85 + Fold 1 + Accuracy on train : 79.5031055901 + Accuracy on test : 81.1475409836 + Accuracy on validation : 84.4660194175 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 82.0512820513 + Accuracy on test : 78.6885245902 + Accuracy on validation : 83.4951456311 + Selected View : Clinic_ + - Mean : + Accuracy on train : 80.7771938207 + Accuracy on test : 79.9180327869 + - Iteration 86 + Fold 1 + Accuracy on train : 79.5031055901 + Accuracy on test : 81.9672131148 + Accuracy on validation : 84.4660194175 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 82.0512820513 + Accuracy on test : 78.6885245902 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + - Mean : + Accuracy on train : 80.7771938207 + Accuracy on test : 80.3278688525 + - Iteration 87 + Fold 1 + Accuracy on train : 78.8819875776 + Accuracy on test : 81.1475409836 + Accuracy on validation : 84.4660194175 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 80.7692307692 + Accuracy on test : 78.6885245902 + Accuracy on validation : 83.4951456311 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 79.8256091734 + Accuracy on test : 79.9180327869 + - Iteration 88 + Fold 1 + Accuracy on train : 79.5031055901 + Accuracy on test : 81.1475409836 + Accuracy on validation : 84.4660194175 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 80.7692307692 + Accuracy on test : 78.6885245902 + Accuracy on validation : 83.4951456311 + Selected View : Clinic_ + - Mean : + Accuracy on train : 80.1361681796 + Accuracy on test : 79.9180327869 + - Iteration 89 + Fold 1 + Accuracy on train : 78.8819875776 + Accuracy on test : 81.1475409836 + Accuracy on validation : 83.4951456311 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 80.1282051282 + Accuracy on test : 78.6885245902 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 79.5050963529 + Accuracy on test : 79.9180327869 + - Iteration 90 + Fold 1 + Accuracy on train : 78.2608695652 + Accuracy on test : 81.1475409836 + Accuracy on validation : 82.5242718447 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 80.1282051282 + Accuracy on test : 78.6885245902 + Accuracy on validation : 83.4951456311 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 79.1945373467 + Accuracy on test : 79.9180327869 + - Iteration 91 + Fold 1 + Accuracy on train : 78.2608695652 + Accuracy on test : 80.3278688525 + Accuracy on validation : 83.4951456311 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 79.4871794872 + Accuracy on test : 78.6885245902 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 78.8740245262 + Accuracy on test : 79.5081967213 + - Iteration 92 + Fold 1 + Accuracy on train : 78.8819875776 + Accuracy on test : 81.9672131148 + Accuracy on validation : 83.4951456311 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 79.4871794872 + Accuracy on test : 79.5081967213 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + - Mean : + Accuracy on train : 79.1845835324 + Accuracy on test : 80.737704918 + - Iteration 93 + Fold 1 + Accuracy on train : 78.2608695652 + Accuracy on test : 80.3278688525 + Accuracy on validation : 83.4951456311 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 79.4871794872 + Accuracy on test : 78.6885245902 + Accuracy on validation : 84.4660194175 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 78.8740245262 + Accuracy on test : 79.5081967213 + - Iteration 94 + Fold 1 + Accuracy on train : 77.6397515528 + Accuracy on test : 80.3278688525 + Accuracy on validation : 82.5242718447 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 79.4871794872 + Accuracy on test : 78.6885245902 + Accuracy on validation : 83.4951456311 + Selected View : Clinic_ + - Mean : + Accuracy on train : 78.56346552 + Accuracy on test : 79.5081967213 + - Iteration 95 + Fold 1 + Accuracy on train : 77.0186335404 + Accuracy on test : 80.3278688525 + Accuracy on validation : 81.5533980583 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 80.1282051282 + Accuracy on test : 78.6885245902 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + - Mean : + Accuracy on train : 78.5734193343 + Accuracy on test : 79.5081967213 + - Iteration 96 + Fold 1 + Accuracy on train : 76.397515528 + Accuracy on test : 79.5081967213 + Accuracy on validation : 81.5533980583 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 79.4871794872 + Accuracy on test : 78.6885245902 + Accuracy on validation : 83.4951456311 + Selected View : Clinic_ + - Mean : + Accuracy on train : 77.9423475076 + Accuracy on test : 79.0983606557 + - Iteration 97 + Fold 1 + Accuracy on train : 75.7763975155 + Accuracy on test : 78.6885245902 + Accuracy on validation : 81.5533980583 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 80.1282051282 + Accuracy on test : 77.868852459 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + - Mean : + Accuracy on train : 77.9523013219 + Accuracy on test : 78.2786885246 + - Iteration 98 + Fold 1 + Accuracy on train : 76.397515528 + Accuracy on test : 80.3278688525 + Accuracy on validation : 82.5242718447 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 78.2051282051 + Accuracy on test : 77.0491803279 + Accuracy on validation : 82.5242718447 + Selected View : Clinic_ + - Mean : + Accuracy on train : 77.3013218665 + Accuracy on test : 78.6885245902 + - Iteration 99 + Fold 1 + Accuracy on train : 75.7763975155 + Accuracy on test : 78.6885245902 + Accuracy on validation : 81.5533980583 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 78.8461538462 + Accuracy on test : 77.868852459 + Accuracy on validation : 83.4951456311 + Selected View : Clinic_ + - Mean : + Accuracy on train : 77.3112756808 + Accuracy on test : 78.2786885246 + - Iteration 100 + Fold 1 + Accuracy on train : 77.6397515528 + Accuracy on test : 80.3278688525 + Accuracy on validation : 82.5242718447 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 79.4871794872 + Accuracy on test : 77.868852459 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + - Mean : + Accuracy on train : 78.56346552 + Accuracy on test : 79.0983606557 + - Iteration 101 + Fold 1 + Accuracy on train : 77.6397515528 + Accuracy on test : 81.1475409836 + Accuracy on validation : 82.5242718447 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 81.4102564103 + Accuracy on test : 78.6885245902 + Accuracy on validation : 84.4660194175 + Selected View : Methyl_ + - Mean : + Accuracy on train : 79.5250039815 + Accuracy on test : 79.9180327869 + - Iteration 102 + Fold 1 + Accuracy on train : 78.2608695652 + Accuracy on test : 80.3278688525 + Accuracy on validation : 83.4951456311 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 80.7692307692 + Accuracy on test : 79.5081967213 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + - Mean : + Accuracy on train : 79.5150501672 + Accuracy on test : 79.9180327869 + - Iteration 103 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 104 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 105 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 106 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 107 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 108 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 109 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 110 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 111 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 112 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 113 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 114 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 115 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 116 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 117 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 118 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 119 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 120 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 121 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 122 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 123 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 124 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 125 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 126 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 127 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 128 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 129 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 130 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 131 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 132 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 133 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 134 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 135 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 136 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 137 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 138 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 139 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 140 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 141 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 142 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 143 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 144 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 145 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 146 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 147 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 148 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 149 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 150 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 151 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 152 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 153 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 154 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 155 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 156 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 157 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 158 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 159 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 160 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 161 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 162 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 163 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 164 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 165 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 166 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 167 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 168 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 169 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 170 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 171 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 172 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 173 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 174 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 175 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 176 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 177 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 178 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 179 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 180 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 181 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 182 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 183 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 184 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 185 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 186 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 187 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 188 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 189 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 190 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 191 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 192 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 193 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 194 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 195 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 196 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 197 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 198 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 199 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 200 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 201 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 202 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 203 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 204 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 205 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 206 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 207 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 208 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 209 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 210 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 211 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 212 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 213 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 214 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 215 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 216 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 217 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 218 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 219 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 220 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 221 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 222 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 223 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 224 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 225 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 226 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 227 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 228 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 229 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 230 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 231 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 232 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 233 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 234 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 235 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 236 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 237 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 238 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 239 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 240 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 241 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 242 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 243 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 244 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 245 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 246 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 247 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 248 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 249 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 250 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 251 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 252 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 253 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 254 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 255 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 256 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 257 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 258 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 259 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 260 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 261 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 262 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 263 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 264 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 265 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 266 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 267 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 268 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 269 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 270 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 271 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 272 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 273 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 274 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 275 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 276 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 277 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 278 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 279 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 280 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 281 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 282 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 283 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 284 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 285 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 286 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 287 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 288 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 289 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 290 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 291 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 292 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 293 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 294 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 295 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 296 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 297 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 298 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 299 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 300 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 301 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 302 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 303 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 304 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 305 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 306 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 307 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 308 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 309 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 310 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 311 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 312 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 313 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 314 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 315 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 316 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 317 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 318 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 319 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 320 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 321 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 322 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 323 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 324 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 325 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 326 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 327 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 328 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 329 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 330 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 331 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 332 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 333 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 334 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 335 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 336 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 337 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 338 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 339 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 340 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 341 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 342 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 343 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 344 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 345 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 346 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 347 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 348 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 349 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 350 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 351 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 352 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 353 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 354 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 355 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 356 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 357 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 358 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 359 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 360 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 361 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 362 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 363 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 364 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 365 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 366 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 367 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 368 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 369 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 370 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 371 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 372 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 373 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 374 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 375 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 376 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 377 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 378 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 379 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 380 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 381 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 382 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 383 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 384 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 385 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 386 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 387 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 388 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 389 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 390 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 391 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 392 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 393 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 394 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 395 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 396 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 397 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 398 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 399 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 400 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 401 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 402 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 403 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 404 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 405 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 406 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 407 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 408 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 409 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 410 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 411 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 412 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 413 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 414 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 415 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 416 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 417 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 418 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 419 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 420 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 421 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 422 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 423 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 424 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 425 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 426 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 427 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 428 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 429 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 430 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 431 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 432 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 433 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 434 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 435 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 436 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 437 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 438 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 439 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 440 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 441 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 442 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 443 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 444 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 445 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 446 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 447 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 448 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 449 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 450 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 451 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 452 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 453 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 454 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 455 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 456 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 457 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 458 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 459 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 460 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 461 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 462 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 463 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 464 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 465 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 466 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 467 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 468 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 469 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 470 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 471 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 472 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 473 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 474 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 475 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 476 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 477 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 478 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 479 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 480 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 481 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 482 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 483 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 484 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 485 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 486 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 487 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 488 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 489 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 490 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 491 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 492 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 493 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 494 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 495 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 496 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 497 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 498 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 499 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 500 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 501 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 502 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 503 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 504 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 505 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 506 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 507 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 508 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 509 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 510 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 511 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 512 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 513 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 514 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 515 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 516 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 517 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 518 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 519 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 520 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 521 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 522 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 523 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 524 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 525 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 526 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 527 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 528 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 529 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 530 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 531 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 532 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 533 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 534 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 535 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 536 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 537 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 538 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 539 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 540 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 541 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 542 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 543 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 544 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 545 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 546 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 547 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 548 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 549 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 550 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 551 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 552 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 553 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 554 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 555 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 556 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 557 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 558 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 559 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 560 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 561 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 562 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 563 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 564 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 565 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 566 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 567 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 568 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 569 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 570 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 571 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 572 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 573 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 574 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 575 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 576 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 577 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 578 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 579 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 580 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 581 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 582 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 583 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 584 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 585 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 586 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 587 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 588 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 589 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 590 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 591 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 592 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 593 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 594 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 595 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 596 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 597 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 598 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 599 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 600 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 601 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 602 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 603 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 604 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 605 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 606 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 607 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 608 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 609 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 610 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 611 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 612 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 613 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 614 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 615 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 616 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 617 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 618 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 619 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 620 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 621 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 622 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 623 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 624 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 625 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 626 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 627 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 628 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 629 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 630 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 631 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 632 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 633 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 634 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 635 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 636 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 637 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 638 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 639 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 640 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 641 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 642 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 643 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 644 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 645 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 646 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 647 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 648 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 649 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 650 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 651 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 652 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 653 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 654 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 655 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 656 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 657 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 658 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 659 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 660 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 661 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 662 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 663 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 664 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 665 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 666 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 667 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 668 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 669 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 670 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 671 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 672 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 673 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 674 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 675 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 676 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 677 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 678 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 679 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 680 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 681 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 682 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 683 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 684 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 685 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 686 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 687 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 688 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 689 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 690 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 691 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 692 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 693 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 694 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 695 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 696 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 697 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 698 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 699 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 700 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 701 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 702 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 703 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 704 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 705 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 706 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 707 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 708 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 709 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 710 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 711 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 712 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 713 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 714 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 715 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 716 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 717 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 718 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 719 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 720 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 721 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 722 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 723 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 724 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 725 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 726 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 727 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 728 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 729 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 730 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 731 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 732 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 733 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 734 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 735 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 736 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 737 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 738 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 739 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 740 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 741 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 742 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 743 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 744 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 745 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 746 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 747 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 748 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 749 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 750 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 751 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 752 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 753 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 754 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 755 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 756 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 757 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 758 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 759 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 760 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 761 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 762 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 763 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 764 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 765 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 766 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 767 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 768 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 769 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 770 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 771 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 772 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 773 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 774 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 775 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 776 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 777 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 778 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 779 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 780 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 781 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 782 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 783 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 784 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 785 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 786 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 787 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 788 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 789 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 790 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 791 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 792 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 793 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 794 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 795 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 796 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 797 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 798 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 799 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 800 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 801 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 802 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 803 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 804 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 805 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 806 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 807 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 808 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 809 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 810 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 811 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 812 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 813 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 814 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 815 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 816 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 817 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 818 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 819 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 820 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 821 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 822 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 823 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 824 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 825 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 826 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 827 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 828 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 829 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 830 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 831 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 832 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 833 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 834 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 835 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 836 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 837 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 838 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 839 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 840 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 841 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 842 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 843 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 844 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 845 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 846 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 847 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 848 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 849 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 850 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 851 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 852 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 853 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 854 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 855 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 856 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 857 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 858 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 859 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 860 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 861 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 862 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 863 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 864 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 865 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 866 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 867 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 868 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 869 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 870 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 871 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 872 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 873 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 874 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 875 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 876 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 877 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 878 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 879 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 880 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 881 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 882 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 883 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 884 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 885 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 886 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 887 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 888 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 889 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 890 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 891 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 892 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 893 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 894 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 895 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 896 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 897 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 898 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 899 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 900 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 901 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 902 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 903 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 904 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 905 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 906 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 907 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 908 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 909 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 910 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 911 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 912 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 913 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 914 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 915 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 916 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 917 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 918 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 919 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 920 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 921 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 922 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 923 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 924 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 925 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 926 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 927 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 928 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 929 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 930 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 931 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 932 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 933 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 934 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 935 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 936 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 937 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 938 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 939 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 940 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 941 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 942 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 943 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 944 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 945 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 946 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 947 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 948 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 949 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 950 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 951 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 952 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 953 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 954 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 955 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 956 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 957 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 958 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 959 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 960 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 961 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 962 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 963 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 964 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 965 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 966 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 967 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 968 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 969 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 970 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 971 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 972 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 973 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 974 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 975 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 976 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 977 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 978 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 979 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 980 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 981 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 982 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 983 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 984 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 985 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 986 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 987 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 988 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 989 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 990 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 991 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 992 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 993 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 994 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 995 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 996 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 997 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 998 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 999 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 1000 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + +Computation time on 1 cores : + Database extraction time : 0:00:00 + Learn Prediction + Fold 1 0:06:00 0:00:15 + Fold 2 0:12:07 0:00:15 + Total 0:18:07 0:00:30 + So a total classification time of 0:12:22. + + +2016-08-24 11:27:43,912 INFO: Done: Result Analysis diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-112743Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-112743Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png new file mode 100644 index 0000000000000000000000000000000000000000..99905780bc6d41f53313eea5bf9caed8e7a46e4f Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-112743Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png differ diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-112743Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-112743Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt new file mode 100644 index 0000000000000000000000000000000000000000..31e85005079d3bdf782c4b00392bcf1ae5018187 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-112743Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt @@ -0,0 +1,14060 @@ + Result for Multiview classification with Mumbo + +Average accuracy : + -On Train : 79.5150501672 + -On Test : 79.9180327869 + -On Validation : 83.9805825243 + +Dataset info : + -Database name : ModifiedMultiOmic + -Labels : No, Yes + -Views : Methyl, MiRNA, RNASEQ, Clinical + -2 folds + - Validation set length : 103 for learning rate : 0.7 + +Classification configuration : + -Algorithm used : Mumbo + -Iterations : 1000 + -Weak Classifiers : DecisionTree with depth 1, sub-sampled at 0.02 on Methyl + -DecisionTree with depth 1, sub-sampled at 0.02 on MiRNA + -DecisionTree with depth 1, sub-sampled at 0.1 on RNASEQ + -DecisionTree with depth 2, sub-sampled at 0.1 on Clinical + + Mean average accuracies and stats for each fold : + - Fold 0 + - On Methyl_ : + - Mean average Accuracy : 0.0566086956522 + - Percentage of time chosen : 0.91 + - On MiRNA__ : + - Mean average Accuracy : 0.0601552795031 + - Percentage of time chosen : 0.031 + - On RANSeq_ : + - Mean average Accuracy : 0.0589378881988 + - Percentage of time chosen : 0.021 + - On Clinic_ : + - Mean average Accuracy : 0.0603664596273 + - Percentage of time chosen : 0.038 + - Fold 1 + - On Methyl_ : + - Mean average Accuracy : 0.0546346153846 + - Percentage of time chosen : 0.909 + - On MiRNA__ : + - Mean average Accuracy : 0.05475 + - Percentage of time chosen : 0.028 + - On RANSeq_ : + - Mean average Accuracy : 0.0575833333333 + - Percentage of time chosen : 0.015 + - On Clinic_ : + - Mean average Accuracy : 0.0597243589744 + - Percentage of time chosen : 0.048 + + For each iteration : + - Iteration 1 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 2 + Fold 1 + Accuracy on train : 72.6708074534 + Accuracy on test : 77.868852459 + Accuracy on validation : 74.7572815534 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 60.8974358974 + Accuracy on test : 53.2786885246 + Accuracy on validation : 63.1067961165 + Selected View : Clinic_ + - Mean : + Accuracy on train : 66.7841216754 + Accuracy on test : 65.5737704918 + - Iteration 3 + Fold 1 + Accuracy on train : 72.6708074534 + Accuracy on test : 77.868852459 + Accuracy on validation : 74.7572815534 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 60.8974358974 + Accuracy on test : 53.2786885246 + Accuracy on validation : 63.1067961165 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 66.7841216754 + Accuracy on test : 65.5737704918 + - Iteration 4 + Fold 1 + Accuracy on train : 72.6708074534 + Accuracy on test : 82.7868852459 + Accuracy on validation : 77.6699029126 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 66.0256410256 + Accuracy on test : 59.0163934426 + Accuracy on validation : 65.0485436893 + Selected View : Clinic_ + - Mean : + Accuracy on train : 69.3482242395 + Accuracy on test : 70.9016393443 + - Iteration 5 + Fold 1 + Accuracy on train : 71.4285714286 + Accuracy on test : 81.1475409836 + Accuracy on validation : 75.7281553398 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 69.2307692308 + Accuracy on test : 63.9344262295 + Accuracy on validation : 66.0194174757 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 70.3296703297 + Accuracy on test : 72.5409836066 + - Iteration 6 + Fold 1 + Accuracy on train : 71.4285714286 + Accuracy on test : 81.1475409836 + Accuracy on validation : 76.6990291262 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 78.8461538462 + Accuracy on test : 69.6721311475 + Accuracy on validation : 79.6116504854 + Selected View : Methyl_ + - Mean : + Accuracy on train : 75.1373626374 + Accuracy on test : 75.4098360656 + - Iteration 7 + Fold 1 + Accuracy on train : 75.7763975155 + Accuracy on test : 85.2459016393 + Accuracy on validation : 77.6699029126 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 78.2051282051 + Accuracy on test : 72.131147541 + Accuracy on validation : 80.5825242718 + Selected View : Clinic_ + - Mean : + Accuracy on train : 76.9907628603 + Accuracy on test : 78.6885245902 + - Iteration 8 + Fold 1 + Accuracy on train : 75.1552795031 + Accuracy on test : 80.3278688525 + Accuracy on validation : 77.6699029126 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 78.2051282051 + Accuracy on test : 72.9508196721 + Accuracy on validation : 81.5533980583 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 76.6802038541 + Accuracy on test : 76.6393442623 + - Iteration 9 + Fold 1 + Accuracy on train : 73.9130434783 + Accuracy on test : 80.3278688525 + Accuracy on validation : 76.6990291262 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 79.4871794872 + Accuracy on test : 72.131147541 + Accuracy on validation : 83.4951456311 + Selected View : Clinic_ + - Mean : + Accuracy on train : 76.7001114827 + Accuracy on test : 76.2295081967 + - Iteration 10 + Fold 1 + Accuracy on train : 75.7763975155 + Accuracy on test : 81.1475409836 + Accuracy on validation : 78.640776699 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 75.641025641 + Accuracy on test : 74.5901639344 + Accuracy on validation : 80.5825242718 + Selected View : Clinic_ + - Mean : + Accuracy on train : 75.7087115783 + Accuracy on test : 77.868852459 + - Iteration 11 + Fold 1 + Accuracy on train : 75.7763975155 + Accuracy on test : 82.7868852459 + Accuracy on validation : 74.7572815534 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 76.9230769231 + Accuracy on test : 74.5901639344 + Accuracy on validation : 79.6116504854 + Selected View : Clinic_ + - Mean : + Accuracy on train : 76.3497372193 + Accuracy on test : 78.6885245902 + - Iteration 12 + Fold 1 + Accuracy on train : 76.397515528 + Accuracy on test : 83.606557377 + Accuracy on validation : 76.6990291262 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 75.641025641 + Accuracy on test : 74.5901639344 + Accuracy on validation : 78.640776699 + Selected View : Clinic_ + - Mean : + Accuracy on train : 76.0192705845 + Accuracy on test : 79.0983606557 + - Iteration 13 + Fold 1 + Accuracy on train : 78.2608695652 + Accuracy on test : 81.1475409836 + Accuracy on validation : 78.640776699 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 77.5641025641 + Accuracy on test : 74.5901639344 + Accuracy on validation : 80.5825242718 + Selected View : Methyl_ + - Mean : + Accuracy on train : 77.9124860647 + Accuracy on test : 77.868852459 + - Iteration 14 + Fold 1 + Accuracy on train : 77.0186335404 + Accuracy on test : 81.1475409836 + Accuracy on validation : 79.6116504854 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 77.5641025641 + Accuracy on test : 73.7704918033 + Accuracy on validation : 80.5825242718 + Selected View : Clinic_ + - Mean : + Accuracy on train : 77.2913680522 + Accuracy on test : 77.4590163934 + - Iteration 15 + Fold 1 + Accuracy on train : 76.397515528 + Accuracy on test : 81.1475409836 + Accuracy on validation : 77.6699029126 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 75.641025641 + Accuracy on test : 77.0491803279 + Accuracy on validation : 77.6699029126 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 76.0192705845 + Accuracy on test : 79.0983606557 + - Iteration 16 + Fold 1 + Accuracy on train : 75.7763975155 + Accuracy on test : 81.1475409836 + Accuracy on validation : 77.6699029126 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 80.1282051282 + Accuracy on test : 77.868852459 + Accuracy on validation : 81.5533980583 + Selected View : Methyl_ + - Mean : + Accuracy on train : 77.9523013219 + Accuracy on test : 79.5081967213 + - Iteration 17 + Fold 1 + Accuracy on train : 76.397515528 + Accuracy on test : 85.2459016393 + Accuracy on validation : 78.640776699 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 78.2051282051 + Accuracy on test : 80.3278688525 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 77.3013218665 + Accuracy on test : 82.7868852459 + - Iteration 18 + Fold 1 + Accuracy on train : 77.0186335404 + Accuracy on test : 84.4262295082 + Accuracy on validation : 79.6116504854 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 79.4871794872 + Accuracy on test : 80.3278688525 + Accuracy on validation : 81.5533980583 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 78.2529065138 + Accuracy on test : 82.3770491803 + - Iteration 19 + Fold 1 + Accuracy on train : 78.2608695652 + Accuracy on test : 84.4262295082 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 81.4102564103 + Accuracy on test : 81.1475409836 + Accuracy on validation : 82.5242718447 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 79.8355629877 + Accuracy on test : 82.7868852459 + - Iteration 20 + Fold 1 + Accuracy on train : 78.2608695652 + Accuracy on test : 81.9672131148 + Accuracy on validation : 79.6116504854 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 80.1282051282 + Accuracy on test : 80.3278688525 + Accuracy on validation : 81.5533980583 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 79.1945373467 + Accuracy on test : 81.1475409836 + - Iteration 21 + Fold 1 + Accuracy on train : 78.2608695652 + Accuracy on test : 85.2459016393 + Accuracy on validation : 79.6116504854 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 79.4871794872 + Accuracy on test : 81.1475409836 + Accuracy on validation : 80.5825242718 + Selected View : Clinic_ + - Mean : + Accuracy on train : 78.8740245262 + Accuracy on test : 83.1967213115 + - Iteration 22 + Fold 1 + Accuracy on train : 77.6397515528 + Accuracy on test : 84.4262295082 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 77.5641025641 + Accuracy on test : 82.7868852459 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 77.6019270584 + Accuracy on test : 83.606557377 + - Iteration 23 + Fold 1 + Accuracy on train : 79.5031055901 + Accuracy on test : 82.7868852459 + Accuracy on validation : 82.5242718447 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 75.641025641 + Accuracy on test : 81.1475409836 + Accuracy on validation : 78.640776699 + Selected View : Clinic_ + - Mean : + Accuracy on train : 77.5720656155 + Accuracy on test : 81.9672131148 + - Iteration 24 + Fold 1 + Accuracy on train : 79.5031055901 + Accuracy on test : 84.4262295082 + Accuracy on validation : 82.5242718447 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 77.5641025641 + Accuracy on test : 81.1475409836 + Accuracy on validation : 81.5533980583 + Selected View : Clinic_ + - Mean : + Accuracy on train : 78.5336040771 + Accuracy on test : 82.7868852459 + - Iteration 25 + Fold 1 + Accuracy on train : 78.2608695652 + Accuracy on test : 82.7868852459 + Accuracy on validation : 80.5825242718 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 79.4871794872 + Accuracy on test : 81.1475409836 + Accuracy on validation : 83.4951456311 + Selected View : Clinic_ + - Mean : + Accuracy on train : 78.8740245262 + Accuracy on test : 81.9672131148 + - Iteration 26 + Fold 1 + Accuracy on train : 78.8819875776 + Accuracy on test : 83.606557377 + Accuracy on validation : 82.5242718447 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 80.1282051282 + Accuracy on test : 81.9672131148 + Accuracy on validation : 81.5533980583 + Selected View : Clinic_ + - Mean : + Accuracy on train : 79.5050963529 + Accuracy on test : 82.7868852459 + - Iteration 27 + Fold 1 + Accuracy on train : 79.5031055901 + Accuracy on test : 84.4262295082 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 82.0512820513 + Accuracy on test : 81.1475409836 + Accuracy on validation : 83.4951456311 + Selected View : Clinic_ + - Mean : + Accuracy on train : 80.7771938207 + Accuracy on test : 82.7868852459 + - Iteration 28 + Fold 1 + Accuracy on train : 78.8819875776 + Accuracy on test : 80.3278688525 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 85.8974358974 + Accuracy on test : 81.9672131148 + Accuracy on validation : 86.4077669903 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 82.3897117375 + Accuracy on test : 81.1475409836 + - Iteration 29 + Fold 1 + Accuracy on train : 77.6397515528 + Accuracy on test : 81.9672131148 + Accuracy on validation : 79.6116504854 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 83.3333333333 + Accuracy on test : 81.9672131148 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 80.4865424431 + Accuracy on test : 81.9672131148 + - Iteration 30 + Fold 1 + Accuracy on train : 78.2608695652 + Accuracy on test : 81.1475409836 + Accuracy on validation : 80.5825242718 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 82.0512820513 + Accuracy on test : 82.7868852459 + Accuracy on validation : 83.4951456311 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 80.1560758082 + Accuracy on test : 81.9672131148 + - Iteration 31 + Fold 1 + Accuracy on train : 76.397515528 + Accuracy on test : 79.5081967213 + Accuracy on validation : 78.640776699 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 82.0512820513 + Accuracy on test : 82.7868852459 + Accuracy on validation : 83.4951456311 + Selected View : Clinic_ + - Mean : + Accuracy on train : 79.2243987896 + Accuracy on test : 81.1475409836 + - Iteration 32 + Fold 1 + Accuracy on train : 77.0186335404 + Accuracy on test : 80.3278688525 + Accuracy on validation : 78.640776699 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 82.6923076923 + Accuracy on test : 83.606557377 + Accuracy on validation : 83.4951456311 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 79.8554706163 + Accuracy on test : 81.9672131148 + - Iteration 33 + Fold 1 + Accuracy on train : 78.2608695652 + Accuracy on test : 80.3278688525 + Accuracy on validation : 79.6116504854 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 82.0512820513 + Accuracy on test : 80.3278688525 + Accuracy on validation : 83.4951456311 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 80.1560758082 + Accuracy on test : 80.3278688525 + - Iteration 34 + Fold 1 + Accuracy on train : 77.0186335404 + Accuracy on test : 78.6885245902 + Accuracy on validation : 78.640776699 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 83.9743589744 + Accuracy on test : 82.7868852459 + Accuracy on validation : 85.4368932039 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 80.4964962574 + Accuracy on test : 80.737704918 + - Iteration 35 + Fold 1 + Accuracy on train : 76.397515528 + Accuracy on test : 79.5081967213 + Accuracy on validation : 77.6699029126 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 82.0512820513 + Accuracy on test : 80.3278688525 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 79.2243987896 + Accuracy on test : 79.9180327869 + - Iteration 36 + Fold 1 + Accuracy on train : 78.2608695652 + Accuracy on test : 79.5081967213 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 82.0512820513 + Accuracy on test : 81.9672131148 + Accuracy on validation : 85.4368932039 + Selected View : Clinic_ + - Mean : + Accuracy on train : 80.1560758082 + Accuracy on test : 80.737704918 + - Iteration 37 + Fold 1 + Accuracy on train : 79.5031055901 + Accuracy on test : 81.9672131148 + Accuracy on validation : 81.5533980583 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 83.9743589744 + Accuracy on test : 80.3278688525 + Accuracy on validation : 87.3786407767 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 81.7387322822 + Accuracy on test : 81.1475409836 + - Iteration 38 + Fold 1 + Accuracy on train : 78.2608695652 + Accuracy on test : 80.3278688525 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 82.6923076923 + Accuracy on test : 81.1475409836 + Accuracy on validation : 86.4077669903 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 80.4765886288 + Accuracy on test : 80.737704918 + - Iteration 39 + Fold 1 + Accuracy on train : 77.0186335404 + Accuracy on test : 81.9672131148 + Accuracy on validation : 81.5533980583 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 82.6923076923 + Accuracy on test : 81.1475409836 + Accuracy on validation : 86.4077669903 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 79.8554706163 + Accuracy on test : 81.5573770492 + - Iteration 40 + Fold 1 + Accuracy on train : 78.8819875776 + Accuracy on test : 81.9672131148 + Accuracy on validation : 81.5533980583 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 83.3333333333 + Accuracy on test : 80.3278688525 + Accuracy on validation : 86.4077669903 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 81.1076604555 + Accuracy on test : 81.1475409836 + - Iteration 41 + Fold 1 + Accuracy on train : 77.6397515528 + Accuracy on test : 81.9672131148 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 83.3333333333 + Accuracy on test : 79.5081967213 + Accuracy on validation : 86.4077669903 + Selected View : Methyl_ + - Mean : + Accuracy on train : 80.4865424431 + Accuracy on test : 80.737704918 + - Iteration 42 + Fold 1 + Accuracy on train : 77.6397515528 + Accuracy on test : 81.1475409836 + Accuracy on validation : 81.5533980583 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 83.3333333333 + Accuracy on test : 79.5081967213 + Accuracy on validation : 85.4368932039 + Selected View : Clinic_ + - Mean : + Accuracy on train : 80.4865424431 + Accuracy on test : 80.3278688525 + - Iteration 43 + Fold 1 + Accuracy on train : 80.7453416149 + Accuracy on test : 81.9672131148 + Accuracy on validation : 82.5242718447 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 85.2564102564 + Accuracy on test : 79.5081967213 + Accuracy on validation : 87.3786407767 + Selected View : Clinic_ + - Mean : + Accuracy on train : 83.0008759357 + Accuracy on test : 80.737704918 + - Iteration 44 + Fold 1 + Accuracy on train : 78.8819875776 + Accuracy on test : 81.9672131148 + Accuracy on validation : 82.5242718447 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 85.2564102564 + Accuracy on test : 79.5081967213 + Accuracy on validation : 86.4077669903 + Selected View : Clinic_ + - Mean : + Accuracy on train : 82.069198917 + Accuracy on test : 80.737704918 + - Iteration 45 + Fold 1 + Accuracy on train : 78.8819875776 + Accuracy on test : 82.7868852459 + Accuracy on validation : 81.5533980583 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 84.6153846154 + Accuracy on test : 79.5081967213 + Accuracy on validation : 86.4077669903 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 81.7486860965 + Accuracy on test : 81.1475409836 + - Iteration 46 + Fold 1 + Accuracy on train : 77.6397515528 + Accuracy on test : 83.606557377 + Accuracy on validation : 79.6116504854 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 85.8974358974 + Accuracy on test : 80.3278688525 + Accuracy on validation : 87.3786407767 + Selected View : Clinic_ + - Mean : + Accuracy on train : 81.7685937251 + Accuracy on test : 81.9672131148 + - Iteration 47 + Fold 1 + Accuracy on train : 78.2608695652 + Accuracy on test : 81.9672131148 + Accuracy on validation : 80.5825242718 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 85.8974358974 + Accuracy on test : 80.3278688525 + Accuracy on validation : 87.3786407767 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 82.0791527313 + Accuracy on test : 81.1475409836 + - Iteration 48 + Fold 1 + Accuracy on train : 77.6397515528 + Accuracy on test : 82.7868852459 + Accuracy on validation : 80.5825242718 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 86.5384615385 + Accuracy on test : 78.6885245902 + Accuracy on validation : 88.3495145631 + Selected View : Clinic_ + - Mean : + Accuracy on train : 82.0891065456 + Accuracy on test : 80.737704918 + - Iteration 49 + Fold 1 + Accuracy on train : 77.6397515528 + Accuracy on test : 81.1475409836 + Accuracy on validation : 80.5825242718 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 85.8974358974 + Accuracy on test : 79.5081967213 + Accuracy on validation : 87.3786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 81.7685937251 + Accuracy on test : 80.3278688525 + - Iteration 50 + Fold 1 + Accuracy on train : 77.0186335404 + Accuracy on test : 81.1475409836 + Accuracy on validation : 79.6116504854 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 85.2564102564 + Accuracy on test : 77.868852459 + Accuracy on validation : 86.4077669903 + Selected View : Clinic_ + - Mean : + Accuracy on train : 81.1375218984 + Accuracy on test : 79.5081967213 + - Iteration 51 + Fold 1 + Accuracy on train : 78.2608695652 + Accuracy on test : 81.9672131148 + Accuracy on validation : 81.5533980583 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 83.9743589744 + Accuracy on test : 78.6885245902 + Accuracy on validation : 86.4077669903 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 81.1176142698 + Accuracy on test : 80.3278688525 + - Iteration 52 + Fold 1 + Accuracy on train : 77.0186335404 + Accuracy on test : 81.1475409836 + Accuracy on validation : 78.640776699 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 83.9743589744 + Accuracy on test : 78.6885245902 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 80.4964962574 + Accuracy on test : 79.9180327869 + - Iteration 53 + Fold 1 + Accuracy on train : 77.6397515528 + Accuracy on test : 81.9672131148 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 83.9743589744 + Accuracy on test : 79.5081967213 + Accuracy on validation : 85.4368932039 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 80.8070552636 + Accuracy on test : 80.737704918 + - Iteration 54 + Fold 1 + Accuracy on train : 75.7763975155 + Accuracy on test : 81.9672131148 + Accuracy on validation : 78.640776699 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 83.3333333333 + Accuracy on test : 78.6885245902 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + - Mean : + Accuracy on train : 79.5548654244 + Accuracy on test : 80.3278688525 + - Iteration 55 + Fold 1 + Accuracy on train : 77.6397515528 + Accuracy on test : 81.1475409836 + Accuracy on validation : 81.5533980583 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 85.2564102564 + Accuracy on test : 77.0491803279 + Accuracy on validation : 87.3786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 81.4480809046 + Accuracy on test : 79.0983606557 + - Iteration 56 + Fold 1 + Accuracy on train : 81.3664596273 + Accuracy on test : 86.0655737705 + Accuracy on validation : 83.4951456311 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 83.9743589744 + Accuracy on test : 78.6885245902 + Accuracy on validation : 86.4077669903 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 82.6704093008 + Accuracy on test : 82.3770491803 + - Iteration 57 + Fold 1 + Accuracy on train : 81.3664596273 + Accuracy on test : 84.4262295082 + Accuracy on validation : 83.4951456311 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 83.9743589744 + Accuracy on test : 79.5081967213 + Accuracy on validation : 86.4077669903 + Selected View : Methyl_ + - Mean : + Accuracy on train : 82.6704093008 + Accuracy on test : 81.9672131148 + - Iteration 58 + Fold 1 + Accuracy on train : 80.1242236025 + Accuracy on test : 83.606557377 + Accuracy on validation : 81.5533980583 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 83.3333333333 + Accuracy on test : 78.6885245902 + Accuracy on validation : 85.4368932039 + Selected View : Clinic_ + - Mean : + Accuracy on train : 81.7287784679 + Accuracy on test : 81.1475409836 + - Iteration 59 + Fold 1 + Accuracy on train : 80.1242236025 + Accuracy on test : 82.7868852459 + Accuracy on validation : 81.5533980583 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 83.9743589744 + Accuracy on test : 79.5081967213 + Accuracy on validation : 85.4368932039 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 82.0492912884 + Accuracy on test : 81.1475409836 + - Iteration 60 + Fold 1 + Accuracy on train : 79.5031055901 + Accuracy on test : 83.606557377 + Accuracy on validation : 81.5533980583 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 83.3333333333 + Accuracy on test : 81.1475409836 + Accuracy on validation : 84.4660194175 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 81.4182194617 + Accuracy on test : 82.3770491803 + - Iteration 61 + Fold 1 + Accuracy on train : 80.7453416149 + Accuracy on test : 83.606557377 + Accuracy on validation : 83.4951456311 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 83.9743589744 + Accuracy on test : 81.9672131148 + Accuracy on validation : 84.4660194175 + Selected View : Methyl_ + - Mean : + Accuracy on train : 82.3598502946 + Accuracy on test : 82.7868852459 + - Iteration 62 + Fold 1 + Accuracy on train : 81.3664596273 + Accuracy on test : 82.7868852459 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 83.3333333333 + Accuracy on test : 81.9672131148 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 82.3498964803 + Accuracy on test : 82.3770491803 + - Iteration 63 + Fold 1 + Accuracy on train : 79.5031055901 + Accuracy on test : 81.9672131148 + Accuracy on validation : 83.4951456311 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 82.6923076923 + Accuracy on test : 81.1475409836 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + - Mean : + Accuracy on train : 81.0977066412 + Accuracy on test : 81.5573770492 + - Iteration 64 + Fold 1 + Accuracy on train : 80.7453416149 + Accuracy on test : 81.9672131148 + Accuracy on validation : 83.4951456311 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 82.0512820513 + Accuracy on test : 81.9672131148 + Accuracy on validation : 83.4951456311 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 81.3983118331 + Accuracy on test : 81.9672131148 + - Iteration 65 + Fold 1 + Accuracy on train : 80.1242236025 + Accuracy on test : 81.1475409836 + Accuracy on validation : 83.4951456311 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 81.4102564103 + Accuracy on test : 81.1475409836 + Accuracy on validation : 83.4951456311 + Selected View : Clinic_ + - Mean : + Accuracy on train : 80.7672400064 + Accuracy on test : 81.1475409836 + - Iteration 66 + Fold 1 + Accuracy on train : 80.7453416149 + Accuracy on test : 82.7868852459 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 82.0512820513 + Accuracy on test : 81.1475409836 + Accuracy on validation : 83.4951456311 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 81.3983118331 + Accuracy on test : 81.9672131148 + - Iteration 67 + Fold 1 + Accuracy on train : 80.7453416149 + Accuracy on test : 81.1475409836 + Accuracy on validation : 83.4951456311 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 80.7692307692 + Accuracy on test : 79.5081967213 + Accuracy on validation : 83.4951456311 + Selected View : Clinic_ + - Mean : + Accuracy on train : 80.7572861921 + Accuracy on test : 80.3278688525 + - Iteration 68 + Fold 1 + Accuracy on train : 82.6086956522 + Accuracy on test : 82.7868852459 + Accuracy on validation : 86.4077669903 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 82.6923076923 + Accuracy on test : 81.1475409836 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + - Mean : + Accuracy on train : 82.6505016722 + Accuracy on test : 81.9672131148 + - Iteration 69 + Fold 1 + Accuracy on train : 82.6086956522 + Accuracy on test : 81.9672131148 + Accuracy on validation : 85.4368932039 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 83.9743589744 + Accuracy on test : 81.1475409836 + Accuracy on validation : 85.4368932039 + Selected View : Clinic_ + - Mean : + Accuracy on train : 83.2915273133 + Accuracy on test : 81.5573770492 + - Iteration 70 + Fold 1 + Accuracy on train : 83.2298136646 + Accuracy on test : 82.7868852459 + Accuracy on validation : 86.4077669903 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 83.9743589744 + Accuracy on test : 81.1475409836 + Accuracy on validation : 85.4368932039 + Selected View : Clinic_ + - Mean : + Accuracy on train : 83.6020863195 + Accuracy on test : 81.9672131148 + - Iteration 71 + Fold 1 + Accuracy on train : 83.2298136646 + Accuracy on test : 82.7868852459 + Accuracy on validation : 86.4077669903 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 84.6153846154 + Accuracy on test : 80.3278688525 + Accuracy on validation : 85.4368932039 + Selected View : Clinic_ + - Mean : + Accuracy on train : 83.92259914 + Accuracy on test : 81.5573770492 + - Iteration 72 + Fold 1 + Accuracy on train : 83.2298136646 + Accuracy on test : 83.606557377 + Accuracy on validation : 85.4368932039 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 83.9743589744 + Accuracy on test : 79.5081967213 + Accuracy on validation : 85.4368932039 + Selected View : Clinic_ + - Mean : + Accuracy on train : 83.6020863195 + Accuracy on test : 81.5573770492 + - Iteration 73 + Fold 1 + Accuracy on train : 82.6086956522 + Accuracy on test : 83.606557377 + Accuracy on validation : 85.4368932039 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 82.6923076923 + Accuracy on test : 80.3278688525 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + - Mean : + Accuracy on train : 82.6505016722 + Accuracy on test : 81.9672131148 + - Iteration 74 + Fold 1 + Accuracy on train : 80.7453416149 + Accuracy on test : 82.7868852459 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 83.3333333333 + Accuracy on test : 80.3278688525 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 82.0393374741 + Accuracy on test : 81.5573770492 + - Iteration 75 + Fold 1 + Accuracy on train : 83.2298136646 + Accuracy on test : 83.606557377 + Accuracy on validation : 86.4077669903 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 82.0512820513 + Accuracy on test : 80.3278688525 + Accuracy on validation : 83.4951456311 + Selected View : Methyl_ + - Mean : + Accuracy on train : 82.6405478579 + Accuracy on test : 81.9672131148 + - Iteration 76 + Fold 1 + Accuracy on train : 81.3664596273 + Accuracy on test : 83.606557377 + Accuracy on validation : 85.4368932039 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 83.9743589744 + Accuracy on test : 77.868852459 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 82.6704093008 + Accuracy on test : 80.737704918 + - Iteration 77 + Fold 1 + Accuracy on train : 81.9875776398 + Accuracy on test : 84.4262295082 + Accuracy on validation : 85.4368932039 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 82.6923076923 + Accuracy on test : 77.0491803279 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 82.339942666 + Accuracy on test : 80.737704918 + - Iteration 78 + Fold 1 + Accuracy on train : 81.9875776398 + Accuracy on test : 83.606557377 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 82.6923076923 + Accuracy on test : 77.868852459 + Accuracy on validation : 85.4368932039 + Selected View : Clinic_ + - Mean : + Accuracy on train : 82.339942666 + Accuracy on test : 80.737704918 + - Iteration 79 + Fold 1 + Accuracy on train : 80.1242236025 + Accuracy on test : 84.4262295082 + Accuracy on validation : 83.4951456311 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 83.3333333333 + Accuracy on test : 77.868852459 + Accuracy on validation : 85.4368932039 + Selected View : Clinic_ + - Mean : + Accuracy on train : 81.7287784679 + Accuracy on test : 81.1475409836 + - Iteration 80 + Fold 1 + Accuracy on train : 80.7453416149 + Accuracy on test : 83.606557377 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 83.9743589744 + Accuracy on test : 78.6885245902 + Accuracy on validation : 86.4077669903 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 82.3598502946 + Accuracy on test : 81.1475409836 + - Iteration 81 + Fold 1 + Accuracy on train : 80.1242236025 + Accuracy on test : 84.4262295082 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 83.3333333333 + Accuracy on test : 78.6885245902 + Accuracy on validation : 85.4368932039 + Selected View : Clinic_ + - Mean : + Accuracy on train : 81.7287784679 + Accuracy on test : 81.5573770492 + - Iteration 82 + Fold 1 + Accuracy on train : 80.7453416149 + Accuracy on test : 83.606557377 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 81.4102564103 + Accuracy on test : 77.868852459 + Accuracy on validation : 83.4951456311 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 81.0777990126 + Accuracy on test : 80.737704918 + - Iteration 83 + Fold 1 + Accuracy on train : 80.1242236025 + Accuracy on test : 82.7868852459 + Accuracy on validation : 84.4660194175 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 83.3333333333 + Accuracy on test : 79.5081967213 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 81.7287784679 + Accuracy on test : 81.1475409836 + - Iteration 84 + Fold 1 + Accuracy on train : 81.3664596273 + Accuracy on test : 81.9672131148 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 81.4102564103 + Accuracy on test : 78.6885245902 + Accuracy on validation : 83.4951456311 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 81.3883580188 + Accuracy on test : 80.3278688525 + - Iteration 85 + Fold 1 + Accuracy on train : 79.5031055901 + Accuracy on test : 81.1475409836 + Accuracy on validation : 84.4660194175 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 82.0512820513 + Accuracy on test : 78.6885245902 + Accuracy on validation : 83.4951456311 + Selected View : Clinic_ + - Mean : + Accuracy on train : 80.7771938207 + Accuracy on test : 79.9180327869 + - Iteration 86 + Fold 1 + Accuracy on train : 79.5031055901 + Accuracy on test : 81.9672131148 + Accuracy on validation : 84.4660194175 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 82.0512820513 + Accuracy on test : 78.6885245902 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + - Mean : + Accuracy on train : 80.7771938207 + Accuracy on test : 80.3278688525 + - Iteration 87 + Fold 1 + Accuracy on train : 78.8819875776 + Accuracy on test : 81.1475409836 + Accuracy on validation : 84.4660194175 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 80.7692307692 + Accuracy on test : 78.6885245902 + Accuracy on validation : 83.4951456311 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 79.8256091734 + Accuracy on test : 79.9180327869 + - Iteration 88 + Fold 1 + Accuracy on train : 79.5031055901 + Accuracy on test : 81.1475409836 + Accuracy on validation : 84.4660194175 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 80.7692307692 + Accuracy on test : 78.6885245902 + Accuracy on validation : 83.4951456311 + Selected View : Clinic_ + - Mean : + Accuracy on train : 80.1361681796 + Accuracy on test : 79.9180327869 + - Iteration 89 + Fold 1 + Accuracy on train : 78.8819875776 + Accuracy on test : 81.1475409836 + Accuracy on validation : 83.4951456311 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 80.1282051282 + Accuracy on test : 78.6885245902 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 79.5050963529 + Accuracy on test : 79.9180327869 + - Iteration 90 + Fold 1 + Accuracy on train : 78.2608695652 + Accuracy on test : 81.1475409836 + Accuracy on validation : 82.5242718447 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 80.1282051282 + Accuracy on test : 78.6885245902 + Accuracy on validation : 83.4951456311 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 79.1945373467 + Accuracy on test : 79.9180327869 + - Iteration 91 + Fold 1 + Accuracy on train : 78.2608695652 + Accuracy on test : 80.3278688525 + Accuracy on validation : 83.4951456311 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 79.4871794872 + Accuracy on test : 78.6885245902 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 78.8740245262 + Accuracy on test : 79.5081967213 + - Iteration 92 + Fold 1 + Accuracy on train : 78.8819875776 + Accuracy on test : 81.9672131148 + Accuracy on validation : 83.4951456311 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 79.4871794872 + Accuracy on test : 79.5081967213 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + - Mean : + Accuracy on train : 79.1845835324 + Accuracy on test : 80.737704918 + - Iteration 93 + Fold 1 + Accuracy on train : 78.2608695652 + Accuracy on test : 80.3278688525 + Accuracy on validation : 83.4951456311 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 79.4871794872 + Accuracy on test : 78.6885245902 + Accuracy on validation : 84.4660194175 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 78.8740245262 + Accuracy on test : 79.5081967213 + - Iteration 94 + Fold 1 + Accuracy on train : 77.6397515528 + Accuracy on test : 80.3278688525 + Accuracy on validation : 82.5242718447 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 79.4871794872 + Accuracy on test : 78.6885245902 + Accuracy on validation : 83.4951456311 + Selected View : Clinic_ + - Mean : + Accuracy on train : 78.56346552 + Accuracy on test : 79.5081967213 + - Iteration 95 + Fold 1 + Accuracy on train : 77.0186335404 + Accuracy on test : 80.3278688525 + Accuracy on validation : 81.5533980583 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 80.1282051282 + Accuracy on test : 78.6885245902 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + - Mean : + Accuracy on train : 78.5734193343 + Accuracy on test : 79.5081967213 + - Iteration 96 + Fold 1 + Accuracy on train : 76.397515528 + Accuracy on test : 79.5081967213 + Accuracy on validation : 81.5533980583 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 79.4871794872 + Accuracy on test : 78.6885245902 + Accuracy on validation : 83.4951456311 + Selected View : Clinic_ + - Mean : + Accuracy on train : 77.9423475076 + Accuracy on test : 79.0983606557 + - Iteration 97 + Fold 1 + Accuracy on train : 75.7763975155 + Accuracy on test : 78.6885245902 + Accuracy on validation : 81.5533980583 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 80.1282051282 + Accuracy on test : 77.868852459 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + - Mean : + Accuracy on train : 77.9523013219 + Accuracy on test : 78.2786885246 + - Iteration 98 + Fold 1 + Accuracy on train : 76.397515528 + Accuracy on test : 80.3278688525 + Accuracy on validation : 82.5242718447 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 78.2051282051 + Accuracy on test : 77.0491803279 + Accuracy on validation : 82.5242718447 + Selected View : Clinic_ + - Mean : + Accuracy on train : 77.3013218665 + Accuracy on test : 78.6885245902 + - Iteration 99 + Fold 1 + Accuracy on train : 75.7763975155 + Accuracy on test : 78.6885245902 + Accuracy on validation : 81.5533980583 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 78.8461538462 + Accuracy on test : 77.868852459 + Accuracy on validation : 83.4951456311 + Selected View : Clinic_ + - Mean : + Accuracy on train : 77.3112756808 + Accuracy on test : 78.2786885246 + - Iteration 100 + Fold 1 + Accuracy on train : 77.6397515528 + Accuracy on test : 80.3278688525 + Accuracy on validation : 82.5242718447 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 79.4871794872 + Accuracy on test : 77.868852459 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + - Mean : + Accuracy on train : 78.56346552 + Accuracy on test : 79.0983606557 + - Iteration 101 + Fold 1 + Accuracy on train : 77.6397515528 + Accuracy on test : 81.1475409836 + Accuracy on validation : 82.5242718447 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 81.4102564103 + Accuracy on test : 78.6885245902 + Accuracy on validation : 84.4660194175 + Selected View : Methyl_ + - Mean : + Accuracy on train : 79.5250039815 + Accuracy on test : 79.9180327869 + - Iteration 102 + Fold 1 + Accuracy on train : 78.2608695652 + Accuracy on test : 80.3278688525 + Accuracy on validation : 83.4951456311 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 80.7692307692 + Accuracy on test : 79.5081967213 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + - Mean : + Accuracy on train : 79.5150501672 + Accuracy on test : 79.9180327869 + - Iteration 103 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 104 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 105 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 106 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 107 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 108 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 109 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 110 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 111 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 112 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 113 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 114 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 115 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 116 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 117 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 118 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 119 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 120 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 121 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 122 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 123 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 124 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 125 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 126 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 127 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 128 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 129 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 130 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 131 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 132 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 133 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 134 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 135 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 136 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 137 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 138 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 139 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 140 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 141 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 142 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 143 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 144 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 145 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 146 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 147 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 148 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 149 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 150 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 151 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 152 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 153 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 154 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 155 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 156 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 157 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 158 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 159 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 160 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 161 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 162 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 163 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 164 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 165 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 166 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 167 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 168 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 169 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 170 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 171 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 172 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 173 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 174 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 175 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 176 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 177 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 178 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 179 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 180 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 181 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 182 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 183 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 184 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 185 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 186 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 187 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 188 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 189 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 190 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 191 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 192 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 193 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 194 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 195 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 196 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 197 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 198 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 199 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 200 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 201 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 202 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 203 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 204 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 205 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 206 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 207 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 208 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 209 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 210 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 211 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 212 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 213 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 214 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 215 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 216 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 217 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 218 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 219 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 220 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 221 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 222 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 223 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 224 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 225 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 226 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 227 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 228 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 229 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 230 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 231 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 232 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 233 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 234 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 235 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 236 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 237 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 238 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 239 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 240 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 241 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 242 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 243 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 244 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 245 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 246 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 247 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 248 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 249 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 250 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 251 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 252 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 253 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 254 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 255 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 256 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 257 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 258 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 259 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 260 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 261 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 262 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 263 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 264 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 265 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 266 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 267 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 268 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 269 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 270 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 271 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 272 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 273 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 274 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 275 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 276 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 277 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 278 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 279 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 280 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 281 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 282 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 283 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 284 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 285 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 286 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 287 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 288 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 289 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 290 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 291 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 292 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 293 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 294 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 295 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 296 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 297 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 298 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 299 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 300 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 301 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 302 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 303 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 304 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 305 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 306 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 307 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 308 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 309 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 310 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 311 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 312 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 313 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 314 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 315 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 316 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 317 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 318 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 319 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 320 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 321 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 322 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 323 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 324 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 325 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 326 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 327 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 328 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 329 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 330 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 331 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 332 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 333 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 334 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 335 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 336 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 337 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 338 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 339 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 340 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 341 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 342 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 343 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 344 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 345 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 346 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 347 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 348 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 349 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 350 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 351 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 352 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 353 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 354 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 355 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 356 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 357 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 358 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 359 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 360 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 361 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 362 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 363 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 364 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 365 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 366 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 367 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 368 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 369 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 370 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 371 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 372 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 373 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 374 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 375 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 376 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 377 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 378 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 379 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 380 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 381 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 382 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 383 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 384 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 385 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 386 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 387 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 388 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 389 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 390 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 391 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 392 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 393 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 394 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 395 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 396 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 397 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 398 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 399 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 400 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 401 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 402 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 403 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 404 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 405 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 406 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 407 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 408 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 409 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 410 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 411 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 412 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 413 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 414 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 415 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 416 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 417 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 418 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 419 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 420 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 421 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 422 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 423 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 424 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 425 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 426 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 427 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 428 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 429 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 430 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 431 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 432 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 433 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 434 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 435 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 436 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 437 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 438 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 439 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 440 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 441 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 442 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 443 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 444 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 445 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 446 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 447 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 448 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 449 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 450 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 451 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 452 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 453 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 454 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 455 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 456 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 457 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 458 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 459 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 460 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 461 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 462 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 463 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 464 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 465 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 466 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 467 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 468 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 469 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 470 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 471 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 472 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 473 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 474 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 475 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 476 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 477 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 478 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 479 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 480 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 481 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 482 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 483 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 484 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 485 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 486 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 487 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 488 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 489 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 490 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 491 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 492 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 493 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 494 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 495 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 496 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 497 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 498 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 499 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 500 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 501 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 502 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 503 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 504 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 505 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 506 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 507 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 508 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 509 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 510 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 511 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 512 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 513 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 514 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 515 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 516 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 517 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 518 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 519 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 520 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 521 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 522 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 523 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 524 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 525 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 526 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 527 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 528 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 529 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 530 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 531 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 532 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 533 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 534 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 535 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 536 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 537 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 538 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 539 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 540 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 541 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 542 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 543 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 544 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 545 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 546 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 547 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 548 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 549 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 550 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 551 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 552 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 553 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 554 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 555 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 556 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 557 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 558 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 559 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 560 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 561 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 562 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 563 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 564 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 565 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 566 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 567 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 568 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 569 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 570 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 571 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 572 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 573 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 574 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 575 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 576 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 577 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 578 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 579 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 580 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 581 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 582 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 583 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 584 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 585 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 586 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 587 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 588 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 589 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 590 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 591 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 592 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 593 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 594 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 595 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 596 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 597 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 598 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 599 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 600 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 601 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 602 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 603 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 604 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 605 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 606 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 607 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 608 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 609 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 610 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 611 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 612 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 613 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 614 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 615 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 616 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 617 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 618 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 619 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 620 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 621 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 622 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 623 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 624 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 625 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 626 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 627 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 628 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 629 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 630 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 631 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 632 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 633 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 634 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 635 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 636 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 637 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 638 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 639 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 640 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 641 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 642 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 643 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 644 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 645 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 646 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 647 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 648 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 649 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 650 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 651 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 652 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 653 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 654 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 655 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 656 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 657 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 658 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 659 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 660 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 661 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 662 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 663 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 664 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 665 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 666 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 667 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 668 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 669 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 670 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 671 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 672 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 673 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 674 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 675 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 676 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 677 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 678 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 679 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 680 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 681 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 682 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 683 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 684 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 685 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 686 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 687 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 688 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 689 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 690 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 691 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 692 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 693 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 694 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 695 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 696 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 697 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 698 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 699 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 700 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 701 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 702 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 703 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 704 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 705 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 706 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 707 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 708 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 709 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 710 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 711 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 712 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 713 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 714 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 715 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 716 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 717 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 718 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 719 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 720 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 721 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 722 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 723 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 724 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 725 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 726 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 727 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 728 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 729 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 730 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 731 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 732 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 733 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 734 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 735 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 736 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 737 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 738 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 739 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 740 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 741 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 742 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 743 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 744 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 745 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 746 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 747 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 748 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 749 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 750 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 751 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 752 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 753 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 754 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 755 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 756 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 757 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 758 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 759 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 760 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 761 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 762 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 763 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 764 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 765 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 766 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 767 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 768 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 769 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 770 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 771 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 772 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 773 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 774 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 775 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 776 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 777 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 778 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 779 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 780 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 781 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 782 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 783 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 784 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 785 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 786 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 787 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 788 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 789 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 790 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 791 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 792 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 793 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 794 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 795 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 796 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 797 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 798 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 799 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 800 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 801 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 802 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 803 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 804 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 805 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 806 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 807 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 808 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 809 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 810 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 811 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 812 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 813 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 814 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 815 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 816 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 817 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 818 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 819 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 820 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 821 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 822 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 823 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 824 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 825 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 826 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 827 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 828 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 829 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 830 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 831 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 832 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 833 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 834 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 835 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 836 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 837 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 838 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 839 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 840 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 841 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 842 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 843 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 844 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 845 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 846 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 847 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 848 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 849 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 850 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 851 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 852 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 853 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 854 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 855 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 856 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 857 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 858 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 859 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 860 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 861 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 862 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 863 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 864 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 865 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 866 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 867 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 868 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 869 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 870 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 871 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 872 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 873 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 874 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 875 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 876 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 877 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 878 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 879 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 880 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 881 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 882 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 883 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 884 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 885 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 886 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 887 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 888 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 889 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 890 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 891 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 892 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 893 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 894 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 895 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 896 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 897 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 898 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 899 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 900 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 901 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 902 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 903 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 904 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 905 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 906 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 907 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 908 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 909 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 910 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 911 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 912 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 913 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 914 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 915 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 916 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 917 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 918 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 919 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 920 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 921 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 922 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 923 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 924 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 925 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 926 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 927 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 928 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 929 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 930 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 931 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 932 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 933 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 934 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 935 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 936 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 937 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 938 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 939 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 940 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 941 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 942 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 943 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 944 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 945 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 946 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 947 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 948 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 949 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 950 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 951 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 952 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 953 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 954 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 955 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 956 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 957 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 958 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 959 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 960 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 961 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 962 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 963 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 964 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 965 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 966 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 967 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 968 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 969 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 970 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 971 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 972 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 973 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 974 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 975 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 976 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 977 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 978 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 979 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 980 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 981 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 982 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 983 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 984 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 985 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 986 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 987 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 988 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 989 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 990 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 991 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 992 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 993 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 994 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 995 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 996 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 997 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 998 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 999 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + - Iteration 1000 + Fold 1 + Accuracy on train : 62.7329192547 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 61.5384615385 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 62.1356903966 + Accuracy on test : 72.9508196721 + +Computation time on 1 cores : + Database extraction time : 0:00:00 + Learn Prediction + Fold 1 0:06:00 0:00:15 + Fold 2 0:12:07 0:00:15 + Total 0:18:07 0:00:30 + So a total classification time of 0:12:22. + diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-112821-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-112821-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..302346851e6600ebdbd9a107dfcbfbaaf71ece9d --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-112821-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log @@ -0,0 +1,15313 @@ +2016-08-24 11:28:21,898 INFO: Start: Read HDF5 Database Files for ModifiedMultiOmic +2016-08-24 11:28:21,899 INFO: Info: Labels used: No, Yes +2016-08-24 11:28:21,899 INFO: Info: Length of dataset:347 +2016-08-24 11:28:21,900 INFO: ### Main Programm for Multiview Classification +2016-08-24 11:28:21,900 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1 +2016-08-24 11:28:21,901 INFO: Info: Shape of Methyl_ :(347, 25978) +2016-08-24 11:28:21,901 INFO: Info: Shape of MiRNA__ :(347, 1046) +2016-08-24 11:28:21,902 INFO: Info: Shape of RANSeq_ :(347, 73599) +2016-08-24 11:28:21,902 INFO: Info: Shape of Clinic_ :(347, 127) +2016-08-24 11:28:21,902 INFO: Done: Read Database Files +2016-08-24 11:28:21,902 INFO: Start: Determine validation split for ratio 0.7 +2016-08-24 11:28:21,906 INFO: Done: Determine validation split +2016-08-24 11:28:21,906 INFO: Start: Determine 2 folds +2016-08-24 11:28:21,916 INFO: Info: Length of Learning Sets: 122 +2016-08-24 11:28:21,916 INFO: Info: Length of Testing Sets: 122 +2016-08-24 11:28:21,916 INFO: Info: Length of Validation Set: 103 +2016-08-24 11:28:21,916 INFO: Done: Determine folds +2016-08-24 11:28:21,917 INFO: Start: Learning with Mumbo and 2 folds +2016-08-24 11:28:21,917 INFO: Start: Fold number 1 +2016-08-24 11:28:23,496 DEBUG: Start: Iteration 1 +2016-08-24 11:28:23,512 DEBUG: View 0 : 0.612903225806 +2016-08-24 11:28:23,520 DEBUG: View 1 : 0.387096774194 +2016-08-24 11:28:23,602 DEBUG: View 2 : 0.535483870968 +2016-08-24 11:28:23,609 DEBUG: View 3 : 0.612903225806 +2016-08-24 11:28:23,651 DEBUG: Best view : Methyl_ +2016-08-24 11:28:23,726 DEBUG: Start: Iteration 2 +2016-08-24 11:28:23,743 DEBUG: View 0 : 0.529032258065 +2016-08-24 11:28:23,750 DEBUG: View 1 : 0.651612903226 +2016-08-24 11:28:23,835 DEBUG: View 2 : 0.638709677419 +2016-08-24 11:28:23,842 DEBUG: View 3 : 0.606451612903 +2016-08-24 11:28:23,893 DEBUG: Best view : MiRNA__ +2016-08-24 11:28:24,028 DEBUG: Start: Iteration 3 +2016-08-24 11:28:24,045 DEBUG: View 0 : 0.522580645161 +2016-08-24 11:28:24,052 DEBUG: View 1 : 0.374193548387 +2016-08-24 11:28:24,136 DEBUG: View 2 : 0.593548387097 +2016-08-24 11:28:24,143 DEBUG: View 3 : 0.61935483871 +2016-08-24 11:28:24,196 DEBUG: Best view : RANSeq_ +2016-08-24 11:28:24,408 DEBUG: Start: Iteration 4 +2016-08-24 11:28:24,425 DEBUG: View 0 : 0.716129032258 +2016-08-24 11:28:24,432 DEBUG: View 1 : 0.451612903226 +2016-08-24 11:28:24,522 DEBUG: View 2 : 0.535483870968 +2016-08-24 11:28:24,529 DEBUG: View 3 : 0.664516129032 +2016-08-24 11:28:24,584 DEBUG: Best view : Methyl_ +2016-08-24 11:28:24,852 DEBUG: Start: Iteration 5 +2016-08-24 11:28:24,869 DEBUG: View 0 : 0.477419354839 +2016-08-24 11:28:24,876 DEBUG: View 1 : 0.516129032258 +2016-08-24 11:28:24,963 DEBUG: View 2 : 0.548387096774 +2016-08-24 11:28:24,970 DEBUG: View 3 : 0.561290322581 +2016-08-24 11:28:25,026 DEBUG: Best view : RANSeq_ +2016-08-24 11:28:25,368 DEBUG: Start: Iteration 6 +2016-08-24 11:28:25,384 DEBUG: View 0 : 0.535483870968 +2016-08-24 11:28:25,391 DEBUG: View 1 : 0.606451612903 +2016-08-24 11:28:25,478 DEBUG: View 2 : 0.612903225806 +2016-08-24 11:28:25,486 DEBUG: View 3 : 0.522580645161 +2016-08-24 11:28:25,545 DEBUG: Best view : RANSeq_ +2016-08-24 11:28:25,960 DEBUG: Start: Iteration 7 +2016-08-24 11:28:25,978 DEBUG: View 0 : 0.574193548387 +2016-08-24 11:28:25,986 DEBUG: View 1 : 0.406451612903 +2016-08-24 11:28:26,082 DEBUG: View 2 : 0.612903225806 +2016-08-24 11:28:26,090 DEBUG: View 3 : 0.503225806452 +2016-08-24 11:28:26,151 DEBUG: Best view : RANSeq_ +2016-08-24 11:28:26,626 DEBUG: Start: Iteration 8 +2016-08-24 11:28:26,642 DEBUG: View 0 : 0.522580645161 +2016-08-24 11:28:26,649 DEBUG: View 1 : 0.451612903226 +2016-08-24 11:28:26,737 DEBUG: View 2 : 0.529032258065 +2016-08-24 11:28:26,744 DEBUG: View 3 : 0.632258064516 +2016-08-24 11:28:26,806 DEBUG: Best view : Clinic_ +2016-08-24 11:28:27,336 DEBUG: Start: Iteration 9 +2016-08-24 11:28:27,352 DEBUG: View 0 : 0.509677419355 +2016-08-24 11:28:27,360 DEBUG: View 1 : 0.522580645161 +2016-08-24 11:28:27,449 DEBUG: View 2 : 0.632258064516 +2016-08-24 11:28:27,457 DEBUG: View 3 : 0.58064516129 +2016-08-24 11:28:27,521 DEBUG: Best view : RANSeq_ +2016-08-24 11:28:28,127 DEBUG: Start: Iteration 10 +2016-08-24 11:28:28,145 DEBUG: View 0 : 0.483870967742 +2016-08-24 11:28:28,154 DEBUG: View 1 : 0.658064516129 +2016-08-24 11:28:28,254 DEBUG: View 2 : 0.612903225806 +2016-08-24 11:28:28,261 DEBUG: View 3 : 0.664516129032 +2016-08-24 11:28:28,331 DEBUG: Best view : Clinic_ +2016-08-24 11:28:28,997 DEBUG: Start: Iteration 11 +2016-08-24 11:28:29,013 DEBUG: View 0 : 0.574193548387 +2016-08-24 11:28:29,020 DEBUG: View 1 : 0.425806451613 +2016-08-24 11:28:29,110 DEBUG: View 2 : 0.535483870968 +2016-08-24 11:28:29,117 DEBUG: View 3 : 0.703225806452 +2016-08-24 11:28:29,188 DEBUG: Best view : Clinic_ +2016-08-24 11:28:29,912 DEBUG: Start: Iteration 12 +2016-08-24 11:28:29,928 DEBUG: View 0 : 0.529032258065 +2016-08-24 11:28:29,935 DEBUG: View 1 : 0.6 +2016-08-24 11:28:30,025 DEBUG: View 2 : 0.574193548387 +2016-08-24 11:28:30,032 DEBUG: View 3 : 0.574193548387 +2016-08-24 11:28:30,104 DEBUG: Best view : MiRNA__ +2016-08-24 11:28:30,883 DEBUG: Start: Iteration 13 +2016-08-24 11:28:30,899 DEBUG: View 0 : 0.593548387097 +2016-08-24 11:28:30,906 DEBUG: View 1 : 0.690322580645 +2016-08-24 11:28:30,992 DEBUG: View 2 : 0.625806451613 +2016-08-24 11:28:31,000 DEBUG: View 3 : 0.612903225806 +2016-08-24 11:28:31,073 DEBUG: Best view : MiRNA__ +2016-08-24 11:28:31,913 DEBUG: Start: Iteration 14 +2016-08-24 11:28:31,929 DEBUG: View 0 : 0.367741935484 +2016-08-24 11:28:31,937 DEBUG: View 1 : 0.748387096774 +2016-08-24 11:28:32,026 DEBUG: View 2 : 0.548387096774 +2016-08-24 11:28:32,034 DEBUG: View 3 : 0.58064516129 +2016-08-24 11:28:32,109 DEBUG: Best view : MiRNA__ +2016-08-24 11:28:33,005 DEBUG: Start: Iteration 15 +2016-08-24 11:28:33,022 DEBUG: View 0 : 0.587096774194 +2016-08-24 11:28:33,030 DEBUG: View 1 : 0.61935483871 +2016-08-24 11:28:33,117 DEBUG: View 2 : 0.645161290323 +2016-08-24 11:28:33,124 DEBUG: View 3 : 0.529032258065 +2016-08-24 11:28:33,204 DEBUG: Best view : RANSeq_ +2016-08-24 11:28:34,201 DEBUG: Start: Iteration 16 +2016-08-24 11:28:34,217 DEBUG: View 0 : 0.561290322581 +2016-08-24 11:28:34,225 DEBUG: View 1 : 0.593548387097 +2016-08-24 11:28:34,309 DEBUG: View 2 : 0.483870967742 +2016-08-24 11:28:34,317 DEBUG: View 3 : 0.541935483871 +2016-08-24 11:28:34,396 DEBUG: Best view : MiRNA__ +2016-08-24 11:28:35,410 DEBUG: Start: Iteration 17 +2016-08-24 11:28:35,426 DEBUG: View 0 : 0.393548387097 +2016-08-24 11:28:35,434 DEBUG: View 1 : 0.606451612903 +2016-08-24 11:28:35,523 DEBUG: View 2 : 0.535483870968 +2016-08-24 11:28:35,531 DEBUG: View 3 : 0.645161290323 +2016-08-24 11:28:35,625 DEBUG: Best view : Clinic_ +2016-08-24 11:28:36,717 DEBUG: Start: Iteration 18 +2016-08-24 11:28:36,733 DEBUG: View 0 : 0.593548387097 +2016-08-24 11:28:36,741 DEBUG: View 1 : 0.722580645161 +2016-08-24 11:28:36,818 DEBUG: View 2 : 0.490322580645 +2016-08-24 11:28:36,826 DEBUG: View 3 : 0.554838709677 +2016-08-24 11:28:36,912 DEBUG: Best view : MiRNA__ +2016-08-24 11:28:38,050 DEBUG: Start: Iteration 19 +2016-08-24 11:28:38,066 DEBUG: View 0 : 0.522580645161 +2016-08-24 11:28:38,073 DEBUG: View 1 : 0.670967741935 +2016-08-24 11:28:38,158 DEBUG: View 2 : 0.645161290323 +2016-08-24 11:28:38,165 DEBUG: View 3 : 0.561290322581 +2016-08-24 11:28:38,252 DEBUG: Best view : MiRNA__ +2016-08-24 11:28:39,447 DEBUG: Start: Iteration 20 +2016-08-24 11:28:39,463 DEBUG: View 0 : 0.451612903226 +2016-08-24 11:28:39,471 DEBUG: View 1 : 0.554838709677 +2016-08-24 11:28:39,555 DEBUG: View 2 : 0.458064516129 +2016-08-24 11:28:39,563 DEBUG: View 3 : 0.61935483871 +2016-08-24 11:28:39,654 DEBUG: Best view : Clinic_ +2016-08-24 11:28:40,935 DEBUG: Start: Iteration 21 +2016-08-24 11:28:40,951 DEBUG: View 0 : 0.470967741935 +2016-08-24 11:28:40,959 DEBUG: View 1 : 0.374193548387 +2016-08-24 11:28:41,040 DEBUG: View 2 : 0.574193548387 +2016-08-24 11:28:41,047 DEBUG: View 3 : 0.548387096774 +2016-08-24 11:28:41,139 DEBUG: Best view : RANSeq_ +2016-08-24 11:28:42,447 DEBUG: Start: Iteration 22 +2016-08-24 11:28:42,463 DEBUG: View 0 : 0.509677419355 +2016-08-24 11:28:42,471 DEBUG: View 1 : 0.367741935484 +2016-08-24 11:28:42,555 DEBUG: View 2 : 0.593548387097 +2016-08-24 11:28:42,562 DEBUG: View 3 : 0.516129032258 +2016-08-24 11:28:42,655 DEBUG: Best view : RANSeq_ +2016-08-24 11:28:44,058 DEBUG: Start: Iteration 23 +2016-08-24 11:28:44,075 DEBUG: View 0 : 0.483870967742 +2016-08-24 11:28:44,083 DEBUG: View 1 : 0.651612903226 +2016-08-24 11:28:44,169 DEBUG: View 2 : 0.451612903226 +2016-08-24 11:28:44,177 DEBUG: View 3 : 0.529032258065 +2016-08-24 11:28:44,273 DEBUG: Best view : MiRNA__ +2016-08-24 11:28:45,721 DEBUG: Start: Iteration 24 +2016-08-24 11:28:45,737 DEBUG: View 0 : 0.548387096774 +2016-08-24 11:28:45,744 DEBUG: View 1 : 0.645161290323 +2016-08-24 11:28:45,834 DEBUG: View 2 : 0.61935483871 +2016-08-24 11:28:45,842 DEBUG: View 3 : 0.574193548387 +2016-08-24 11:28:45,941 DEBUG: Best view : MiRNA__ +2016-08-24 11:28:47,449 DEBUG: Start: Iteration 25 +2016-08-24 11:28:47,465 DEBUG: View 0 : 0.445161290323 +2016-08-24 11:28:47,473 DEBUG: View 1 : 0.78064516129 +2016-08-24 11:28:47,558 DEBUG: View 2 : 0.464516129032 +2016-08-24 11:28:47,565 DEBUG: View 3 : 0.593548387097 +2016-08-24 11:28:47,664 DEBUG: Best view : MiRNA__ +2016-08-24 11:28:49,222 DEBUG: Start: Iteration 26 +2016-08-24 11:28:49,238 DEBUG: View 0 : 0.458064516129 +2016-08-24 11:28:49,246 DEBUG: View 1 : 0.367741935484 +2016-08-24 11:28:49,329 DEBUG: View 2 : 0.625806451613 +2016-08-24 11:28:49,336 DEBUG: View 3 : 0.606451612903 +2016-08-24 11:28:49,437 DEBUG: Best view : RANSeq_ +2016-08-24 11:28:51,077 DEBUG: Start: Iteration 27 +2016-08-24 11:28:51,093 DEBUG: View 0 : 0.561290322581 +2016-08-24 11:28:51,101 DEBUG: View 1 : 0.632258064516 +2016-08-24 11:28:51,190 DEBUG: View 2 : 0.6 +2016-08-24 11:28:51,198 DEBUG: View 3 : 0.548387096774 +2016-08-24 11:28:51,304 DEBUG: Best view : MiRNA__ +2016-08-24 11:28:53,003 DEBUG: Start: Iteration 28 +2016-08-24 11:28:53,020 DEBUG: View 0 : 0.432258064516 +2016-08-24 11:28:53,027 DEBUG: View 1 : 0.516129032258 +2016-08-24 11:28:53,119 DEBUG: View 2 : 0.670967741935 +2016-08-24 11:28:53,127 DEBUG: View 3 : 0.574193548387 +2016-08-24 11:28:53,232 DEBUG: Best view : RANSeq_ +2016-08-24 11:28:55,010 DEBUG: Start: Iteration 29 +2016-08-24 11:28:55,026 DEBUG: View 0 : 0.541935483871 +2016-08-24 11:28:55,034 DEBUG: View 1 : 0.61935483871 +2016-08-24 11:28:55,121 DEBUG: View 2 : 0.6 +2016-08-24 11:28:55,129 DEBUG: View 3 : 0.529032258065 +2016-08-24 11:28:55,237 DEBUG: Best view : MiRNA__ +2016-08-24 11:28:57,054 DEBUG: Start: Iteration 30 +2016-08-24 11:28:57,070 DEBUG: View 0 : 0.483870967742 +2016-08-24 11:28:57,077 DEBUG: View 1 : 0.612903225806 +2016-08-24 11:28:57,163 DEBUG: View 2 : 0.61935483871 +2016-08-24 11:28:57,171 DEBUG: View 3 : 0.548387096774 +2016-08-24 11:28:57,280 DEBUG: Best view : RANSeq_ +2016-08-24 11:28:59,182 DEBUG: Start: Iteration 31 +2016-08-24 11:28:59,199 DEBUG: View 0 : 0.477419354839 +2016-08-24 11:28:59,206 DEBUG: View 1 : 0.309677419355 +2016-08-24 11:28:59,297 DEBUG: View 2 : 0.696774193548 +2016-08-24 11:28:59,305 DEBUG: View 3 : 0.541935483871 +2016-08-24 11:28:59,417 DEBUG: Best view : RANSeq_ +2016-08-24 11:29:01,454 DEBUG: Start: Iteration 32 +2016-08-24 11:29:01,470 DEBUG: View 0 : 0.464516129032 +2016-08-24 11:29:01,478 DEBUG: View 1 : 0.612903225806 +2016-08-24 11:29:01,566 DEBUG: View 2 : 0.6 +2016-08-24 11:29:01,574 DEBUG: View 3 : 0.664516129032 +2016-08-24 11:29:01,689 DEBUG: Best view : Clinic_ +2016-08-24 11:29:03,714 DEBUG: Start: Iteration 33 +2016-08-24 11:29:03,731 DEBUG: View 0 : 0.529032258065 +2016-08-24 11:29:03,738 DEBUG: View 1 : 0.425806451613 +2016-08-24 11:29:03,820 DEBUG: View 2 : 0.567741935484 +2016-08-24 11:29:03,828 DEBUG: View 3 : 0.548387096774 +2016-08-24 11:29:03,944 DEBUG: Best view : RANSeq_ +2016-08-24 11:29:06,096 DEBUG: Start: Iteration 34 +2016-08-24 11:29:06,113 DEBUG: View 0 : 0.464516129032 +2016-08-24 11:29:06,120 DEBUG: View 1 : 0.425806451613 +2016-08-24 11:29:06,208 DEBUG: View 2 : 0.658064516129 +2016-08-24 11:29:06,216 DEBUG: View 3 : 0.593548387097 +2016-08-24 11:29:06,335 DEBUG: Best view : RANSeq_ +2016-08-24 11:29:08,524 DEBUG: Start: Iteration 35 +2016-08-24 11:29:08,541 DEBUG: View 0 : 0.490322580645 +2016-08-24 11:29:08,549 DEBUG: View 1 : 0.690322580645 +2016-08-24 11:29:08,633 DEBUG: View 2 : 0.606451612903 +2016-08-24 11:29:08,640 DEBUG: View 3 : 0.574193548387 +2016-08-24 11:29:08,763 DEBUG: Best view : MiRNA__ +2016-08-24 11:29:11,058 DEBUG: Start: Iteration 36 +2016-08-24 11:29:11,074 DEBUG: View 0 : 0.6 +2016-08-24 11:29:11,082 DEBUG: View 1 : 0.696774193548 +2016-08-24 11:29:11,172 DEBUG: View 2 : 0.612903225806 +2016-08-24 11:29:11,180 DEBUG: View 3 : 0.561290322581 +2016-08-24 11:29:11,304 DEBUG: Best view : MiRNA__ +2016-08-24 11:29:13,640 DEBUG: Start: Iteration 37 +2016-08-24 11:29:13,658 DEBUG: View 0 : 0.406451612903 +2016-08-24 11:29:13,666 DEBUG: View 1 : 0.703225806452 +2016-08-24 11:29:13,752 DEBUG: View 2 : 0.477419354839 +2016-08-24 11:29:13,760 DEBUG: View 3 : 0.61935483871 +2016-08-24 11:29:13,893 DEBUG: Best view : MiRNA__ +2016-08-24 11:29:16,252 DEBUG: Start: Iteration 38 +2016-08-24 11:29:16,268 DEBUG: View 0 : 0.522580645161 +2016-08-24 11:29:16,276 DEBUG: View 1 : 0.664516129032 +2016-08-24 11:29:16,361 DEBUG: View 2 : 0.625806451613 +2016-08-24 11:29:16,368 DEBUG: View 3 : 0.470967741935 +2016-08-24 11:29:16,496 DEBUG: Best view : MiRNA__ +2016-08-24 11:29:18,908 DEBUG: Start: Iteration 39 +2016-08-24 11:29:18,925 DEBUG: View 0 : 0.432258064516 +2016-08-24 11:29:18,933 DEBUG: View 1 : 0.387096774194 +2016-08-24 11:29:19,021 DEBUG: View 2 : 0.561290322581 +2016-08-24 11:29:19,028 DEBUG: View 3 : 0.529032258065 +2016-08-24 11:29:19,157 DEBUG: Best view : RANSeq_ +2016-08-24 11:29:21,647 DEBUG: Start: Iteration 40 +2016-08-24 11:29:21,664 DEBUG: View 0 : 0.432258064516 +2016-08-24 11:29:21,672 DEBUG: View 1 : 0.638709677419 +2016-08-24 11:29:21,753 DEBUG: View 2 : 0.574193548387 +2016-08-24 11:29:21,760 DEBUG: View 3 : 0.61935483871 +2016-08-24 11:29:21,893 DEBUG: Best view : Clinic_ +2016-08-24 11:29:24,420 DEBUG: Start: Iteration 41 +2016-08-24 11:29:24,437 DEBUG: View 0 : 0.529032258065 +2016-08-24 11:29:24,444 DEBUG: View 1 : 0.529032258065 +2016-08-24 11:29:24,533 DEBUG: View 2 : 0.567741935484 +2016-08-24 11:29:24,541 DEBUG: View 3 : 0.548387096774 +2016-08-24 11:29:24,674 DEBUG: Best view : RANSeq_ +2016-08-24 11:29:27,267 DEBUG: Start: Iteration 42 +2016-08-24 11:29:27,286 DEBUG: View 0 : 0.6 +2016-08-24 11:29:27,295 DEBUG: View 1 : 0.574193548387 +2016-08-24 11:29:27,398 DEBUG: View 2 : 0.651612903226 +2016-08-24 11:29:27,406 DEBUG: View 3 : 0.587096774194 +2016-08-24 11:29:27,542 DEBUG: Best view : RANSeq_ +2016-08-24 11:29:30,222 DEBUG: Start: Iteration 43 +2016-08-24 11:29:30,239 DEBUG: View 0 : 0.58064516129 +2016-08-24 11:29:30,247 DEBUG: View 1 : 0.632258064516 +2016-08-24 11:29:30,332 DEBUG: View 2 : 0.458064516129 +2016-08-24 11:29:30,340 DEBUG: View 3 : 0.529032258065 +2016-08-24 11:29:30,478 DEBUG: Best view : MiRNA__ +2016-08-24 11:29:33,211 DEBUG: Start: Iteration 44 +2016-08-24 11:29:33,227 DEBUG: View 0 : 0.451612903226 +2016-08-24 11:29:33,235 DEBUG: View 1 : 0.445161290323 +2016-08-24 11:29:33,317 DEBUG: View 2 : 0.606451612903 +2016-08-24 11:29:33,325 DEBUG: View 3 : 0.593548387097 +2016-08-24 11:29:33,463 DEBUG: Best view : RANSeq_ +2016-08-24 11:29:36,284 DEBUG: Start: Iteration 45 +2016-08-24 11:29:36,300 DEBUG: View 0 : 0.587096774194 +2016-08-24 11:29:36,308 DEBUG: View 1 : 0.309677419355 +2016-08-24 11:29:36,388 DEBUG: View 2 : 0.548387096774 +2016-08-24 11:29:36,396 DEBUG: View 3 : 0.658064516129 +2016-08-24 11:29:36,539 DEBUG: Best view : Clinic_ +2016-08-24 11:29:39,404 DEBUG: Start: Iteration 46 +2016-08-24 11:29:39,421 DEBUG: View 0 : 0.529032258065 +2016-08-24 11:29:39,429 DEBUG: View 1 : 0.658064516129 +2016-08-24 11:29:39,515 DEBUG: View 2 : 0.574193548387 +2016-08-24 11:29:39,523 DEBUG: View 3 : 0.651612903226 +2016-08-24 11:29:39,668 DEBUG: Best view : Clinic_ +2016-08-24 11:29:42,602 DEBUG: Start: Iteration 47 +2016-08-24 11:29:42,619 DEBUG: View 0 : 0.677419354839 +2016-08-24 11:29:42,627 DEBUG: View 1 : 0.412903225806 +2016-08-24 11:29:42,714 DEBUG: View 2 : 0.587096774194 +2016-08-24 11:29:42,722 DEBUG: View 3 : 0.522580645161 +2016-08-24 11:29:42,870 DEBUG: Best view : Methyl_ +2016-08-24 11:29:45,843 DEBUG: Start: Iteration 48 +2016-08-24 11:29:45,860 DEBUG: View 0 : 0.696774193548 +2016-08-24 11:29:45,868 DEBUG: View 1 : 0.470967741935 +2016-08-24 11:29:45,957 DEBUG: View 2 : 0.535483870968 +2016-08-24 11:29:45,964 DEBUG: View 3 : 0.541935483871 +2016-08-24 11:29:46,113 DEBUG: Best view : Methyl_ +2016-08-24 11:29:49,139 DEBUG: Start: Iteration 49 +2016-08-24 11:29:49,155 DEBUG: View 0 : 0.458064516129 +2016-08-24 11:29:49,162 DEBUG: View 1 : 0.709677419355 +2016-08-24 11:29:49,245 DEBUG: View 2 : 0.522580645161 +2016-08-24 11:29:49,253 DEBUG: View 3 : 0.483870967742 +2016-08-24 11:29:49,402 DEBUG: Best view : MiRNA__ +2016-08-24 11:29:52,569 DEBUG: Start: Iteration 50 +2016-08-24 11:29:52,586 DEBUG: View 0 : 0.529032258065 +2016-08-24 11:29:52,593 DEBUG: View 1 : 0.483870967742 +2016-08-24 11:29:52,683 DEBUG: View 2 : 0.632258064516 +2016-08-24 11:29:52,690 DEBUG: View 3 : 0.561290322581 +2016-08-24 11:29:52,844 DEBUG: Best view : RANSeq_ +2016-08-24 11:29:56,008 DEBUG: Start: Iteration 51 +2016-08-24 11:29:56,024 DEBUG: View 0 : 0.451612903226 +2016-08-24 11:29:56,032 DEBUG: View 1 : 0.464516129032 +2016-08-24 11:29:56,114 DEBUG: View 2 : 0.6 +2016-08-24 11:29:56,121 DEBUG: View 3 : 0.606451612903 +2016-08-24 11:29:56,275 DEBUG: Best view : Clinic_ +2016-08-24 11:29:59,511 DEBUG: Start: Iteration 52 +2016-08-24 11:29:59,528 DEBUG: View 0 : 0.438709677419 +2016-08-24 11:29:59,536 DEBUG: View 1 : 0.341935483871 +2016-08-24 11:29:59,622 DEBUG: View 2 : 0.541935483871 +2016-08-24 11:29:59,630 DEBUG: View 3 : 0.6 +2016-08-24 11:29:59,790 DEBUG: Best view : Clinic_ +2016-08-24 11:30:03,108 DEBUG: Start: Iteration 53 +2016-08-24 11:30:03,124 DEBUG: View 0 : 0.535483870968 +2016-08-24 11:30:03,132 DEBUG: View 1 : 0.509677419355 +2016-08-24 11:30:03,214 DEBUG: View 2 : 0.529032258065 +2016-08-24 11:30:03,222 DEBUG: View 3 : 0.61935483871 +2016-08-24 11:30:03,380 DEBUG: Best view : Clinic_ +2016-08-24 11:30:06,727 DEBUG: Start: Iteration 54 +2016-08-24 11:30:06,744 DEBUG: View 0 : 0.709677419355 +2016-08-24 11:30:06,751 DEBUG: View 1 : 0.296774193548 +2016-08-24 11:30:06,839 DEBUG: View 2 : 0.606451612903 +2016-08-24 11:30:06,847 DEBUG: View 3 : 0.606451612903 +2016-08-24 11:30:07,009 DEBUG: Best view : Methyl_ +2016-08-24 11:30:10,403 DEBUG: Start: Iteration 55 +2016-08-24 11:30:10,420 DEBUG: View 0 : 0.58064516129 +2016-08-24 11:30:10,427 DEBUG: View 1 : 0.470967741935 +2016-08-24 11:30:10,505 DEBUG: View 2 : 0.638709677419 +2016-08-24 11:30:10,513 DEBUG: View 3 : 0.574193548387 +2016-08-24 11:30:10,676 DEBUG: Best view : RANSeq_ +2016-08-24 11:30:14,163 DEBUG: Start: Iteration 56 +2016-08-24 11:30:14,180 DEBUG: View 0 : 0.509677419355 +2016-08-24 11:30:14,188 DEBUG: View 1 : 0.58064516129 +2016-08-24 11:30:14,275 DEBUG: View 2 : 0.58064516129 +2016-08-24 11:30:14,282 DEBUG: View 3 : 0.535483870968 +2016-08-24 11:30:14,450 DEBUG: Best view : MiRNA__ +2016-08-24 11:30:17,979 DEBUG: Start: Iteration 57 +2016-08-24 11:30:17,995 DEBUG: View 0 : 0.529032258065 +2016-08-24 11:30:18,003 DEBUG: View 1 : 0.632258064516 +2016-08-24 11:30:18,090 DEBUG: View 2 : 0.61935483871 +2016-08-24 11:30:18,097 DEBUG: View 3 : 0.567741935484 +2016-08-24 11:30:18,264 DEBUG: Best view : RANSeq_ +2016-08-24 11:30:21,936 DEBUG: Start: Iteration 58 +2016-08-24 11:30:21,952 DEBUG: View 0 : 0.477419354839 +2016-08-24 11:30:21,960 DEBUG: View 1 : 0.535483870968 +2016-08-24 11:30:22,050 DEBUG: View 2 : 0.574193548387 +2016-08-24 11:30:22,057 DEBUG: View 3 : 0.567741935484 +2016-08-24 11:30:22,232 DEBUG: Best view : Clinic_ +2016-08-24 11:30:25,881 DEBUG: Start: Iteration 59 +2016-08-24 11:30:25,897 DEBUG: View 0 : 0.561290322581 +2016-08-24 11:30:25,905 DEBUG: View 1 : 0.638709677419 +2016-08-24 11:30:25,992 DEBUG: View 2 : 0.509677419355 +2016-08-24 11:30:25,999 DEBUG: View 3 : 0.58064516129 +2016-08-24 11:30:26,171 DEBUG: Best view : MiRNA__ +2016-08-24 11:30:29,897 DEBUG: Start: Iteration 60 +2016-08-24 11:30:29,913 DEBUG: View 0 : 0.561290322581 +2016-08-24 11:30:29,921 DEBUG: View 1 : 0.683870967742 +2016-08-24 11:30:30,001 DEBUG: View 2 : 0.587096774194 +2016-08-24 11:30:30,009 DEBUG: View 3 : 0.574193548387 +2016-08-24 11:30:30,182 DEBUG: Best view : MiRNA__ +2016-08-24 11:30:33,969 DEBUG: Start: Iteration 61 +2016-08-24 11:30:33,985 DEBUG: View 0 : 0.509677419355 +2016-08-24 11:30:33,992 DEBUG: View 1 : 0.509677419355 +2016-08-24 11:30:34,074 DEBUG: View 2 : 0.606451612903 +2016-08-24 11:30:34,082 DEBUG: View 3 : 0.625806451613 +2016-08-24 11:30:34,259 DEBUG: Best view : Clinic_ +2016-08-24 11:30:38,085 DEBUG: Start: Iteration 62 +2016-08-24 11:30:38,101 DEBUG: View 0 : 0.470967741935 +2016-08-24 11:30:38,109 DEBUG: View 1 : 0.664516129032 +2016-08-24 11:30:38,192 DEBUG: View 2 : 0.58064516129 +2016-08-24 11:30:38,200 DEBUG: View 3 : 0.612903225806 +2016-08-24 11:30:38,380 DEBUG: Best view : MiRNA__ +2016-08-24 11:30:42,275 DEBUG: Start: Iteration 63 +2016-08-24 11:30:42,291 DEBUG: View 0 : 0.412903225806 +2016-08-24 11:30:42,299 DEBUG: View 1 : 0.483870967742 +2016-08-24 11:30:42,383 DEBUG: View 2 : 0.625806451613 +2016-08-24 11:30:42,391 DEBUG: View 3 : 0.58064516129 +2016-08-24 11:30:42,575 DEBUG: Best view : RANSeq_ +2016-08-24 11:30:46,590 DEBUG: Start: Iteration 64 +2016-08-24 11:30:46,606 DEBUG: View 0 : 0.470967741935 +2016-08-24 11:30:46,614 DEBUG: View 1 : 0.509677419355 +2016-08-24 11:30:46,697 DEBUG: View 2 : 0.567741935484 +2016-08-24 11:30:46,705 DEBUG: View 3 : 0.470967741935 +2016-08-24 11:30:46,888 DEBUG: Best view : RANSeq_ +2016-08-24 11:30:50,945 DEBUG: Start: Iteration 65 +2016-08-24 11:30:50,962 DEBUG: View 0 : 0.451612903226 +2016-08-24 11:30:50,970 DEBUG: View 1 : 0.470967741935 +2016-08-24 11:30:51,059 DEBUG: View 2 : 0.670967741935 +2016-08-24 11:30:51,066 DEBUG: View 3 : 0.522580645161 +2016-08-24 11:30:51,256 DEBUG: Best view : RANSeq_ +2016-08-24 11:30:55,362 DEBUG: Start: Iteration 66 +2016-08-24 11:30:55,379 DEBUG: View 0 : 0.464516129032 +2016-08-24 11:30:55,386 DEBUG: View 1 : 0.645161290323 +2016-08-24 11:30:55,475 DEBUG: View 2 : 0.612903225806 +2016-08-24 11:30:55,482 DEBUG: View 3 : 0.664516129032 +2016-08-24 11:30:55,671 DEBUG: Best view : Clinic_ +2016-08-24 11:30:59,825 DEBUG: Start: Iteration 67 +2016-08-24 11:30:59,842 DEBUG: View 0 : 0.438709677419 +2016-08-24 11:30:59,850 DEBUG: View 1 : 0.541935483871 +2016-08-24 11:30:59,940 DEBUG: View 2 : 0.567741935484 +2016-08-24 11:30:59,948 DEBUG: View 3 : 0.664516129032 +2016-08-24 11:31:00,148 DEBUG: Best view : Clinic_ +2016-08-24 11:31:04,865 DEBUG: Start: Iteration 68 +2016-08-24 11:31:04,891 DEBUG: View 0 : 0.425806451613 +2016-08-24 11:31:04,906 DEBUG: View 1 : 0.677419354839 +2016-08-24 11:31:05,061 DEBUG: View 2 : 0.567741935484 +2016-08-24 11:31:05,070 DEBUG: View 3 : 0.664516129032 +2016-08-24 11:31:05,287 DEBUG: Best view : Clinic_ +2016-08-24 11:31:09,748 DEBUG: Start: Iteration 69 +2016-08-24 11:31:09,764 DEBUG: View 0 : 0.477419354839 +2016-08-24 11:31:09,772 DEBUG: View 1 : 0.722580645161 +2016-08-24 11:31:09,851 DEBUG: View 2 : 0.670967741935 +2016-08-24 11:31:09,859 DEBUG: View 3 : 0.541935483871 +2016-08-24 11:31:10,056 DEBUG: Best view : MiRNA__ +2016-08-24 11:31:14,381 DEBUG: Start: Iteration 70 +2016-08-24 11:31:14,397 DEBUG: View 0 : 0.522580645161 +2016-08-24 11:31:14,405 DEBUG: View 1 : 0.638709677419 +2016-08-24 11:31:14,494 DEBUG: View 2 : 0.587096774194 +2016-08-24 11:31:14,502 DEBUG: View 3 : 0.503225806452 +2016-08-24 11:31:14,698 DEBUG: Best view : MiRNA__ +2016-08-24 11:31:19,091 DEBUG: Start: Iteration 71 +2016-08-24 11:31:19,107 DEBUG: View 0 : 0.425806451613 +2016-08-24 11:31:19,114 DEBUG: View 1 : 0.612903225806 +2016-08-24 11:31:19,197 DEBUG: View 2 : 0.567741935484 +2016-08-24 11:31:19,204 DEBUG: View 3 : 0.574193548387 +2016-08-24 11:31:19,401 DEBUG: Best view : MiRNA__ +2016-08-24 11:31:23,780 DEBUG: Start: Iteration 72 +2016-08-24 11:31:23,796 DEBUG: View 0 : 0.645161290323 +2016-08-24 11:31:23,804 DEBUG: View 1 : 0.477419354839 +2016-08-24 11:31:23,885 DEBUG: View 2 : 0.574193548387 +2016-08-24 11:31:23,893 DEBUG: View 3 : 0.561290322581 +2016-08-24 11:31:24,092 DEBUG: Best view : Methyl_ +2016-08-24 11:31:28,523 DEBUG: Start: Iteration 73 +2016-08-24 11:31:28,539 DEBUG: View 0 : 0.483870967742 +2016-08-24 11:31:28,546 DEBUG: View 1 : 0.593548387097 +2016-08-24 11:31:28,627 DEBUG: View 2 : 0.516129032258 +2016-08-24 11:31:28,635 DEBUG: View 3 : 0.541935483871 +2016-08-24 11:31:28,834 DEBUG: Best view : MiRNA__ +2016-08-24 11:31:33,348 DEBUG: Start: Iteration 74 +2016-08-24 11:31:33,364 DEBUG: View 0 : 0.548387096774 +2016-08-24 11:31:33,372 DEBUG: View 1 : 0.277419354839 +2016-08-24 11:31:33,458 DEBUG: View 2 : 0.645161290323 +2016-08-24 11:31:33,465 DEBUG: View 3 : 0.477419354839 +2016-08-24 11:31:33,668 DEBUG: Best view : RANSeq_ +2016-08-24 11:31:38,258 DEBUG: Start: Iteration 75 +2016-08-24 11:31:38,274 DEBUG: View 0 : 0.529032258065 +2016-08-24 11:31:38,282 DEBUG: View 1 : 0.625806451613 +2016-08-24 11:31:38,355 DEBUG: View 2 : 0.61935483871 +2016-08-24 11:31:38,363 DEBUG: View 3 : 0.541935483871 +2016-08-24 11:31:38,568 DEBUG: Best view : RANSeq_ +2016-08-24 11:31:43,214 DEBUG: Start: Iteration 76 +2016-08-24 11:31:43,230 DEBUG: View 0 : 0.58064516129 +2016-08-24 11:31:43,237 DEBUG: View 1 : 0.606451612903 +2016-08-24 11:31:43,323 DEBUG: View 2 : 0.612903225806 +2016-08-24 11:31:43,331 DEBUG: View 3 : 0.61935483871 +2016-08-24 11:31:43,535 DEBUG: Best view : Clinic_ +2016-08-24 11:31:48,374 DEBUG: Start: Iteration 77 +2016-08-24 11:31:48,393 DEBUG: View 0 : 0.451612903226 +2016-08-24 11:31:48,401 DEBUG: View 1 : 0.690322580645 +2016-08-24 11:31:48,503 DEBUG: View 2 : 0.6 +2016-08-24 11:31:48,512 DEBUG: View 3 : 0.548387096774 +2016-08-24 11:31:48,755 DEBUG: Best view : MiRNA__ +2016-08-24 11:31:53,654 DEBUG: Start: Iteration 78 +2016-08-24 11:31:53,671 DEBUG: View 0 : 0.593548387097 +2016-08-24 11:31:53,678 DEBUG: View 1 : 0.632258064516 +2016-08-24 11:31:53,760 DEBUG: View 2 : 0.612903225806 +2016-08-24 11:31:53,767 DEBUG: View 3 : 0.541935483871 +2016-08-24 11:31:53,976 DEBUG: Best view : MiRNA__ +2016-08-24 11:31:58,943 DEBUG: Start: Iteration 79 +2016-08-24 11:31:58,960 DEBUG: View 0 : 0.503225806452 +2016-08-24 11:31:58,967 DEBUG: View 1 : 0.458064516129 +2016-08-24 11:31:59,055 DEBUG: View 2 : 0.632258064516 +2016-08-24 11:31:59,063 DEBUG: View 3 : 0.61935483871 +2016-08-24 11:31:59,276 DEBUG: Best view : RANSeq_ +2016-08-24 11:32:04,163 DEBUG: Start: Iteration 80 +2016-08-24 11:32:04,180 DEBUG: View 0 : 0.529032258065 +2016-08-24 11:32:04,187 DEBUG: View 1 : 0.361290322581 +2016-08-24 11:32:04,275 DEBUG: View 2 : 0.645161290323 +2016-08-24 11:32:04,283 DEBUG: View 3 : 0.522580645161 +2016-08-24 11:32:04,495 DEBUG: Best view : RANSeq_ +2016-08-24 11:32:09,481 DEBUG: Start: Iteration 81 +2016-08-24 11:32:09,498 DEBUG: View 0 : 0.541935483871 +2016-08-24 11:32:09,506 DEBUG: View 1 : 0.374193548387 +2016-08-24 11:32:09,589 DEBUG: View 2 : 0.593548387097 +2016-08-24 11:32:09,596 DEBUG: View 3 : 0.587096774194 +2016-08-24 11:32:09,813 DEBUG: Best view : Clinic_ +2016-08-24 11:32:14,844 DEBUG: Start: Iteration 82 +2016-08-24 11:32:14,860 DEBUG: View 0 : 0.445161290323 +2016-08-24 11:32:14,868 DEBUG: View 1 : 0.503225806452 +2016-08-24 11:32:14,955 DEBUG: View 2 : 0.490322580645 +2016-08-24 11:32:14,962 DEBUG: View 3 : 0.6 +2016-08-24 11:32:15,180 DEBUG: Best view : Clinic_ +2016-08-24 11:32:20,296 DEBUG: Start: Iteration 83 +2016-08-24 11:32:20,314 DEBUG: View 0 : 0.574193548387 +2016-08-24 11:32:20,322 DEBUG: View 1 : 0.367741935484 +2016-08-24 11:32:20,411 DEBUG: View 2 : 0.625806451613 +2016-08-24 11:32:20,419 DEBUG: View 3 : 0.535483870968 +2016-08-24 11:32:20,648 DEBUG: Best view : RANSeq_ +2016-08-24 11:32:25,914 DEBUG: Start: Iteration 84 +2016-08-24 11:32:25,931 DEBUG: View 0 : 0.509677419355 +2016-08-24 11:32:25,939 DEBUG: View 1 : 0.554838709677 +2016-08-24 11:32:26,026 DEBUG: View 2 : 0.645161290323 +2016-08-24 11:32:26,034 DEBUG: View 3 : 0.612903225806 +2016-08-24 11:32:26,264 DEBUG: Best view : RANSeq_ +2016-08-24 11:32:31,908 DEBUG: Start: Iteration 85 +2016-08-24 11:32:31,927 DEBUG: View 0 : 0.541935483871 +2016-08-24 11:32:31,936 DEBUG: View 1 : 0.509677419355 +2016-08-24 11:32:32,032 DEBUG: View 2 : 0.490322580645 +2016-08-24 11:32:32,039 DEBUG: View 3 : 0.529032258065 +2016-08-24 11:32:32,270 DEBUG: Best view : Clinic_ +2016-08-24 11:32:37,729 DEBUG: Start: Iteration 86 +2016-08-24 11:32:37,746 DEBUG: View 0 : 0.561290322581 +2016-08-24 11:32:37,753 DEBUG: View 1 : 0.612903225806 +2016-08-24 11:32:37,838 DEBUG: View 2 : 0.58064516129 +2016-08-24 11:32:37,845 DEBUG: View 3 : 0.61935483871 +2016-08-24 11:32:38,074 DEBUG: Best view : Clinic_ +2016-08-24 11:32:43,440 DEBUG: Start: Iteration 87 +2016-08-24 11:32:43,456 DEBUG: View 0 : 0.587096774194 +2016-08-24 11:32:43,464 DEBUG: View 1 : 0.490322580645 +2016-08-24 11:32:43,550 DEBUG: View 2 : 0.529032258065 +2016-08-24 11:32:43,558 DEBUG: View 3 : 0.606451612903 +2016-08-24 11:32:43,788 DEBUG: Best view : Clinic_ +2016-08-24 11:32:49,211 DEBUG: Start: Iteration 88 +2016-08-24 11:32:49,227 DEBUG: View 0 : 0.651612903226 +2016-08-24 11:32:49,235 DEBUG: View 1 : 0.483870967742 +2016-08-24 11:32:49,320 DEBUG: View 2 : 0.593548387097 +2016-08-24 11:32:49,327 DEBUG: View 3 : 0.625806451613 +2016-08-24 11:32:49,559 DEBUG: Best view : Methyl_ +2016-08-24 11:32:55,079 DEBUG: Start: Iteration 89 +2016-08-24 11:32:55,096 DEBUG: View 0 : 0.374193548387 +2016-08-24 11:32:55,104 DEBUG: View 1 : 0.625806451613 +2016-08-24 11:32:55,192 DEBUG: View 2 : 0.425806451613 +2016-08-24 11:32:55,199 DEBUG: View 3 : 0.61935483871 +2016-08-24 11:32:55,438 DEBUG: Best view : Clinic_ +2016-08-24 11:33:01,001 DEBUG: Start: Iteration 90 +2016-08-24 11:33:01,018 DEBUG: View 0 : 0.470967741935 +2016-08-24 11:33:01,025 DEBUG: View 1 : 0.683870967742 +2016-08-24 11:33:01,113 DEBUG: View 2 : 0.567741935484 +2016-08-24 11:33:01,120 DEBUG: View 3 : 0.529032258065 +2016-08-24 11:33:01,356 DEBUG: Best view : MiRNA__ +2016-08-24 11:33:06,992 DEBUG: Start: Iteration 91 +2016-08-24 11:33:07,008 DEBUG: View 0 : 0.606451612903 +2016-08-24 11:33:07,016 DEBUG: View 1 : 0.625806451613 +2016-08-24 11:33:07,101 DEBUG: View 2 : 0.587096774194 +2016-08-24 11:33:07,109 DEBUG: View 3 : 0.606451612903 +2016-08-24 11:33:07,353 DEBUG: Best view : Clinic_ +2016-08-24 11:33:13,195 DEBUG: Start: Iteration 92 +2016-08-24 11:33:13,212 DEBUG: View 0 : 0.425806451613 +2016-08-24 11:33:13,219 DEBUG: View 1 : 0.348387096774 +2016-08-24 11:33:13,311 DEBUG: View 2 : 0.529032258065 +2016-08-24 11:33:13,318 DEBUG: View 3 : 0.587096774194 +2016-08-24 11:33:13,560 DEBUG: Best view : Clinic_ +2016-08-24 11:33:19,527 DEBUG: Start: Iteration 93 +2016-08-24 11:33:19,543 DEBUG: View 0 : 0.496774193548 +2016-08-24 11:33:19,551 DEBUG: View 1 : 0.612903225806 +2016-08-24 11:33:19,634 DEBUG: View 2 : 0.58064516129 +2016-08-24 11:33:19,641 DEBUG: View 3 : 0.554838709677 +2016-08-24 11:33:19,896 DEBUG: Best view : MiRNA__ +2016-08-24 11:33:25,762 DEBUG: Start: Iteration 94 +2016-08-24 11:33:25,778 DEBUG: View 0 : 0.445161290323 +2016-08-24 11:33:25,786 DEBUG: View 1 : 0.632258064516 +2016-08-24 11:33:25,869 DEBUG: View 2 : 0.574193548387 +2016-08-24 11:33:25,876 DEBUG: View 3 : 0.522580645161 +2016-08-24 11:33:26,123 DEBUG: Best view : MiRNA__ +2016-08-24 11:33:32,162 DEBUG: Start: Iteration 95 +2016-08-24 11:33:32,179 DEBUG: View 0 : 0.458064516129 +2016-08-24 11:33:32,187 DEBUG: View 1 : 0.638709677419 +2016-08-24 11:33:32,281 DEBUG: View 2 : 0.561290322581 +2016-08-24 11:33:32,288 DEBUG: View 3 : 0.6 +2016-08-24 11:33:32,548 DEBUG: Best view : Clinic_ +2016-08-24 11:33:38,564 DEBUG: Start: Iteration 96 +2016-08-24 11:33:38,581 DEBUG: View 0 : 0.574193548387 +2016-08-24 11:33:38,588 DEBUG: View 1 : 0.367741935484 +2016-08-24 11:33:38,674 DEBUG: View 2 : 0.645161290323 +2016-08-24 11:33:38,681 DEBUG: View 3 : 0.670967741935 +2016-08-24 11:33:38,933 DEBUG: Best view : Clinic_ +2016-08-24 11:33:45,058 DEBUG: Start: Iteration 97 +2016-08-24 11:33:45,076 DEBUG: View 0 : 0.61935483871 +2016-08-24 11:33:45,084 DEBUG: View 1 : 0.658064516129 +2016-08-24 11:33:45,175 DEBUG: View 2 : 0.593548387097 +2016-08-24 11:33:45,182 DEBUG: View 3 : 0.541935483871 +2016-08-24 11:33:45,439 DEBUG: Best view : MiRNA__ +2016-08-24 11:33:51,666 DEBUG: Start: Iteration 98 +2016-08-24 11:33:51,683 DEBUG: View 0 : 0.477419354839 +2016-08-24 11:33:51,691 DEBUG: View 1 : 0.587096774194 +2016-08-24 11:33:51,786 DEBUG: View 2 : 0.548387096774 +2016-08-24 11:33:51,794 DEBUG: View 3 : 0.638709677419 +2016-08-24 11:33:52,065 DEBUG: Best view : Clinic_ +2016-08-24 11:33:58,218 DEBUG: Start: Iteration 99 +2016-08-24 11:33:58,235 DEBUG: View 0 : 0.464516129032 +2016-08-24 11:33:58,243 DEBUG: View 1 : 0.470967741935 +2016-08-24 11:33:58,334 DEBUG: View 2 : 0.554838709677 +2016-08-24 11:33:58,342 DEBUG: View 3 : 0.567741935484 +2016-08-24 11:33:58,600 DEBUG: Best view : Clinic_ +2016-08-24 11:34:04,934 DEBUG: Start: Iteration 100 +2016-08-24 11:34:04,950 DEBUG: View 0 : 0.432258064516 +2016-08-24 11:34:04,957 DEBUG: View 1 : 0.412903225806 +2016-08-24 11:34:05,039 DEBUG: View 2 : 0.561290322581 +2016-08-24 11:34:05,047 DEBUG: View 3 : 0.670967741935 +2016-08-24 11:34:05,308 DEBUG: Best view : Clinic_ +2016-08-24 11:34:11,557 DEBUG: Start: Iteration 101 +2016-08-24 11:34:11,573 DEBUG: View 0 : 0.548387096774 +2016-08-24 11:34:11,580 DEBUG: View 1 : 0.387096774194 +2016-08-24 11:34:11,669 DEBUG: View 2 : 0.541935483871 +2016-08-24 11:34:11,677 DEBUG: View 3 : 0.522580645161 +2016-08-24 11:34:11,937 DEBUG: Best view : Clinic_ +2016-08-24 11:34:18,573 DEBUG: Start: Iteration 102 +2016-08-24 11:34:18,595 DEBUG: View 0 : 0.625806451613 +2016-08-24 11:34:18,604 DEBUG: View 1 : 0.464516129032 +2016-08-24 11:34:18,708 DEBUG: View 2 : 0.606451612903 +2016-08-24 11:34:18,717 DEBUG: View 3 : 0.548387096774 +2016-08-24 11:34:19,004 DEBUG: Best view : Methyl_ +2016-08-24 11:34:25,229 INFO: Start: Classification +2016-08-24 11:34:40,414 INFO: Done: Fold number 1 +2016-08-24 11:34:40,414 INFO: Start: Fold number 2 +2016-08-24 11:34:42,007 DEBUG: Start: Iteration 1 +2016-08-24 11:34:42,022 DEBUG: View 0 : 0.377358490566 +2016-08-24 11:34:42,029 DEBUG: View 1 : 0.622641509434 +2016-08-24 11:34:42,059 DEBUG: View 2 : 0.377358490566 +2016-08-24 11:34:42,067 DEBUG: View 3 : 0.377358490566 +2016-08-24 11:34:42,108 DEBUG: Best view : MiRNA__ +2016-08-24 11:34:42,178 DEBUG: Start: Iteration 2 +2016-08-24 11:34:42,195 DEBUG: View 0 : 0.465408805031 +2016-08-24 11:34:42,202 DEBUG: View 1 : 0.471698113208 +2016-08-24 11:34:42,289 DEBUG: View 2 : 0.647798742138 +2016-08-24 11:34:42,297 DEBUG: View 3 : 0.477987421384 +2016-08-24 11:34:42,342 DEBUG: Best view : RANSeq_ +2016-08-24 11:34:42,487 DEBUG: Start: Iteration 3 +2016-08-24 11:34:42,504 DEBUG: View 0 : 0.389937106918 +2016-08-24 11:34:42,511 DEBUG: View 1 : 0.553459119497 +2016-08-24 11:34:42,594 DEBUG: View 2 : 0.503144654088 +2016-08-24 11:34:42,602 DEBUG: View 3 : 0.534591194969 +2016-08-24 11:34:42,655 DEBUG: Best view : MiRNA__ +2016-08-24 11:34:42,859 DEBUG: Start: Iteration 4 +2016-08-24 11:34:42,875 DEBUG: View 0 : 0.591194968553 +2016-08-24 11:34:42,883 DEBUG: View 1 : 0.603773584906 +2016-08-24 11:34:42,965 DEBUG: View 2 : 0.62893081761 +2016-08-24 11:34:42,973 DEBUG: View 3 : 0.666666666667 +2016-08-24 11:34:43,029 DEBUG: Best view : Clinic_ +2016-08-24 11:34:43,290 DEBUG: Start: Iteration 5 +2016-08-24 11:34:43,306 DEBUG: View 0 : 0.559748427673 +2016-08-24 11:34:43,314 DEBUG: View 1 : 0.446540880503 +2016-08-24 11:34:43,397 DEBUG: View 2 : 0.547169811321 +2016-08-24 11:34:43,404 DEBUG: View 3 : 0.59748427673 +2016-08-24 11:34:43,461 DEBUG: Best view : Clinic_ +2016-08-24 11:34:43,781 DEBUG: Start: Iteration 6 +2016-08-24 11:34:43,797 DEBUG: View 0 : 0.358490566038 +2016-08-24 11:34:43,805 DEBUG: View 1 : 0.698113207547 +2016-08-24 11:34:43,891 DEBUG: View 2 : 0.509433962264 +2016-08-24 11:34:43,899 DEBUG: View 3 : 0.528301886792 +2016-08-24 11:34:43,958 DEBUG: Best view : MiRNA__ +2016-08-24 11:34:44,334 DEBUG: Start: Iteration 7 +2016-08-24 11:34:44,351 DEBUG: View 0 : 0.503144654088 +2016-08-24 11:34:44,358 DEBUG: View 1 : 0.635220125786 +2016-08-24 11:34:44,445 DEBUG: View 2 : 0.553459119497 +2016-08-24 11:34:44,453 DEBUG: View 3 : 0.660377358491 +2016-08-24 11:34:44,514 DEBUG: Best view : Clinic_ +2016-08-24 11:34:44,948 DEBUG: Start: Iteration 8 +2016-08-24 11:34:44,964 DEBUG: View 0 : 0.547169811321 +2016-08-24 11:34:44,972 DEBUG: View 1 : 0.465408805031 +2016-08-24 11:34:45,055 DEBUG: View 2 : 0.553459119497 +2016-08-24 11:34:45,063 DEBUG: View 3 : 0.647798742138 +2016-08-24 11:34:45,129 DEBUG: Best view : Clinic_ +2016-08-24 11:34:45,620 DEBUG: Start: Iteration 9 +2016-08-24 11:34:45,637 DEBUG: View 0 : 0.553459119497 +2016-08-24 11:34:45,644 DEBUG: View 1 : 0.446540880503 +2016-08-24 11:34:45,730 DEBUG: View 2 : 0.591194968553 +2016-08-24 11:34:45,738 DEBUG: View 3 : 0.553459119497 +2016-08-24 11:34:45,804 DEBUG: Best view : RANSeq_ +2016-08-24 11:34:46,365 DEBUG: Start: Iteration 10 +2016-08-24 11:34:46,382 DEBUG: View 0 : 0.465408805031 +2016-08-24 11:34:46,389 DEBUG: View 1 : 0.465408805031 +2016-08-24 11:34:46,476 DEBUG: View 2 : 0.666666666667 +2016-08-24 11:34:46,484 DEBUG: View 3 : 0.553459119497 +2016-08-24 11:34:46,553 DEBUG: Best view : RANSeq_ +2016-08-24 11:34:47,192 DEBUG: Start: Iteration 11 +2016-08-24 11:34:47,209 DEBUG: View 0 : 0.496855345912 +2016-08-24 11:34:47,216 DEBUG: View 1 : 0.672955974843 +2016-08-24 11:34:47,304 DEBUG: View 2 : 0.566037735849 +2016-08-24 11:34:47,312 DEBUG: View 3 : 0.578616352201 +2016-08-24 11:34:47,384 DEBUG: Best view : MiRNA__ +2016-08-24 11:34:48,078 DEBUG: Start: Iteration 12 +2016-08-24 11:34:48,094 DEBUG: View 0 : 0.547169811321 +2016-08-24 11:34:48,102 DEBUG: View 1 : 0.320754716981 +2016-08-24 11:34:48,193 DEBUG: View 2 : 0.616352201258 +2016-08-24 11:34:48,201 DEBUG: View 3 : 0.522012578616 +2016-08-24 11:34:48,273 DEBUG: Best view : RANSeq_ +2016-08-24 11:34:49,039 DEBUG: Start: Iteration 13 +2016-08-24 11:34:49,055 DEBUG: View 0 : 0.364779874214 +2016-08-24 11:34:49,063 DEBUG: View 1 : 0.641509433962 +2016-08-24 11:34:49,152 DEBUG: View 2 : 0.534591194969 +2016-08-24 11:34:49,159 DEBUG: View 3 : 0.584905660377 +2016-08-24 11:34:49,235 DEBUG: Best view : MiRNA__ +2016-08-24 11:34:50,060 DEBUG: Start: Iteration 14 +2016-08-24 11:34:50,077 DEBUG: View 0 : 0.635220125786 +2016-08-24 11:34:50,084 DEBUG: View 1 : 0.691823899371 +2016-08-24 11:34:50,167 DEBUG: View 2 : 0.578616352201 +2016-08-24 11:34:50,174 DEBUG: View 3 : 0.528301886792 +2016-08-24 11:34:50,253 DEBUG: Best view : MiRNA__ +2016-08-24 11:34:51,136 DEBUG: Start: Iteration 15 +2016-08-24 11:34:51,153 DEBUG: View 0 : 0.427672955975 +2016-08-24 11:34:51,161 DEBUG: View 1 : 0.62893081761 +2016-08-24 11:34:51,245 DEBUG: View 2 : 0.559748427673 +2016-08-24 11:34:51,252 DEBUG: View 3 : 0.616352201258 +2016-08-24 11:34:51,334 DEBUG: Best view : MiRNA__ +2016-08-24 11:34:52,275 DEBUG: Start: Iteration 16 +2016-08-24 11:34:52,292 DEBUG: View 0 : 0.528301886792 +2016-08-24 11:34:52,300 DEBUG: View 1 : 0.672955974843 +2016-08-24 11:34:52,387 DEBUG: View 2 : 0.610062893082 +2016-08-24 11:34:52,395 DEBUG: View 3 : 0.540880503145 +2016-08-24 11:34:52,478 DEBUG: Best view : MiRNA__ +2016-08-24 11:34:53,479 DEBUG: Start: Iteration 17 +2016-08-24 11:34:53,495 DEBUG: View 0 : 0.522012578616 +2016-08-24 11:34:53,503 DEBUG: View 1 : 0.471698113208 +2016-08-24 11:34:53,590 DEBUG: View 2 : 0.654088050314 +2016-08-24 11:34:53,597 DEBUG: View 3 : 0.566037735849 +2016-08-24 11:34:53,682 DEBUG: Best view : RANSeq_ +2016-08-24 11:34:54,747 DEBUG: Start: Iteration 18 +2016-08-24 11:34:54,764 DEBUG: View 0 : 0.522012578616 +2016-08-24 11:34:54,771 DEBUG: View 1 : 0.522012578616 +2016-08-24 11:34:54,855 DEBUG: View 2 : 0.666666666667 +2016-08-24 11:34:54,863 DEBUG: View 3 : 0.528301886792 +2016-08-24 11:34:54,949 DEBUG: Best view : RANSeq_ +2016-08-24 11:34:56,085 DEBUG: Start: Iteration 19 +2016-08-24 11:34:56,101 DEBUG: View 0 : 0.572327044025 +2016-08-24 11:34:56,109 DEBUG: View 1 : 0.616352201258 +2016-08-24 11:34:56,191 DEBUG: View 2 : 0.591194968553 +2016-08-24 11:34:56,198 DEBUG: View 3 : 0.591194968553 +2016-08-24 11:34:56,287 DEBUG: Best view : MiRNA__ +2016-08-24 11:34:57,480 DEBUG: Start: Iteration 20 +2016-08-24 11:34:57,497 DEBUG: View 0 : 0.522012578616 +2016-08-24 11:34:57,504 DEBUG: View 1 : 0.51572327044 +2016-08-24 11:34:57,582 DEBUG: View 2 : 0.59748427673 +2016-08-24 11:34:57,590 DEBUG: View 3 : 0.647798742138 +2016-08-24 11:34:57,681 DEBUG: Best view : Clinic_ +2016-08-24 11:34:58,933 DEBUG: Start: Iteration 21 +2016-08-24 11:34:58,950 DEBUG: View 0 : 0.446540880503 +2016-08-24 11:34:58,958 DEBUG: View 1 : 0.691823899371 +2016-08-24 11:34:59,041 DEBUG: View 2 : 0.48427672956 +2016-08-24 11:34:59,048 DEBUG: View 3 : 0.666666666667 +2016-08-24 11:34:59,141 DEBUG: Best view : MiRNA__ +2016-08-24 11:35:00,451 DEBUG: Start: Iteration 22 +2016-08-24 11:35:00,467 DEBUG: View 0 : 0.559748427673 +2016-08-24 11:35:00,474 DEBUG: View 1 : 0.654088050314 +2016-08-24 11:35:00,561 DEBUG: View 2 : 0.566037735849 +2016-08-24 11:35:00,569 DEBUG: View 3 : 0.578616352201 +2016-08-24 11:35:00,663 DEBUG: Best view : MiRNA__ +2016-08-24 11:35:02,029 DEBUG: Start: Iteration 23 +2016-08-24 11:35:02,046 DEBUG: View 0 : 0.433962264151 +2016-08-24 11:35:02,053 DEBUG: View 1 : 0.616352201258 +2016-08-24 11:35:02,140 DEBUG: View 2 : 0.471698113208 +2016-08-24 11:35:02,147 DEBUG: View 3 : 0.584905660377 +2016-08-24 11:35:02,244 DEBUG: Best view : MiRNA__ +2016-08-24 11:35:03,666 DEBUG: Start: Iteration 24 +2016-08-24 11:35:03,683 DEBUG: View 0 : 0.641509433962 +2016-08-24 11:35:03,690 DEBUG: View 1 : 0.654088050314 +2016-08-24 11:35:03,773 DEBUG: View 2 : 0.578616352201 +2016-08-24 11:35:03,781 DEBUG: View 3 : 0.59748427673 +2016-08-24 11:35:03,880 DEBUG: Best view : MiRNA__ +2016-08-24 11:35:05,362 DEBUG: Start: Iteration 25 +2016-08-24 11:35:05,379 DEBUG: View 0 : 0.616352201258 +2016-08-24 11:35:05,386 DEBUG: View 1 : 0.622641509434 +2016-08-24 11:35:05,465 DEBUG: View 2 : 0.51572327044 +2016-08-24 11:35:05,472 DEBUG: View 3 : 0.666666666667 +2016-08-24 11:35:05,574 DEBUG: Best view : Clinic_ +2016-08-24 11:35:07,114 DEBUG: Start: Iteration 26 +2016-08-24 11:35:07,130 DEBUG: View 0 : 0.377358490566 +2016-08-24 11:35:07,138 DEBUG: View 1 : 0.660377358491 +2016-08-24 11:35:07,224 DEBUG: View 2 : 0.540880503145 +2016-08-24 11:35:07,232 DEBUG: View 3 : 0.654088050314 +2016-08-24 11:35:07,335 DEBUG: Best view : Clinic_ +2016-08-24 11:35:08,934 DEBUG: Start: Iteration 27 +2016-08-24 11:35:08,950 DEBUG: View 0 : 0.446540880503 +2016-08-24 11:35:08,958 DEBUG: View 1 : 0.691823899371 +2016-08-24 11:35:09,044 DEBUG: View 2 : 0.591194968553 +2016-08-24 11:35:09,052 DEBUG: View 3 : 0.566037735849 +2016-08-24 11:35:09,158 DEBUG: Best view : MiRNA__ +2016-08-24 11:35:10,846 DEBUG: Start: Iteration 28 +2016-08-24 11:35:10,863 DEBUG: View 0 : 0.603773584906 +2016-08-24 11:35:10,870 DEBUG: View 1 : 0.51572327044 +2016-08-24 11:35:10,957 DEBUG: View 2 : 0.59748427673 +2016-08-24 11:35:10,964 DEBUG: View 3 : 0.62893081761 +2016-08-24 11:35:11,072 DEBUG: Best view : Clinic_ +2016-08-24 11:35:12,786 DEBUG: Start: Iteration 29 +2016-08-24 11:35:12,803 DEBUG: View 0 : 0.622641509434 +2016-08-24 11:35:12,810 DEBUG: View 1 : 0.729559748428 +2016-08-24 11:35:12,898 DEBUG: View 2 : 0.572327044025 +2016-08-24 11:35:12,905 DEBUG: View 3 : 0.559748427673 +2016-08-24 11:35:13,015 DEBUG: Best view : MiRNA__ +2016-08-24 11:35:14,788 DEBUG: Start: Iteration 30 +2016-08-24 11:35:14,804 DEBUG: View 0 : 0.496855345912 +2016-08-24 11:35:14,812 DEBUG: View 1 : 0.320754716981 +2016-08-24 11:35:14,896 DEBUG: View 2 : 0.572327044025 +2016-08-24 11:35:14,903 DEBUG: View 3 : 0.635220125786 +2016-08-24 11:35:15,016 DEBUG: Best view : Clinic_ +2016-08-24 11:35:16,849 DEBUG: Start: Iteration 31 +2016-08-24 11:35:16,866 DEBUG: View 0 : 0.522012578616 +2016-08-24 11:35:16,874 DEBUG: View 1 : 0.465408805031 +2016-08-24 11:35:16,956 DEBUG: View 2 : 0.654088050314 +2016-08-24 11:35:16,964 DEBUG: View 3 : 0.622641509434 +2016-08-24 11:35:17,078 DEBUG: Best view : RANSeq_ +2016-08-24 11:35:18,980 DEBUG: Start: Iteration 32 +2016-08-24 11:35:18,996 DEBUG: View 0 : 0.59748427673 +2016-08-24 11:35:19,004 DEBUG: View 1 : 0.477987421384 +2016-08-24 11:35:19,090 DEBUG: View 2 : 0.578616352201 +2016-08-24 11:35:19,098 DEBUG: View 3 : 0.528301886792 +2016-08-24 11:35:19,214 DEBUG: Best view : RANSeq_ +2016-08-24 11:35:21,188 DEBUG: Start: Iteration 33 +2016-08-24 11:35:21,204 DEBUG: View 0 : 0.660377358491 +2016-08-24 11:35:21,211 DEBUG: View 1 : 0.566037735849 +2016-08-24 11:35:21,298 DEBUG: View 2 : 0.522012578616 +2016-08-24 11:35:21,306 DEBUG: View 3 : 0.62893081761 +2016-08-24 11:35:21,426 DEBUG: Best view : Methyl_ +2016-08-24 11:35:23,462 DEBUG: Start: Iteration 34 +2016-08-24 11:35:23,478 DEBUG: View 0 : 0.490566037736 +2016-08-24 11:35:23,485 DEBUG: View 1 : 0.345911949686 +2016-08-24 11:35:23,572 DEBUG: View 2 : 0.584905660377 +2016-08-24 11:35:23,580 DEBUG: View 3 : 0.610062893082 +2016-08-24 11:35:23,699 DEBUG: Best view : Clinic_ +2016-08-24 11:35:25,792 DEBUG: Start: Iteration 35 +2016-08-24 11:35:25,809 DEBUG: View 0 : 0.660377358491 +2016-08-24 11:35:25,816 DEBUG: View 1 : 0.528301886792 +2016-08-24 11:35:25,904 DEBUG: View 2 : 0.610062893082 +2016-08-24 11:35:25,912 DEBUG: View 3 : 0.654088050314 +2016-08-24 11:35:26,035 DEBUG: Best view : Clinic_ +2016-08-24 11:35:28,184 DEBUG: Start: Iteration 36 +2016-08-24 11:35:28,201 DEBUG: View 0 : 0.566037735849 +2016-08-24 11:35:28,208 DEBUG: View 1 : 0.62893081761 +2016-08-24 11:35:28,294 DEBUG: View 2 : 0.559748427673 +2016-08-24 11:35:28,302 DEBUG: View 3 : 0.59748427673 +2016-08-24 11:35:28,427 DEBUG: Best view : Clinic_ +2016-08-24 11:35:30,683 DEBUG: Start: Iteration 37 +2016-08-24 11:35:30,700 DEBUG: View 0 : 0.477987421384 +2016-08-24 11:35:30,707 DEBUG: View 1 : 0.471698113208 +2016-08-24 11:35:30,801 DEBUG: View 2 : 0.59748427673 +2016-08-24 11:35:30,809 DEBUG: View 3 : 0.616352201258 +2016-08-24 11:35:30,938 DEBUG: Best view : Clinic_ +2016-08-24 11:35:33,258 DEBUG: Start: Iteration 38 +2016-08-24 11:35:33,274 DEBUG: View 0 : 0.534591194969 +2016-08-24 11:35:33,282 DEBUG: View 1 : 0.748427672956 +2016-08-24 11:35:33,366 DEBUG: View 2 : 0.471698113208 +2016-08-24 11:35:33,374 DEBUG: View 3 : 0.584905660377 +2016-08-24 11:35:33,507 DEBUG: Best view : MiRNA__ +2016-08-24 11:35:35,848 DEBUG: Start: Iteration 39 +2016-08-24 11:35:35,866 DEBUG: View 0 : 0.591194968553 +2016-08-24 11:35:35,875 DEBUG: View 1 : 0.509433962264 +2016-08-24 11:35:35,997 DEBUG: View 2 : 0.572327044025 +2016-08-24 11:35:36,007 DEBUG: View 3 : 0.610062893082 +2016-08-24 11:35:36,153 DEBUG: Best view : Clinic_ +2016-08-24 11:35:38,662 DEBUG: Start: Iteration 40 +2016-08-24 11:35:38,681 DEBUG: View 0 : 0.540880503145 +2016-08-24 11:35:38,689 DEBUG: View 1 : 0.622641509434 +2016-08-24 11:35:38,778 DEBUG: View 2 : 0.591194968553 +2016-08-24 11:35:38,786 DEBUG: View 3 : 0.578616352201 +2016-08-24 11:35:38,925 DEBUG: Best view : MiRNA__ +2016-08-24 11:35:41,412 DEBUG: Start: Iteration 41 +2016-08-24 11:35:41,428 DEBUG: View 0 : 0.534591194969 +2016-08-24 11:35:41,436 DEBUG: View 1 : 0.345911949686 +2016-08-24 11:35:41,516 DEBUG: View 2 : 0.534591194969 +2016-08-24 11:35:41,524 DEBUG: View 3 : 0.534591194969 +2016-08-24 11:35:41,661 DEBUG: Best view : Clinic_ +2016-08-24 11:35:44,288 DEBUG: Start: Iteration 42 +2016-08-24 11:35:44,304 DEBUG: View 0 : 0.452830188679 +2016-08-24 11:35:44,312 DEBUG: View 1 : 0.723270440252 +2016-08-24 11:35:44,399 DEBUG: View 2 : 0.62893081761 +2016-08-24 11:35:44,407 DEBUG: View 3 : 0.729559748428 +2016-08-24 11:35:44,556 DEBUG: Best view : Clinic_ +2016-08-24 11:35:47,232 DEBUG: Start: Iteration 43 +2016-08-24 11:35:47,248 DEBUG: View 0 : 0.610062893082 +2016-08-24 11:35:47,256 DEBUG: View 1 : 0.528301886792 +2016-08-24 11:35:47,339 DEBUG: View 2 : 0.578616352201 +2016-08-24 11:35:47,346 DEBUG: View 3 : 0.591194968553 +2016-08-24 11:35:47,500 DEBUG: Best view : Clinic_ +2016-08-24 11:35:50,194 DEBUG: Start: Iteration 44 +2016-08-24 11:35:50,211 DEBUG: View 0 : 0.540880503145 +2016-08-24 11:35:50,218 DEBUG: View 1 : 0.48427672956 +2016-08-24 11:35:50,308 DEBUG: View 2 : 0.59748427673 +2016-08-24 11:35:50,317 DEBUG: View 3 : 0.572327044025 +2016-08-24 11:35:50,478 DEBUG: Best view : RANSeq_ +2016-08-24 11:35:53,306 DEBUG: Start: Iteration 45 +2016-08-24 11:35:53,322 DEBUG: View 0 : 0.452830188679 +2016-08-24 11:35:53,330 DEBUG: View 1 : 0.641509433962 +2016-08-24 11:35:53,416 DEBUG: View 2 : 0.540880503145 +2016-08-24 11:35:53,424 DEBUG: View 3 : 0.572327044025 +2016-08-24 11:35:53,570 DEBUG: Best view : MiRNA__ +2016-08-24 11:35:56,450 DEBUG: Start: Iteration 46 +2016-08-24 11:35:56,468 DEBUG: View 0 : 0.723270440252 +2016-08-24 11:35:56,476 DEBUG: View 1 : 0.534591194969 +2016-08-24 11:35:56,578 DEBUG: View 2 : 0.559748427673 +2016-08-24 11:35:56,587 DEBUG: View 3 : 0.547169811321 +2016-08-24 11:35:56,742 DEBUG: Best view : Methyl_ +2016-08-24 11:35:59,658 DEBUG: Start: Iteration 47 +2016-08-24 11:35:59,674 DEBUG: View 0 : 0.528301886792 +2016-08-24 11:35:59,682 DEBUG: View 1 : 0.446540880503 +2016-08-24 11:35:59,765 DEBUG: View 2 : 0.572327044025 +2016-08-24 11:35:59,772 DEBUG: View 3 : 0.534591194969 +2016-08-24 11:35:59,924 DEBUG: Best view : RANSeq_ +2016-08-24 11:36:02,916 DEBUG: Start: Iteration 48 +2016-08-24 11:36:02,932 DEBUG: View 0 : 0.40251572327 +2016-08-24 11:36:02,940 DEBUG: View 1 : 0.641509433962 +2016-08-24 11:36:03,023 DEBUG: View 2 : 0.496855345912 +2016-08-24 11:36:03,031 DEBUG: View 3 : 0.459119496855 +2016-08-24 11:36:03,196 DEBUG: Best view : MiRNA__ +2016-08-24 11:36:06,216 DEBUG: Start: Iteration 49 +2016-08-24 11:36:06,232 DEBUG: View 0 : 0.635220125786 +2016-08-24 11:36:06,240 DEBUG: View 1 : 0.314465408805 +2016-08-24 11:36:06,322 DEBUG: View 2 : 0.559748427673 +2016-08-24 11:36:06,330 DEBUG: View 3 : 0.59748427673 +2016-08-24 11:36:06,483 DEBUG: Best view : Methyl_ +2016-08-24 11:36:09,605 DEBUG: Start: Iteration 50 +2016-08-24 11:36:09,622 DEBUG: View 0 : 0.547169811321 +2016-08-24 11:36:09,629 DEBUG: View 1 : 0.51572327044 +2016-08-24 11:36:09,717 DEBUG: View 2 : 0.503144654088 +2016-08-24 11:36:09,725 DEBUG: View 3 : 0.465408805031 +2016-08-24 11:36:09,886 DEBUG: Best view : MiRNA__ +2016-08-24 11:36:13,100 DEBUG: Start: Iteration 51 +2016-08-24 11:36:13,116 DEBUG: View 0 : 0.591194968553 +2016-08-24 11:36:13,124 DEBUG: View 1 : 0.320754716981 +2016-08-24 11:36:13,203 DEBUG: View 2 : 0.572327044025 +2016-08-24 11:36:13,211 DEBUG: View 3 : 0.59748427673 +2016-08-24 11:36:13,377 DEBUG: Best view : Clinic_ +2016-08-24 11:36:16,654 DEBUG: Start: Iteration 52 +2016-08-24 11:36:16,673 DEBUG: View 0 : 0.547169811321 +2016-08-24 11:36:16,682 DEBUG: View 1 : 0.37106918239 +2016-08-24 11:36:16,782 DEBUG: View 2 : 0.62893081761 +2016-08-24 11:36:16,789 DEBUG: View 3 : 0.566037735849 +2016-08-24 11:36:16,950 DEBUG: Best view : RANSeq_ +2016-08-24 11:36:20,173 DEBUG: Start: Iteration 53 +2016-08-24 11:36:20,190 DEBUG: View 0 : 0.566037735849 +2016-08-24 11:36:20,197 DEBUG: View 1 : 0.647798742138 +2016-08-24 11:36:20,293 DEBUG: View 2 : 0.591194968553 +2016-08-24 11:36:20,300 DEBUG: View 3 : 0.572327044025 +2016-08-24 11:36:20,464 DEBUG: Best view : MiRNA__ +2016-08-24 11:36:23,754 DEBUG: Start: Iteration 54 +2016-08-24 11:36:23,770 DEBUG: View 0 : 0.421383647799 +2016-08-24 11:36:23,778 DEBUG: View 1 : 0.566037735849 +2016-08-24 11:36:23,867 DEBUG: View 2 : 0.654088050314 +2016-08-24 11:36:23,875 DEBUG: View 3 : 0.691823899371 +2016-08-24 11:36:24,040 DEBUG: Best view : Clinic_ +2016-08-24 11:36:27,636 DEBUG: Start: Iteration 55 +2016-08-24 11:36:27,653 DEBUG: View 0 : 0.51572327044 +2016-08-24 11:36:27,661 DEBUG: View 1 : 0.320754716981 +2016-08-24 11:36:27,749 DEBUG: View 2 : 0.59748427673 +2016-08-24 11:36:27,756 DEBUG: View 3 : 0.641509433962 +2016-08-24 11:36:27,935 DEBUG: Best view : Clinic_ +2016-08-24 11:36:31,305 DEBUG: Start: Iteration 56 +2016-08-24 11:36:31,322 DEBUG: View 0 : 0.408805031447 +2016-08-24 11:36:31,329 DEBUG: View 1 : 0.452830188679 +2016-08-24 11:36:31,441 DEBUG: View 2 : 0.591194968553 +2016-08-24 11:36:31,448 DEBUG: View 3 : 0.654088050314 +2016-08-24 11:36:31,615 DEBUG: Best view : Clinic_ +2016-08-24 11:36:35,028 DEBUG: Start: Iteration 57 +2016-08-24 11:36:35,044 DEBUG: View 0 : 0.389937106918 +2016-08-24 11:36:35,052 DEBUG: View 1 : 0.364779874214 +2016-08-24 11:36:35,141 DEBUG: View 2 : 0.572327044025 +2016-08-24 11:36:35,148 DEBUG: View 3 : 0.59748427673 +2016-08-24 11:36:35,319 DEBUG: Best view : Clinic_ +2016-08-24 11:36:38,792 DEBUG: Start: Iteration 58 +2016-08-24 11:36:38,808 DEBUG: View 0 : 0.477987421384 +2016-08-24 11:36:38,816 DEBUG: View 1 : 0.522012578616 +2016-08-24 11:36:38,899 DEBUG: View 2 : 0.635220125786 +2016-08-24 11:36:38,906 DEBUG: View 3 : 0.540880503145 +2016-08-24 11:36:39,079 DEBUG: Best view : RANSeq_ +2016-08-24 11:36:42,622 DEBUG: Start: Iteration 59 +2016-08-24 11:36:42,638 DEBUG: View 0 : 0.616352201258 +2016-08-24 11:36:42,645 DEBUG: View 1 : 0.616352201258 +2016-08-24 11:36:42,729 DEBUG: View 2 : 0.566037735849 +2016-08-24 11:36:42,736 DEBUG: View 3 : 0.509433962264 +2016-08-24 11:36:42,910 DEBUG: Best view : MiRNA__ +2016-08-24 11:36:46,544 DEBUG: Start: Iteration 60 +2016-08-24 11:36:46,561 DEBUG: View 0 : 0.503144654088 +2016-08-24 11:36:46,569 DEBUG: View 1 : 0.528301886792 +2016-08-24 11:36:46,659 DEBUG: View 2 : 0.566037735849 +2016-08-24 11:36:46,667 DEBUG: View 3 : 0.584905660377 +2016-08-24 11:36:46,846 DEBUG: Best view : Clinic_ +2016-08-24 11:36:50,629 DEBUG: Start: Iteration 61 +2016-08-24 11:36:50,646 DEBUG: View 0 : 0.59748427673 +2016-08-24 11:36:50,654 DEBUG: View 1 : 0.647798742138 +2016-08-24 11:36:50,744 DEBUG: View 2 : 0.566037735849 +2016-08-24 11:36:50,752 DEBUG: View 3 : 0.584905660377 +2016-08-24 11:36:50,935 DEBUG: Best view : MiRNA__ +2016-08-24 11:36:54,877 DEBUG: Start: Iteration 62 +2016-08-24 11:36:54,895 DEBUG: View 0 : 0.566037735849 +2016-08-24 11:36:54,903 DEBUG: View 1 : 0.786163522013 +2016-08-24 11:36:54,992 DEBUG: View 2 : 0.572327044025 +2016-08-24 11:36:55,000 DEBUG: View 3 : 0.603773584906 +2016-08-24 11:36:55,199 DEBUG: Best view : MiRNA__ +2016-08-24 11:36:59,096 DEBUG: Start: Iteration 63 +2016-08-24 11:36:59,113 DEBUG: View 0 : 0.490566037736 +2016-08-24 11:36:59,121 DEBUG: View 1 : 0.710691823899 +2016-08-24 11:36:59,208 DEBUG: View 2 : 0.534591194969 +2016-08-24 11:36:59,216 DEBUG: View 3 : 0.566037735849 +2016-08-24 11:36:59,403 DEBUG: Best view : MiRNA__ +2016-08-24 11:37:03,332 DEBUG: Start: Iteration 64 +2016-08-24 11:37:03,350 DEBUG: View 0 : 0.496855345912 +2016-08-24 11:37:03,358 DEBUG: View 1 : 0.603773584906 +2016-08-24 11:37:03,443 DEBUG: View 2 : 0.660377358491 +2016-08-24 11:37:03,450 DEBUG: View 3 : 0.547169811321 +2016-08-24 11:37:03,637 DEBUG: Best view : RANSeq_ +2016-08-24 11:37:07,877 DEBUG: Start: Iteration 65 +2016-08-24 11:37:07,893 DEBUG: View 0 : 0.62893081761 +2016-08-24 11:37:07,901 DEBUG: View 1 : 0.37106918239 +2016-08-24 11:37:07,990 DEBUG: View 2 : 0.503144654088 +2016-08-24 11:37:07,998 DEBUG: View 3 : 0.572327044025 +2016-08-24 11:37:08,188 DEBUG: Best view : Methyl_ +2016-08-24 11:37:12,223 DEBUG: Start: Iteration 66 +2016-08-24 11:37:12,239 DEBUG: View 0 : 0.566037735849 +2016-08-24 11:37:12,247 DEBUG: View 1 : 0.440251572327 +2016-08-24 11:37:12,335 DEBUG: View 2 : 0.622641509434 +2016-08-24 11:37:12,343 DEBUG: View 3 : 0.647798742138 +2016-08-24 11:37:12,533 DEBUG: Best view : Clinic_ +2016-08-24 11:37:16,630 DEBUG: Start: Iteration 67 +2016-08-24 11:37:16,646 DEBUG: View 0 : 0.572327044025 +2016-08-24 11:37:16,654 DEBUG: View 1 : 0.559748427673 +2016-08-24 11:37:16,741 DEBUG: View 2 : 0.59748427673 +2016-08-24 11:37:16,749 DEBUG: View 3 : 0.616352201258 +2016-08-24 11:37:16,941 DEBUG: Best view : Clinic_ +2016-08-24 11:37:21,342 DEBUG: Start: Iteration 68 +2016-08-24 11:37:21,359 DEBUG: View 0 : 0.547169811321 +2016-08-24 11:37:21,367 DEBUG: View 1 : 0.48427672956 +2016-08-24 11:37:21,464 DEBUG: View 2 : 0.591194968553 +2016-08-24 11:37:21,472 DEBUG: View 3 : 0.710691823899 +2016-08-24 11:37:21,671 DEBUG: Best view : Clinic_ +2016-08-24 11:37:26,351 DEBUG: Start: Iteration 69 +2016-08-24 11:37:26,368 DEBUG: View 0 : 0.415094339623 +2016-08-24 11:37:26,376 DEBUG: View 1 : 0.603773584906 +2016-08-24 11:37:26,471 DEBUG: View 2 : 0.610062893082 +2016-08-24 11:37:26,479 DEBUG: View 3 : 0.547169811321 +2016-08-24 11:37:26,674 DEBUG: Best view : MiRNA__ +2016-08-24 11:37:30,968 DEBUG: Start: Iteration 70 +2016-08-24 11:37:30,985 DEBUG: View 0 : 0.459119496855 +2016-08-24 11:37:30,993 DEBUG: View 1 : 0.471698113208 +2016-08-24 11:37:31,080 DEBUG: View 2 : 0.553459119497 +2016-08-24 11:37:31,088 DEBUG: View 3 : 0.547169811321 +2016-08-24 11:37:31,289 DEBUG: Best view : RANSeq_ +2016-08-24 11:37:35,887 DEBUG: Start: Iteration 71 +2016-08-24 11:37:35,904 DEBUG: View 0 : 0.672955974843 +2016-08-24 11:37:35,912 DEBUG: View 1 : 0.446540880503 +2016-08-24 11:37:35,999 DEBUG: View 2 : 0.440251572327 +2016-08-24 11:37:36,009 DEBUG: View 3 : 0.59748427673 +2016-08-24 11:37:36,239 DEBUG: Best view : Methyl_ +2016-08-24 11:37:40,827 DEBUG: Start: Iteration 72 +2016-08-24 11:37:40,844 DEBUG: View 0 : 0.446540880503 +2016-08-24 11:37:40,852 DEBUG: View 1 : 0.389937106918 +2016-08-24 11:37:40,935 DEBUG: View 2 : 0.59748427673 +2016-08-24 11:37:40,943 DEBUG: View 3 : 0.559748427673 +2016-08-24 11:37:41,157 DEBUG: Best view : RANSeq_ +2016-08-24 11:37:45,977 DEBUG: Start: Iteration 73 +2016-08-24 11:37:45,997 DEBUG: View 0 : 0.591194968553 +2016-08-24 11:37:46,007 DEBUG: View 1 : 0.610062893082 +2016-08-24 11:37:46,116 DEBUG: View 2 : 0.528301886792 +2016-08-24 11:37:46,124 DEBUG: View 3 : 0.62893081761 +2016-08-24 11:37:46,338 DEBUG: Best view : Clinic_ +2016-08-24 11:37:50,835 DEBUG: Start: Iteration 74 +2016-08-24 11:37:50,851 DEBUG: View 0 : 0.496855345912 +2016-08-24 11:37:50,859 DEBUG: View 1 : 0.40251572327 +2016-08-24 11:37:50,946 DEBUG: View 2 : 0.635220125786 +2016-08-24 11:37:50,955 DEBUG: View 3 : 0.559748427673 +2016-08-24 11:37:51,163 DEBUG: Best view : RANSeq_ +2016-08-24 11:37:55,833 DEBUG: Start: Iteration 75 +2016-08-24 11:37:55,851 DEBUG: View 0 : 0.603773584906 +2016-08-24 11:37:55,859 DEBUG: View 1 : 0.396226415094 +2016-08-24 11:37:55,965 DEBUG: View 2 : 0.553459119497 +2016-08-24 11:37:55,973 DEBUG: View 3 : 0.465408805031 +2016-08-24 11:37:56,187 DEBUG: Best view : Methyl_ +2016-08-24 11:38:01,052 DEBUG: Start: Iteration 76 +2016-08-24 11:38:01,068 DEBUG: View 0 : 0.547169811321 +2016-08-24 11:38:01,076 DEBUG: View 1 : 0.685534591195 +2016-08-24 11:38:01,174 DEBUG: View 2 : 0.490566037736 +2016-08-24 11:38:01,183 DEBUG: View 3 : 0.540880503145 +2016-08-24 11:38:01,400 DEBUG: Best view : MiRNA__ +2016-08-24 11:38:06,415 DEBUG: Start: Iteration 77 +2016-08-24 11:38:06,435 DEBUG: View 0 : 0.566037735849 +2016-08-24 11:38:06,449 DEBUG: View 1 : 0.522012578616 +2016-08-24 11:38:06,570 DEBUG: View 2 : 0.566037735849 +2016-08-24 11:38:06,579 DEBUG: View 3 : 0.584905660377 +2016-08-24 11:38:06,827 DEBUG: Best view : Clinic_ +2016-08-24 11:38:11,928 DEBUG: Start: Iteration 78 +2016-08-24 11:38:11,945 DEBUG: View 0 : 0.471698113208 +2016-08-24 11:38:11,953 DEBUG: View 1 : 0.584905660377 +2016-08-24 11:38:12,052 DEBUG: View 2 : 0.572327044025 +2016-08-24 11:38:12,062 DEBUG: View 3 : 0.622641509434 +2016-08-24 11:38:12,282 DEBUG: Best view : Clinic_ +2016-08-24 11:38:17,220 DEBUG: Start: Iteration 79 +2016-08-24 11:38:17,236 DEBUG: View 0 : 0.62893081761 +2016-08-24 11:38:17,244 DEBUG: View 1 : 0.622641509434 +2016-08-24 11:38:17,344 DEBUG: View 2 : 0.622641509434 +2016-08-24 11:38:17,354 DEBUG: View 3 : 0.540880503145 +2016-08-24 11:38:17,573 DEBUG: Best view : RANSeq_ +2016-08-24 11:38:22,546 DEBUG: Start: Iteration 80 +2016-08-24 11:38:22,564 DEBUG: View 0 : 0.446540880503 +2016-08-24 11:38:22,573 DEBUG: View 1 : 0.622641509434 +2016-08-24 11:38:22,677 DEBUG: View 2 : 0.622641509434 +2016-08-24 11:38:22,686 DEBUG: View 3 : 0.496855345912 +2016-08-24 11:38:22,924 DEBUG: Best view : RANSeq_ +2016-08-24 11:38:28,195 DEBUG: Start: Iteration 81 +2016-08-24 11:38:28,212 DEBUG: View 0 : 0.578616352201 +2016-08-24 11:38:28,220 DEBUG: View 1 : 0.641509433962 +2016-08-24 11:38:28,320 DEBUG: View 2 : 0.610062893082 +2016-08-24 11:38:28,329 DEBUG: View 3 : 0.547169811321 +2016-08-24 11:38:28,557 DEBUG: Best view : MiRNA__ +2016-08-24 11:38:33,641 DEBUG: Start: Iteration 82 +2016-08-24 11:38:33,657 DEBUG: View 0 : 0.572327044025 +2016-08-24 11:38:33,665 DEBUG: View 1 : 0.477987421384 +2016-08-24 11:38:33,762 DEBUG: View 2 : 0.635220125786 +2016-08-24 11:38:33,771 DEBUG: View 3 : 0.59748427673 +2016-08-24 11:38:33,993 DEBUG: Best view : RANSeq_ +2016-08-24 11:38:39,134 DEBUG: Start: Iteration 83 +2016-08-24 11:38:39,151 DEBUG: View 0 : 0.496855345912 +2016-08-24 11:38:39,159 DEBUG: View 1 : 0.62893081761 +2016-08-24 11:38:39,253 DEBUG: View 2 : 0.559748427673 +2016-08-24 11:38:39,263 DEBUG: View 3 : 0.559748427673 +2016-08-24 11:38:39,500 DEBUG: Best view : MiRNA__ +2016-08-24 11:38:44,911 DEBUG: Start: Iteration 84 +2016-08-24 11:38:44,928 DEBUG: View 0 : 0.641509433962 +2016-08-24 11:38:44,936 DEBUG: View 1 : 0.540880503145 +2016-08-24 11:38:45,031 DEBUG: View 2 : 0.459119496855 +2016-08-24 11:38:45,040 DEBUG: View 3 : 0.635220125786 +2016-08-24 11:38:45,267 DEBUG: Best view : Clinic_ +2016-08-24 11:38:50,470 DEBUG: Start: Iteration 85 +2016-08-24 11:38:50,486 DEBUG: View 0 : 0.534591194969 +2016-08-24 11:38:50,494 DEBUG: View 1 : 0.566037735849 +2016-08-24 11:38:50,590 DEBUG: View 2 : 0.578616352201 +2016-08-24 11:38:50,599 DEBUG: View 3 : 0.522012578616 +2016-08-24 11:38:50,827 DEBUG: Best view : RANSeq_ +2016-08-24 11:38:56,099 DEBUG: Start: Iteration 86 +2016-08-24 11:38:56,116 DEBUG: View 0 : 0.51572327044 +2016-08-24 11:38:56,123 DEBUG: View 1 : 0.767295597484 +2016-08-24 11:38:56,220 DEBUG: View 2 : 0.591194968553 +2016-08-24 11:38:56,229 DEBUG: View 3 : 0.679245283019 +2016-08-24 11:38:56,464 DEBUG: Best view : MiRNA__ +2016-08-24 11:39:01,924 DEBUG: Start: Iteration 87 +2016-08-24 11:39:01,940 DEBUG: View 0 : 0.433962264151 +2016-08-24 11:39:01,948 DEBUG: View 1 : 0.389937106918 +2016-08-24 11:39:02,048 DEBUG: View 2 : 0.509433962264 +2016-08-24 11:39:02,057 DEBUG: View 3 : 0.635220125786 +2016-08-24 11:39:02,293 DEBUG: Best view : Clinic_ +2016-08-24 11:39:07,876 DEBUG: Start: Iteration 88 +2016-08-24 11:39:07,892 DEBUG: View 0 : 0.59748427673 +2016-08-24 11:39:07,900 DEBUG: View 1 : 0.622641509434 +2016-08-24 11:39:07,997 DEBUG: View 2 : 0.62893081761 +2016-08-24 11:39:08,006 DEBUG: View 3 : 0.547169811321 +2016-08-24 11:39:08,247 DEBUG: Best view : RANSeq_ +2016-08-24 11:39:13,795 DEBUG: Start: Iteration 89 +2016-08-24 11:39:13,812 DEBUG: View 0 : 0.389937106918 +2016-08-24 11:39:13,820 DEBUG: View 1 : 0.433962264151 +2016-08-24 11:39:13,916 DEBUG: View 2 : 0.477987421384 +2016-08-24 11:39:13,925 DEBUG: View 3 : 0.509433962264 +2016-08-24 11:39:14,169 DEBUG: Best view : Clinic_ +2016-08-24 11:39:19,785 DEBUG: Start: Iteration 90 +2016-08-24 11:39:19,801 DEBUG: View 0 : 0.654088050314 +2016-08-24 11:39:19,809 DEBUG: View 1 : 0.654088050314 +2016-08-24 11:39:19,908 DEBUG: View 2 : 0.540880503145 +2016-08-24 11:39:19,918 DEBUG: View 3 : 0.654088050314 +2016-08-24 11:39:20,158 DEBUG: Best view : Clinic_ +2016-08-24 11:39:25,716 DEBUG: Start: Iteration 91 +2016-08-24 11:39:25,732 DEBUG: View 0 : 0.635220125786 +2016-08-24 11:39:25,740 DEBUG: View 1 : 0.547169811321 +2016-08-24 11:39:25,840 DEBUG: View 2 : 0.578616352201 +2016-08-24 11:39:25,849 DEBUG: View 3 : 0.635220125786 +2016-08-24 11:39:26,091 DEBUG: Best view : Clinic_ +2016-08-24 11:39:31,685 DEBUG: Start: Iteration 92 +2016-08-24 11:39:31,702 DEBUG: View 0 : 0.654088050314 +2016-08-24 11:39:31,709 DEBUG: View 1 : 0.685534591195 +2016-08-24 11:39:31,807 DEBUG: View 2 : 0.572327044025 +2016-08-24 11:39:31,816 DEBUG: View 3 : 0.578616352201 +2016-08-24 11:39:32,060 DEBUG: Best view : MiRNA__ +2016-08-24 11:39:37,729 DEBUG: Start: Iteration 93 +2016-08-24 11:39:37,745 DEBUG: View 0 : 0.396226415094 +2016-08-24 11:39:37,753 DEBUG: View 1 : 0.62893081761 +2016-08-24 11:39:37,851 DEBUG: View 2 : 0.51572327044 +2016-08-24 11:39:37,861 DEBUG: View 3 : 0.635220125786 +2016-08-24 11:39:38,110 DEBUG: Best view : Clinic_ +2016-08-24 11:39:44,011 DEBUG: Start: Iteration 94 +2016-08-24 11:39:44,028 DEBUG: View 0 : 0.383647798742 +2016-08-24 11:39:44,036 DEBUG: View 1 : 0.591194968553 +2016-08-24 11:39:44,137 DEBUG: View 2 : 0.591194968553 +2016-08-24 11:39:44,146 DEBUG: View 3 : 0.660377358491 +2016-08-24 11:39:44,399 DEBUG: Best view : Clinic_ +2016-08-24 11:39:50,390 DEBUG: Start: Iteration 95 +2016-08-24 11:39:50,407 DEBUG: View 0 : 0.679245283019 +2016-08-24 11:39:50,415 DEBUG: View 1 : 0.345911949686 +2016-08-24 11:39:50,516 DEBUG: View 2 : 0.572327044025 +2016-08-24 11:39:50,525 DEBUG: View 3 : 0.660377358491 +2016-08-24 11:39:50,781 DEBUG: Best view : Clinic_ +2016-08-24 11:39:56,658 DEBUG: Start: Iteration 96 +2016-08-24 11:39:56,675 DEBUG: View 0 : 0.616352201258 +2016-08-24 11:39:56,682 DEBUG: View 1 : 0.660377358491 +2016-08-24 11:39:56,778 DEBUG: View 2 : 0.490566037736 +2016-08-24 11:39:56,787 DEBUG: View 3 : 0.59748427673 +2016-08-24 11:39:57,047 DEBUG: Best view : MiRNA__ +2016-08-24 11:40:03,092 DEBUG: Start: Iteration 97 +2016-08-24 11:40:03,109 DEBUG: View 0 : 0.471698113208 +2016-08-24 11:40:03,117 DEBUG: View 1 : 0.433962264151 +2016-08-24 11:40:03,211 DEBUG: View 2 : 0.622641509434 +2016-08-24 11:40:03,220 DEBUG: View 3 : 0.578616352201 +2016-08-24 11:40:03,477 DEBUG: Best view : RANSeq_ +2016-08-24 11:40:09,639 DEBUG: Start: Iteration 98 +2016-08-24 11:40:09,655 DEBUG: View 0 : 0.352201257862 +2016-08-24 11:40:09,663 DEBUG: View 1 : 0.584905660377 +2016-08-24 11:40:09,757 DEBUG: View 2 : 0.559748427673 +2016-08-24 11:40:09,766 DEBUG: View 3 : 0.62893081761 +2016-08-24 11:40:10,022 DEBUG: Best view : Clinic_ +2016-08-24 11:40:16,036 DEBUG: Start: Iteration 99 +2016-08-24 11:40:16,052 DEBUG: View 0 : 0.553459119497 +2016-08-24 11:40:16,060 DEBUG: View 1 : 0.591194968553 +2016-08-24 11:40:16,156 DEBUG: View 2 : 0.553459119497 +2016-08-24 11:40:16,165 DEBUG: View 3 : 0.547169811321 +2016-08-24 11:40:16,423 DEBUG: Best view : MiRNA__ +2016-08-24 11:40:22,675 DEBUG: Start: Iteration 100 +2016-08-24 11:40:22,691 DEBUG: View 0 : 0.389937106918 +2016-08-24 11:40:22,698 DEBUG: View 1 : 0.433962264151 +2016-08-24 11:40:22,792 DEBUG: View 2 : 0.540880503145 +2016-08-24 11:40:22,801 DEBUG: View 3 : 0.572327044025 +2016-08-24 11:40:23,061 DEBUG: Best view : Clinic_ +2016-08-24 11:40:29,412 DEBUG: Start: Iteration 101 +2016-08-24 11:40:29,429 DEBUG: View 0 : 0.572327044025 +2016-08-24 11:40:29,437 DEBUG: View 1 : 0.578616352201 +2016-08-24 11:40:29,545 DEBUG: View 2 : 0.584905660377 +2016-08-24 11:40:29,554 DEBUG: View 3 : 0.584905660377 +2016-08-24 11:40:29,834 DEBUG: Best view : Clinic_ +2016-08-24 11:40:36,757 DEBUG: Start: Iteration 102 +2016-08-24 11:40:36,777 DEBUG: View 0 : 0.452830188679 +2016-08-24 11:40:36,787 DEBUG: View 1 : 0.345911949686 +2016-08-24 11:40:36,892 DEBUG: View 2 : 0.547169811321 +2016-08-24 11:40:36,903 DEBUG: View 3 : 0.553459119497 +2016-08-24 11:40:37,339 DEBUG: Best view : Clinic_ +2016-08-24 11:40:43,690 INFO: Start: Classification +2016-08-24 11:40:58,693 INFO: Done: Fold number 2 +2016-08-24 11:40:58,693 INFO: Done: Classification +2016-08-24 11:40:58,693 INFO: Info: Time for Classification: 756[s] +2016-08-24 11:40:58,694 INFO: Start: Result Analysis for Mumbo +2016-08-24 11:41:33,358 INFO: Result for Multiview classification with Mumbo + +Average accuracy : + -On Train : 78.9774802191 + -On Test : 77.868852459 + -On Validation : 85.9223300971 + +Dataset info : + -Database name : ModifiedMultiOmic + -Labels : No, Yes + -Views : Methyl, MiRNA, RNASEQ, Clinical + -2 folds + - Validation set length : 103 for learning rate : 0.7 + +Classification configuration : + -Algorithm used : Mumbo + -Iterations : 1000 + -Weak Classifiers : DecisionTree with depth 1, sub-sampled at 0.02 on Methyl + -DecisionTree with depth 1, sub-sampled at 0.02 on MiRNA + -DecisionTree with depth 1, sub-sampled at 0.1 on RNASEQ + -DecisionTree with depth 2, sub-sampled at 0.1 on Clinical + + Mean average accuracies and stats for each fold : + - Fold 0 + - On Methyl_ : + - Mean average Accuracy : 0.0527741935484 + - Percentage of time chosen : 0.906 + - On MiRNA__ : + - Mean average Accuracy : 0.0553741935484 + - Percentage of time chosen : 0.032 + - On RANSeq_ : + - Mean average Accuracy : 0.0591741935484 + - Percentage of time chosen : 0.03 + - On Clinic_ : + - Mean average Accuracy : 0.0589870967742 + - Percentage of time chosen : 0.032 + - Fold 1 + - On Methyl_ : + - Mean average Accuracy : 0.0536855345912 + - Percentage of time chosen : 0.904 + - On MiRNA__ : + - Mean average Accuracy : 0.0556855345912 + - Percentage of time chosen : 0.033 + - On RANSeq_ : + - Mean average Accuracy : 0.0580943396226 + - Percentage of time chosen : 0.022 + - On Clinic_ : + - Mean average Accuracy : 0.0596918238994 + - Percentage of time chosen : 0.041 + + For each iteration : + - Iteration 1 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 2 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 64.7798742138 + Accuracy on test : 65.5737704918 + Accuracy on validation : 75.7281553398 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 63.0350983972 + Accuracy on test : 69.262295082 + - Iteration 3 + Fold 1 + Accuracy on train : 63.2258064516 + Accuracy on test : 71.3114754098 + Accuracy on validation : 74.7572815534 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 64.7798742138 + Accuracy on test : 65.5737704918 + Accuracy on validation : 75.7281553398 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 64.0028403327 + Accuracy on test : 68.4426229508 + - Iteration 4 + Fold 1 + Accuracy on train : 63.2258064516 + Accuracy on test : 72.131147541 + Accuracy on validation : 74.7572815534 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 71.6981132075 + Accuracy on test : 72.131147541 + Accuracy on validation : 75.7281553398 + Selected View : Clinic_ + - Mean : + Accuracy on train : 67.4619598296 + Accuracy on test : 72.131147541 + - Iteration 5 + Fold 1 + Accuracy on train : 63.2258064516 + Accuracy on test : 70.4918032787 + Accuracy on validation : 72.8155339806 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 72.3270440252 + Accuracy on test : 66.393442623 + Accuracy on validation : 79.6116504854 + Selected View : Clinic_ + - Mean : + Accuracy on train : 67.7764252384 + Accuracy on test : 68.4426229508 + - Iteration 6 + Fold 1 + Accuracy on train : 62.5806451613 + Accuracy on test : 72.9508196721 + Accuracy on validation : 74.7572815534 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 78.6163522013 + Accuracy on test : 72.9508196721 + Accuracy on validation : 87.3786407767 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 70.5984986813 + Accuracy on test : 72.9508196721 + - Iteration 7 + Fold 1 + Accuracy on train : 64.5161290323 + Accuracy on test : 72.131147541 + Accuracy on validation : 75.7281553398 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 75.4716981132 + Accuracy on test : 68.8524590164 + Accuracy on validation : 86.4077669903 + Selected View : Clinic_ + - Mean : + Accuracy on train : 69.9939135727 + Accuracy on test : 70.4918032787 + - Iteration 8 + Fold 1 + Accuracy on train : 66.4516129032 + Accuracy on test : 75.4098360656 + Accuracy on validation : 77.6699029126 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 80.5031446541 + Accuracy on test : 73.7704918033 + Accuracy on validation : 81.5533980583 + Selected View : Clinic_ + - Mean : + Accuracy on train : 73.4773787787 + Accuracy on test : 74.5901639344 + - Iteration 9 + Fold 1 + Accuracy on train : 70.3225806452 + Accuracy on test : 75.4098360656 + Accuracy on validation : 82.5242718447 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 77.358490566 + Accuracy on test : 71.3114754098 + Accuracy on validation : 81.5533980583 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 73.8405356056 + Accuracy on test : 73.3606557377 + - Iteration 10 + Fold 1 + Accuracy on train : 70.9677419355 + Accuracy on test : 76.2295081967 + Accuracy on validation : 81.5533980583 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 79.2452830189 + Accuracy on test : 70.4918032787 + Accuracy on validation : 85.4368932039 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 75.1065124772 + Accuracy on test : 73.3606557377 + - Iteration 11 + Fold 1 + Accuracy on train : 76.1290322581 + Accuracy on test : 71.3114754098 + Accuracy on validation : 80.5825242718 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 78.6163522013 + Accuracy on test : 72.131147541 + Accuracy on validation : 82.5242718447 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 77.3726922297 + Accuracy on test : 71.7213114754 + - Iteration 12 + Fold 1 + Accuracy on train : 74.1935483871 + Accuracy on test : 72.9508196721 + Accuracy on validation : 78.640776699 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 77.358490566 + Accuracy on test : 74.5901639344 + Accuracy on validation : 85.4368932039 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 75.7760194766 + Accuracy on test : 73.7704918033 + - Iteration 13 + Fold 1 + Accuracy on train : 74.8387096774 + Accuracy on test : 81.1475409836 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 75.4716981132 + Accuracy on test : 74.5901639344 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 75.1552038953 + Accuracy on test : 77.868852459 + - Iteration 14 + Fold 1 + Accuracy on train : 81.2903225806 + Accuracy on test : 79.5081967213 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 79.2452830189 + Accuracy on test : 74.5901639344 + Accuracy on validation : 87.3786407767 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 80.2678027998 + Accuracy on test : 77.0491803279 + - Iteration 15 + Fold 1 + Accuracy on train : 79.3548387097 + Accuracy on test : 81.1475409836 + Accuracy on validation : 82.5242718447 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 82.3899371069 + Accuracy on test : 77.0491803279 + Accuracy on validation : 86.4077669903 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 80.8723879083 + Accuracy on test : 79.0983606557 + - Iteration 16 + Fold 1 + Accuracy on train : 79.3548387097 + Accuracy on test : 76.2295081967 + Accuracy on validation : 82.5242718447 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 85.534591195 + Accuracy on test : 78.6885245902 + Accuracy on validation : 86.4077669903 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 82.4447149523 + Accuracy on test : 77.4590163934 + - Iteration 17 + Fold 1 + Accuracy on train : 81.935483871 + Accuracy on test : 77.0491803279 + Accuracy on validation : 83.4951456311 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 79.8742138365 + Accuracy on test : 81.1475409836 + Accuracy on validation : 86.4077669903 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 80.9048488537 + Accuracy on test : 79.0983606557 + - Iteration 18 + Fold 1 + Accuracy on train : 82.5806451613 + Accuracy on test : 79.5081967213 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 81.1320754717 + Accuracy on test : 81.1475409836 + Accuracy on validation : 85.4368932039 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 81.8563603165 + Accuracy on test : 80.3278688525 + - Iteration 19 + Fold 1 + Accuracy on train : 81.935483871 + Accuracy on test : 77.868852459 + Accuracy on validation : 86.4077669903 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 77.358490566 + Accuracy on test : 79.5081967213 + Accuracy on validation : 81.5533980583 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 79.6469872185 + Accuracy on test : 78.6885245902 + - Iteration 20 + Fold 1 + Accuracy on train : 81.2903225806 + Accuracy on test : 77.868852459 + Accuracy on validation : 85.4368932039 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 76.7295597484 + Accuracy on test : 80.3278688525 + Accuracy on validation : 83.4951456311 + Selected View : Clinic_ + - Mean : + Accuracy on train : 79.0099411645 + Accuracy on test : 79.0983606557 + - Iteration 21 + Fold 1 + Accuracy on train : 80.0 + Accuracy on test : 77.868852459 + Accuracy on validation : 85.4368932039 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 78.6163522013 + Accuracy on test : 80.3278688525 + Accuracy on validation : 86.4077669903 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 79.3081761006 + Accuracy on test : 79.0983606557 + - Iteration 22 + Fold 1 + Accuracy on train : 81.2903225806 + Accuracy on test : 77.868852459 + Accuracy on validation : 84.4660194175 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 77.9874213836 + Accuracy on test : 78.6885245902 + Accuracy on validation : 83.4951456311 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 79.6388719821 + Accuracy on test : 78.2786885246 + - Iteration 23 + Fold 1 + Accuracy on train : 80.0 + Accuracy on test : 78.6885245902 + Accuracy on validation : 83.4951456311 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 77.9874213836 + Accuracy on test : 79.5081967213 + Accuracy on validation : 82.5242718447 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 78.9937106918 + Accuracy on test : 79.0983606557 + - Iteration 24 + Fold 1 + Accuracy on train : 79.3548387097 + Accuracy on test : 80.3278688525 + Accuracy on validation : 82.5242718447 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 74.8427672956 + Accuracy on test : 78.6885245902 + Accuracy on validation : 82.5242718447 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 77.0988030026 + Accuracy on test : 79.5081967213 + - Iteration 25 + Fold 1 + Accuracy on train : 83.8709677419 + Accuracy on test : 82.7868852459 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 76.1006289308 + Accuracy on test : 80.3278688525 + Accuracy on validation : 82.5242718447 + Selected View : Clinic_ + - Mean : + Accuracy on train : 79.9857983364 + Accuracy on test : 81.5573770492 + - Iteration 26 + Fold 1 + Accuracy on train : 82.5806451613 + Accuracy on test : 81.9672131148 + Accuracy on validation : 84.4660194175 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 76.7295597484 + Accuracy on test : 78.6885245902 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + - Mean : + Accuracy on train : 79.6551024549 + Accuracy on test : 80.3278688525 + - Iteration 27 + Fold 1 + Accuracy on train : 82.5806451613 + Accuracy on test : 81.1475409836 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 77.358490566 + Accuracy on test : 80.3278688525 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 79.9695678637 + Accuracy on test : 80.737704918 + - Iteration 28 + Fold 1 + Accuracy on train : 82.5806451613 + Accuracy on test : 81.9672131148 + Accuracy on validation : 85.4368932039 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 76.7295597484 + Accuracy on test : 77.868852459 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + - Mean : + Accuracy on train : 79.6551024549 + Accuracy on test : 79.9180327869 + - Iteration 29 + Fold 1 + Accuracy on train : 83.2258064516 + Accuracy on test : 81.9672131148 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 76.1006289308 + Accuracy on test : 79.5081967213 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 79.6632176912 + Accuracy on test : 80.737704918 + - Iteration 30 + Fold 1 + Accuracy on train : 83.8709677419 + Accuracy on test : 82.7868852459 + Accuracy on validation : 85.4368932039 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 74.213836478 + Accuracy on test : 77.868852459 + Accuracy on validation : 82.5242718447 + Selected View : Clinic_ + - Mean : + Accuracy on train : 79.04240211 + Accuracy on test : 80.3278688525 + - Iteration 31 + Fold 1 + Accuracy on train : 83.8709677419 + Accuracy on test : 81.9672131148 + Accuracy on validation : 86.4077669903 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 76.7295597484 + Accuracy on test : 79.5081967213 + Accuracy on validation : 83.4951456311 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 80.3002637452 + Accuracy on test : 80.737704918 + - Iteration 32 + Fold 1 + Accuracy on train : 83.8709677419 + Accuracy on test : 81.9672131148 + Accuracy on validation : 86.4077669903 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 76.1006289308 + Accuracy on test : 79.5081967213 + Accuracy on validation : 83.4951456311 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 79.9857983364 + Accuracy on test : 80.737704918 + - Iteration 33 + Fold 1 + Accuracy on train : 84.5161290323 + Accuracy on test : 83.606557377 + Accuracy on validation : 87.3786407767 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 75.4716981132 + Accuracy on test : 80.3278688525 + Accuracy on validation : 81.5533980583 + Selected View : Methyl_ + - Mean : + Accuracy on train : 79.9939135727 + Accuracy on test : 81.9672131148 + - Iteration 34 + Fold 1 + Accuracy on train : 84.5161290323 + Accuracy on test : 82.7868852459 + Accuracy on validation : 86.4077669903 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 76.1006289308 + Accuracy on test : 78.6885245902 + Accuracy on validation : 80.5825242718 + Selected View : Clinic_ + - Mean : + Accuracy on train : 80.3083789815 + Accuracy on test : 80.737704918 + - Iteration 35 + Fold 1 + Accuracy on train : 83.8709677419 + Accuracy on test : 84.4262295082 + Accuracy on validation : 86.4077669903 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 77.358490566 + Accuracy on test : 80.3278688525 + Accuracy on validation : 82.5242718447 + Selected View : Clinic_ + - Mean : + Accuracy on train : 80.614729154 + Accuracy on test : 82.3770491803 + - Iteration 36 + Fold 1 + Accuracy on train : 84.5161290323 + Accuracy on test : 84.4262295082 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 77.9874213836 + Accuracy on test : 79.5081967213 + Accuracy on validation : 83.4951456311 + Selected View : Clinic_ + - Mean : + Accuracy on train : 81.251775208 + Accuracy on test : 81.9672131148 + - Iteration 37 + Fold 1 + Accuracy on train : 83.2258064516 + Accuracy on test : 85.2459016393 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 77.9874213836 + Accuracy on test : 78.6885245902 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + - Mean : + Accuracy on train : 80.6066139176 + Accuracy on test : 81.9672131148 + - Iteration 38 + Fold 1 + Accuracy on train : 83.8709677419 + Accuracy on test : 85.2459016393 + Accuracy on validation : 87.3786407767 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 77.9874213836 + Accuracy on test : 81.1475409836 + Accuracy on validation : 83.4951456311 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 80.9291945628 + Accuracy on test : 83.1967213115 + - Iteration 39 + Fold 1 + Accuracy on train : 82.5806451613 + Accuracy on test : 84.4262295082 + Accuracy on validation : 86.4077669903 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 77.9874213836 + Accuracy on test : 78.6885245902 + Accuracy on validation : 85.4368932039 + Selected View : Clinic_ + - Mean : + Accuracy on train : 80.2840332725 + Accuracy on test : 81.5573770492 + - Iteration 40 + Fold 1 + Accuracy on train : 83.2258064516 + Accuracy on test : 84.4262295082 + Accuracy on validation : 86.4077669903 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 77.9874213836 + Accuracy on test : 78.6885245902 + Accuracy on validation : 83.4951456311 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 80.6066139176 + Accuracy on test : 81.5573770492 + - Iteration 41 + Fold 1 + Accuracy on train : 81.935483871 + Accuracy on test : 83.606557377 + Accuracy on validation : 85.4368932039 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 77.9874213836 + Accuracy on test : 77.868852459 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + - Mean : + Accuracy on train : 79.9614526273 + Accuracy on test : 80.737704918 + - Iteration 42 + Fold 1 + Accuracy on train : 79.3548387097 + Accuracy on test : 83.606557377 + Accuracy on validation : 83.4951456311 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 79.2452830189 + Accuracy on test : 77.0491803279 + Accuracy on validation : 86.4077669903 + Selected View : Clinic_ + - Mean : + Accuracy on train : 79.3000608643 + Accuracy on test : 80.3278688525 + - Iteration 43 + Fold 1 + Accuracy on train : 81.935483871 + Accuracy on test : 82.7868852459 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 78.6163522013 + Accuracy on test : 77.0491803279 + Accuracy on validation : 85.4368932039 + Selected View : Clinic_ + - Mean : + Accuracy on train : 80.2759180361 + Accuracy on test : 79.9180327869 + - Iteration 44 + Fold 1 + Accuracy on train : 79.3548387097 + Accuracy on test : 81.9672131148 + Accuracy on validation : 83.4951456311 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 79.8742138365 + Accuracy on test : 77.0491803279 + Accuracy on validation : 86.4077669903 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 79.6145262731 + Accuracy on test : 79.5081967213 + - Iteration 45 + Fold 1 + Accuracy on train : 81.935483871 + Accuracy on test : 81.9672131148 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 79.8742138365 + Accuracy on test : 77.0491803279 + Accuracy on validation : 86.4077669903 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 80.9048488537 + Accuracy on test : 79.5081967213 + - Iteration 46 + Fold 1 + Accuracy on train : 80.6451612903 + Accuracy on test : 82.7868852459 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 81.7610062893 + Accuracy on test : 78.6885245902 + Accuracy on validation : 87.3786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 81.2030837898 + Accuracy on test : 80.737704918 + - Iteration 47 + Fold 1 + Accuracy on train : 81.935483871 + Accuracy on test : 81.9672131148 + Accuracy on validation : 84.4660194175 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 81.7610062893 + Accuracy on test : 77.868852459 + Accuracy on validation : 87.3786407767 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 81.8482450801 + Accuracy on test : 79.9180327869 + - Iteration 48 + Fold 1 + Accuracy on train : 81.935483871 + Accuracy on test : 82.7868852459 + Accuracy on validation : 84.4660194175 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 80.5031446541 + Accuracy on test : 78.6885245902 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 81.2193142625 + Accuracy on test : 80.737704918 + - Iteration 49 + Fold 1 + Accuracy on train : 81.2903225806 + Accuracy on test : 81.1475409836 + Accuracy on validation : 83.4951456311 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 79.2452830189 + Accuracy on test : 76.2295081967 + Accuracy on validation : 85.4368932039 + Selected View : Methyl_ + - Mean : + Accuracy on train : 80.2678027998 + Accuracy on test : 78.6885245902 + - Iteration 50 + Fold 1 + Accuracy on train : 81.935483871 + Accuracy on test : 81.9672131148 + Accuracy on validation : 84.4660194175 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 79.2452830189 + Accuracy on test : 77.0491803279 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 80.5903834449 + Accuracy on test : 79.5081967213 + - Iteration 51 + Fold 1 + Accuracy on train : 81.2903225806 + Accuracy on test : 81.9672131148 + Accuracy on validation : 83.4951456311 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 79.8742138365 + Accuracy on test : 76.2295081967 + Accuracy on validation : 86.4077669903 + Selected View : Clinic_ + - Mean : + Accuracy on train : 80.5822682086 + Accuracy on test : 79.0983606557 + - Iteration 52 + Fold 1 + Accuracy on train : 80.0 + Accuracy on test : 82.7868852459 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 80.5031446541 + Accuracy on test : 77.0491803279 + Accuracy on validation : 87.3786407767 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 80.251572327 + Accuracy on test : 79.9180327869 + - Iteration 53 + Fold 1 + Accuracy on train : 80.6451612903 + Accuracy on test : 81.9672131148 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 81.1320754717 + Accuracy on test : 77.868852459 + Accuracy on validation : 88.3495145631 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 80.888618381 + Accuracy on test : 79.9180327869 + - Iteration 54 + Fold 1 + Accuracy on train : 80.6451612903 + Accuracy on test : 82.7868852459 + Accuracy on validation : 85.4368932039 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 79.8742138365 + Accuracy on test : 77.868852459 + Accuracy on validation : 87.3786407767 + Selected View : Clinic_ + - Mean : + Accuracy on train : 80.2596875634 + Accuracy on test : 80.3278688525 + - Iteration 55 + Fold 1 + Accuracy on train : 81.2903225806 + Accuracy on test : 82.7868852459 + Accuracy on validation : 86.4077669903 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 81.7610062893 + Accuracy on test : 77.868852459 + Accuracy on validation : 88.3495145631 + Selected View : Clinic_ + - Mean : + Accuracy on train : 81.525664435 + Accuracy on test : 80.3278688525 + - Iteration 56 + Fold 1 + Accuracy on train : 81.935483871 + Accuracy on test : 82.7868852459 + Accuracy on validation : 87.3786407767 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 79.8742138365 + Accuracy on test : 77.0491803279 + Accuracy on validation : 87.3786407767 + Selected View : Clinic_ + - Mean : + Accuracy on train : 80.9048488537 + Accuracy on test : 79.9180327869 + - Iteration 57 + Fold 1 + Accuracy on train : 81.935483871 + Accuracy on test : 81.9672131148 + Accuracy on validation : 86.4077669903 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 79.8742138365 + Accuracy on test : 76.2295081967 + Accuracy on validation : 87.3786407767 + Selected View : Clinic_ + - Mean : + Accuracy on train : 80.9048488537 + Accuracy on test : 79.0983606557 + - Iteration 58 + Fold 1 + Accuracy on train : 81.2903225806 + Accuracy on test : 82.7868852459 + Accuracy on validation : 85.4368932039 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 79.8742138365 + Accuracy on test : 77.868852459 + Accuracy on validation : 86.4077669903 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 80.5822682086 + Accuracy on test : 80.3278688525 + - Iteration 59 + Fold 1 + Accuracy on train : 80.6451612903 + Accuracy on test : 81.1475409836 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 79.2452830189 + Accuracy on test : 77.868852459 + Accuracy on validation : 86.4077669903 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 79.9452221546 + Accuracy on test : 79.5081967213 + - Iteration 60 + Fold 1 + Accuracy on train : 79.3548387097 + Accuracy on test : 81.1475409836 + Accuracy on validation : 83.4951456311 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 79.8742138365 + Accuracy on test : 78.6885245902 + Accuracy on validation : 87.3786407767 + Selected View : Clinic_ + - Mean : + Accuracy on train : 79.6145262731 + Accuracy on test : 79.9180327869 + - Iteration 61 + Fold 1 + Accuracy on train : 79.3548387097 + Accuracy on test : 81.1475409836 + Accuracy on validation : 83.4951456311 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 77.9874213836 + Accuracy on test : 76.2295081967 + Accuracy on validation : 86.4077669903 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 78.6711300467 + Accuracy on test : 78.6885245902 + - Iteration 62 + Fold 1 + Accuracy on train : 78.7096774194 + Accuracy on test : 81.1475409836 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 79.2452830189 + Accuracy on test : 77.868852459 + Accuracy on validation : 87.3786407767 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 78.9774802191 + Accuracy on test : 79.5081967213 + - Iteration 63 + Fold 1 + Accuracy on train : 77.4193548387 + Accuracy on test : 80.3278688525 + Accuracy on validation : 83.4951456311 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 79.2452830189 + Accuracy on test : 78.6885245902 + Accuracy on validation : 88.3495145631 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 78.3323189288 + Accuracy on test : 79.5081967213 + - Iteration 64 + Fold 1 + Accuracy on train : 78.7096774194 + Accuracy on test : 80.3278688525 + Accuracy on validation : 83.4951456311 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 78.6163522013 + Accuracy on test : 78.6885245902 + Accuracy on validation : 87.3786407767 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 78.6630148103 + Accuracy on test : 79.5081967213 + - Iteration 65 + Fold 1 + Accuracy on train : 77.4193548387 + Accuracy on test : 81.1475409836 + Accuracy on validation : 83.4951456311 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 79.8742138365 + Accuracy on test : 78.6885245902 + Accuracy on validation : 87.3786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 78.6467843376 + Accuracy on test : 79.9180327869 + - Iteration 66 + Fold 1 + Accuracy on train : 80.0 + Accuracy on test : 81.1475409836 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 79.8742138365 + Accuracy on test : 77.868852459 + Accuracy on validation : 88.3495145631 + Selected View : Clinic_ + - Mean : + Accuracy on train : 79.9371069182 + Accuracy on test : 79.5081967213 + - Iteration 67 + Fold 1 + Accuracy on train : 78.7096774194 + Accuracy on test : 80.3278688525 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 79.2452830189 + Accuracy on test : 77.0491803279 + Accuracy on validation : 87.3786407767 + Selected View : Clinic_ + - Mean : + Accuracy on train : 78.9774802191 + Accuracy on test : 78.6885245902 + - Iteration 68 + Fold 1 + Accuracy on train : 79.3548387097 + Accuracy on test : 81.1475409836 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 80.5031446541 + Accuracy on test : 77.868852459 + Accuracy on validation : 88.3495145631 + Selected View : Clinic_ + - Mean : + Accuracy on train : 79.9289916819 + Accuracy on test : 79.5081967213 + - Iteration 69 + Fold 1 + Accuracy on train : 80.6451612903 + Accuracy on test : 81.1475409836 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 81.1320754717 + Accuracy on test : 78.6885245902 + Accuracy on validation : 89.3203883495 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 80.888618381 + Accuracy on test : 79.9180327869 + - Iteration 70 + Fold 1 + Accuracy on train : 79.3548387097 + Accuracy on test : 81.1475409836 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 81.1320754717 + Accuracy on test : 77.868852459 + Accuracy on validation : 89.3203883495 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 80.2434570907 + Accuracy on test : 79.5081967213 + - Iteration 71 + Fold 1 + Accuracy on train : 80.0 + Accuracy on test : 81.1475409836 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 80.5031446541 + Accuracy on test : 77.868852459 + Accuracy on validation : 88.3495145631 + Selected View : Methyl_ + - Mean : + Accuracy on train : 80.251572327 + Accuracy on test : 79.5081967213 + - Iteration 72 + Fold 1 + Accuracy on train : 80.0 + Accuracy on test : 81.1475409836 + Accuracy on validation : 85.4368932039 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 79.8742138365 + Accuracy on test : 77.0491803279 + Accuracy on validation : 88.3495145631 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 79.9371069182 + Accuracy on test : 79.0983606557 + - Iteration 73 + Fold 1 + Accuracy on train : 78.7096774194 + Accuracy on test : 81.1475409836 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 80.5031446541 + Accuracy on test : 77.868852459 + Accuracy on validation : 88.3495145631 + Selected View : Clinic_ + - Mean : + Accuracy on train : 79.6064110367 + Accuracy on test : 79.5081967213 + - Iteration 74 + Fold 1 + Accuracy on train : 77.4193548387 + Accuracy on test : 81.1475409836 + Accuracy on validation : 83.4951456311 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 78.6163522013 + Accuracy on test : 77.0491803279 + Accuracy on validation : 88.3495145631 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 78.01785352 + Accuracy on test : 79.0983606557 + - Iteration 75 + Fold 1 + Accuracy on train : 80.0 + Accuracy on test : 81.1475409836 + Accuracy on validation : 86.4077669903 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 78.6163522013 + Accuracy on test : 77.0491803279 + Accuracy on validation : 87.3786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 79.3081761006 + Accuracy on test : 79.0983606557 + - Iteration 76 + Fold 1 + Accuracy on train : 76.7741935484 + Accuracy on test : 81.1475409836 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 79.8742138365 + Accuracy on test : 77.0491803279 + Accuracy on validation : 87.3786407767 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 78.3242036924 + Accuracy on test : 79.0983606557 + - Iteration 77 + Fold 1 + Accuracy on train : 76.7741935484 + Accuracy on test : 81.1475409836 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 79.2452830189 + Accuracy on test : 77.868852459 + Accuracy on validation : 87.3786407767 + Selected View : Clinic_ + - Mean : + Accuracy on train : 78.0097382836 + Accuracy on test : 79.5081967213 + - Iteration 78 + Fold 1 + Accuracy on train : 76.7741935484 + Accuracy on test : 81.1475409836 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 80.5031446541 + Accuracy on test : 77.868852459 + Accuracy on validation : 89.3203883495 + Selected View : Clinic_ + - Mean : + Accuracy on train : 78.6386691012 + Accuracy on test : 79.5081967213 + - Iteration 79 + Fold 1 + Accuracy on train : 76.1290322581 + Accuracy on test : 80.3278688525 + Accuracy on validation : 84.4660194175 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 79.2452830189 + Accuracy on test : 77.868852459 + Accuracy on validation : 88.3495145631 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 77.6871576385 + Accuracy on test : 79.0983606557 + - Iteration 80 + Fold 1 + Accuracy on train : 76.7741935484 + Accuracy on test : 80.3278688525 + Accuracy on validation : 84.4660194175 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 80.5031446541 + Accuracy on test : 77.0491803279 + Accuracy on validation : 88.3495145631 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 78.6386691012 + Accuracy on test : 78.6885245902 + - Iteration 81 + Fold 1 + Accuracy on train : 76.1290322581 + Accuracy on test : 80.3278688525 + Accuracy on validation : 83.4951456311 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 78.6163522013 + Accuracy on test : 77.0491803279 + Accuracy on validation : 87.3786407767 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 77.3726922297 + Accuracy on test : 78.6885245902 + - Iteration 82 + Fold 1 + Accuracy on train : 76.7741935484 + Accuracy on test : 80.3278688525 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 78.6163522013 + Accuracy on test : 77.0491803279 + Accuracy on validation : 87.3786407767 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 77.6952728748 + Accuracy on test : 78.6885245902 + - Iteration 83 + Fold 1 + Accuracy on train : 77.4193548387 + Accuracy on test : 81.1475409836 + Accuracy on validation : 85.4368932039 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 76.1006289308 + Accuracy on test : 77.0491803279 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 76.7599918848 + Accuracy on test : 79.0983606557 + - Iteration 84 + Fold 1 + Accuracy on train : 76.7741935484 + Accuracy on test : 81.1475409836 + Accuracy on validation : 85.4368932039 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 76.7295597484 + Accuracy on test : 76.2295081967 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + - Mean : + Accuracy on train : 76.7518766484 + Accuracy on test : 78.6885245902 + - Iteration 85 + Fold 1 + Accuracy on train : 74.8387096774 + Accuracy on test : 80.3278688525 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 77.358490566 + Accuracy on test : 77.0491803279 + Accuracy on validation : 84.4660194175 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 76.0986001217 + Accuracy on test : 78.6885245902 + - Iteration 86 + Fold 1 + Accuracy on train : 74.8387096774 + Accuracy on test : 79.5081967213 + Accuracy on validation : 83.4951456311 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 79.2452830189 + Accuracy on test : 77.0491803279 + Accuracy on validation : 88.3495145631 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 77.0419963481 + Accuracy on test : 78.2786885246 + - Iteration 87 + Fold 1 + Accuracy on train : 74.1935483871 + Accuracy on test : 79.5081967213 + Accuracy on validation : 83.4951456311 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 77.9874213836 + Accuracy on test : 77.0491803279 + Accuracy on validation : 85.4368932039 + Selected View : Clinic_ + - Mean : + Accuracy on train : 76.0904848854 + Accuracy on test : 78.2786885246 + - Iteration 88 + Fold 1 + Accuracy on train : 75.4838709677 + Accuracy on test : 80.3278688525 + Accuracy on validation : 83.4951456311 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 77.9874213836 + Accuracy on test : 77.0491803279 + Accuracy on validation : 85.4368932039 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 76.7356461757 + Accuracy on test : 78.6885245902 + - Iteration 89 + Fold 1 + Accuracy on train : 75.4838709677 + Accuracy on test : 79.5081967213 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 78.6163522013 + Accuracy on test : 77.0491803279 + Accuracy on validation : 86.4077669903 + Selected View : Clinic_ + - Mean : + Accuracy on train : 77.0501115845 + Accuracy on test : 78.2786885246 + - Iteration 90 + Fold 1 + Accuracy on train : 75.4838709677 + Accuracy on test : 79.5081967213 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 79.8742138365 + Accuracy on test : 77.0491803279 + Accuracy on validation : 87.3786407767 + Selected View : Clinic_ + - Mean : + Accuracy on train : 77.6790424021 + Accuracy on test : 78.2786885246 + - Iteration 91 + Fold 1 + Accuracy on train : 75.4838709677 + Accuracy on test : 79.5081967213 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 79.8742138365 + Accuracy on test : 77.0491803279 + Accuracy on validation : 87.3786407767 + Selected View : Clinic_ + - Mean : + Accuracy on train : 77.6790424021 + Accuracy on test : 78.2786885246 + - Iteration 92 + Fold 1 + Accuracy on train : 76.1290322581 + Accuracy on test : 80.3278688525 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 80.5031446541 + Accuracy on test : 77.0491803279 + Accuracy on validation : 88.3495145631 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 78.3160884561 + Accuracy on test : 78.6885245902 + - Iteration 93 + Fold 1 + Accuracy on train : 76.1290322581 + Accuracy on test : 80.3278688525 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 81.1320754717 + Accuracy on test : 77.0491803279 + Accuracy on validation : 89.3203883495 + Selected View : Clinic_ + - Mean : + Accuracy on train : 78.6305538649 + Accuracy on test : 78.6885245902 + - Iteration 94 + Fold 1 + Accuracy on train : 75.4838709677 + Accuracy on test : 80.3278688525 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 81.1320754717 + Accuracy on test : 77.0491803279 + Accuracy on validation : 89.3203883495 + Selected View : Clinic_ + - Mean : + Accuracy on train : 78.3079732197 + Accuracy on test : 78.6885245902 + - Iteration 95 + Fold 1 + Accuracy on train : 76.1290322581 + Accuracy on test : 80.3278688525 + Accuracy on validation : 85.4368932039 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 81.7610062893 + Accuracy on test : 77.0491803279 + Accuracy on validation : 90.2912621359 + Selected View : Clinic_ + - Mean : + Accuracy on train : 78.9450192737 + Accuracy on test : 78.6885245902 + - Iteration 96 + Fold 1 + Accuracy on train : 76.1290322581 + Accuracy on test : 80.3278688525 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 79.8742138365 + Accuracy on test : 77.0491803279 + Accuracy on validation : 88.3495145631 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 78.0016230473 + Accuracy on test : 78.6885245902 + - Iteration 97 + Fold 1 + Accuracy on train : 76.1290322581 + Accuracy on test : 79.5081967213 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 80.5031446541 + Accuracy on test : 77.0491803279 + Accuracy on validation : 88.3495145631 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 78.3160884561 + Accuracy on test : 78.2786885246 + - Iteration 98 + Fold 1 + Accuracy on train : 74.8387096774 + Accuracy on test : 79.5081967213 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 81.7610062893 + Accuracy on test : 77.0491803279 + Accuracy on validation : 88.3495145631 + Selected View : Clinic_ + - Mean : + Accuracy on train : 78.2998579834 + Accuracy on test : 78.2786885246 + - Iteration 99 + Fold 1 + Accuracy on train : 75.4838709677 + Accuracy on test : 79.5081967213 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 80.5031446541 + Accuracy on test : 77.0491803279 + Accuracy on validation : 88.3495145631 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 77.9935078109 + Accuracy on test : 78.2786885246 + - Iteration 100 + Fold 1 + Accuracy on train : 76.1290322581 + Accuracy on test : 78.6885245902 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 79.8742138365 + Accuracy on test : 77.0491803279 + Accuracy on validation : 87.3786407767 + Selected View : Clinic_ + - Mean : + Accuracy on train : 78.0016230473 + Accuracy on test : 77.868852459 + - Iteration 101 + Fold 1 + Accuracy on train : 77.4193548387 + Accuracy on test : 78.6885245902 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 79.8742138365 + Accuracy on test : 77.0491803279 + Accuracy on validation : 86.4077669903 + Selected View : Clinic_ + - Mean : + Accuracy on train : 78.6467843376 + Accuracy on test : 77.868852459 + - Iteration 102 + Fold 1 + Accuracy on train : 78.7096774194 + Accuracy on test : 78.6885245902 + Accuracy on validation : 84.4660194175 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 79.2452830189 + Accuracy on test : 77.0491803279 + Accuracy on validation : 87.3786407767 + Selected View : Clinic_ + - Mean : + Accuracy on train : 78.9774802191 + Accuracy on test : 77.868852459 + - Iteration 103 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 104 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 105 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 106 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 107 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 108 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 109 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 110 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 111 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 112 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 113 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 114 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 115 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 116 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 117 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 118 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 119 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 120 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 121 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 122 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 123 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 124 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 125 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 126 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 127 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 128 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 129 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 130 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 131 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 132 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 133 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 134 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 135 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 136 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 137 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 138 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 139 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 140 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 141 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 142 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 143 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 144 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 145 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 146 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 147 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 148 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 149 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 150 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 151 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 152 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 153 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 154 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 155 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 156 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 157 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 158 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 159 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 160 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 161 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 162 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 163 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 164 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 165 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 166 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 167 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 168 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 169 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 170 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 171 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 172 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 173 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 174 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 175 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 176 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 177 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 178 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 179 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 180 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 181 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 182 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 183 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 184 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 185 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 186 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 187 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 188 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 189 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 190 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 191 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 192 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 193 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 194 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 195 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 196 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 197 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 198 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 199 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 200 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 201 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 202 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 203 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 204 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 205 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 206 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 207 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 208 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 209 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 210 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 211 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 212 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 213 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 214 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 215 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 216 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 217 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 218 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 219 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 220 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 221 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 222 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 223 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 224 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 225 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 226 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 227 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 228 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 229 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 230 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 231 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 232 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 233 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 234 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 235 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 236 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 237 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 238 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 239 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 240 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 241 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 242 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 243 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 244 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 245 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 246 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 247 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 248 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 249 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 250 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 251 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 252 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 253 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 254 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 255 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 256 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 257 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 258 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 259 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 260 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 261 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 262 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 263 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 264 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 265 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 266 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 267 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 268 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 269 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 270 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 271 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 272 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 273 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 274 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 275 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 276 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 277 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 278 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 279 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 280 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 281 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 282 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 283 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 284 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 285 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 286 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 287 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 288 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 289 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 290 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 291 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 292 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 293 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 294 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 295 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 296 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 297 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 298 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 299 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 300 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 301 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 302 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 303 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 304 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 305 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 306 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 307 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 308 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 309 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 310 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 311 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 312 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 313 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 314 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 315 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 316 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 317 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 318 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 319 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 320 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 321 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 322 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 323 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 324 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 325 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 326 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 327 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 328 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 329 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 330 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 331 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 332 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 333 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 334 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 335 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 336 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 337 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 338 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 339 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 340 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 341 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 342 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 343 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 344 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 345 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 346 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 347 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 348 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 349 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 350 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 351 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 352 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 353 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 354 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 355 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 356 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 357 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 358 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 359 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 360 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 361 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 362 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 363 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 364 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 365 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 366 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 367 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 368 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 369 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 370 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 371 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 372 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 373 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 374 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 375 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 376 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 377 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 378 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 379 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 380 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 381 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 382 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 383 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 384 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 385 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 386 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 387 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 388 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 389 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 390 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 391 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 392 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 393 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 394 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 395 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 396 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 397 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 398 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 399 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 400 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 401 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 402 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 403 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 404 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 405 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 406 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 407 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 408 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 409 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 410 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 411 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 412 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 413 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 414 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 415 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 416 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 417 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 418 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 419 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 420 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 421 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 422 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 423 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 424 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 425 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 426 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 427 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 428 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 429 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 430 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 431 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 432 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 433 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 434 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 435 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 436 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 437 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 438 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 439 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 440 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 441 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 442 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 443 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 444 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 445 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 446 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 447 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 448 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 449 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 450 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 451 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 452 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 453 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 454 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 455 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 456 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 457 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 458 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 459 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 460 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 461 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 462 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 463 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 464 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 465 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 466 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 467 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 468 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 469 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 470 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 471 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 472 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 473 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 474 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 475 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 476 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 477 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 478 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 479 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 480 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 481 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 482 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 483 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 484 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 485 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 486 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 487 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 488 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 489 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 490 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 491 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 492 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 493 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 494 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 495 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 496 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 497 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 498 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 499 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 500 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 501 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 502 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 503 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 504 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 505 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 506 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 507 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 508 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 509 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 510 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 511 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 512 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 513 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 514 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 515 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 516 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 517 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 518 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 519 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 520 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 521 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 522 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 523 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 524 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 525 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 526 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 527 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 528 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 529 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 530 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 531 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 532 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 533 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 534 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 535 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 536 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 537 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 538 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 539 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 540 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 541 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 542 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 543 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 544 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 545 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 546 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 547 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 548 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 549 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 550 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 551 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 552 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 553 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 554 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 555 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 556 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 557 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 558 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 559 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 560 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 561 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 562 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 563 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 564 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 565 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 566 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 567 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 568 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 569 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 570 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 571 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 572 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 573 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 574 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 575 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 576 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 577 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 578 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 579 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 580 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 581 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 582 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 583 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 584 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 585 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 586 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 587 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 588 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 589 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 590 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 591 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 592 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 593 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 594 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 595 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 596 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 597 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 598 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 599 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 600 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 601 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 602 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 603 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 604 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 605 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 606 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 607 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 608 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 609 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 610 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 611 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 612 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 613 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 614 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 615 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 616 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 617 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 618 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 619 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 620 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 621 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 622 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 623 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 624 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 625 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 626 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 627 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 628 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 629 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 630 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 631 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 632 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 633 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 634 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 635 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 636 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 637 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 638 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 639 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 640 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 641 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 642 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 643 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 644 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 645 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 646 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 647 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 648 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 649 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 650 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 651 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 652 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 653 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 654 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 655 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 656 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 657 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 658 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 659 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 660 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 661 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 662 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 663 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 664 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 665 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 666 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 667 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 668 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 669 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 670 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 671 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 672 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 673 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 674 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 675 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 676 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 677 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 678 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 679 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 680 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 681 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 682 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 683 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 684 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 685 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 686 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 687 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 688 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 689 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 690 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 691 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 692 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 693 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 694 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 695 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 696 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 697 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 698 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 699 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 700 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 701 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 702 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 703 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 704 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 705 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 706 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 707 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 708 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 709 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 710 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 711 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 712 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 713 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 714 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 715 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 716 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 717 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 718 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 719 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 720 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 721 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 722 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 723 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 724 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 725 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 726 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 727 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 728 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 729 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 730 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 731 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 732 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 733 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 734 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 735 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 736 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 737 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 738 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 739 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 740 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 741 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 742 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 743 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 744 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 745 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 746 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 747 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 748 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 749 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 750 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 751 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 752 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 753 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 754 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 755 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 756 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 757 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 758 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 759 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 760 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 761 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 762 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 763 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 764 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 765 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 766 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 767 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 768 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 769 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 770 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 771 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 772 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 773 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 774 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 775 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 776 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 777 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 778 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 779 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 780 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 781 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 782 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 783 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 784 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 785 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 786 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 787 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 788 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 789 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 790 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 791 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 792 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 793 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 794 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 795 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 796 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 797 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 798 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 799 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 800 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 801 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 802 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 803 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 804 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 805 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 806 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 807 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 808 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 809 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 810 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 811 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 812 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 813 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 814 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 815 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 816 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 817 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 818 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 819 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 820 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 821 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 822 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 823 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 824 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 825 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 826 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 827 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 828 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 829 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 830 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 831 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 832 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 833 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 834 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 835 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 836 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 837 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 838 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 839 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 840 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 841 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 842 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 843 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 844 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 845 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 846 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 847 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 848 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 849 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 850 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 851 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 852 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 853 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 854 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 855 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 856 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 857 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 858 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 859 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 860 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 861 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 862 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 863 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 864 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 865 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 866 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 867 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 868 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 869 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 870 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 871 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 872 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 873 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 874 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 875 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 876 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 877 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 878 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 879 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 880 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 881 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 882 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 883 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 884 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 885 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 886 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 887 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 888 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 889 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 890 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 891 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 892 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 893 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 894 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 895 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 896 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 897 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 898 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 899 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 900 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 901 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 902 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 903 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 904 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 905 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 906 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 907 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 908 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 909 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 910 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 911 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 912 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 913 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 914 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 915 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 916 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 917 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 918 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 919 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 920 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 921 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 922 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 923 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 924 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 925 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 926 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 927 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 928 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 929 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 930 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 931 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 932 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 933 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 934 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 935 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 936 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 937 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 938 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 939 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 940 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 941 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 942 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 943 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 944 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 945 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 946 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 947 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 948 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 949 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 950 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 951 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 952 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 953 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 954 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 955 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 956 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 957 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 958 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 959 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 960 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 961 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 962 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 963 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 964 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 965 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 966 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 967 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 968 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 969 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 970 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 971 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 972 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 973 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 974 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 975 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 976 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 977 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 978 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 979 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 980 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 981 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 982 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 983 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 984 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 985 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 986 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 987 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 988 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 989 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 990 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 991 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 992 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 993 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 994 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 995 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 996 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 997 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 998 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 999 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 1000 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + +Computation time on 1 cores : + Database extraction time : 0:00:00 + Learn Prediction + Fold 1 0:06:03 0:00:15 + Fold 2 0:12:21 0:00:15 + Total 0:18:25 0:00:30 + So a total classification time of 0:12:36. + + +2016-08-24 11:41:34,356 INFO: Done: Result Analysis diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-114134Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-114134Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png new file mode 100644 index 0000000000000000000000000000000000000000..47196e88b46142dd89b1928f2b2d070ab765ff92 Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-114134Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png differ diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-114134Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-114134Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt new file mode 100644 index 0000000000000000000000000000000000000000..b8110dc4999a8522bda073b1c481fbc3a65c7b6f --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-114134Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt @@ -0,0 +1,14060 @@ + Result for Multiview classification with Mumbo + +Average accuracy : + -On Train : 78.9774802191 + -On Test : 77.868852459 + -On Validation : 85.9223300971 + +Dataset info : + -Database name : ModifiedMultiOmic + -Labels : No, Yes + -Views : Methyl, MiRNA, RNASEQ, Clinical + -2 folds + - Validation set length : 103 for learning rate : 0.7 + +Classification configuration : + -Algorithm used : Mumbo + -Iterations : 1000 + -Weak Classifiers : DecisionTree with depth 1, sub-sampled at 0.02 on Methyl + -DecisionTree with depth 1, sub-sampled at 0.02 on MiRNA + -DecisionTree with depth 1, sub-sampled at 0.1 on RNASEQ + -DecisionTree with depth 2, sub-sampled at 0.1 on Clinical + + Mean average accuracies and stats for each fold : + - Fold 0 + - On Methyl_ : + - Mean average Accuracy : 0.0527741935484 + - Percentage of time chosen : 0.906 + - On MiRNA__ : + - Mean average Accuracy : 0.0553741935484 + - Percentage of time chosen : 0.032 + - On RANSeq_ : + - Mean average Accuracy : 0.0591741935484 + - Percentage of time chosen : 0.03 + - On Clinic_ : + - Mean average Accuracy : 0.0589870967742 + - Percentage of time chosen : 0.032 + - Fold 1 + - On Methyl_ : + - Mean average Accuracy : 0.0536855345912 + - Percentage of time chosen : 0.904 + - On MiRNA__ : + - Mean average Accuracy : 0.0556855345912 + - Percentage of time chosen : 0.033 + - On RANSeq_ : + - Mean average Accuracy : 0.0580943396226 + - Percentage of time chosen : 0.022 + - On Clinic_ : + - Mean average Accuracy : 0.0596918238994 + - Percentage of time chosen : 0.041 + + For each iteration : + - Iteration 1 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 2 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 64.7798742138 + Accuracy on test : 65.5737704918 + Accuracy on validation : 75.7281553398 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 63.0350983972 + Accuracy on test : 69.262295082 + - Iteration 3 + Fold 1 + Accuracy on train : 63.2258064516 + Accuracy on test : 71.3114754098 + Accuracy on validation : 74.7572815534 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 64.7798742138 + Accuracy on test : 65.5737704918 + Accuracy on validation : 75.7281553398 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 64.0028403327 + Accuracy on test : 68.4426229508 + - Iteration 4 + Fold 1 + Accuracy on train : 63.2258064516 + Accuracy on test : 72.131147541 + Accuracy on validation : 74.7572815534 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 71.6981132075 + Accuracy on test : 72.131147541 + Accuracy on validation : 75.7281553398 + Selected View : Clinic_ + - Mean : + Accuracy on train : 67.4619598296 + Accuracy on test : 72.131147541 + - Iteration 5 + Fold 1 + Accuracy on train : 63.2258064516 + Accuracy on test : 70.4918032787 + Accuracy on validation : 72.8155339806 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 72.3270440252 + Accuracy on test : 66.393442623 + Accuracy on validation : 79.6116504854 + Selected View : Clinic_ + - Mean : + Accuracy on train : 67.7764252384 + Accuracy on test : 68.4426229508 + - Iteration 6 + Fold 1 + Accuracy on train : 62.5806451613 + Accuracy on test : 72.9508196721 + Accuracy on validation : 74.7572815534 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 78.6163522013 + Accuracy on test : 72.9508196721 + Accuracy on validation : 87.3786407767 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 70.5984986813 + Accuracy on test : 72.9508196721 + - Iteration 7 + Fold 1 + Accuracy on train : 64.5161290323 + Accuracy on test : 72.131147541 + Accuracy on validation : 75.7281553398 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 75.4716981132 + Accuracy on test : 68.8524590164 + Accuracy on validation : 86.4077669903 + Selected View : Clinic_ + - Mean : + Accuracy on train : 69.9939135727 + Accuracy on test : 70.4918032787 + - Iteration 8 + Fold 1 + Accuracy on train : 66.4516129032 + Accuracy on test : 75.4098360656 + Accuracy on validation : 77.6699029126 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 80.5031446541 + Accuracy on test : 73.7704918033 + Accuracy on validation : 81.5533980583 + Selected View : Clinic_ + - Mean : + Accuracy on train : 73.4773787787 + Accuracy on test : 74.5901639344 + - Iteration 9 + Fold 1 + Accuracy on train : 70.3225806452 + Accuracy on test : 75.4098360656 + Accuracy on validation : 82.5242718447 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 77.358490566 + Accuracy on test : 71.3114754098 + Accuracy on validation : 81.5533980583 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 73.8405356056 + Accuracy on test : 73.3606557377 + - Iteration 10 + Fold 1 + Accuracy on train : 70.9677419355 + Accuracy on test : 76.2295081967 + Accuracy on validation : 81.5533980583 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 79.2452830189 + Accuracy on test : 70.4918032787 + Accuracy on validation : 85.4368932039 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 75.1065124772 + Accuracy on test : 73.3606557377 + - Iteration 11 + Fold 1 + Accuracy on train : 76.1290322581 + Accuracy on test : 71.3114754098 + Accuracy on validation : 80.5825242718 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 78.6163522013 + Accuracy on test : 72.131147541 + Accuracy on validation : 82.5242718447 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 77.3726922297 + Accuracy on test : 71.7213114754 + - Iteration 12 + Fold 1 + Accuracy on train : 74.1935483871 + Accuracy on test : 72.9508196721 + Accuracy on validation : 78.640776699 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 77.358490566 + Accuracy on test : 74.5901639344 + Accuracy on validation : 85.4368932039 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 75.7760194766 + Accuracy on test : 73.7704918033 + - Iteration 13 + Fold 1 + Accuracy on train : 74.8387096774 + Accuracy on test : 81.1475409836 + Accuracy on validation : 80.5825242718 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 75.4716981132 + Accuracy on test : 74.5901639344 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 75.1552038953 + Accuracy on test : 77.868852459 + - Iteration 14 + Fold 1 + Accuracy on train : 81.2903225806 + Accuracy on test : 79.5081967213 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 79.2452830189 + Accuracy on test : 74.5901639344 + Accuracy on validation : 87.3786407767 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 80.2678027998 + Accuracy on test : 77.0491803279 + - Iteration 15 + Fold 1 + Accuracy on train : 79.3548387097 + Accuracy on test : 81.1475409836 + Accuracy on validation : 82.5242718447 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 82.3899371069 + Accuracy on test : 77.0491803279 + Accuracy on validation : 86.4077669903 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 80.8723879083 + Accuracy on test : 79.0983606557 + - Iteration 16 + Fold 1 + Accuracy on train : 79.3548387097 + Accuracy on test : 76.2295081967 + Accuracy on validation : 82.5242718447 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 85.534591195 + Accuracy on test : 78.6885245902 + Accuracy on validation : 86.4077669903 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 82.4447149523 + Accuracy on test : 77.4590163934 + - Iteration 17 + Fold 1 + Accuracy on train : 81.935483871 + Accuracy on test : 77.0491803279 + Accuracy on validation : 83.4951456311 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 79.8742138365 + Accuracy on test : 81.1475409836 + Accuracy on validation : 86.4077669903 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 80.9048488537 + Accuracy on test : 79.0983606557 + - Iteration 18 + Fold 1 + Accuracy on train : 82.5806451613 + Accuracy on test : 79.5081967213 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 81.1320754717 + Accuracy on test : 81.1475409836 + Accuracy on validation : 85.4368932039 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 81.8563603165 + Accuracy on test : 80.3278688525 + - Iteration 19 + Fold 1 + Accuracy on train : 81.935483871 + Accuracy on test : 77.868852459 + Accuracy on validation : 86.4077669903 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 77.358490566 + Accuracy on test : 79.5081967213 + Accuracy on validation : 81.5533980583 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 79.6469872185 + Accuracy on test : 78.6885245902 + - Iteration 20 + Fold 1 + Accuracy on train : 81.2903225806 + Accuracy on test : 77.868852459 + Accuracy on validation : 85.4368932039 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 76.7295597484 + Accuracy on test : 80.3278688525 + Accuracy on validation : 83.4951456311 + Selected View : Clinic_ + - Mean : + Accuracy on train : 79.0099411645 + Accuracy on test : 79.0983606557 + - Iteration 21 + Fold 1 + Accuracy on train : 80.0 + Accuracy on test : 77.868852459 + Accuracy on validation : 85.4368932039 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 78.6163522013 + Accuracy on test : 80.3278688525 + Accuracy on validation : 86.4077669903 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 79.3081761006 + Accuracy on test : 79.0983606557 + - Iteration 22 + Fold 1 + Accuracy on train : 81.2903225806 + Accuracy on test : 77.868852459 + Accuracy on validation : 84.4660194175 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 77.9874213836 + Accuracy on test : 78.6885245902 + Accuracy on validation : 83.4951456311 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 79.6388719821 + Accuracy on test : 78.2786885246 + - Iteration 23 + Fold 1 + Accuracy on train : 80.0 + Accuracy on test : 78.6885245902 + Accuracy on validation : 83.4951456311 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 77.9874213836 + Accuracy on test : 79.5081967213 + Accuracy on validation : 82.5242718447 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 78.9937106918 + Accuracy on test : 79.0983606557 + - Iteration 24 + Fold 1 + Accuracy on train : 79.3548387097 + Accuracy on test : 80.3278688525 + Accuracy on validation : 82.5242718447 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 74.8427672956 + Accuracy on test : 78.6885245902 + Accuracy on validation : 82.5242718447 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 77.0988030026 + Accuracy on test : 79.5081967213 + - Iteration 25 + Fold 1 + Accuracy on train : 83.8709677419 + Accuracy on test : 82.7868852459 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 76.1006289308 + Accuracy on test : 80.3278688525 + Accuracy on validation : 82.5242718447 + Selected View : Clinic_ + - Mean : + Accuracy on train : 79.9857983364 + Accuracy on test : 81.5573770492 + - Iteration 26 + Fold 1 + Accuracy on train : 82.5806451613 + Accuracy on test : 81.9672131148 + Accuracy on validation : 84.4660194175 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 76.7295597484 + Accuracy on test : 78.6885245902 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + - Mean : + Accuracy on train : 79.6551024549 + Accuracy on test : 80.3278688525 + - Iteration 27 + Fold 1 + Accuracy on train : 82.5806451613 + Accuracy on test : 81.1475409836 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 77.358490566 + Accuracy on test : 80.3278688525 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 79.9695678637 + Accuracy on test : 80.737704918 + - Iteration 28 + Fold 1 + Accuracy on train : 82.5806451613 + Accuracy on test : 81.9672131148 + Accuracy on validation : 85.4368932039 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 76.7295597484 + Accuracy on test : 77.868852459 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + - Mean : + Accuracy on train : 79.6551024549 + Accuracy on test : 79.9180327869 + - Iteration 29 + Fold 1 + Accuracy on train : 83.2258064516 + Accuracy on test : 81.9672131148 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 76.1006289308 + Accuracy on test : 79.5081967213 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 79.6632176912 + Accuracy on test : 80.737704918 + - Iteration 30 + Fold 1 + Accuracy on train : 83.8709677419 + Accuracy on test : 82.7868852459 + Accuracy on validation : 85.4368932039 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 74.213836478 + Accuracy on test : 77.868852459 + Accuracy on validation : 82.5242718447 + Selected View : Clinic_ + - Mean : + Accuracy on train : 79.04240211 + Accuracy on test : 80.3278688525 + - Iteration 31 + Fold 1 + Accuracy on train : 83.8709677419 + Accuracy on test : 81.9672131148 + Accuracy on validation : 86.4077669903 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 76.7295597484 + Accuracy on test : 79.5081967213 + Accuracy on validation : 83.4951456311 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 80.3002637452 + Accuracy on test : 80.737704918 + - Iteration 32 + Fold 1 + Accuracy on train : 83.8709677419 + Accuracy on test : 81.9672131148 + Accuracy on validation : 86.4077669903 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 76.1006289308 + Accuracy on test : 79.5081967213 + Accuracy on validation : 83.4951456311 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 79.9857983364 + Accuracy on test : 80.737704918 + - Iteration 33 + Fold 1 + Accuracy on train : 84.5161290323 + Accuracy on test : 83.606557377 + Accuracy on validation : 87.3786407767 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 75.4716981132 + Accuracy on test : 80.3278688525 + Accuracy on validation : 81.5533980583 + Selected View : Methyl_ + - Mean : + Accuracy on train : 79.9939135727 + Accuracy on test : 81.9672131148 + - Iteration 34 + Fold 1 + Accuracy on train : 84.5161290323 + Accuracy on test : 82.7868852459 + Accuracy on validation : 86.4077669903 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 76.1006289308 + Accuracy on test : 78.6885245902 + Accuracy on validation : 80.5825242718 + Selected View : Clinic_ + - Mean : + Accuracy on train : 80.3083789815 + Accuracy on test : 80.737704918 + - Iteration 35 + Fold 1 + Accuracy on train : 83.8709677419 + Accuracy on test : 84.4262295082 + Accuracy on validation : 86.4077669903 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 77.358490566 + Accuracy on test : 80.3278688525 + Accuracy on validation : 82.5242718447 + Selected View : Clinic_ + - Mean : + Accuracy on train : 80.614729154 + Accuracy on test : 82.3770491803 + - Iteration 36 + Fold 1 + Accuracy on train : 84.5161290323 + Accuracy on test : 84.4262295082 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 77.9874213836 + Accuracy on test : 79.5081967213 + Accuracy on validation : 83.4951456311 + Selected View : Clinic_ + - Mean : + Accuracy on train : 81.251775208 + Accuracy on test : 81.9672131148 + - Iteration 37 + Fold 1 + Accuracy on train : 83.2258064516 + Accuracy on test : 85.2459016393 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 77.9874213836 + Accuracy on test : 78.6885245902 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + - Mean : + Accuracy on train : 80.6066139176 + Accuracy on test : 81.9672131148 + - Iteration 38 + Fold 1 + Accuracy on train : 83.8709677419 + Accuracy on test : 85.2459016393 + Accuracy on validation : 87.3786407767 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 77.9874213836 + Accuracy on test : 81.1475409836 + Accuracy on validation : 83.4951456311 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 80.9291945628 + Accuracy on test : 83.1967213115 + - Iteration 39 + Fold 1 + Accuracy on train : 82.5806451613 + Accuracy on test : 84.4262295082 + Accuracy on validation : 86.4077669903 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 77.9874213836 + Accuracy on test : 78.6885245902 + Accuracy on validation : 85.4368932039 + Selected View : Clinic_ + - Mean : + Accuracy on train : 80.2840332725 + Accuracy on test : 81.5573770492 + - Iteration 40 + Fold 1 + Accuracy on train : 83.2258064516 + Accuracy on test : 84.4262295082 + Accuracy on validation : 86.4077669903 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 77.9874213836 + Accuracy on test : 78.6885245902 + Accuracy on validation : 83.4951456311 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 80.6066139176 + Accuracy on test : 81.5573770492 + - Iteration 41 + Fold 1 + Accuracy on train : 81.935483871 + Accuracy on test : 83.606557377 + Accuracy on validation : 85.4368932039 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 77.9874213836 + Accuracy on test : 77.868852459 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + - Mean : + Accuracy on train : 79.9614526273 + Accuracy on test : 80.737704918 + - Iteration 42 + Fold 1 + Accuracy on train : 79.3548387097 + Accuracy on test : 83.606557377 + Accuracy on validation : 83.4951456311 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 79.2452830189 + Accuracy on test : 77.0491803279 + Accuracy on validation : 86.4077669903 + Selected View : Clinic_ + - Mean : + Accuracy on train : 79.3000608643 + Accuracy on test : 80.3278688525 + - Iteration 43 + Fold 1 + Accuracy on train : 81.935483871 + Accuracy on test : 82.7868852459 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 78.6163522013 + Accuracy on test : 77.0491803279 + Accuracy on validation : 85.4368932039 + Selected View : Clinic_ + - Mean : + Accuracy on train : 80.2759180361 + Accuracy on test : 79.9180327869 + - Iteration 44 + Fold 1 + Accuracy on train : 79.3548387097 + Accuracy on test : 81.9672131148 + Accuracy on validation : 83.4951456311 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 79.8742138365 + Accuracy on test : 77.0491803279 + Accuracy on validation : 86.4077669903 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 79.6145262731 + Accuracy on test : 79.5081967213 + - Iteration 45 + Fold 1 + Accuracy on train : 81.935483871 + Accuracy on test : 81.9672131148 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 79.8742138365 + Accuracy on test : 77.0491803279 + Accuracy on validation : 86.4077669903 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 80.9048488537 + Accuracy on test : 79.5081967213 + - Iteration 46 + Fold 1 + Accuracy on train : 80.6451612903 + Accuracy on test : 82.7868852459 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 81.7610062893 + Accuracy on test : 78.6885245902 + Accuracy on validation : 87.3786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 81.2030837898 + Accuracy on test : 80.737704918 + - Iteration 47 + Fold 1 + Accuracy on train : 81.935483871 + Accuracy on test : 81.9672131148 + Accuracy on validation : 84.4660194175 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 81.7610062893 + Accuracy on test : 77.868852459 + Accuracy on validation : 87.3786407767 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 81.8482450801 + Accuracy on test : 79.9180327869 + - Iteration 48 + Fold 1 + Accuracy on train : 81.935483871 + Accuracy on test : 82.7868852459 + Accuracy on validation : 84.4660194175 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 80.5031446541 + Accuracy on test : 78.6885245902 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 81.2193142625 + Accuracy on test : 80.737704918 + - Iteration 49 + Fold 1 + Accuracy on train : 81.2903225806 + Accuracy on test : 81.1475409836 + Accuracy on validation : 83.4951456311 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 79.2452830189 + Accuracy on test : 76.2295081967 + Accuracy on validation : 85.4368932039 + Selected View : Methyl_ + - Mean : + Accuracy on train : 80.2678027998 + Accuracy on test : 78.6885245902 + - Iteration 50 + Fold 1 + Accuracy on train : 81.935483871 + Accuracy on test : 81.9672131148 + Accuracy on validation : 84.4660194175 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 79.2452830189 + Accuracy on test : 77.0491803279 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 80.5903834449 + Accuracy on test : 79.5081967213 + - Iteration 51 + Fold 1 + Accuracy on train : 81.2903225806 + Accuracy on test : 81.9672131148 + Accuracy on validation : 83.4951456311 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 79.8742138365 + Accuracy on test : 76.2295081967 + Accuracy on validation : 86.4077669903 + Selected View : Clinic_ + - Mean : + Accuracy on train : 80.5822682086 + Accuracy on test : 79.0983606557 + - Iteration 52 + Fold 1 + Accuracy on train : 80.0 + Accuracy on test : 82.7868852459 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 80.5031446541 + Accuracy on test : 77.0491803279 + Accuracy on validation : 87.3786407767 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 80.251572327 + Accuracy on test : 79.9180327869 + - Iteration 53 + Fold 1 + Accuracy on train : 80.6451612903 + Accuracy on test : 81.9672131148 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 81.1320754717 + Accuracy on test : 77.868852459 + Accuracy on validation : 88.3495145631 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 80.888618381 + Accuracy on test : 79.9180327869 + - Iteration 54 + Fold 1 + Accuracy on train : 80.6451612903 + Accuracy on test : 82.7868852459 + Accuracy on validation : 85.4368932039 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 79.8742138365 + Accuracy on test : 77.868852459 + Accuracy on validation : 87.3786407767 + Selected View : Clinic_ + - Mean : + Accuracy on train : 80.2596875634 + Accuracy on test : 80.3278688525 + - Iteration 55 + Fold 1 + Accuracy on train : 81.2903225806 + Accuracy on test : 82.7868852459 + Accuracy on validation : 86.4077669903 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 81.7610062893 + Accuracy on test : 77.868852459 + Accuracy on validation : 88.3495145631 + Selected View : Clinic_ + - Mean : + Accuracy on train : 81.525664435 + Accuracy on test : 80.3278688525 + - Iteration 56 + Fold 1 + Accuracy on train : 81.935483871 + Accuracy on test : 82.7868852459 + Accuracy on validation : 87.3786407767 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 79.8742138365 + Accuracy on test : 77.0491803279 + Accuracy on validation : 87.3786407767 + Selected View : Clinic_ + - Mean : + Accuracy on train : 80.9048488537 + Accuracy on test : 79.9180327869 + - Iteration 57 + Fold 1 + Accuracy on train : 81.935483871 + Accuracy on test : 81.9672131148 + Accuracy on validation : 86.4077669903 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 79.8742138365 + Accuracy on test : 76.2295081967 + Accuracy on validation : 87.3786407767 + Selected View : Clinic_ + - Mean : + Accuracy on train : 80.9048488537 + Accuracy on test : 79.0983606557 + - Iteration 58 + Fold 1 + Accuracy on train : 81.2903225806 + Accuracy on test : 82.7868852459 + Accuracy on validation : 85.4368932039 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 79.8742138365 + Accuracy on test : 77.868852459 + Accuracy on validation : 86.4077669903 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 80.5822682086 + Accuracy on test : 80.3278688525 + - Iteration 59 + Fold 1 + Accuracy on train : 80.6451612903 + Accuracy on test : 81.1475409836 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 79.2452830189 + Accuracy on test : 77.868852459 + Accuracy on validation : 86.4077669903 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 79.9452221546 + Accuracy on test : 79.5081967213 + - Iteration 60 + Fold 1 + Accuracy on train : 79.3548387097 + Accuracy on test : 81.1475409836 + Accuracy on validation : 83.4951456311 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 79.8742138365 + Accuracy on test : 78.6885245902 + Accuracy on validation : 87.3786407767 + Selected View : Clinic_ + - Mean : + Accuracy on train : 79.6145262731 + Accuracy on test : 79.9180327869 + - Iteration 61 + Fold 1 + Accuracy on train : 79.3548387097 + Accuracy on test : 81.1475409836 + Accuracy on validation : 83.4951456311 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 77.9874213836 + Accuracy on test : 76.2295081967 + Accuracy on validation : 86.4077669903 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 78.6711300467 + Accuracy on test : 78.6885245902 + - Iteration 62 + Fold 1 + Accuracy on train : 78.7096774194 + Accuracy on test : 81.1475409836 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 79.2452830189 + Accuracy on test : 77.868852459 + Accuracy on validation : 87.3786407767 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 78.9774802191 + Accuracy on test : 79.5081967213 + - Iteration 63 + Fold 1 + Accuracy on train : 77.4193548387 + Accuracy on test : 80.3278688525 + Accuracy on validation : 83.4951456311 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 79.2452830189 + Accuracy on test : 78.6885245902 + Accuracy on validation : 88.3495145631 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 78.3323189288 + Accuracy on test : 79.5081967213 + - Iteration 64 + Fold 1 + Accuracy on train : 78.7096774194 + Accuracy on test : 80.3278688525 + Accuracy on validation : 83.4951456311 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 78.6163522013 + Accuracy on test : 78.6885245902 + Accuracy on validation : 87.3786407767 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 78.6630148103 + Accuracy on test : 79.5081967213 + - Iteration 65 + Fold 1 + Accuracy on train : 77.4193548387 + Accuracy on test : 81.1475409836 + Accuracy on validation : 83.4951456311 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 79.8742138365 + Accuracy on test : 78.6885245902 + Accuracy on validation : 87.3786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 78.6467843376 + Accuracy on test : 79.9180327869 + - Iteration 66 + Fold 1 + Accuracy on train : 80.0 + Accuracy on test : 81.1475409836 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 79.8742138365 + Accuracy on test : 77.868852459 + Accuracy on validation : 88.3495145631 + Selected View : Clinic_ + - Mean : + Accuracy on train : 79.9371069182 + Accuracy on test : 79.5081967213 + - Iteration 67 + Fold 1 + Accuracy on train : 78.7096774194 + Accuracy on test : 80.3278688525 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 79.2452830189 + Accuracy on test : 77.0491803279 + Accuracy on validation : 87.3786407767 + Selected View : Clinic_ + - Mean : + Accuracy on train : 78.9774802191 + Accuracy on test : 78.6885245902 + - Iteration 68 + Fold 1 + Accuracy on train : 79.3548387097 + Accuracy on test : 81.1475409836 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 80.5031446541 + Accuracy on test : 77.868852459 + Accuracy on validation : 88.3495145631 + Selected View : Clinic_ + - Mean : + Accuracy on train : 79.9289916819 + Accuracy on test : 79.5081967213 + - Iteration 69 + Fold 1 + Accuracy on train : 80.6451612903 + Accuracy on test : 81.1475409836 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 81.1320754717 + Accuracy on test : 78.6885245902 + Accuracy on validation : 89.3203883495 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 80.888618381 + Accuracy on test : 79.9180327869 + - Iteration 70 + Fold 1 + Accuracy on train : 79.3548387097 + Accuracy on test : 81.1475409836 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 81.1320754717 + Accuracy on test : 77.868852459 + Accuracy on validation : 89.3203883495 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 80.2434570907 + Accuracy on test : 79.5081967213 + - Iteration 71 + Fold 1 + Accuracy on train : 80.0 + Accuracy on test : 81.1475409836 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 80.5031446541 + Accuracy on test : 77.868852459 + Accuracy on validation : 88.3495145631 + Selected View : Methyl_ + - Mean : + Accuracy on train : 80.251572327 + Accuracy on test : 79.5081967213 + - Iteration 72 + Fold 1 + Accuracy on train : 80.0 + Accuracy on test : 81.1475409836 + Accuracy on validation : 85.4368932039 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 79.8742138365 + Accuracy on test : 77.0491803279 + Accuracy on validation : 88.3495145631 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 79.9371069182 + Accuracy on test : 79.0983606557 + - Iteration 73 + Fold 1 + Accuracy on train : 78.7096774194 + Accuracy on test : 81.1475409836 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 80.5031446541 + Accuracy on test : 77.868852459 + Accuracy on validation : 88.3495145631 + Selected View : Clinic_ + - Mean : + Accuracy on train : 79.6064110367 + Accuracy on test : 79.5081967213 + - Iteration 74 + Fold 1 + Accuracy on train : 77.4193548387 + Accuracy on test : 81.1475409836 + Accuracy on validation : 83.4951456311 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 78.6163522013 + Accuracy on test : 77.0491803279 + Accuracy on validation : 88.3495145631 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 78.01785352 + Accuracy on test : 79.0983606557 + - Iteration 75 + Fold 1 + Accuracy on train : 80.0 + Accuracy on test : 81.1475409836 + Accuracy on validation : 86.4077669903 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 78.6163522013 + Accuracy on test : 77.0491803279 + Accuracy on validation : 87.3786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 79.3081761006 + Accuracy on test : 79.0983606557 + - Iteration 76 + Fold 1 + Accuracy on train : 76.7741935484 + Accuracy on test : 81.1475409836 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 79.8742138365 + Accuracy on test : 77.0491803279 + Accuracy on validation : 87.3786407767 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 78.3242036924 + Accuracy on test : 79.0983606557 + - Iteration 77 + Fold 1 + Accuracy on train : 76.7741935484 + Accuracy on test : 81.1475409836 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 79.2452830189 + Accuracy on test : 77.868852459 + Accuracy on validation : 87.3786407767 + Selected View : Clinic_ + - Mean : + Accuracy on train : 78.0097382836 + Accuracy on test : 79.5081967213 + - Iteration 78 + Fold 1 + Accuracy on train : 76.7741935484 + Accuracy on test : 81.1475409836 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 80.5031446541 + Accuracy on test : 77.868852459 + Accuracy on validation : 89.3203883495 + Selected View : Clinic_ + - Mean : + Accuracy on train : 78.6386691012 + Accuracy on test : 79.5081967213 + - Iteration 79 + Fold 1 + Accuracy on train : 76.1290322581 + Accuracy on test : 80.3278688525 + Accuracy on validation : 84.4660194175 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 79.2452830189 + Accuracy on test : 77.868852459 + Accuracy on validation : 88.3495145631 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 77.6871576385 + Accuracy on test : 79.0983606557 + - Iteration 80 + Fold 1 + Accuracy on train : 76.7741935484 + Accuracy on test : 80.3278688525 + Accuracy on validation : 84.4660194175 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 80.5031446541 + Accuracy on test : 77.0491803279 + Accuracy on validation : 88.3495145631 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 78.6386691012 + Accuracy on test : 78.6885245902 + - Iteration 81 + Fold 1 + Accuracy on train : 76.1290322581 + Accuracy on test : 80.3278688525 + Accuracy on validation : 83.4951456311 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 78.6163522013 + Accuracy on test : 77.0491803279 + Accuracy on validation : 87.3786407767 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 77.3726922297 + Accuracy on test : 78.6885245902 + - Iteration 82 + Fold 1 + Accuracy on train : 76.7741935484 + Accuracy on test : 80.3278688525 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 78.6163522013 + Accuracy on test : 77.0491803279 + Accuracy on validation : 87.3786407767 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 77.6952728748 + Accuracy on test : 78.6885245902 + - Iteration 83 + Fold 1 + Accuracy on train : 77.4193548387 + Accuracy on test : 81.1475409836 + Accuracy on validation : 85.4368932039 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 76.1006289308 + Accuracy on test : 77.0491803279 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 76.7599918848 + Accuracy on test : 79.0983606557 + - Iteration 84 + Fold 1 + Accuracy on train : 76.7741935484 + Accuracy on test : 81.1475409836 + Accuracy on validation : 85.4368932039 + Selected View : RANSeq_ + Fold 2 + Accuracy on train : 76.7295597484 + Accuracy on test : 76.2295081967 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + - Mean : + Accuracy on train : 76.7518766484 + Accuracy on test : 78.6885245902 + - Iteration 85 + Fold 1 + Accuracy on train : 74.8387096774 + Accuracy on test : 80.3278688525 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 77.358490566 + Accuracy on test : 77.0491803279 + Accuracy on validation : 84.4660194175 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 76.0986001217 + Accuracy on test : 78.6885245902 + - Iteration 86 + Fold 1 + Accuracy on train : 74.8387096774 + Accuracy on test : 79.5081967213 + Accuracy on validation : 83.4951456311 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 79.2452830189 + Accuracy on test : 77.0491803279 + Accuracy on validation : 88.3495145631 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 77.0419963481 + Accuracy on test : 78.2786885246 + - Iteration 87 + Fold 1 + Accuracy on train : 74.1935483871 + Accuracy on test : 79.5081967213 + Accuracy on validation : 83.4951456311 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 77.9874213836 + Accuracy on test : 77.0491803279 + Accuracy on validation : 85.4368932039 + Selected View : Clinic_ + - Mean : + Accuracy on train : 76.0904848854 + Accuracy on test : 78.2786885246 + - Iteration 88 + Fold 1 + Accuracy on train : 75.4838709677 + Accuracy on test : 80.3278688525 + Accuracy on validation : 83.4951456311 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 77.9874213836 + Accuracy on test : 77.0491803279 + Accuracy on validation : 85.4368932039 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 76.7356461757 + Accuracy on test : 78.6885245902 + - Iteration 89 + Fold 1 + Accuracy on train : 75.4838709677 + Accuracy on test : 79.5081967213 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 78.6163522013 + Accuracy on test : 77.0491803279 + Accuracy on validation : 86.4077669903 + Selected View : Clinic_ + - Mean : + Accuracy on train : 77.0501115845 + Accuracy on test : 78.2786885246 + - Iteration 90 + Fold 1 + Accuracy on train : 75.4838709677 + Accuracy on test : 79.5081967213 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 79.8742138365 + Accuracy on test : 77.0491803279 + Accuracy on validation : 87.3786407767 + Selected View : Clinic_ + - Mean : + Accuracy on train : 77.6790424021 + Accuracy on test : 78.2786885246 + - Iteration 91 + Fold 1 + Accuracy on train : 75.4838709677 + Accuracy on test : 79.5081967213 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 79.8742138365 + Accuracy on test : 77.0491803279 + Accuracy on validation : 87.3786407767 + Selected View : Clinic_ + - Mean : + Accuracy on train : 77.6790424021 + Accuracy on test : 78.2786885246 + - Iteration 92 + Fold 1 + Accuracy on train : 76.1290322581 + Accuracy on test : 80.3278688525 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 80.5031446541 + Accuracy on test : 77.0491803279 + Accuracy on validation : 88.3495145631 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 78.3160884561 + Accuracy on test : 78.6885245902 + - Iteration 93 + Fold 1 + Accuracy on train : 76.1290322581 + Accuracy on test : 80.3278688525 + Accuracy on validation : 85.4368932039 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 81.1320754717 + Accuracy on test : 77.0491803279 + Accuracy on validation : 89.3203883495 + Selected View : Clinic_ + - Mean : + Accuracy on train : 78.6305538649 + Accuracy on test : 78.6885245902 + - Iteration 94 + Fold 1 + Accuracy on train : 75.4838709677 + Accuracy on test : 80.3278688525 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 81.1320754717 + Accuracy on test : 77.0491803279 + Accuracy on validation : 89.3203883495 + Selected View : Clinic_ + - Mean : + Accuracy on train : 78.3079732197 + Accuracy on test : 78.6885245902 + - Iteration 95 + Fold 1 + Accuracy on train : 76.1290322581 + Accuracy on test : 80.3278688525 + Accuracy on validation : 85.4368932039 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 81.7610062893 + Accuracy on test : 77.0491803279 + Accuracy on validation : 90.2912621359 + Selected View : Clinic_ + - Mean : + Accuracy on train : 78.9450192737 + Accuracy on test : 78.6885245902 + - Iteration 96 + Fold 1 + Accuracy on train : 76.1290322581 + Accuracy on test : 80.3278688525 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 79.8742138365 + Accuracy on test : 77.0491803279 + Accuracy on validation : 88.3495145631 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 78.0016230473 + Accuracy on test : 78.6885245902 + - Iteration 97 + Fold 1 + Accuracy on train : 76.1290322581 + Accuracy on test : 79.5081967213 + Accuracy on validation : 84.4660194175 + Selected View : MiRNA__ + Fold 2 + Accuracy on train : 80.5031446541 + Accuracy on test : 77.0491803279 + Accuracy on validation : 88.3495145631 + Selected View : RANSeq_ + - Mean : + Accuracy on train : 78.3160884561 + Accuracy on test : 78.2786885246 + - Iteration 98 + Fold 1 + Accuracy on train : 74.8387096774 + Accuracy on test : 79.5081967213 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 81.7610062893 + Accuracy on test : 77.0491803279 + Accuracy on validation : 88.3495145631 + Selected View : Clinic_ + - Mean : + Accuracy on train : 78.2998579834 + Accuracy on test : 78.2786885246 + - Iteration 99 + Fold 1 + Accuracy on train : 75.4838709677 + Accuracy on test : 79.5081967213 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 80.5031446541 + Accuracy on test : 77.0491803279 + Accuracy on validation : 88.3495145631 + Selected View : MiRNA__ + - Mean : + Accuracy on train : 77.9935078109 + Accuracy on test : 78.2786885246 + - Iteration 100 + Fold 1 + Accuracy on train : 76.1290322581 + Accuracy on test : 78.6885245902 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 79.8742138365 + Accuracy on test : 77.0491803279 + Accuracy on validation : 87.3786407767 + Selected View : Clinic_ + - Mean : + Accuracy on train : 78.0016230473 + Accuracy on test : 77.868852459 + - Iteration 101 + Fold 1 + Accuracy on train : 77.4193548387 + Accuracy on test : 78.6885245902 + Accuracy on validation : 84.4660194175 + Selected View : Clinic_ + Fold 2 + Accuracy on train : 79.8742138365 + Accuracy on test : 77.0491803279 + Accuracy on validation : 86.4077669903 + Selected View : Clinic_ + - Mean : + Accuracy on train : 78.6467843376 + Accuracy on test : 77.868852459 + - Iteration 102 + Fold 1 + Accuracy on train : 78.7096774194 + Accuracy on test : 78.6885245902 + Accuracy on validation : 84.4660194175 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 79.2452830189 + Accuracy on test : 77.0491803279 + Accuracy on validation : 87.3786407767 + Selected View : Clinic_ + - Mean : + Accuracy on train : 78.9774802191 + Accuracy on test : 77.868852459 + - Iteration 103 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 104 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 105 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 106 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 107 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 108 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 109 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 110 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 111 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 112 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 113 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 114 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 115 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 116 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 117 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 118 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 119 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 120 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 121 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 122 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 123 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 124 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 125 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 126 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 127 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 128 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 129 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 130 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 131 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 132 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 133 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 134 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 135 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 136 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 137 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 138 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 139 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 140 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 141 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 142 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 143 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 144 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 145 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 146 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 147 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 148 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 149 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 150 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 151 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 152 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 153 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 154 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 155 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 156 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 157 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 158 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 159 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 160 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 161 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 162 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 163 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 164 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 165 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 166 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 167 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 168 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 169 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 170 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 171 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 172 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 173 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 174 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 175 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 176 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 177 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 178 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 179 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 180 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 181 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 182 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 183 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 184 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 185 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 186 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 187 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 188 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 189 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 190 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 191 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 192 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 193 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 194 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 195 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 196 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 197 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 198 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 199 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 200 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 201 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 202 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 203 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 204 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 205 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 206 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 207 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 208 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 209 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 210 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 211 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 212 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 213 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 214 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 215 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 216 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 217 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 218 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 219 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 220 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 221 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 222 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 223 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 224 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 225 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 226 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 227 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 228 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 229 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 230 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 231 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 232 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 233 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 234 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 235 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 236 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 237 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 238 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 239 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 240 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 241 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 242 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 243 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 244 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 245 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 246 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 247 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 248 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 249 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 250 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 251 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 252 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 253 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 254 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 255 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 256 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 257 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 258 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 259 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 260 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 261 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 262 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 263 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 264 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 265 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 266 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 267 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 268 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 269 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 270 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 271 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 272 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 273 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 274 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 275 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 276 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 277 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 278 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 279 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 280 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 281 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 282 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 283 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 284 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 285 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 286 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 287 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 288 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 289 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 290 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 291 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 292 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 293 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 294 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 295 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 296 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 297 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 298 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 299 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 300 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 301 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 302 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 303 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 304 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 305 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 306 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 307 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 308 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 309 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 310 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 311 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 312 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 313 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 314 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 315 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 316 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 317 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 318 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 319 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 320 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 321 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 322 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 323 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 324 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 325 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 326 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 327 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 328 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 329 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 330 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 331 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 332 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 333 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 334 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 335 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 336 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 337 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 338 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 339 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 340 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 341 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 342 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 343 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 344 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 345 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 346 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 347 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 348 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 349 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 350 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 351 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 352 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 353 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 354 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 355 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 356 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 357 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 358 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 359 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 360 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 361 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 362 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 363 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 364 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 365 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 366 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 367 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 368 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 369 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 370 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 371 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 372 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 373 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 374 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 375 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 376 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 377 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 378 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 379 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 380 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 381 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 382 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 383 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 384 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 385 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 386 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 387 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 388 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 389 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 390 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 391 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 392 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 393 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 394 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 395 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 396 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 397 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 398 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 399 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 400 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 401 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 402 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 403 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 404 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 405 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 406 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 407 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 408 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 409 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 410 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 411 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 412 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 413 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 414 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 415 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 416 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 417 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 418 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 419 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 420 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 421 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 422 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 423 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 424 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 425 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 426 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 427 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 428 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 429 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 430 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 431 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 432 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 433 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 434 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 435 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 436 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 437 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 438 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 439 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 440 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 441 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 442 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 443 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 444 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 445 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 446 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 447 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 448 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 449 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 450 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 451 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 452 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 453 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 454 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 455 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 456 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 457 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 458 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 459 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 460 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 461 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 462 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 463 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 464 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 465 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 466 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 467 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 468 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 469 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 470 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 471 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 472 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 473 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 474 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 475 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 476 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 477 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 478 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 479 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 480 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 481 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 482 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 483 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 484 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 485 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 486 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 487 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 488 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 489 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 490 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 491 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 492 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 493 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 494 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 495 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 496 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 497 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 498 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 499 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 500 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 501 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 502 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 503 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 504 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 505 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 506 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 507 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 508 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 509 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 510 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 511 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 512 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 513 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 514 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 515 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 516 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 517 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 518 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 519 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 520 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 521 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 522 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 523 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 524 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 525 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 526 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 527 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 528 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 529 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 530 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 531 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 532 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 533 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 534 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 535 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 536 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 537 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 538 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 539 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 540 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 541 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 542 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 543 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 544 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 545 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 546 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 547 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 548 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 549 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 550 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 551 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 552 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 553 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 554 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 555 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 556 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 557 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 558 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 559 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 560 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 561 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 562 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 563 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 564 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 565 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 566 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 567 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 568 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 569 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 570 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 571 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 572 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 573 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 574 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 575 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 576 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 577 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 578 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 579 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 580 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 581 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 582 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 583 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 584 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 585 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 586 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 587 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 588 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 589 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 590 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 591 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 592 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 593 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 594 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 595 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 596 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 597 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 598 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 599 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 600 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 601 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 602 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 603 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 604 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 605 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 606 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 607 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 608 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 609 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 610 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 611 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 612 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 613 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 614 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 615 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 616 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 617 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 618 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 619 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 620 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 621 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 622 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 623 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 624 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 625 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 626 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 627 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 628 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 629 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 630 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 631 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 632 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 633 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 634 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 635 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 636 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 637 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 638 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 639 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 640 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 641 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 642 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 643 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 644 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 645 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 646 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 647 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 648 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 649 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 650 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 651 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 652 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 653 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 654 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 655 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 656 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 657 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 658 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 659 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 660 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 661 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 662 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 663 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 664 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 665 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 666 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 667 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 668 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 669 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 670 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 671 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 672 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 673 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 674 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 675 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 676 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 677 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 678 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 679 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 680 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 681 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 682 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 683 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 684 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 685 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 686 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 687 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 688 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 689 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 690 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 691 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 692 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 693 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 694 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 695 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 696 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 697 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 698 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 699 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 700 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 701 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 702 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 703 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 704 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 705 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 706 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 707 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 708 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 709 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 710 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 711 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 712 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 713 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 714 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 715 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 716 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 717 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 718 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 719 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 720 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 721 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 722 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 723 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 724 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 725 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 726 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 727 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 728 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 729 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 730 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 731 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 732 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 733 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 734 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 735 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 736 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 737 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 738 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 739 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 740 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 741 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 742 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 743 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 744 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 745 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 746 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 747 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 748 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 749 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 750 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 751 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 752 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 753 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 754 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 755 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 756 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 757 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 758 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 759 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 760 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 761 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 762 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 763 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 764 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 765 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 766 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 767 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 768 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 769 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 770 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 771 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 772 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 773 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 774 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 775 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 776 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 777 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 778 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 779 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 780 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 781 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 782 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 783 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 784 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 785 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 786 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 787 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 788 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 789 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 790 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 791 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 792 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 793 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 794 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 795 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 796 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 797 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 798 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 799 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 800 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 801 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 802 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 803 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 804 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 805 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 806 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 807 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 808 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 809 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 810 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 811 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 812 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 813 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 814 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 815 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 816 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 817 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 818 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 819 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 820 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 821 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 822 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 823 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 824 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 825 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 826 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 827 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 828 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 829 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 830 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 831 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 832 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 833 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 834 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 835 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 836 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 837 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 838 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 839 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 840 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 841 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 842 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 843 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 844 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 845 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 846 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 847 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 848 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 849 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 850 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 851 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 852 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 853 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 854 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 855 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 856 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 857 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 858 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 859 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 860 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 861 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 862 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 863 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 864 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 865 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 866 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 867 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 868 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 869 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 870 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 871 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 872 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 873 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 874 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 875 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 876 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 877 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 878 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 879 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 880 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 881 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 882 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 883 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 884 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 885 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 886 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 887 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 888 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 889 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 890 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 891 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 892 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 893 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 894 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 895 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 896 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 897 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 898 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 899 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 900 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 901 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 902 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 903 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 904 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 905 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 906 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 907 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 908 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 909 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 910 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 911 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 912 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 913 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 914 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 915 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 916 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 917 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 918 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 919 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 920 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 921 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 922 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 923 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 924 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 925 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 926 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 927 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 928 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 929 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 930 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 931 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 932 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 933 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 934 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 935 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 936 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 937 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 938 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 939 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 940 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 941 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 942 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 943 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 944 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 945 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 946 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 947 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 948 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 949 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 950 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 951 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 952 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 953 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 954 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 955 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 956 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 957 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 958 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 959 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 960 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 961 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 962 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 963 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 964 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 965 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 966 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 967 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 968 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 969 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 970 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 971 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 972 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 973 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 974 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 975 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 976 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 977 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 978 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 979 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 980 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 981 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 982 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 983 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 984 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 985 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 986 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 987 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 988 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 989 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 990 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 991 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 992 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 993 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 994 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 995 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 996 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 997 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 998 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 999 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + - Iteration 1000 + Fold 1 + Accuracy on train : 61.2903225806 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + Fold 2 + Accuracy on train : 62.2641509434 + Accuracy on test : 72.9508196721 + Accuracy on validation : 73.786407767 + Selected View : Methyl_ + - Mean : + Accuracy on train : 61.777236762 + Accuracy on test : 72.9508196721 + +Computation time on 1 cores : + Database extraction time : 0:00:00 + Learn Prediction + Fold 1 0:06:03 0:00:15 + Fold 2 0:12:21 0:00:15 + Total 0:18:25 0:00:30 + So a total classification time of 0:12:36. + diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-115022-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-115022-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..e8da32671bbba0aa021a3faeea30a177249702f9 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-115022-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log @@ -0,0 +1,655 @@ +2016-08-24 11:50:22,490 INFO: Start: Read HDF5 Database Files for ModifiedMultiOmic +2016-08-24 11:50:22,491 INFO: Info: Labels used: No, Yes +2016-08-24 11:50:22,491 INFO: Info: Length of dataset:347 +2016-08-24 11:50:22,493 INFO: ### Main Programm for Multiview Classification +2016-08-24 11:50:22,493 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1 +2016-08-24 11:50:22,493 INFO: Info: Shape of Methyl_ :(347, 25978) +2016-08-24 11:50:22,494 INFO: Info: Shape of MiRNA__ :(347, 1046) +2016-08-24 11:50:22,494 INFO: Info: Shape of RANSeq_ :(347, 73599) +2016-08-24 11:50:22,494 INFO: Info: Shape of Clinic_ :(347, 127) +2016-08-24 11:50:22,495 INFO: Done: Read Database Files +2016-08-24 11:50:22,495 INFO: Start: Determine validation split for ratio 0.7 +2016-08-24 11:50:22,498 INFO: Done: Determine validation split +2016-08-24 11:50:22,498 INFO: Start: Determine 2 folds +2016-08-24 11:50:22,508 INFO: Info: Length of Learning Sets: 122 +2016-08-24 11:50:22,508 INFO: Info: Length of Testing Sets: 122 +2016-08-24 11:50:22,508 INFO: Info: Length of Validation Set: 103 +2016-08-24 11:50:22,509 INFO: Done: Determine folds +2016-08-24 11:50:22,509 INFO: Start: Learning with Mumbo and 2 folds +2016-08-24 11:50:22,509 INFO: Start: Fold number 1 +2016-08-24 11:50:24,147 DEBUG: Start: Iteration 1 +2016-08-24 11:50:24,169 DEBUG: View 0 : 0.496855345912 +2016-08-24 11:50:24,180 DEBUG: View 1 : 0.622641509434 +2016-08-24 11:50:24,222 DEBUG: View 2 : 0.622641509434 +2016-08-24 11:50:24,230 DEBUG: View 3 : 0.471698113208 +2016-08-24 11:50:24,276 DEBUG: Best view : MiRNA__ +2016-08-24 11:50:24,364 DEBUG: Start: Iteration 2 +2016-08-24 11:50:24,382 DEBUG: View 0 : 0.477987421384 +2016-08-24 11:50:24,390 DEBUG: View 1 : 0.591194968553 +2016-08-24 11:50:24,491 DEBUG: View 2 : 0.610062893082 +2016-08-24 11:50:24,499 DEBUG: View 3 : 0.547169811321 +2016-08-24 11:50:24,557 DEBUG: Best view : RANSeq_ +2016-08-24 11:50:24,711 DEBUG: Start: Iteration 3 +2016-08-24 11:50:24,728 DEBUG: View 0 : 0.345911949686 +2016-08-24 11:50:24,737 DEBUG: View 1 : 0.48427672956 +2016-08-24 11:50:24,825 DEBUG: View 2 : 0.540880503145 +2016-08-24 11:50:24,833 DEBUG: View 3 : 0.660377358491 +2016-08-24 11:50:24,890 DEBUG: Best view : Clinic_ +2016-08-24 11:50:25,106 DEBUG: Start: Iteration 4 +2016-08-24 11:50:25,124 DEBUG: View 0 : 0.427672955975 +2016-08-24 11:50:25,132 DEBUG: View 1 : 0.496855345912 +2016-08-24 11:50:25,223 DEBUG: View 2 : 0.698113207547 +2016-08-24 11:50:25,231 DEBUG: View 3 : 0.566037735849 +2016-08-24 11:50:25,293 DEBUG: Best view : RANSeq_ +2016-08-24 11:50:25,589 DEBUG: Start: Iteration 5 +2016-08-24 11:50:25,610 DEBUG: View 0 : 0.503144654088 +2016-08-24 11:50:25,626 DEBUG: View 1 : 0.603773584906 +2016-08-24 11:50:25,714 DEBUG: View 2 : 0.522012578616 +2016-08-24 11:50:25,722 DEBUG: View 3 : 0.647798742138 +2016-08-24 11:50:25,785 DEBUG: Best view : Clinic_ +2016-08-24 11:50:26,134 DEBUG: Start: Iteration 6 +2016-08-24 11:50:26,151 DEBUG: View 0 : 0.40251572327 +2016-08-24 11:50:26,159 DEBUG: View 1 : 0.704402515723 +2016-08-24 11:50:26,249 DEBUG: View 2 : 0.547169811321 +2016-08-24 11:50:26,257 DEBUG: View 3 : 0.59748427673 +2016-08-24 11:50:26,320 DEBUG: Best view : MiRNA__ +2016-08-24 11:50:26,737 DEBUG: Start: Iteration 7 +2016-08-24 11:50:26,754 DEBUG: View 0 : 0.51572327044 +2016-08-24 11:50:26,762 DEBUG: View 1 : 0.48427672956 +2016-08-24 11:50:26,851 DEBUG: View 2 : 0.578616352201 +2016-08-24 11:50:26,859 DEBUG: View 3 : 0.610062893082 +2016-08-24 11:50:26,925 DEBUG: Best view : Clinic_ +2016-08-24 11:50:27,480 DEBUG: Start: Iteration 8 +2016-08-24 11:50:27,500 DEBUG: View 0 : 0.635220125786 +2016-08-24 11:50:27,513 DEBUG: View 1 : 0.389937106918 +2016-08-24 11:50:27,646 DEBUG: View 2 : 0.559748427673 +2016-08-24 11:50:27,661 DEBUG: View 3 : 0.584905660377 +2016-08-24 11:50:27,774 DEBUG: Best view : Methyl_ +2016-08-24 11:50:28,343 DEBUG: Start: Iteration 9 +2016-08-24 11:50:28,360 DEBUG: View 0 : 0.440251572327 +2016-08-24 11:50:28,368 DEBUG: View 1 : 0.528301886792 +2016-08-24 11:50:28,458 DEBUG: View 2 : 0.641509433962 +2016-08-24 11:50:28,466 DEBUG: View 3 : 0.603773584906 +2016-08-24 11:50:28,538 DEBUG: Best view : RANSeq_ +2016-08-24 11:50:29,134 DEBUG: Start: Iteration 10 +2016-08-24 11:50:29,150 DEBUG: View 0 : 0.37106918239 +2016-08-24 11:50:29,158 DEBUG: View 1 : 0.660377358491 +2016-08-24 11:50:29,248 DEBUG: View 2 : 0.48427672956 +2016-08-24 11:50:29,256 DEBUG: View 3 : 0.572327044025 +2016-08-24 11:50:29,328 DEBUG: Best view : MiRNA__ +2016-08-24 11:50:29,975 DEBUG: Start: Iteration 11 +2016-08-24 11:50:29,992 DEBUG: View 0 : 0.446540880503 +2016-08-24 11:50:29,999 DEBUG: View 1 : 0.691823899371 +2016-08-24 11:50:30,091 DEBUG: View 2 : 0.48427672956 +2016-08-24 11:50:30,098 DEBUG: View 3 : 0.610062893082 +2016-08-24 11:50:30,172 DEBUG: Best view : MiRNA__ +2016-08-24 11:50:30,885 DEBUG: Start: Iteration 12 +2016-08-24 11:50:30,902 DEBUG: View 0 : 0.408805031447 +2016-08-24 11:50:30,909 DEBUG: View 1 : 0.377358490566 +2016-08-24 11:50:30,995 DEBUG: View 2 : 0.616352201258 +2016-08-24 11:50:31,004 DEBUG: View 3 : 0.584905660377 +2016-08-24 11:50:31,080 DEBUG: Best view : RANSeq_ +2016-08-24 11:50:31,869 DEBUG: Start: Iteration 13 +2016-08-24 11:50:31,885 DEBUG: View 0 : 0.415094339623 +2016-08-24 11:50:31,893 DEBUG: View 1 : 0.578616352201 +2016-08-24 11:50:31,978 DEBUG: View 2 : 0.603773584906 +2016-08-24 11:50:31,986 DEBUG: View 3 : 0.641509433962 +2016-08-24 11:50:32,067 DEBUG: Best view : Clinic_ +2016-08-24 11:50:32,908 DEBUG: Start: Iteration 14 +2016-08-24 11:50:32,924 DEBUG: View 0 : 0.440251572327 +2016-08-24 11:50:32,932 DEBUG: View 1 : 0.654088050314 +2016-08-24 11:50:33,013 DEBUG: View 2 : 0.603773584906 +2016-08-24 11:50:33,020 DEBUG: View 3 : 0.59748427673 +2016-08-24 11:50:33,100 DEBUG: Best view : MiRNA__ +2016-08-24 11:50:33,998 DEBUG: Start: Iteration 15 +2016-08-24 11:50:34,015 DEBUG: View 0 : 0.616352201258 +2016-08-24 11:50:34,022 DEBUG: View 1 : 0.584905660377 +2016-08-24 11:50:34,108 DEBUG: View 2 : 0.622641509434 +2016-08-24 11:50:34,116 DEBUG: View 3 : 0.660377358491 +2016-08-24 11:50:34,198 DEBUG: Best view : Clinic_ +2016-08-24 11:50:35,164 DEBUG: Start: Iteration 16 +2016-08-24 11:50:35,181 DEBUG: View 0 : 0.358490566038 +2016-08-24 11:50:35,189 DEBUG: View 1 : 0.641509433962 +2016-08-24 11:50:35,278 DEBUG: View 2 : 0.566037735849 +2016-08-24 11:50:35,286 DEBUG: View 3 : 0.572327044025 +2016-08-24 11:50:35,370 DEBUG: Best view : MiRNA__ +2016-08-24 11:50:36,375 DEBUG: Start: Iteration 17 +2016-08-24 11:50:36,391 DEBUG: View 0 : 0.477987421384 +2016-08-24 11:50:36,399 DEBUG: View 1 : 0.698113207547 +2016-08-24 11:50:36,489 DEBUG: View 2 : 0.660377358491 +2016-08-24 11:50:36,496 DEBUG: View 3 : 0.610062893082 +2016-08-24 11:50:36,583 DEBUG: Best view : MiRNA__ +2016-08-24 11:50:37,656 DEBUG: Start: Iteration 18 +2016-08-24 11:50:37,672 DEBUG: View 0 : 0.389937106918 +2016-08-24 11:50:37,680 DEBUG: View 1 : 0.584905660377 +2016-08-24 11:50:37,770 DEBUG: View 2 : 0.591194968553 +2016-08-24 11:50:37,778 DEBUG: View 3 : 0.59748427673 +2016-08-24 11:50:37,866 DEBUG: Best view : Clinic_ +2016-08-24 11:50:38,996 DEBUG: Start: Iteration 19 +2016-08-24 11:50:39,013 DEBUG: View 0 : 0.591194968553 +2016-08-24 11:50:39,020 DEBUG: View 1 : 0.251572327044 +2016-08-24 11:50:39,101 DEBUG: View 2 : 0.547169811321 +2016-08-24 11:50:39,109 DEBUG: View 3 : 0.62893081761 +2016-08-24 11:50:39,199 DEBUG: Best view : Clinic_ +2016-08-24 11:50:40,389 DEBUG: Start: Iteration 20 +2016-08-24 11:50:40,406 DEBUG: View 0 : 0.578616352201 +2016-08-24 11:50:40,414 DEBUG: View 1 : 0.691823899371 +2016-08-24 11:50:40,500 DEBUG: View 2 : 0.59748427673 +2016-08-24 11:50:40,508 DEBUG: View 3 : 0.534591194969 +2016-08-24 11:50:40,600 DEBUG: Best view : MiRNA__ +2016-08-24 11:50:41,849 DEBUG: Start: Iteration 21 +2016-08-24 11:50:41,866 DEBUG: View 0 : 0.553459119497 +2016-08-24 11:50:41,873 DEBUG: View 1 : 0.522012578616 +2016-08-24 11:50:41,960 DEBUG: View 2 : 0.553459119497 +2016-08-24 11:50:41,968 DEBUG: View 3 : 0.509433962264 +2016-08-24 11:50:42,063 DEBUG: Best view : RANSeq_ +2016-08-24 11:50:43,380 DEBUG: Start: Iteration 22 +2016-08-24 11:50:43,397 DEBUG: View 0 : 0.48427672956 +2016-08-24 11:50:43,405 DEBUG: View 1 : 0.440251572327 +2016-08-24 11:50:43,494 DEBUG: View 2 : 0.509433962264 +2016-08-24 11:50:43,502 DEBUG: View 3 : 0.584905660377 +2016-08-24 11:50:43,600 DEBUG: Best view : Clinic_ +2016-08-24 11:50:44,988 DEBUG: Start: Iteration 23 +2016-08-24 11:50:45,005 DEBUG: View 0 : 0.622641509434 +2016-08-24 11:50:45,013 DEBUG: View 1 : 0.559748427673 +2016-08-24 11:50:45,102 DEBUG: View 2 : 0.559748427673 +2016-08-24 11:50:45,110 DEBUG: View 3 : 0.584905660377 +2016-08-24 11:50:45,209 DEBUG: Best view : Methyl_ +2016-08-24 11:50:46,651 DEBUG: Start: Iteration 24 +2016-08-24 11:50:46,668 DEBUG: View 0 : 0.547169811321 +2016-08-24 11:50:46,675 DEBUG: View 1 : 0.704402515723 +2016-08-24 11:50:46,758 DEBUG: View 2 : 0.547169811321 +2016-08-24 11:50:46,766 DEBUG: View 3 : 0.584905660377 +2016-08-24 11:50:46,867 DEBUG: Best view : MiRNA__ +2016-08-24 11:50:48,357 DEBUG: Start: Iteration 25 +2016-08-24 11:50:48,374 DEBUG: View 0 : 0.641509433962 +2016-08-24 11:50:48,381 DEBUG: View 1 : 0.534591194969 +2016-08-24 11:50:48,472 DEBUG: View 2 : 0.496855345912 +2016-08-24 11:50:48,480 DEBUG: View 3 : 0.578616352201 +2016-08-24 11:50:48,583 DEBUG: Best view : Methyl_ +2016-08-24 11:50:50,137 DEBUG: Start: Iteration 26 +2016-08-24 11:50:50,153 DEBUG: View 0 : 0.566037735849 +2016-08-24 11:50:50,161 DEBUG: View 1 : 0.672955974843 +2016-08-24 11:50:50,254 DEBUG: View 2 : 0.647798742138 +2016-08-24 11:50:50,262 DEBUG: View 3 : 0.490566037736 +2016-08-24 11:50:50,368 DEBUG: Best view : MiRNA__ +2016-08-24 11:50:51,980 DEBUG: Start: Iteration 27 +2016-08-24 11:50:51,997 DEBUG: View 0 : 0.710691823899 +2016-08-24 11:50:52,005 DEBUG: View 1 : 0.591194968553 +2016-08-24 11:50:52,092 DEBUG: View 2 : 0.559748427673 +2016-08-24 11:50:52,100 DEBUG: View 3 : 0.654088050314 +2016-08-24 11:50:52,208 DEBUG: Best view : Methyl_ +2016-08-24 11:50:53,885 DEBUG: Start: Iteration 28 +2016-08-24 11:50:53,902 DEBUG: View 0 : 0.672955974843 +2016-08-24 11:50:53,909 DEBUG: View 1 : 0.408805031447 +2016-08-24 11:50:53,997 DEBUG: View 2 : 0.566037735849 +2016-08-24 11:50:54,005 DEBUG: View 3 : 0.622641509434 +2016-08-24 11:50:54,115 DEBUG: Best view : Methyl_ +2016-08-24 11:50:55,861 DEBUG: Start: Iteration 29 +2016-08-24 11:50:55,878 DEBUG: View 0 : 0.408805031447 +2016-08-24 11:50:55,886 DEBUG: View 1 : 0.540880503145 +2016-08-24 11:50:55,971 DEBUG: View 2 : 0.528301886792 +2016-08-24 11:50:55,979 DEBUG: View 3 : 0.522012578616 +2016-08-24 11:50:56,093 DEBUG: Best view : RANSeq_ +2016-08-24 11:50:57,922 DEBUG: Start: Iteration 30 +2016-08-24 11:50:57,939 DEBUG: View 0 : 0.408805031447 +2016-08-24 11:50:57,946 DEBUG: View 1 : 0.383647798742 +2016-08-24 11:50:58,039 DEBUG: View 2 : 0.540880503145 +2016-08-24 11:50:58,047 DEBUG: View 3 : 0.534591194969 +2016-08-24 11:50:58,162 DEBUG: Best view : RANSeq_ +2016-08-24 11:51:00,061 DEBUG: Start: Iteration 31 +2016-08-24 11:51:00,078 DEBUG: View 0 : 0.358490566038 +2016-08-24 11:51:00,086 DEBUG: View 1 : 0.528301886792 +2016-08-24 11:51:00,176 DEBUG: View 2 : 0.528301886792 +2016-08-24 11:51:00,184 DEBUG: View 3 : 0.622641509434 +2016-08-24 11:51:00,301 DEBUG: Best view : Clinic_ +2016-08-24 11:51:02,266 DEBUG: Start: Iteration 32 +2016-08-24 11:51:02,284 DEBUG: View 0 : 0.377358490566 +2016-08-24 11:51:02,292 DEBUG: View 1 : 0.666666666667 +2016-08-24 11:51:02,388 DEBUG: View 2 : 0.572327044025 +2016-08-24 11:51:02,396 DEBUG: View 3 : 0.522012578616 +2016-08-24 11:51:02,517 DEBUG: Best view : MiRNA__ +2016-08-24 11:51:04,541 DEBUG: Start: Iteration 33 +2016-08-24 11:51:04,557 DEBUG: View 0 : 0.345911949686 +2016-08-24 11:51:04,566 DEBUG: View 1 : 0.654088050314 +2016-08-24 11:51:04,663 DEBUG: View 2 : 0.51572327044 +2016-08-24 11:51:04,671 DEBUG: View 3 : 0.572327044025 +2016-08-24 11:51:04,794 DEBUG: Best view : MiRNA__ +2016-08-24 11:51:06,888 DEBUG: Start: Iteration 34 +2016-08-24 11:51:06,904 DEBUG: View 0 : 0.622641509434 +2016-08-24 11:51:06,912 DEBUG: View 1 : 0.566037735849 +2016-08-24 11:51:06,992 DEBUG: View 2 : 0.522012578616 +2016-08-24 11:51:07,001 DEBUG: View 3 : 0.647798742138 +2016-08-24 11:51:07,125 DEBUG: Best view : Clinic_ +2016-08-24 11:51:09,330 DEBUG: Start: Iteration 35 +2016-08-24 11:51:09,347 DEBUG: View 0 : 0.452830188679 +2016-08-24 11:51:09,355 DEBUG: View 1 : 0.635220125786 +2016-08-24 11:51:09,453 DEBUG: View 2 : 0.59748427673 +2016-08-24 11:51:09,462 DEBUG: View 3 : 0.559748427673 +2016-08-24 11:51:09,592 DEBUG: Best view : MiRNA__ +2016-08-24 11:51:11,779 DEBUG: Start: Iteration 36 +2016-08-24 11:51:11,796 DEBUG: View 0 : 0.572327044025 +2016-08-24 11:51:11,804 DEBUG: View 1 : 0.540880503145 +2016-08-24 11:51:11,891 DEBUG: View 2 : 0.51572327044 +2016-08-24 11:51:11,899 DEBUG: View 3 : 0.603773584906 +2016-08-24 11:51:12,026 DEBUG: Best view : Clinic_ +2016-08-24 11:51:14,260 DEBUG: Start: Iteration 37 +2016-08-24 11:51:14,277 DEBUG: View 0 : 0.490566037736 +2016-08-24 11:51:14,285 DEBUG: View 1 : 0.433962264151 +2016-08-24 11:51:14,380 DEBUG: View 2 : 0.578616352201 +2016-08-24 11:51:14,389 DEBUG: View 3 : 0.679245283019 +2016-08-24 11:51:14,518 DEBUG: Best view : Clinic_ +2016-08-24 11:51:16,845 DEBUG: Start: Iteration 38 +2016-08-24 11:51:16,862 DEBUG: View 0 : 0.452830188679 +2016-08-24 11:51:16,870 DEBUG: View 1 : 0.496855345912 +2016-08-24 11:51:16,959 DEBUG: View 2 : 0.503144654088 +2016-08-24 11:51:16,967 DEBUG: View 3 : 0.559748427673 +2016-08-24 11:51:17,099 DEBUG: Best view : Clinic_ +2016-08-24 11:51:19,449 DEBUG: Start: Iteration 39 +2016-08-24 11:51:19,466 DEBUG: View 0 : 0.603773584906 +2016-08-24 11:51:19,473 DEBUG: View 1 : 0.666666666667 +2016-08-24 11:51:19,563 DEBUG: View 2 : 0.540880503145 +2016-08-24 11:51:19,571 DEBUG: View 3 : 0.477987421384 +2016-08-24 11:51:19,705 DEBUG: Best view : MiRNA__ +2016-08-24 11:51:22,122 DEBUG: Start: Iteration 40 +2016-08-24 11:51:22,139 DEBUG: View 0 : 0.559748427673 +2016-08-24 11:51:22,147 DEBUG: View 1 : 0.672955974843 +2016-08-24 11:51:22,236 DEBUG: View 2 : 0.559748427673 +2016-08-24 11:51:22,245 DEBUG: View 3 : 0.666666666667 +2016-08-24 11:51:22,381 DEBUG: Best view : Clinic_ +2016-08-24 11:51:24,842 DEBUG: Start: Iteration 41 +2016-08-24 11:51:24,859 DEBUG: View 0 : 0.421383647799 +2016-08-24 11:51:24,867 DEBUG: View 1 : 0.660377358491 +2016-08-24 11:51:24,950 DEBUG: View 2 : 0.616352201258 +2016-08-24 11:51:24,959 DEBUG: View 3 : 0.553459119497 +2016-08-24 11:51:25,097 DEBUG: Best view : MiRNA__ +2016-08-24 11:51:27,616 DEBUG: Start: Iteration 42 +2016-08-24 11:51:27,633 DEBUG: View 0 : 0.509433962264 +2016-08-24 11:51:27,641 DEBUG: View 1 : 0.660377358491 +2016-08-24 11:51:27,734 DEBUG: View 2 : 0.522012578616 +2016-08-24 11:51:27,742 DEBUG: View 3 : 0.547169811321 +2016-08-24 11:51:27,882 DEBUG: Best view : MiRNA__ +2016-08-24 11:51:30,452 DEBUG: Start: Iteration 43 +2016-08-24 11:51:30,469 DEBUG: View 0 : 0.616352201258 +2016-08-24 11:51:30,477 DEBUG: View 1 : 0.534591194969 +2016-08-24 11:51:30,572 DEBUG: View 2 : 0.509433962264 +2016-08-24 11:51:30,581 DEBUG: View 3 : 0.559748427673 +2016-08-24 11:51:30,723 DEBUG: Best view : Methyl_ +2016-08-24 11:51:33,333 DEBUG: Start: Iteration 44 +2016-08-24 11:51:33,349 DEBUG: View 0 : 0.660377358491 +2016-08-24 11:51:33,357 DEBUG: View 1 : 0.440251572327 +2016-08-24 11:51:33,455 DEBUG: View 2 : 0.62893081761 +2016-08-24 11:51:33,464 DEBUG: View 3 : 0.578616352201 +2016-08-24 11:51:33,607 DEBUG: Best view : Methyl_ +2016-08-24 11:51:36,279 DEBUG: Start: Iteration 45 +2016-08-24 11:51:36,296 DEBUG: View 0 : 0.51572327044 +2016-08-24 11:51:36,304 DEBUG: View 1 : 0.59748427673 +2016-08-24 11:51:36,400 DEBUG: View 2 : 0.660377358491 +2016-08-24 11:51:36,409 DEBUG: View 3 : 0.578616352201 +2016-08-24 11:51:36,556 DEBUG: Best view : RANSeq_ +2016-08-24 11:51:39,318 DEBUG: Start: Iteration 46 +2016-08-24 11:51:39,334 DEBUG: View 0 : 0.490566037736 +2016-08-24 11:51:39,342 DEBUG: View 1 : 0.647798742138 +2016-08-24 11:51:39,437 DEBUG: View 2 : 0.534591194969 +2016-08-24 11:51:39,447 DEBUG: View 3 : 0.62893081761 +2016-08-24 11:51:39,596 DEBUG: Best view : Clinic_ +2016-08-24 11:51:42,394 DEBUG: Start: Iteration 47 +2016-08-24 11:51:42,410 DEBUG: View 0 : 0.578616352201 +2016-08-24 11:51:42,418 DEBUG: View 1 : 0.647798742138 +2016-08-24 11:51:42,514 DEBUG: View 2 : 0.547169811321 +2016-08-24 11:51:42,522 DEBUG: View 3 : 0.503144654088 +2016-08-24 11:51:42,673 DEBUG: Best view : MiRNA__ +2016-08-24 11:51:45,517 DEBUG: Start: Iteration 48 +2016-08-24 11:51:45,533 DEBUG: View 0 : 0.433962264151 +2016-08-24 11:51:45,541 DEBUG: View 1 : 0.522012578616 +2016-08-24 11:51:45,630 DEBUG: View 2 : 0.616352201258 +2016-08-24 11:51:45,637 DEBUG: View 3 : 0.578616352201 +2016-08-24 11:51:45,789 DEBUG: Best view : RANSeq_ +2016-08-24 11:51:48,860 DEBUG: Start: Iteration 49 +2016-08-24 11:51:48,876 DEBUG: View 0 : 0.616352201258 +2016-08-24 11:51:48,884 DEBUG: View 1 : 0.635220125786 +2016-08-24 11:51:48,972 DEBUG: View 2 : 0.59748427673 +2016-08-24 11:51:48,980 DEBUG: View 3 : 0.603773584906 +2016-08-24 11:51:49,140 DEBUG: Best view : MiRNA__ +2016-08-24 11:51:52,141 DEBUG: Start: Iteration 50 +2016-08-24 11:51:52,158 DEBUG: View 0 : 0.503144654088 +2016-08-24 11:51:52,166 DEBUG: View 1 : 0.666666666667 +2016-08-24 11:51:52,255 DEBUG: View 2 : 0.578616352201 +2016-08-24 11:51:52,263 DEBUG: View 3 : 0.572327044025 +2016-08-24 11:51:52,421 DEBUG: Best view : MiRNA__ +2016-08-24 11:51:55,452 DEBUG: Start: Iteration 51 +2016-08-24 11:51:55,469 DEBUG: View 0 : 0.528301886792 +2016-08-24 11:51:55,477 DEBUG: View 1 : 0.62893081761 +2016-08-24 11:51:55,564 DEBUG: View 2 : 0.578616352201 +2016-08-24 11:51:55,572 DEBUG: View 3 : 0.679245283019 +2016-08-24 11:51:55,731 DEBUG: Best view : Clinic_ +2016-08-24 11:51:58,822 DEBUG: Start: Iteration 52 +2016-08-24 11:51:58,839 DEBUG: View 0 : 0.40251572327 +2016-08-24 11:51:58,847 DEBUG: View 1 : 0.358490566038 +2016-08-24 11:51:58,937 DEBUG: View 2 : 0.559748427673 +2016-08-24 11:51:58,944 DEBUG: View 3 : 0.559748427673 +2016-08-24 11:51:59,110 DEBUG: Best view : RANSeq_ +2016-08-24 11:52:02,297 DEBUG: Start: Iteration 53 +2016-08-24 11:52:02,314 DEBUG: View 0 : 0.377358490566 +2016-08-24 11:52:02,321 DEBUG: View 1 : 0.666666666667 +2016-08-24 11:52:02,411 DEBUG: View 2 : 0.509433962264 +2016-08-24 11:52:02,419 DEBUG: View 3 : 0.59748427673 +2016-08-24 11:52:02,583 DEBUG: Best view : MiRNA__ +2016-08-24 11:52:05,819 DEBUG: Start: Iteration 54 +2016-08-24 11:52:05,836 DEBUG: View 0 : 0.572327044025 +2016-08-24 11:52:05,844 DEBUG: View 1 : 0.647798742138 +2016-08-24 11:52:05,941 DEBUG: View 2 : 0.603773584906 +2016-08-24 11:52:05,949 DEBUG: View 3 : 0.641509433962 +2016-08-24 11:52:06,118 DEBUG: Best view : Clinic_ +2016-08-24 11:52:09,420 DEBUG: Start: Iteration 55 +2016-08-24 11:52:09,437 DEBUG: View 0 : 0.654088050314 +2016-08-24 11:52:09,445 DEBUG: View 1 : 0.427672955975 +2016-08-24 11:52:09,525 DEBUG: View 2 : 0.591194968553 +2016-08-24 11:52:09,533 DEBUG: View 3 : 0.528301886792 +2016-08-24 11:52:09,700 DEBUG: Best view : Methyl_ +2016-08-24 11:52:13,042 DEBUG: Start: Iteration 56 +2016-08-24 11:52:13,058 DEBUG: View 0 : 0.37106918239 +2016-08-24 11:52:13,066 DEBUG: View 1 : 0.748427672956 +2016-08-24 11:52:13,150 DEBUG: View 2 : 0.584905660377 +2016-08-24 11:52:13,157 DEBUG: View 3 : 0.59748427673 +2016-08-24 11:52:13,330 DEBUG: Best view : MiRNA__ +2016-08-24 11:52:16,739 DEBUG: Start: Iteration 57 +2016-08-24 11:52:16,756 DEBUG: View 0 : 0.805031446541 +2016-08-24 11:52:16,764 DEBUG: View 1 : 0.471698113208 +2016-08-24 11:52:16,851 DEBUG: View 2 : 0.591194968553 +2016-08-24 11:52:16,858 DEBUG: View 3 : 0.616352201258 +2016-08-24 11:52:17,034 DEBUG: Best view : Methyl_ +2016-08-24 11:52:20,629 DEBUG: Start: Iteration 58 +2016-08-24 11:52:20,646 DEBUG: View 0 : 0.496855345912 +2016-08-24 11:52:20,653 DEBUG: View 1 : 0.352201257862 +2016-08-24 11:52:20,738 DEBUG: View 2 : 0.647798742138 +2016-08-24 11:52:20,745 DEBUG: View 3 : 0.490566037736 +2016-08-24 11:52:20,924 DEBUG: Best view : RANSeq_ +2016-08-24 11:52:24,455 DEBUG: Start: Iteration 59 +2016-08-24 11:52:24,471 DEBUG: View 0 : 0.301886792453 +2016-08-24 11:52:24,479 DEBUG: View 1 : 0.333333333333 +2016-08-24 11:52:24,562 DEBUG: View 2 : 0.51572327044 +2016-08-24 11:52:24,570 DEBUG: View 3 : 0.616352201258 +2016-08-24 11:52:24,747 DEBUG: Best view : Clinic_ +2016-08-24 11:52:28,327 DEBUG: Start: Iteration 60 +2016-08-24 11:52:28,344 DEBUG: View 0 : 0.559748427673 +2016-08-24 11:52:28,352 DEBUG: View 1 : 0.591194968553 +2016-08-24 11:52:28,439 DEBUG: View 2 : 0.51572327044 +2016-08-24 11:52:28,447 DEBUG: View 3 : 0.446540880503 +2016-08-24 11:52:28,627 DEBUG: Best view : MiRNA__ +2016-08-24 11:52:32,268 DEBUG: Start: Iteration 61 +2016-08-24 11:52:32,284 DEBUG: View 0 : 0.547169811321 +2016-08-24 11:52:32,292 DEBUG: View 1 : 0.691823899371 +2016-08-24 11:52:32,379 DEBUG: View 2 : 0.553459119497 +2016-08-24 11:52:32,387 DEBUG: View 3 : 0.59748427673 +2016-08-24 11:52:32,568 DEBUG: Best view : MiRNA__ +2016-08-24 11:52:36,264 DEBUG: Start: Iteration 62 +2016-08-24 11:52:36,281 DEBUG: View 0 : 0.748427672956 +2016-08-24 11:52:36,288 DEBUG: View 1 : 0.528301886792 +2016-08-24 11:52:36,377 DEBUG: View 2 : 0.672955974843 +2016-08-24 11:52:36,384 DEBUG: View 3 : 0.691823899371 +2016-08-24 11:52:36,569 DEBUG: Best view : Methyl_ +2016-08-24 11:52:40,347 DEBUG: Start: Iteration 63 +2016-08-24 11:52:40,363 DEBUG: View 0 : 0.465408805031 +2016-08-24 11:52:40,371 DEBUG: View 1 : 0.622641509434 +2016-08-24 11:52:40,459 DEBUG: View 2 : 0.622641509434 +2016-08-24 11:52:40,467 DEBUG: View 3 : 0.553459119497 +2016-08-24 11:52:40,655 DEBUG: Best view : MiRNA__ +2016-08-24 11:52:44,468 DEBUG: Start: Iteration 64 +2016-08-24 11:52:44,484 DEBUG: View 0 : 0.610062893082 +2016-08-24 11:52:44,492 DEBUG: View 1 : 0.566037735849 +2016-08-24 11:52:44,580 DEBUG: View 2 : 0.62893081761 +2016-08-24 11:52:44,588 DEBUG: View 3 : 0.622641509434 +2016-08-24 11:52:44,777 DEBUG: Best view : RANSeq_ +2016-08-24 11:52:48,671 DEBUG: Start: Iteration 65 +2016-08-24 11:52:48,688 DEBUG: View 0 : 0.427672955975 +2016-08-24 11:52:48,696 DEBUG: View 1 : 0.383647798742 +2016-08-24 11:52:48,780 DEBUG: View 2 : 0.584905660377 +2016-08-24 11:52:48,788 DEBUG: View 3 : 0.566037735849 +2016-08-24 11:52:48,978 DEBUG: Best view : RANSeq_ +2016-08-24 11:52:52,930 DEBUG: Start: Iteration 66 +2016-08-24 11:52:52,947 DEBUG: View 0 : 0.383647798742 +2016-08-24 11:52:52,955 DEBUG: View 1 : 0.616352201258 +2016-08-24 11:52:53,044 DEBUG: View 2 : 0.591194968553 +2016-08-24 11:52:53,052 DEBUG: View 3 : 0.635220125786 +2016-08-24 11:52:53,245 DEBUG: Best view : Clinic_ +2016-08-24 11:52:57,247 DEBUG: Start: Iteration 67 +2016-08-24 11:52:57,264 DEBUG: View 0 : 0.459119496855 +2016-08-24 11:52:57,271 DEBUG: View 1 : 0.421383647799 +2016-08-24 11:52:57,359 DEBUG: View 2 : 0.522012578616 +2016-08-24 11:52:57,367 DEBUG: View 3 : 0.603773584906 +2016-08-24 11:52:57,561 DEBUG: Best view : Clinic_ +2016-08-24 11:53:01,624 DEBUG: Start: Iteration 68 +2016-08-24 11:53:01,640 DEBUG: View 0 : 0.62893081761 +2016-08-24 11:53:01,648 DEBUG: View 1 : 0.503144654088 +2016-08-24 11:53:01,739 DEBUG: View 2 : 0.534591194969 +2016-08-24 11:53:01,747 DEBUG: View 3 : 0.572327044025 +2016-08-24 11:53:01,944 DEBUG: Best view : Methyl_ +2016-08-24 11:53:06,061 DEBUG: Start: Iteration 69 +2016-08-24 11:53:06,078 DEBUG: View 0 : 0.578616352201 +2016-08-24 11:53:06,085 DEBUG: View 1 : 0.389937106918 +2016-08-24 11:53:06,174 DEBUG: View 2 : 0.572327044025 +2016-08-24 11:53:06,182 DEBUG: View 3 : 0.572327044025 +2016-08-24 11:53:06,383 DEBUG: Best view : RANSeq_ +2016-08-24 11:53:10,572 DEBUG: Start: Iteration 70 +2016-08-24 11:53:10,588 DEBUG: View 0 : 0.48427672956 +2016-08-24 11:53:10,596 DEBUG: View 1 : 0.635220125786 +2016-08-24 11:53:10,680 DEBUG: View 2 : 0.51572327044 +2016-08-24 11:53:10,687 DEBUG: View 3 : 0.59748427673 +2016-08-24 11:53:10,888 DEBUG: Best view : Clinic_ +2016-08-24 11:53:15,144 DEBUG: Start: Iteration 71 +2016-08-24 11:53:15,160 DEBUG: View 0 : 0.622641509434 +2016-08-24 11:53:15,168 DEBUG: View 1 : 0.509433962264 +2016-08-24 11:53:15,258 DEBUG: View 2 : 0.616352201258 +2016-08-24 11:53:15,266 DEBUG: View 3 : 0.528301886792 +2016-08-24 11:53:15,469 DEBUG: Best view : RANSeq_ +2016-08-24 11:53:19,842 DEBUG: Start: Iteration 72 +2016-08-24 11:53:19,858 DEBUG: View 0 : 0.446540880503 +2016-08-24 11:53:19,866 DEBUG: View 1 : 0.610062893082 +2016-08-24 11:53:19,954 DEBUG: View 2 : 0.635220125786 +2016-08-24 11:53:19,962 DEBUG: View 3 : 0.584905660377 +2016-08-24 11:53:20,164 DEBUG: Best view : RANSeq_ +2016-08-24 11:53:24,556 DEBUG: Start: Iteration 73 +2016-08-24 11:53:24,573 DEBUG: View 0 : 0.534591194969 +2016-08-24 11:53:24,581 DEBUG: View 1 : 0.522012578616 +2016-08-24 11:53:24,668 DEBUG: View 2 : 0.603773584906 +2016-08-24 11:53:24,676 DEBUG: View 3 : 0.522012578616 +2016-08-24 11:53:24,882 DEBUG: Best view : RANSeq_ +2016-08-24 11:53:29,347 DEBUG: Start: Iteration 74 +2016-08-24 11:53:29,363 DEBUG: View 0 : 0.509433962264 +2016-08-24 11:53:29,371 DEBUG: View 1 : 0.345911949686 +2016-08-24 11:53:29,457 DEBUG: View 2 : 0.51572327044 +2016-08-24 11:53:29,464 DEBUG: View 3 : 0.62893081761 +2016-08-24 11:53:29,672 DEBUG: Best view : Clinic_ +2016-08-24 11:53:34,188 DEBUG: Start: Iteration 75 +2016-08-24 11:53:34,204 DEBUG: View 0 : 0.59748427673 +2016-08-24 11:53:34,212 DEBUG: View 1 : 0.51572327044 +2016-08-24 11:53:34,298 DEBUG: View 2 : 0.635220125786 +2016-08-24 11:53:34,306 DEBUG: View 3 : 0.48427672956 +2016-08-24 11:53:34,516 DEBUG: Best view : RANSeq_ +2016-08-24 11:53:39,103 DEBUG: Start: Iteration 76 +2016-08-24 11:53:39,119 DEBUG: View 0 : 0.490566037736 +2016-08-24 11:53:39,127 DEBUG: View 1 : 0.584905660377 +2016-08-24 11:53:39,214 DEBUG: View 2 : 0.622641509434 +2016-08-24 11:53:39,221 DEBUG: View 3 : 0.584905660377 +2016-08-24 11:53:39,437 DEBUG: Best view : RANSeq_ +2016-08-24 11:53:44,087 DEBUG: Start: Iteration 77 +2016-08-24 11:53:44,103 DEBUG: View 0 : 0.48427672956 +2016-08-24 11:53:44,111 DEBUG: View 1 : 0.320754716981 +2016-08-24 11:53:44,195 DEBUG: View 2 : 0.584905660377 +2016-08-24 11:53:44,202 DEBUG: View 3 : 0.654088050314 +2016-08-24 11:53:44,419 DEBUG: Best view : Clinic_ +2016-08-24 11:53:49,151 DEBUG: Start: Iteration 78 +2016-08-24 11:53:49,168 DEBUG: View 0 : 0.534591194969 +2016-08-24 11:53:49,175 DEBUG: View 1 : 0.540880503145 +2016-08-24 11:53:49,262 DEBUG: View 2 : 0.59748427673 +2016-08-24 11:53:49,270 DEBUG: View 3 : 0.572327044025 +2016-08-24 11:53:49,487 DEBUG: Best view : RANSeq_ +2016-08-24 11:53:54,269 DEBUG: Start: Iteration 79 +2016-08-24 11:53:54,285 DEBUG: View 0 : 0.566037735849 +2016-08-24 11:53:54,293 DEBUG: View 1 : 0.509433962264 +2016-08-24 11:53:54,380 DEBUG: View 2 : 0.559748427673 +2016-08-24 11:53:54,387 DEBUG: View 3 : 0.503144654088 +2016-08-24 11:53:54,609 DEBUG: Best view : RANSeq_ +2016-08-24 11:53:59,466 DEBUG: Start: Iteration 80 +2016-08-24 11:53:59,483 DEBUG: View 0 : 0.616352201258 +2016-08-24 11:53:59,491 DEBUG: View 1 : 0.672955974843 +2016-08-24 11:53:59,579 DEBUG: View 2 : 0.62893081761 +2016-08-24 11:53:59,586 DEBUG: View 3 : 0.578616352201 +2016-08-24 11:53:59,807 DEBUG: Best view : MiRNA__ +2016-08-24 11:54:04,731 DEBUG: Start: Iteration 81 +2016-08-24 11:54:04,747 DEBUG: View 0 : 0.528301886792 +2016-08-24 11:54:04,755 DEBUG: View 1 : 0.704402515723 +2016-08-24 11:54:04,837 DEBUG: View 2 : 0.522012578616 +2016-08-24 11:54:04,845 DEBUG: View 3 : 0.547169811321 +2016-08-24 11:54:05,067 DEBUG: Best view : MiRNA__ +2016-08-24 11:54:10,043 DEBUG: Start: Iteration 82 +2016-08-24 11:54:10,059 DEBUG: View 0 : 0.559748427673 +2016-08-24 11:54:10,067 DEBUG: View 1 : 0.440251572327 +2016-08-24 11:54:10,153 DEBUG: View 2 : 0.578616352201 +2016-08-24 11:54:10,161 DEBUG: View 3 : 0.547169811321 +2016-08-24 11:54:10,387 DEBUG: Best view : RANSeq_ +2016-08-24 11:54:15,483 DEBUG: Start: Iteration 83 +2016-08-24 11:54:15,500 DEBUG: View 0 : 0.51572327044 +2016-08-24 11:54:15,507 DEBUG: View 1 : 0.477987421384 +2016-08-24 11:54:15,594 DEBUG: View 2 : 0.62893081761 +2016-08-24 11:54:15,602 DEBUG: View 3 : 0.62893081761 +2016-08-24 11:54:15,831 DEBUG: Best view : Clinic_ +2016-08-24 11:54:20,939 DEBUG: Start: Iteration 84 +2016-08-24 11:54:20,956 DEBUG: View 0 : 0.723270440252 +2016-08-24 11:54:20,964 DEBUG: View 1 : 0.408805031447 +2016-08-24 11:54:21,047 DEBUG: View 2 : 0.641509433962 +2016-08-24 11:54:21,054 DEBUG: View 3 : 0.62893081761 +2016-08-24 11:54:21,285 DEBUG: Best view : Methyl_ +2016-08-24 11:54:26,440 DEBUG: Start: Iteration 85 +2016-08-24 11:54:26,456 DEBUG: View 0 : 0.427672955975 +2016-08-24 11:54:26,464 DEBUG: View 1 : 0.672955974843 +2016-08-24 11:54:26,552 DEBUG: View 2 : 0.616352201258 +2016-08-24 11:54:26,559 DEBUG: View 3 : 0.666666666667 +2016-08-24 11:54:26,790 DEBUG: Best view : Clinic_ +2016-08-24 11:54:32,015 DEBUG: Start: Iteration 86 +2016-08-24 11:54:32,031 DEBUG: View 0 : 0.540880503145 +2016-08-24 11:54:32,039 DEBUG: View 1 : 0.798742138365 +2016-08-24 11:54:32,114 DEBUG: View 2 : 0.553459119497 +2016-08-24 11:54:32,121 DEBUG: View 3 : 0.496855345912 +2016-08-24 11:54:32,359 DEBUG: Best view : MiRNA__ +2016-08-24 11:54:37,638 DEBUG: Start: Iteration 87 +2016-08-24 11:54:37,654 DEBUG: View 0 : 0.553459119497 +2016-08-24 11:54:37,662 DEBUG: View 1 : 0.496855345912 +2016-08-24 11:54:37,748 DEBUG: View 2 : 0.654088050314 +2016-08-24 11:54:37,755 DEBUG: View 3 : 0.62893081761 +2016-08-24 11:54:37,990 DEBUG: Best view : RANSeq_ +2016-08-24 11:54:43,338 DEBUG: Start: Iteration 88 +2016-08-24 11:54:43,355 DEBUG: View 0 : 0.40251572327 +2016-08-24 11:54:43,362 DEBUG: View 1 : 0.522012578616 +2016-08-24 11:54:43,453 DEBUG: View 2 : 0.578616352201 +2016-08-24 11:54:43,460 DEBUG: View 3 : 0.616352201258 +2016-08-24 11:54:43,698 DEBUG: Best view : Clinic_ +2016-08-24 11:54:49,088 DEBUG: Start: Iteration 89 +2016-08-24 11:54:49,105 DEBUG: View 0 : 0.547169811321 +2016-08-24 11:54:49,112 DEBUG: View 1 : 0.377358490566 +2016-08-24 11:54:49,199 DEBUG: View 2 : 0.622641509434 +2016-08-24 11:54:49,206 DEBUG: View 3 : 0.591194968553 +2016-08-24 11:54:49,450 DEBUG: Best view : RANSeq_ +2016-08-24 11:54:54,921 DEBUG: Start: Iteration 90 +2016-08-24 11:54:54,938 DEBUG: View 0 : 0.566037735849 +2016-08-24 11:54:54,946 DEBUG: View 1 : 0.710691823899 +2016-08-24 11:54:55,029 DEBUG: View 2 : 0.59748427673 +2016-08-24 11:54:55,037 DEBUG: View 3 : 0.540880503145 +2016-08-24 11:54:55,279 DEBUG: Best view : MiRNA__ +2016-08-24 11:55:00,796 DEBUG: Start: Iteration 91 +2016-08-24 11:55:00,812 DEBUG: View 0 : 0.59748427673 +2016-08-24 11:55:00,820 DEBUG: View 1 : 0.610062893082 +2016-08-24 11:55:00,908 DEBUG: View 2 : 0.584905660377 +2016-08-24 11:55:00,915 DEBUG: View 3 : 0.635220125786 +2016-08-24 11:55:01,161 DEBUG: Best view : Clinic_ +2016-08-24 11:55:06,789 DEBUG: Start: Iteration 92 +2016-08-24 11:55:06,808 DEBUG: View 0 : 0.509433962264 +2016-08-24 11:55:06,816 DEBUG: View 1 : 0.345911949686 +2016-08-24 11:55:06,909 DEBUG: View 2 : 0.553459119497 +2016-08-24 11:55:06,916 DEBUG: View 3 : 0.51572327044 +2016-08-24 11:55:07,185 DEBUG: Best view : RANSeq_ +2016-08-24 11:55:12,930 DEBUG: Start: Iteration 93 +2016-08-24 11:55:12,947 DEBUG: View 0 : 0.62893081761 +2016-08-24 11:55:12,955 DEBUG: View 1 : 0.364779874214 +2016-08-24 11:55:13,040 DEBUG: View 2 : 0.534591194969 +2016-08-24 11:55:13,048 DEBUG: View 3 : 0.553459119497 +2016-08-24 11:55:13,301 DEBUG: Best view : Methyl_ +2016-08-24 11:55:19,024 DEBUG: Start: Iteration 94 +2016-08-24 11:55:19,040 DEBUG: View 0 : 0.452830188679 +2016-08-24 11:55:19,048 DEBUG: View 1 : 0.610062893082 +2016-08-24 11:55:19,137 DEBUG: View 2 : 0.559748427673 +2016-08-24 11:55:19,144 DEBUG: View 3 : 0.559748427673 +2016-08-24 11:55:19,395 DEBUG: Best view : MiRNA__ +2016-08-24 11:55:25,181 DEBUG: Start: Iteration 95 +2016-08-24 11:55:25,198 DEBUG: View 0 : 0.547169811321 +2016-08-24 11:55:25,206 DEBUG: View 1 : 0.553459119497 +2016-08-24 11:55:25,288 DEBUG: View 2 : 0.591194968553 +2016-08-24 11:55:25,296 DEBUG: View 3 : 0.584905660377 +2016-08-24 11:55:25,547 DEBUG: Best view : RANSeq_ +2016-08-24 11:55:31,382 DEBUG: Start: Iteration 96 +2016-08-24 11:55:31,399 DEBUG: View 0 : 0.522012578616 +2016-08-24 11:55:31,406 DEBUG: View 1 : 0.641509433962 +2016-08-24 11:55:31,493 DEBUG: View 2 : 0.559748427673 +2016-08-24 11:55:31,500 DEBUG: View 3 : 0.559748427673 +2016-08-24 11:55:31,755 DEBUG: Best view : MiRNA__ +2016-08-24 11:55:37,653 DEBUG: Start: Iteration 97 +2016-08-24 11:55:37,669 DEBUG: View 0 : 0.522012578616 +2016-08-24 11:55:37,677 DEBUG: View 1 : 0.729559748428 +2016-08-24 11:55:37,760 DEBUG: View 2 : 0.566037735849 +2016-08-24 11:55:37,767 DEBUG: View 3 : 0.635220125786 +2016-08-24 11:55:38,024 DEBUG: Best view : MiRNA__ +2016-08-24 11:55:43,967 DEBUG: Start: Iteration 98 +2016-08-24 11:55:43,984 DEBUG: View 0 : 0.471698113208 +2016-08-24 11:55:43,991 DEBUG: View 1 : 0.641509433962 +2016-08-24 11:55:44,074 DEBUG: View 2 : 0.635220125786 +2016-08-24 11:55:44,081 DEBUG: View 3 : 0.603773584906 +2016-08-24 11:55:44,341 DEBUG: Best view : RANSeq_ +2016-08-24 11:55:50,378 DEBUG: Start: Iteration 99 +2016-08-24 11:55:50,395 DEBUG: View 0 : 0.603773584906 +2016-08-24 11:55:50,402 DEBUG: View 1 : 0.459119496855 +2016-08-24 11:55:50,489 DEBUG: View 2 : 0.584905660377 +2016-08-24 11:55:50,497 DEBUG: View 3 : 0.522012578616 +2016-08-24 11:55:50,758 DEBUG: Best view : RANSeq_ +2016-08-24 11:55:56,848 DEBUG: Start: Iteration 100 +2016-08-24 11:55:56,864 DEBUG: View 0 : 0.540880503145 +2016-08-24 11:55:56,873 DEBUG: View 1 : 0.666666666667 +2016-08-24 11:55:56,961 DEBUG: View 2 : 0.654088050314 +2016-08-24 11:55:56,968 DEBUG: View 3 : 0.496855345912 +2016-08-24 11:55:57,232 DEBUG: Best view : RANSeq_ +2016-08-24 11:56:03,400 DEBUG: Start: Iteration 101 +2016-08-24 11:56:03,417 DEBUG: View 0 : 0.584905660377 +2016-08-24 11:56:03,424 DEBUG: View 1 : 0.415094339623 +2016-08-24 11:56:03,513 DEBUG: View 2 : 0.622641509434 +2016-08-24 11:56:03,520 DEBUG: View 3 : 0.647798742138 +2016-08-24 11:56:03,784 DEBUG: Best view : Clinic_ +2016-08-24 11:56:10,265 DEBUG: Start: Iteration 102 +2016-08-24 11:56:10,292 DEBUG: View 0 : 0.547169811321 +2016-08-24 11:56:10,303 DEBUG: View 1 : 0.503144654088 +2016-08-24 11:56:10,405 DEBUG: View 2 : 0.62893081761 +2016-08-24 11:56:10,413 DEBUG: View 3 : 0.540880503145 +2016-08-24 11:56:10,685 DEBUG: Best view : RANSeq_ +2016-08-24 11:56:17,168 DEBUG: Start: Iteration 103 +2016-08-24 11:56:17,189 DEBUG: View 0 : 0.496855345912 +2016-08-24 11:56:17,198 DEBUG: View 1 : 0.377358490566 +2016-08-24 11:56:17,289 DEBUG: View 2 : 0.591194968553 +2016-08-24 11:56:17,297 DEBUG: View 3 : 0.62893081761 +2016-08-24 11:56:17,571 DEBUG: Best view : Clinic_ +2016-08-24 11:56:24,608 DEBUG: Start: Iteration 104 +2016-08-24 11:56:24,629 DEBUG: View 0 : 0.452830188679 +2016-08-24 11:56:24,642 DEBUG: View 1 : 0.528301886792 +2016-08-24 11:56:24,745 DEBUG: View 2 : 0.622641509434 +2016-08-24 11:56:24,754 DEBUG: View 3 : 0.559748427673 +2016-08-24 11:56:25,049 DEBUG: Best view : RANSeq_ +2016-08-24 11:56:32,323 DEBUG: Start: Iteration 105 +2016-08-24 11:56:32,342 DEBUG: View 0 : 0.377358490566 +2016-08-24 11:56:32,353 DEBUG: View 1 : 0.647798742138 +2016-08-24 11:56:32,495 DEBUG: View 2 : 0.622641509434 +2016-08-24 11:56:32,509 DEBUG: View 3 : 0.540880503145 +2016-08-24 11:56:32,842 DEBUG: Best view : MiRNA__ +2016-08-24 11:56:40,165 DEBUG: Start: Iteration 106 +2016-08-24 11:56:40,186 DEBUG: View 0 : 0.490566037736 +2016-08-24 11:56:40,196 DEBUG: View 1 : 0.540880503145 +2016-08-24 11:56:40,286 DEBUG: View 2 : 0.51572327044 +2016-08-24 11:56:40,294 DEBUG: View 3 : 0.635220125786 +2016-08-24 11:56:40,572 DEBUG: Best view : Clinic_ diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-115712-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-115712-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..54ef5d1ed7293391eda4a4542da60e02641ad379 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-115712-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log @@ -0,0 +1,4082 @@ +2016-08-24 11:57:12,454 INFO: Start: Read HDF5 Database Files for ModifiedMultiOmic +2016-08-24 11:57:12,454 INFO: Info: Labels used: No, Yes +2016-08-24 11:57:12,455 INFO: Info: Length of dataset:347 +2016-08-24 11:57:12,456 INFO: ### Main Programm for Multiview Classification +2016-08-24 11:57:12,456 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1 +2016-08-24 11:57:12,457 INFO: Info: Shape of Methyl_ :(347, 25978) +2016-08-24 11:57:12,457 INFO: Info: Shape of MiRNA__ :(347, 1046) +2016-08-24 11:57:12,457 INFO: Info: Shape of RANSeq_ :(347, 73599) +2016-08-24 11:57:12,458 INFO: Info: Shape of Clinic_ :(347, 127) +2016-08-24 11:57:12,458 INFO: Done: Read Database Files +2016-08-24 11:57:12,458 INFO: Start: Determine validation split for ratio 0.7 +2016-08-24 11:57:12,462 INFO: Done: Determine validation split +2016-08-24 11:57:12,462 INFO: Start: Determine 5 folds +2016-08-24 11:57:12,469 INFO: Info: Length of Learning Sets: 196 +2016-08-24 11:57:12,469 INFO: Info: Length of Testing Sets: 48 +2016-08-24 11:57:12,469 INFO: Info: Length of Validation Set: 103 +2016-08-24 11:57:12,469 INFO: Done: Determine folds +2016-08-24 11:57:12,470 INFO: Start: Learning with Mumbo and 5 folds +2016-08-24 11:57:12,470 INFO: Start: Fold number 1 +2016-08-24 11:57:14,621 DEBUG: Start: Iteration 1 +2016-08-24 11:57:14,642 DEBUG: View 0 : 0.379146919431 +2016-08-24 11:57:14,652 DEBUG: View 1 : 0.620853080569 +2016-08-24 11:57:14,779 DEBUG: View 2 : 0.488151658768 +2016-08-24 11:57:14,789 DEBUG: View 3 : 0.620853080569 +2016-08-24 11:57:14,848 DEBUG: Best view : MiRNA__ +2016-08-24 11:57:14,947 DEBUG: Start: Iteration 2 +2016-08-24 11:57:14,970 DEBUG: View 0 : 0.625592417062 +2016-08-24 11:57:14,983 DEBUG: View 1 : 0.63981042654 +2016-08-24 11:57:15,114 DEBUG: View 2 : 0.658767772512 +2016-08-24 11:57:15,124 DEBUG: View 3 : 0.568720379147 +2016-08-24 11:57:15,196 DEBUG: Best view : RANSeq_ +2016-08-24 11:57:15,401 DEBUG: Start: Iteration 3 +2016-08-24 11:57:15,424 DEBUG: View 0 : 0.611374407583 +2016-08-24 11:57:15,437 DEBUG: View 1 : 0.450236966825 +2016-08-24 11:57:15,556 DEBUG: View 2 : 0.592417061611 +2016-08-24 11:57:15,566 DEBUG: View 3 : 0.563981042654 +2016-08-24 11:57:15,641 DEBUG: Best view : Methyl_ +2016-08-24 11:57:15,925 DEBUG: Start: Iteration 4 +2016-08-24 11:57:15,946 DEBUG: View 0 : 0.54028436019 +2016-08-24 11:57:15,958 DEBUG: View 1 : 0.630331753555 +2016-08-24 11:57:16,076 DEBUG: View 2 : 0.502369668246 +2016-08-24 11:57:16,085 DEBUG: View 3 : 0.625592417062 +2016-08-24 11:57:16,162 DEBUG: Best view : Clinic_ +2016-08-24 11:57:16,517 DEBUG: Start: Iteration 5 +2016-08-24 11:57:16,539 DEBUG: View 0 : 0.682464454976 +2016-08-24 11:57:16,551 DEBUG: View 1 : 0.720379146919 +2016-08-24 11:57:16,674 DEBUG: View 2 : 0.54028436019 +2016-08-24 11:57:16,684 DEBUG: View 3 : 0.57345971564 +2016-08-24 11:57:16,763 DEBUG: Best view : MiRNA__ +2016-08-24 11:57:17,203 DEBUG: Start: Iteration 6 +2016-08-24 11:57:17,226 DEBUG: View 0 : 0.521327014218 +2016-08-24 11:57:17,238 DEBUG: View 1 : 0.715639810427 +2016-08-24 11:57:17,363 DEBUG: View 2 : 0.630331753555 +2016-08-24 11:57:17,372 DEBUG: View 3 : 0.644549763033 +2016-08-24 11:57:17,454 DEBUG: Best view : MiRNA__ +2016-08-24 11:57:17,964 DEBUG: Start: Iteration 7 +2016-08-24 11:57:17,985 DEBUG: View 0 : 0.559241706161 +2016-08-24 11:57:17,997 DEBUG: View 1 : 0.398104265403 +2016-08-24 11:57:18,113 DEBUG: View 2 : 0.440758293839 +2016-08-24 11:57:18,123 DEBUG: View 3 : 0.715639810427 +2016-08-24 11:57:18,206 DEBUG: Best view : Clinic_ +2016-08-24 11:57:18,799 DEBUG: Start: Iteration 8 +2016-08-24 11:57:18,821 DEBUG: View 0 : 0.497630331754 +2016-08-24 11:57:18,833 DEBUG: View 1 : 0.502369668246 +2016-08-24 11:57:18,946 DEBUG: View 2 : 0.488151658768 +2016-08-24 11:57:18,955 DEBUG: View 3 : 0.654028436019 +2016-08-24 11:57:19,042 DEBUG: Best view : Clinic_ +2016-08-24 11:57:19,704 DEBUG: Start: Iteration 9 +2016-08-24 11:57:19,726 DEBUG: View 0 : 0.511848341232 +2016-08-24 11:57:19,736 DEBUG: View 1 : 0.635071090047 +2016-08-24 11:57:19,856 DEBUG: View 2 : 0.568720379147 +2016-08-24 11:57:19,866 DEBUG: View 3 : 0.687203791469 +2016-08-24 11:57:19,955 DEBUG: Best view : Clinic_ +2016-08-24 11:57:20,697 DEBUG: Start: Iteration 10 +2016-08-24 11:57:20,718 DEBUG: View 0 : 0.616113744076 +2016-08-24 11:57:20,730 DEBUG: View 1 : 0.630331753555 +2016-08-24 11:57:20,848 DEBUG: View 2 : 0.559241706161 +2016-08-24 11:57:20,857 DEBUG: View 3 : 0.597156398104 +2016-08-24 11:57:20,950 DEBUG: Best view : MiRNA__ +2016-08-24 11:57:21,773 DEBUG: Start: Iteration 11 +2016-08-24 11:57:21,795 DEBUG: View 0 : 0.379146919431 +2016-08-24 11:57:21,806 DEBUG: View 1 : 0.450236966825 +2016-08-24 11:57:21,923 DEBUG: View 2 : 0.554502369668 +2016-08-24 11:57:21,932 DEBUG: View 3 : 0.545023696682 +2016-08-24 11:57:22,027 DEBUG: Best view : Clinic_ +2016-08-24 11:57:22,922 DEBUG: Start: Iteration 12 +2016-08-24 11:57:22,944 DEBUG: View 0 : 0.601895734597 +2016-08-24 11:57:22,955 DEBUG: View 1 : 0.663507109005 +2016-08-24 11:57:23,071 DEBUG: View 2 : 0.563981042654 +2016-08-24 11:57:23,081 DEBUG: View 3 : 0.611374407583 +2016-08-24 11:57:23,178 DEBUG: Best view : MiRNA__ +2016-08-24 11:57:24,152 DEBUG: Start: Iteration 13 +2016-08-24 11:57:24,174 DEBUG: View 0 : 0.473933649289 +2016-08-24 11:57:24,185 DEBUG: View 1 : 0.682464454976 +2016-08-24 11:57:24,301 DEBUG: View 2 : 0.611374407583 +2016-08-24 11:57:24,311 DEBUG: View 3 : 0.60663507109 +2016-08-24 11:57:24,411 DEBUG: Best view : MiRNA__ +2016-08-24 11:57:25,461 DEBUG: Start: Iteration 14 +2016-08-24 11:57:25,482 DEBUG: View 0 : 0.630331753555 +2016-08-24 11:57:25,493 DEBUG: View 1 : 0.644549763033 +2016-08-24 11:57:25,610 DEBUG: View 2 : 0.60663507109 +2016-08-24 11:57:25,619 DEBUG: View 3 : 0.530805687204 +2016-08-24 11:57:25,722 DEBUG: Best view : Methyl_ +2016-08-24 11:57:26,857 DEBUG: Start: Iteration 15 +2016-08-24 11:57:26,878 DEBUG: View 0 : 0.502369668246 +2016-08-24 11:57:26,889 DEBUG: View 1 : 0.592417061611 +2016-08-24 11:57:27,009 DEBUG: View 2 : 0.578199052133 +2016-08-24 11:57:27,019 DEBUG: View 3 : 0.530805687204 +2016-08-24 11:57:27,123 DEBUG: Best view : RANSeq_ +2016-08-24 11:57:28,347 DEBUG: Start: Iteration 16 +2016-08-24 11:57:28,368 DEBUG: View 0 : 0.454976303318 +2016-08-24 11:57:28,379 DEBUG: View 1 : 0.535545023697 +2016-08-24 11:57:28,499 DEBUG: View 2 : 0.54028436019 +2016-08-24 11:57:28,509 DEBUG: View 3 : 0.668246445498 +2016-08-24 11:57:28,617 DEBUG: Best view : Clinic_ +2016-08-24 11:57:29,920 DEBUG: Start: Iteration 17 +2016-08-24 11:57:29,941 DEBUG: View 0 : 0.587677725118 +2016-08-24 11:57:29,952 DEBUG: View 1 : 0.511848341232 +2016-08-24 11:57:30,072 DEBUG: View 2 : 0.611374407583 +2016-08-24 11:57:30,081 DEBUG: View 3 : 0.601895734597 +2016-08-24 11:57:30,193 DEBUG: Best view : Clinic_ +2016-08-24 11:57:31,573 DEBUG: Start: Iteration 18 +2016-08-24 11:57:31,594 DEBUG: View 0 : 0.502369668246 +2016-08-24 11:57:31,605 DEBUG: View 1 : 0.682464454976 +2016-08-24 11:57:31,723 DEBUG: View 2 : 0.516587677725 +2016-08-24 11:57:31,732 DEBUG: View 3 : 0.587677725118 +2016-08-24 11:57:31,846 DEBUG: Best view : MiRNA__ +2016-08-24 11:57:33,303 DEBUG: Start: Iteration 19 +2016-08-24 11:57:33,324 DEBUG: View 0 : 0.60663507109 +2016-08-24 11:57:33,335 DEBUG: View 1 : 0.663507109005 +2016-08-24 11:57:33,455 DEBUG: View 2 : 0.454976303318 +2016-08-24 11:57:33,465 DEBUG: View 3 : 0.663507109005 +2016-08-24 11:57:33,582 DEBUG: Best view : Clinic_ +2016-08-24 11:57:35,115 DEBUG: Start: Iteration 20 +2016-08-24 11:57:35,137 DEBUG: View 0 : 0.658767772512 +2016-08-24 11:57:35,148 DEBUG: View 1 : 0.644549763033 +2016-08-24 11:57:35,256 DEBUG: View 2 : 0.630331753555 +2016-08-24 11:57:35,266 DEBUG: View 3 : 0.616113744076 +2016-08-24 11:57:35,390 DEBUG: Best view : Methyl_ +2016-08-24 11:57:37,005 DEBUG: Start: Iteration 21 +2016-08-24 11:57:37,026 DEBUG: View 0 : 0.60663507109 +2016-08-24 11:57:37,037 DEBUG: View 1 : 0.644549763033 +2016-08-24 11:57:37,153 DEBUG: View 2 : 0.582938388626 +2016-08-24 11:57:37,162 DEBUG: View 3 : 0.672985781991 +2016-08-24 11:57:37,285 DEBUG: Best view : Clinic_ +2016-08-24 11:57:38,978 DEBUG: Start: Iteration 22 +2016-08-24 11:57:38,999 DEBUG: View 0 : 0.658767772512 +2016-08-24 11:57:39,010 DEBUG: View 1 : 0.473933649289 +2016-08-24 11:57:39,131 DEBUG: View 2 : 0.601895734597 +2016-08-24 11:57:39,140 DEBUG: View 3 : 0.559241706161 +2016-08-24 11:57:39,265 DEBUG: Best view : Methyl_ +2016-08-24 11:57:41,041 DEBUG: Start: Iteration 23 +2016-08-24 11:57:41,063 DEBUG: View 0 : 0.630331753555 +2016-08-24 11:57:41,073 DEBUG: View 1 : 0.492890995261 +2016-08-24 11:57:41,179 DEBUG: View 2 : 0.592417061611 +2016-08-24 11:57:41,188 DEBUG: View 3 : 0.682464454976 +2016-08-24 11:57:41,317 DEBUG: Best view : Clinic_ +2016-08-24 11:57:43,177 DEBUG: Start: Iteration 24 +2016-08-24 11:57:43,198 DEBUG: View 0 : 0.417061611374 +2016-08-24 11:57:43,208 DEBUG: View 1 : 0.663507109005 +2016-08-24 11:57:43,329 DEBUG: View 2 : 0.57345971564 +2016-08-24 11:57:43,338 DEBUG: View 3 : 0.57345971564 +2016-08-24 11:57:43,468 DEBUG: Best view : MiRNA__ +2016-08-24 11:57:45,397 DEBUG: Start: Iteration 25 +2016-08-24 11:57:45,418 DEBUG: View 0 : 0.630331753555 +2016-08-24 11:57:45,428 DEBUG: View 1 : 0.388625592417 +2016-08-24 11:57:45,549 DEBUG: View 2 : 0.568720379147 +2016-08-24 11:57:45,558 DEBUG: View 3 : 0.63981042654 +2016-08-24 11:57:45,690 DEBUG: Best view : Clinic_ +2016-08-24 11:57:47,697 DEBUG: Start: Iteration 26 +2016-08-24 11:57:47,718 DEBUG: View 0 : 0.701421800948 +2016-08-24 11:57:47,727 DEBUG: View 1 : 0.388625592417 +2016-08-24 11:57:47,849 DEBUG: View 2 : 0.545023696682 +2016-08-24 11:57:47,859 DEBUG: View 3 : 0.616113744076 +2016-08-24 11:57:47,994 DEBUG: Best view : Methyl_ +2016-08-24 11:57:50,081 DEBUG: Start: Iteration 27 +2016-08-24 11:57:50,102 DEBUG: View 0 : 0.521327014218 +2016-08-24 11:57:50,112 DEBUG: View 1 : 0.744075829384 +2016-08-24 11:57:50,232 DEBUG: View 2 : 0.535545023697 +2016-08-24 11:57:50,241 DEBUG: View 3 : 0.611374407583 +2016-08-24 11:57:50,382 DEBUG: Best view : MiRNA__ +2016-08-24 11:57:52,548 DEBUG: Start: Iteration 28 +2016-08-24 11:57:52,569 DEBUG: View 0 : 0.725118483412 +2016-08-24 11:57:52,579 DEBUG: View 1 : 0.478672985782 +2016-08-24 11:57:52,696 DEBUG: View 2 : 0.473933649289 +2016-08-24 11:57:52,705 DEBUG: View 3 : 0.57345971564 +2016-08-24 11:57:52,847 DEBUG: Best view : Methyl_ +2016-08-24 11:57:55,093 DEBUG: Start: Iteration 29 +2016-08-24 11:57:55,114 DEBUG: View 0 : 0.473933649289 +2016-08-24 11:57:55,124 DEBUG: View 1 : 0.611374407583 +2016-08-24 11:57:55,243 DEBUG: View 2 : 0.587677725118 +2016-08-24 11:57:55,253 DEBUG: View 3 : 0.587677725118 +2016-08-24 11:57:55,398 DEBUG: Best view : Clinic_ +2016-08-24 11:57:57,716 DEBUG: Start: Iteration 30 +2016-08-24 11:57:57,737 DEBUG: View 0 : 0.516587677725 +2016-08-24 11:57:57,747 DEBUG: View 1 : 0.582938388626 +2016-08-24 11:57:57,864 DEBUG: View 2 : 0.625592417062 +2016-08-24 11:57:57,873 DEBUG: View 3 : 0.592417061611 +2016-08-24 11:57:58,023 DEBUG: Best view : RANSeq_ +2016-08-24 11:58:00,451 DEBUG: Start: Iteration 31 +2016-08-24 11:58:00,472 DEBUG: View 0 : 0.488151658768 +2016-08-24 11:58:00,482 DEBUG: View 1 : 0.677725118483 +2016-08-24 11:58:00,594 DEBUG: View 2 : 0.554502369668 +2016-08-24 11:58:00,604 DEBUG: View 3 : 0.530805687204 +2016-08-24 11:58:00,755 DEBUG: Best view : MiRNA__ +2016-08-24 11:58:03,265 DEBUG: Start: Iteration 32 +2016-08-24 11:58:03,287 DEBUG: View 0 : 0.507109004739 +2016-08-24 11:58:03,296 DEBUG: View 1 : 0.559241706161 +2016-08-24 11:58:03,410 DEBUG: View 2 : 0.587677725118 +2016-08-24 11:58:03,419 DEBUG: View 3 : 0.687203791469 +2016-08-24 11:58:03,573 DEBUG: Best view : Clinic_ +2016-08-24 11:58:06,148 DEBUG: Start: Iteration 33 +2016-08-24 11:58:06,168 DEBUG: View 0 : 0.545023696682 +2016-08-24 11:58:06,179 DEBUG: View 1 : 0.54028436019 +2016-08-24 11:58:06,300 DEBUG: View 2 : 0.644549763033 +2016-08-24 11:58:06,310 DEBUG: View 3 : 0.597156398104 +2016-08-24 11:58:06,465 DEBUG: Best view : RANSeq_ +2016-08-24 11:58:09,133 DEBUG: Start: Iteration 34 +2016-08-24 11:58:09,155 DEBUG: View 0 : 0.549763033175 +2016-08-24 11:58:09,164 DEBUG: View 1 : 0.407582938389 +2016-08-24 11:58:09,283 DEBUG: View 2 : 0.54028436019 +2016-08-24 11:58:09,292 DEBUG: View 3 : 0.507109004739 +2016-08-24 11:58:09,450 DEBUG: Best view : RANSeq_ +2016-08-24 11:58:12,216 DEBUG: Start: Iteration 35 +2016-08-24 11:58:12,237 DEBUG: View 0 : 0.582938388626 +2016-08-24 11:58:12,247 DEBUG: View 1 : 0.611374407583 +2016-08-24 11:58:12,360 DEBUG: View 2 : 0.559241706161 +2016-08-24 11:58:12,369 DEBUG: View 3 : 0.611374407583 +2016-08-24 11:58:12,530 DEBUG: Best view : Clinic_ +2016-08-24 11:58:15,378 DEBUG: Start: Iteration 36 +2016-08-24 11:58:15,399 DEBUG: View 0 : 0.473933649289 +2016-08-24 11:58:15,408 DEBUG: View 1 : 0.492890995261 +2016-08-24 11:58:15,522 DEBUG: View 2 : 0.635071090047 +2016-08-24 11:58:15,532 DEBUG: View 3 : 0.530805687204 +2016-08-24 11:58:15,696 DEBUG: Best view : RANSeq_ +2016-08-24 11:58:18,642 DEBUG: Start: Iteration 37 +2016-08-24 11:58:18,663 DEBUG: View 0 : 0.559241706161 +2016-08-24 11:58:18,673 DEBUG: View 1 : 0.511848341232 +2016-08-24 11:58:18,794 DEBUG: View 2 : 0.592417061611 +2016-08-24 11:58:18,803 DEBUG: View 3 : 0.545023696682 +2016-08-24 11:58:18,971 DEBUG: Best view : RANSeq_ +2016-08-24 11:58:22,000 DEBUG: Start: Iteration 38 +2016-08-24 11:58:22,021 DEBUG: View 0 : 0.549763033175 +2016-08-24 11:58:22,031 DEBUG: View 1 : 0.654028436019 +2016-08-24 11:58:22,156 DEBUG: View 2 : 0.549763033175 +2016-08-24 11:58:22,165 DEBUG: View 3 : 0.42654028436 +2016-08-24 11:58:22,335 DEBUG: Best view : MiRNA__ +2016-08-24 11:58:25,444 DEBUG: Start: Iteration 39 +2016-08-24 11:58:25,465 DEBUG: View 0 : 0.635071090047 +2016-08-24 11:58:25,475 DEBUG: View 1 : 0.838862559242 +2016-08-24 11:58:25,592 DEBUG: View 2 : 0.554502369668 +2016-08-24 11:58:25,601 DEBUG: View 3 : 0.526066350711 +2016-08-24 11:58:25,773 DEBUG: Best view : MiRNA__ +2016-08-24 11:58:28,956 DEBUG: Start: Iteration 40 +2016-08-24 11:58:28,978 DEBUG: View 0 : 0.421800947867 +2016-08-24 11:58:28,988 DEBUG: View 1 : 0.545023696682 +2016-08-24 11:58:29,112 DEBUG: View 2 : 0.568720379147 +2016-08-24 11:58:29,121 DEBUG: View 3 : 0.578199052133 +2016-08-24 11:58:29,297 DEBUG: Best view : Clinic_ +2016-08-24 11:58:32,559 DEBUG: Start: Iteration 41 +2016-08-24 11:58:32,580 DEBUG: View 0 : 0.559241706161 +2016-08-24 11:58:32,589 DEBUG: View 1 : 0.464454976303 +2016-08-24 11:58:32,706 DEBUG: View 2 : 0.601895734597 +2016-08-24 11:58:32,715 DEBUG: View 3 : 0.630331753555 +2016-08-24 11:58:32,893 DEBUG: Best view : Clinic_ +2016-08-24 11:58:36,238 DEBUG: Start: Iteration 42 +2016-08-24 11:58:36,259 DEBUG: View 0 : 0.54028436019 +2016-08-24 11:58:36,269 DEBUG: View 1 : 0.492890995261 +2016-08-24 11:58:36,391 DEBUG: View 2 : 0.563981042654 +2016-08-24 11:58:36,400 DEBUG: View 3 : 0.611374407583 +2016-08-24 11:58:36,581 DEBUG: Best view : Clinic_ +2016-08-24 11:58:40,001 DEBUG: Start: Iteration 43 +2016-08-24 11:58:40,022 DEBUG: View 0 : 0.511848341232 +2016-08-24 11:58:40,032 DEBUG: View 1 : 0.60663507109 +2016-08-24 11:58:40,150 DEBUG: View 2 : 0.57345971564 +2016-08-24 11:58:40,159 DEBUG: View 3 : 0.644549763033 +2016-08-24 11:58:40,346 DEBUG: Best view : Clinic_ +2016-08-24 11:58:43,845 DEBUG: Start: Iteration 44 +2016-08-24 11:58:43,866 DEBUG: View 0 : 0.63981042654 +2016-08-24 11:58:43,876 DEBUG: View 1 : 0.521327014218 +2016-08-24 11:58:43,997 DEBUG: View 2 : 0.568720379147 +2016-08-24 11:58:44,007 DEBUG: View 3 : 0.563981042654 +2016-08-24 11:58:44,194 DEBUG: Best view : Methyl_ +2016-08-24 11:58:47,769 DEBUG: Start: Iteration 45 +2016-08-24 11:58:47,790 DEBUG: View 0 : 0.597156398104 +2016-08-24 11:58:47,800 DEBUG: View 1 : 0.417061611374 +2016-08-24 11:58:47,921 DEBUG: View 2 : 0.635071090047 +2016-08-24 11:58:47,931 DEBUG: View 3 : 0.554502369668 +2016-08-24 11:58:48,122 DEBUG: Best view : RANSeq_ +2016-08-24 11:58:51,801 DEBUG: Start: Iteration 46 +2016-08-24 11:58:51,822 DEBUG: View 0 : 0.767772511848 +2016-08-24 11:58:51,832 DEBUG: View 1 : 0.516587677725 +2016-08-24 11:58:51,953 DEBUG: View 2 : 0.587677725118 +2016-08-24 11:58:51,962 DEBUG: View 3 : 0.511848341232 +2016-08-24 11:58:52,156 DEBUG: Best view : Methyl_ +2016-08-24 11:58:55,936 DEBUG: Start: Iteration 47 +2016-08-24 11:58:55,957 DEBUG: View 0 : 0.601895734597 +2016-08-24 11:58:55,967 DEBUG: View 1 : 0.663507109005 +2016-08-24 11:58:56,088 DEBUG: View 2 : 0.492890995261 +2016-08-24 11:58:56,097 DEBUG: View 3 : 0.578199052133 +2016-08-24 11:58:56,294 DEBUG: Best view : MiRNA__ +2016-08-24 11:59:00,122 DEBUG: Start: Iteration 48 +2016-08-24 11:59:00,144 DEBUG: View 0 : 0.57345971564 +2016-08-24 11:59:00,153 DEBUG: View 1 : 0.535545023697 +2016-08-24 11:59:00,265 DEBUG: View 2 : 0.582938388626 +2016-08-24 11:59:00,274 DEBUG: View 3 : 0.63981042654 +2016-08-24 11:59:00,473 DEBUG: Best view : Clinic_ +2016-08-24 11:59:04,401 DEBUG: Start: Iteration 49 +2016-08-24 11:59:04,422 DEBUG: View 0 : 0.587677725118 +2016-08-24 11:59:04,432 DEBUG: View 1 : 0.511848341232 +2016-08-24 11:59:04,563 DEBUG: View 2 : 0.545023696682 +2016-08-24 11:59:04,573 DEBUG: View 3 : 0.668246445498 +2016-08-24 11:59:04,783 DEBUG: Best view : Clinic_ +2016-08-24 11:59:08,788 DEBUG: Start: Iteration 50 +2016-08-24 11:59:08,810 DEBUG: View 0 : 0.578199052133 +2016-08-24 11:59:08,819 DEBUG: View 1 : 0.317535545024 +2016-08-24 11:59:08,939 DEBUG: View 2 : 0.587677725118 +2016-08-24 11:59:08,948 DEBUG: View 3 : 0.511848341232 +2016-08-24 11:59:09,155 DEBUG: Best view : RANSeq_ +2016-08-24 11:59:13,226 DEBUG: Start: Iteration 51 +2016-08-24 11:59:13,247 DEBUG: View 0 : 0.559241706161 +2016-08-24 11:59:13,257 DEBUG: View 1 : 0.526066350711 +2016-08-24 11:59:13,375 DEBUG: View 2 : 0.545023696682 +2016-08-24 11:59:13,384 DEBUG: View 3 : 0.530805687204 +2016-08-24 11:59:13,595 DEBUG: Best view : RANSeq_ +2016-08-24 11:59:17,767 DEBUG: Start: Iteration 52 +2016-08-24 11:59:17,788 DEBUG: View 0 : 0.549763033175 +2016-08-24 11:59:17,798 DEBUG: View 1 : 0.488151658768 +2016-08-24 11:59:17,910 DEBUG: View 2 : 0.611374407583 +2016-08-24 11:59:17,919 DEBUG: View 3 : 0.578199052133 +2016-08-24 11:59:18,133 DEBUG: Best view : RANSeq_ +2016-08-24 11:59:22,394 DEBUG: Start: Iteration 53 +2016-08-24 11:59:22,415 DEBUG: View 0 : 0.492890995261 +2016-08-24 11:59:22,425 DEBUG: View 1 : 0.582938388626 +2016-08-24 11:59:22,545 DEBUG: View 2 : 0.649289099526 +2016-08-24 11:59:22,555 DEBUG: View 3 : 0.663507109005 +2016-08-24 11:59:22,768 DEBUG: Best view : Clinic_ +2016-08-24 11:59:27,110 DEBUG: Start: Iteration 54 +2016-08-24 11:59:27,131 DEBUG: View 0 : 0.554502369668 +2016-08-24 11:59:27,141 DEBUG: View 1 : 0.620853080569 +2016-08-24 11:59:27,262 DEBUG: View 2 : 0.60663507109 +2016-08-24 11:59:27,272 DEBUG: View 3 : 0.630331753555 +2016-08-24 11:59:27,488 DEBUG: Best view : Clinic_ +2016-08-24 11:59:31,904 DEBUG: Start: Iteration 55 +2016-08-24 11:59:31,925 DEBUG: View 0 : 0.592417061611 +2016-08-24 11:59:31,935 DEBUG: View 1 : 0.436018957346 +2016-08-24 11:59:32,054 DEBUG: View 2 : 0.60663507109 +2016-08-24 11:59:32,064 DEBUG: View 3 : 0.554502369668 +2016-08-24 11:59:32,283 DEBUG: Best view : RANSeq_ +2016-08-24 11:59:36,798 DEBUG: Start: Iteration 56 +2016-08-24 11:59:36,819 DEBUG: View 0 : 0.616113744076 +2016-08-24 11:59:36,829 DEBUG: View 1 : 0.383886255924 +2016-08-24 11:59:36,947 DEBUG: View 2 : 0.559241706161 +2016-08-24 11:59:36,956 DEBUG: View 3 : 0.658767772512 +2016-08-24 11:59:37,178 DEBUG: Best view : Clinic_ +2016-08-24 11:59:41,766 DEBUG: Start: Iteration 57 +2016-08-24 11:59:41,787 DEBUG: View 0 : 0.559241706161 +2016-08-24 11:59:41,796 DEBUG: View 1 : 0.592417061611 +2016-08-24 11:59:41,913 DEBUG: View 2 : 0.587677725118 +2016-08-24 11:59:41,922 DEBUG: View 3 : 0.582938388626 +2016-08-24 11:59:42,148 DEBUG: Best view : Clinic_ +2016-08-24 11:59:46,820 DEBUG: Start: Iteration 58 +2016-08-24 11:59:46,841 DEBUG: View 0 : 0.57345971564 +2016-08-24 11:59:46,851 DEBUG: View 1 : 0.478672985782 +2016-08-24 11:59:46,973 DEBUG: View 2 : 0.563981042654 +2016-08-24 11:59:46,982 DEBUG: View 3 : 0.630331753555 +2016-08-24 11:59:47,211 DEBUG: Best view : Clinic_ +2016-08-24 11:59:51,954 DEBUG: Start: Iteration 59 +2016-08-24 11:59:51,975 DEBUG: View 0 : 0.582938388626 +2016-08-24 11:59:51,985 DEBUG: View 1 : 0.625592417062 +2016-08-24 11:59:52,105 DEBUG: View 2 : 0.592417061611 +2016-08-24 11:59:52,115 DEBUG: View 3 : 0.464454976303 +2016-08-24 11:59:52,344 DEBUG: Best view : MiRNA__ +2016-08-24 11:59:57,158 DEBUG: Start: Iteration 60 +2016-08-24 11:59:57,179 DEBUG: View 0 : 0.644549763033 +2016-08-24 11:59:57,189 DEBUG: View 1 : 0.582938388626 +2016-08-24 11:59:57,305 DEBUG: View 2 : 0.530805687204 +2016-08-24 11:59:57,314 DEBUG: View 3 : 0.521327014218 +2016-08-24 11:59:57,548 DEBUG: Best view : Methyl_ +2016-08-24 12:00:02,454 DEBUG: Start: Iteration 61 +2016-08-24 12:00:02,476 DEBUG: View 0 : 0.492890995261 +2016-08-24 12:00:02,485 DEBUG: View 1 : 0.545023696682 +2016-08-24 12:00:02,603 DEBUG: View 2 : 0.568720379147 +2016-08-24 12:00:02,613 DEBUG: View 3 : 0.549763033175 +2016-08-24 12:00:02,847 DEBUG: Best view : RANSeq_ +2016-08-24 12:00:07,853 DEBUG: Start: Iteration 62 +2016-08-24 12:00:07,875 DEBUG: View 0 : 0.388625592417 +2016-08-24 12:00:07,885 DEBUG: View 1 : 0.691943127962 +2016-08-24 12:00:08,001 DEBUG: View 2 : 0.63981042654 +2016-08-24 12:00:08,011 DEBUG: View 3 : 0.635071090047 +2016-08-24 12:00:08,248 DEBUG: Best view : MiRNA__ +2016-08-24 12:00:13,319 DEBUG: Start: Iteration 63 +2016-08-24 12:00:13,340 DEBUG: View 0 : 0.563981042654 +2016-08-24 12:00:13,350 DEBUG: View 1 : 0.63981042654 +2016-08-24 12:00:13,468 DEBUG: View 2 : 0.554502369668 +2016-08-24 12:00:13,478 DEBUG: View 3 : 0.530805687204 +2016-08-24 12:00:13,717 DEBUG: Best view : MiRNA__ +2016-08-24 12:00:18,868 DEBUG: Start: Iteration 64 +2016-08-24 12:00:18,889 DEBUG: View 0 : 0.492890995261 +2016-08-24 12:00:18,899 DEBUG: View 1 : 0.559241706161 +2016-08-24 12:00:19,016 DEBUG: View 2 : 0.473933649289 +2016-08-24 12:00:19,025 DEBUG: View 3 : 0.715639810427 +2016-08-24 12:00:19,268 DEBUG: Best view : Clinic_ +2016-08-24 12:00:24,514 DEBUG: Start: Iteration 65 +2016-08-24 12:00:24,535 DEBUG: View 0 : 0.526066350711 +2016-08-24 12:00:24,545 DEBUG: View 1 : 0.668246445498 +2016-08-24 12:00:24,657 DEBUG: View 2 : 0.545023696682 +2016-08-24 12:00:24,667 DEBUG: View 3 : 0.654028436019 +2016-08-24 12:00:24,914 DEBUG: Best view : Clinic_ +2016-08-24 12:00:30,236 DEBUG: Start: Iteration 66 +2016-08-24 12:00:30,257 DEBUG: View 0 : 0.649289099526 +2016-08-24 12:00:30,267 DEBUG: View 1 : 0.421800947867 +2016-08-24 12:00:30,388 DEBUG: View 2 : 0.611374407583 +2016-08-24 12:00:30,397 DEBUG: View 3 : 0.473933649289 +2016-08-24 12:00:30,649 DEBUG: Best view : Methyl_ +2016-08-24 12:00:36,037 DEBUG: Start: Iteration 67 +2016-08-24 12:00:36,058 DEBUG: View 0 : 0.644549763033 +2016-08-24 12:00:36,068 DEBUG: View 1 : 0.668246445498 +2016-08-24 12:00:36,184 DEBUG: View 2 : 0.582938388626 +2016-08-24 12:00:36,193 DEBUG: View 3 : 0.57345971564 +2016-08-24 12:00:36,445 DEBUG: Best view : MiRNA__ +2016-08-24 12:00:41,924 DEBUG: Start: Iteration 68 +2016-08-24 12:00:41,945 DEBUG: View 0 : 0.568720379147 +2016-08-24 12:00:41,955 DEBUG: View 1 : 0.649289099526 +2016-08-24 12:00:42,071 DEBUG: View 2 : 0.57345971564 +2016-08-24 12:00:42,080 DEBUG: View 3 : 0.60663507109 +2016-08-24 12:00:42,335 DEBUG: Best view : MiRNA__ +2016-08-24 12:00:47,885 DEBUG: Start: Iteration 69 +2016-08-24 12:00:47,907 DEBUG: View 0 : 0.45971563981 +2016-08-24 12:00:47,916 DEBUG: View 1 : 0.706161137441 +2016-08-24 12:00:48,034 DEBUG: View 2 : 0.60663507109 +2016-08-24 12:00:48,043 DEBUG: View 3 : 0.672985781991 +2016-08-24 12:00:48,301 DEBUG: Best view : MiRNA__ +2016-08-24 12:00:53,925 DEBUG: Start: Iteration 70 +2016-08-24 12:00:53,946 DEBUG: View 0 : 0.587677725118 +2016-08-24 12:00:53,955 DEBUG: View 1 : 0.60663507109 +2016-08-24 12:00:54,077 DEBUG: View 2 : 0.654028436019 +2016-08-24 12:00:54,086 DEBUG: View 3 : 0.635071090047 +2016-08-24 12:00:54,348 DEBUG: Best view : RANSeq_ +2016-08-24 12:01:00,090 DEBUG: Start: Iteration 71 +2016-08-24 12:01:00,111 DEBUG: View 0 : 0.511848341232 +2016-08-24 12:01:00,121 DEBUG: View 1 : 0.729857819905 +2016-08-24 12:01:00,238 DEBUG: View 2 : 0.559241706161 +2016-08-24 12:01:00,247 DEBUG: View 3 : 0.687203791469 +2016-08-24 12:01:00,509 DEBUG: Best view : MiRNA__ +2016-08-24 12:01:06,310 DEBUG: Start: Iteration 72 +2016-08-24 12:01:06,331 DEBUG: View 0 : 0.630331753555 +2016-08-24 12:01:06,341 DEBUG: View 1 : 0.388625592417 +2016-08-24 12:01:06,454 DEBUG: View 2 : 0.60663507109 +2016-08-24 12:01:06,463 DEBUG: View 3 : 0.597156398104 +2016-08-24 12:01:06,728 DEBUG: Best view : Methyl_ +2016-08-24 12:01:12,616 DEBUG: Start: Iteration 73 +2016-08-24 12:01:12,637 DEBUG: View 0 : 0.701421800948 +2016-08-24 12:01:12,647 DEBUG: View 1 : 0.691943127962 +2016-08-24 12:01:12,765 DEBUG: View 2 : 0.578199052133 +2016-08-24 12:01:12,774 DEBUG: View 3 : 0.710900473934 +2016-08-24 12:01:13,045 DEBUG: Best view : Clinic_ +2016-08-24 12:01:19,004 DEBUG: Start: Iteration 74 +2016-08-24 12:01:19,025 DEBUG: View 0 : 0.578199052133 +2016-08-24 12:01:19,035 DEBUG: View 1 : 0.559241706161 +2016-08-24 12:01:19,156 DEBUG: View 2 : 0.587677725118 +2016-08-24 12:01:19,165 DEBUG: View 3 : 0.677725118483 +2016-08-24 12:01:19,437 DEBUG: Best view : Clinic_ +2016-08-24 12:01:25,474 DEBUG: Start: Iteration 75 +2016-08-24 12:01:25,495 DEBUG: View 0 : 0.601895734597 +2016-08-24 12:01:25,505 DEBUG: View 1 : 0.649289099526 +2016-08-24 12:01:25,617 DEBUG: View 2 : 0.549763033175 +2016-08-24 12:01:25,626 DEBUG: View 3 : 0.521327014218 +2016-08-24 12:01:25,899 DEBUG: Best view : MiRNA__ +2016-08-24 12:01:32,011 DEBUG: Start: Iteration 76 +2016-08-24 12:01:32,032 DEBUG: View 0 : 0.559241706161 +2016-08-24 12:01:32,042 DEBUG: View 1 : 0.549763033175 +2016-08-24 12:01:32,155 DEBUG: View 2 : 0.582938388626 +2016-08-24 12:01:32,164 DEBUG: View 3 : 0.530805687204 +2016-08-24 12:01:32,442 DEBUG: Best view : RANSeq_ +2016-08-24 12:01:38,648 DEBUG: Start: Iteration 77 +2016-08-24 12:01:38,669 DEBUG: View 0 : 0.620853080569 +2016-08-24 12:01:38,679 DEBUG: View 1 : 0.620853080569 +2016-08-24 12:01:38,796 DEBUG: View 2 : 0.559241706161 +2016-08-24 12:01:38,805 DEBUG: View 3 : 0.601895734597 +2016-08-24 12:01:39,085 DEBUG: Best view : Clinic_ +2016-08-24 12:01:45,370 DEBUG: Start: Iteration 78 +2016-08-24 12:01:45,392 DEBUG: View 0 : 0.42654028436 +2016-08-24 12:01:45,401 DEBUG: View 1 : 0.440758293839 +2016-08-24 12:01:45,518 DEBUG: View 2 : 0.597156398104 +2016-08-24 12:01:45,528 DEBUG: View 3 : 0.715639810427 +2016-08-24 12:01:45,810 DEBUG: Best view : Clinic_ +2016-08-24 12:01:52,166 DEBUG: Start: Iteration 79 +2016-08-24 12:01:52,187 DEBUG: View 0 : 0.649289099526 +2016-08-24 12:01:52,196 DEBUG: View 1 : 0.63981042654 +2016-08-24 12:01:52,314 DEBUG: View 2 : 0.545023696682 +2016-08-24 12:01:52,323 DEBUG: View 3 : 0.478672985782 +2016-08-24 12:01:52,609 DEBUG: Best view : Methyl_ +2016-08-24 12:01:59,070 DEBUG: Start: Iteration 80 +2016-08-24 12:01:59,092 DEBUG: View 0 : 0.568720379147 +2016-08-24 12:01:59,101 DEBUG: View 1 : 0.469194312796 +2016-08-24 12:01:59,214 DEBUG: View 2 : 0.530805687204 +2016-08-24 12:01:59,223 DEBUG: View 3 : 0.649289099526 +2016-08-24 12:01:59,513 DEBUG: Best view : Clinic_ +2016-08-24 12:02:06,043 DEBUG: Start: Iteration 81 +2016-08-24 12:02:06,064 DEBUG: View 0 : 0.654028436019 +2016-08-24 12:02:06,074 DEBUG: View 1 : 0.644549763033 +2016-08-24 12:02:06,186 DEBUG: View 2 : 0.597156398104 +2016-08-24 12:02:06,195 DEBUG: View 3 : 0.63981042654 +2016-08-24 12:02:06,487 DEBUG: Best view : Clinic_ +2016-08-24 12:02:13,114 DEBUG: Start: Iteration 82 +2016-08-24 12:02:13,136 DEBUG: View 0 : 0.502369668246 +2016-08-24 12:02:13,146 DEBUG: View 1 : 0.36018957346 +2016-08-24 12:02:13,274 DEBUG: View 2 : 0.526066350711 +2016-08-24 12:02:13,284 DEBUG: View 3 : 0.63981042654 +2016-08-24 12:02:13,581 DEBUG: Best view : Clinic_ +2016-08-24 12:02:20,360 DEBUG: Start: Iteration 83 +2016-08-24 12:02:20,381 DEBUG: View 0 : 0.502369668246 +2016-08-24 12:02:20,391 DEBUG: View 1 : 0.654028436019 +2016-08-24 12:02:20,515 DEBUG: View 2 : 0.492890995261 +2016-08-24 12:02:20,524 DEBUG: View 3 : 0.563981042654 +2016-08-24 12:02:20,828 DEBUG: Best view : MiRNA__ +2016-08-24 12:02:27,746 DEBUG: Start: Iteration 84 +2016-08-24 12:02:27,767 DEBUG: View 0 : 0.57345971564 +2016-08-24 12:02:27,777 DEBUG: View 1 : 0.582938388626 +2016-08-24 12:02:27,933 DEBUG: View 2 : 0.592417061611 +2016-08-24 12:02:27,942 DEBUG: View 3 : 0.530805687204 +2016-08-24 12:02:28,242 DEBUG: Best view : RANSeq_ +2016-08-24 12:02:35,093 DEBUG: Start: Iteration 85 +2016-08-24 12:02:35,114 DEBUG: View 0 : 0.649289099526 +2016-08-24 12:02:35,124 DEBUG: View 1 : 0.63981042654 +2016-08-24 12:02:35,242 DEBUG: View 2 : 0.526066350711 +2016-08-24 12:02:35,251 DEBUG: View 3 : 0.431279620853 +2016-08-24 12:02:35,553 DEBUG: Best view : Methyl_ +2016-08-24 12:02:42,467 DEBUG: Start: Iteration 86 +2016-08-24 12:02:42,488 DEBUG: View 0 : 0.601895734597 +2016-08-24 12:02:42,498 DEBUG: View 1 : 0.431279620853 +2016-08-24 12:02:42,619 DEBUG: View 2 : 0.587677725118 +2016-08-24 12:02:42,628 DEBUG: View 3 : 0.530805687204 +2016-08-24 12:02:42,932 DEBUG: Best view : RANSeq_ +2016-08-24 12:02:49,946 DEBUG: Start: Iteration 87 +2016-08-24 12:02:49,965 DEBUG: View 0 : 0.369668246445 +2016-08-24 12:02:49,975 DEBUG: View 1 : 0.54028436019 +2016-08-24 12:02:50,088 DEBUG: View 2 : 0.63981042654 +2016-08-24 12:02:50,098 DEBUG: View 3 : 0.578199052133 +2016-08-24 12:02:50,405 DEBUG: Best view : RANSeq_ +2016-08-24 12:02:57,532 DEBUG: Start: Iteration 88 +2016-08-24 12:02:57,553 DEBUG: View 0 : 0.436018957346 +2016-08-24 12:02:57,563 DEBUG: View 1 : 0.587677725118 +2016-08-24 12:02:57,676 DEBUG: View 2 : 0.568720379147 +2016-08-24 12:02:57,685 DEBUG: View 3 : 0.644549763033 +2016-08-24 12:02:57,995 DEBUG: Best view : Clinic_ +2016-08-24 12:03:05,188 DEBUG: Start: Iteration 89 +2016-08-24 12:03:05,209 DEBUG: View 0 : 0.60663507109 +2016-08-24 12:03:05,219 DEBUG: View 1 : 0.663507109005 +2016-08-24 12:03:05,332 DEBUG: View 2 : 0.559241706161 +2016-08-24 12:03:05,342 DEBUG: View 3 : 0.578199052133 +2016-08-24 12:03:05,655 DEBUG: Best view : MiRNA__ +2016-08-24 12:03:12,949 DEBUG: Start: Iteration 90 +2016-08-24 12:03:12,969 DEBUG: View 0 : 0.597156398104 +2016-08-24 12:03:12,979 DEBUG: View 1 : 0.563981042654 +2016-08-24 12:03:13,100 DEBUG: View 2 : 0.582938388626 +2016-08-24 12:03:13,109 DEBUG: View 3 : 0.559241706161 +2016-08-24 12:03:13,425 DEBUG: Best view : Methyl_ +2016-08-24 12:03:20,775 DEBUG: Start: Iteration 91 +2016-08-24 12:03:20,796 DEBUG: View 0 : 0.497630331754 +2016-08-24 12:03:20,806 DEBUG: View 1 : 0.60663507109 +2016-08-24 12:03:20,925 DEBUG: View 2 : 0.597156398104 +2016-08-24 12:03:20,934 DEBUG: View 3 : 0.582938388626 +2016-08-24 12:03:21,297 DEBUG: Best view : RANSeq_ +2016-08-24 12:03:28,741 DEBUG: Start: Iteration 92 +2016-08-24 12:03:28,762 DEBUG: View 0 : 0.54028436019 +2016-08-24 12:03:28,772 DEBUG: View 1 : 0.587677725118 +2016-08-24 12:03:28,877 DEBUG: View 2 : 0.587677725118 +2016-08-24 12:03:28,886 DEBUG: View 3 : 0.549763033175 +2016-08-24 12:03:29,206 DEBUG: Best view : MiRNA__ +2016-08-24 12:03:36,720 DEBUG: Start: Iteration 93 +2016-08-24 12:03:36,741 DEBUG: View 0 : 0.473933649289 +2016-08-24 12:03:36,751 DEBUG: View 1 : 0.616113744076 +2016-08-24 12:03:36,873 DEBUG: View 2 : 0.60663507109 +2016-08-24 12:03:36,882 DEBUG: View 3 : 0.635071090047 +2016-08-24 12:03:37,206 DEBUG: Best view : Clinic_ +2016-08-24 12:03:44,800 DEBUG: Start: Iteration 94 +2016-08-24 12:03:44,822 DEBUG: View 0 : 0.469194312796 +2016-08-24 12:03:44,831 DEBUG: View 1 : 0.578199052133 +2016-08-24 12:03:44,953 DEBUG: View 2 : 0.616113744076 +2016-08-24 12:03:44,962 DEBUG: View 3 : 0.663507109005 +2016-08-24 12:03:45,290 DEBUG: Best view : Clinic_ +2016-08-24 12:03:52,966 DEBUG: Start: Iteration 95 +2016-08-24 12:03:52,988 DEBUG: View 0 : 0.530805687204 +2016-08-24 12:03:52,997 DEBUG: View 1 : 0.687203791469 +2016-08-24 12:03:53,118 DEBUG: View 2 : 0.63981042654 +2016-08-24 12:03:53,128 DEBUG: View 3 : 0.587677725118 +2016-08-24 12:03:53,458 DEBUG: Best view : MiRNA__ +2016-08-24 12:04:01,211 DEBUG: Start: Iteration 96 +2016-08-24 12:04:01,232 DEBUG: View 0 : 0.469194312796 +2016-08-24 12:04:01,242 DEBUG: View 1 : 0.601895734597 +2016-08-24 12:04:01,350 DEBUG: View 2 : 0.611374407583 +2016-08-24 12:04:01,359 DEBUG: View 3 : 0.635071090047 +2016-08-24 12:04:01,694 DEBUG: Best view : Clinic_ +2016-08-24 12:04:09,530 DEBUG: Start: Iteration 97 +2016-08-24 12:04:09,552 DEBUG: View 0 : 0.488151658768 +2016-08-24 12:04:09,563 DEBUG: View 1 : 0.436018957346 +2016-08-24 12:04:09,681 DEBUG: View 2 : 0.658767772512 +2016-08-24 12:04:09,690 DEBUG: View 3 : 0.630331753555 +2016-08-24 12:04:10,026 DEBUG: Best view : RANSeq_ +2016-08-24 12:04:17,961 DEBUG: Start: Iteration 98 +2016-08-24 12:04:17,982 DEBUG: View 0 : 0.464454976303 +2016-08-24 12:04:17,992 DEBUG: View 1 : 0.545023696682 +2016-08-24 12:04:18,109 DEBUG: View 2 : 0.578199052133 +2016-08-24 12:04:18,118 DEBUG: View 3 : 0.526066350711 +2016-08-24 12:04:18,456 DEBUG: Best view : RANSeq_ +2016-08-24 12:04:26,502 DEBUG: Start: Iteration 99 +2016-08-24 12:04:26,523 DEBUG: View 0 : 0.563981042654 +2016-08-24 12:04:26,533 DEBUG: View 1 : 0.630331753555 +2016-08-24 12:04:26,641 DEBUG: View 2 : 0.625592417062 +2016-08-24 12:04:26,651 DEBUG: View 3 : 0.530805687204 +2016-08-24 12:04:26,992 DEBUG: Best view : RANSeq_ +2016-08-24 12:04:35,093 DEBUG: Start: Iteration 100 +2016-08-24 12:04:35,115 DEBUG: View 0 : 0.63981042654 +2016-08-24 12:04:35,125 DEBUG: View 1 : 0.450236966825 +2016-08-24 12:04:35,244 DEBUG: View 2 : 0.57345971564 +2016-08-24 12:04:35,254 DEBUG: View 3 : 0.554502369668 +2016-08-24 12:04:35,597 DEBUG: Best view : Methyl_ +2016-08-24 12:04:43,787 DEBUG: Start: Iteration 101 +2016-08-24 12:04:43,808 DEBUG: View 0 : 0.57345971564 +2016-08-24 12:04:43,818 DEBUG: View 1 : 0.587677725118 +2016-08-24 12:04:43,934 DEBUG: View 2 : 0.535545023697 +2016-08-24 12:04:43,943 DEBUG: View 3 : 0.568720379147 +2016-08-24 12:04:44,291 DEBUG: Best view : MiRNA__ +2016-08-24 12:04:52,538 DEBUG: Start: Iteration 102 +2016-08-24 12:04:52,559 DEBUG: View 0 : 0.507109004739 +2016-08-24 12:04:52,568 DEBUG: View 1 : 0.597156398104 +2016-08-24 12:04:52,681 DEBUG: View 2 : 0.559241706161 +2016-08-24 12:04:52,690 DEBUG: View 3 : 0.559241706161 +2016-08-24 12:04:53,040 DEBUG: Best view : MiRNA__ +2016-08-24 12:05:01,389 DEBUG: Start: Iteration 103 +2016-08-24 12:05:01,411 DEBUG: View 0 : 0.616113744076 +2016-08-24 12:05:01,421 DEBUG: View 1 : 0.545023696682 +2016-08-24 12:05:01,540 DEBUG: View 2 : 0.625592417062 +2016-08-24 12:05:01,549 DEBUG: View 3 : 0.635071090047 +2016-08-24 12:05:01,901 DEBUG: Best view : Clinic_ +2016-08-24 12:05:10,323 DEBUG: Start: Iteration 104 +2016-08-24 12:05:10,344 DEBUG: View 0 : 0.511848341232 +2016-08-24 12:05:10,354 DEBUG: View 1 : 0.483412322275 +2016-08-24 12:05:10,473 DEBUG: View 2 : 0.601895734597 +2016-08-24 12:05:10,482 DEBUG: View 3 : 0.535545023697 +2016-08-24 12:05:10,838 DEBUG: Best view : RANSeq_ +2016-08-24 12:05:19,346 DEBUG: Start: Iteration 105 +2016-08-24 12:05:19,367 DEBUG: View 0 : 0.601895734597 +2016-08-24 12:05:19,377 DEBUG: View 1 : 0.625592417062 +2016-08-24 12:05:19,491 DEBUG: View 2 : 0.526066350711 +2016-08-24 12:05:19,500 DEBUG: View 3 : 0.616113744076 +2016-08-24 12:05:19,859 DEBUG: Best view : Clinic_ +2016-08-24 12:05:28,447 DEBUG: Start: Iteration 106 +2016-08-24 12:05:28,468 DEBUG: View 0 : 0.601895734597 +2016-08-24 12:05:28,478 DEBUG: View 1 : 0.507109004739 +2016-08-24 12:05:28,592 DEBUG: View 2 : 0.582938388626 +2016-08-24 12:05:28,601 DEBUG: View 3 : 0.54028436019 +2016-08-24 12:05:28,962 DEBUG: Best view : RANSeq_ +2016-08-24 12:05:37,647 DEBUG: Start: Iteration 107 +2016-08-24 12:05:37,668 DEBUG: View 0 : 0.601895734597 +2016-08-24 12:05:37,678 DEBUG: View 1 : 0.57345971564 +2016-08-24 12:05:37,800 DEBUG: View 2 : 0.625592417062 +2016-08-24 12:05:37,809 DEBUG: View 3 : 0.578199052133 +2016-08-24 12:05:38,173 DEBUG: Best view : RANSeq_ +2016-08-24 12:05:46,950 DEBUG: Start: Iteration 108 +2016-08-24 12:05:46,971 DEBUG: View 0 : 0.630331753555 +2016-08-24 12:05:46,981 DEBUG: View 1 : 0.60663507109 +2016-08-24 12:05:47,093 DEBUG: View 2 : 0.625592417062 +2016-08-24 12:05:47,102 DEBUG: View 3 : 0.715639810427 +2016-08-24 12:05:47,469 DEBUG: Best view : Clinic_ +2016-08-24 12:05:56,315 DEBUG: Start: Iteration 109 +2016-08-24 12:05:56,336 DEBUG: View 0 : 0.649289099526 +2016-08-24 12:05:56,345 DEBUG: View 1 : 0.582938388626 +2016-08-24 12:05:56,462 DEBUG: View 2 : 0.644549763033 +2016-08-24 12:05:56,471 DEBUG: View 3 : 0.57345971564 +2016-08-24 12:05:56,844 DEBUG: Best view : RANSeq_ +2016-08-24 12:06:05,777 DEBUG: Start: Iteration 110 +2016-08-24 12:06:05,798 DEBUG: View 0 : 0.568720379147 +2016-08-24 12:06:05,808 DEBUG: View 1 : 0.526066350711 +2016-08-24 12:06:05,930 DEBUG: View 2 : 0.535545023697 +2016-08-24 12:06:05,939 DEBUG: View 3 : 0.57345971564 +2016-08-24 12:06:06,312 DEBUG: Best view : Clinic_ +2016-08-24 12:06:15,323 DEBUG: Start: Iteration 111 +2016-08-24 12:06:15,344 DEBUG: View 0 : 0.568720379147 +2016-08-24 12:06:15,354 DEBUG: View 1 : 0.545023696682 +2016-08-24 12:06:15,478 DEBUG: View 2 : 0.649289099526 +2016-08-24 12:06:15,488 DEBUG: View 3 : 0.60663507109 +2016-08-24 12:06:15,862 DEBUG: Best view : RANSeq_ +2016-08-24 12:06:24,977 DEBUG: Start: Iteration 112 +2016-08-24 12:06:24,998 DEBUG: View 0 : 0.502369668246 +2016-08-24 12:06:25,008 DEBUG: View 1 : 0.563981042654 +2016-08-24 12:06:25,132 DEBUG: View 2 : 0.54028436019 +2016-08-24 12:06:25,141 DEBUG: View 3 : 0.587677725118 +2016-08-24 12:06:25,522 DEBUG: Best view : Clinic_ +2016-08-24 12:06:34,714 DEBUG: Start: Iteration 113 +2016-08-24 12:06:34,735 DEBUG: View 0 : 0.568720379147 +2016-08-24 12:06:34,744 DEBUG: View 1 : 0.507109004739 +2016-08-24 12:06:34,868 DEBUG: View 2 : 0.582938388626 +2016-08-24 12:06:34,877 DEBUG: View 3 : 0.63981042654 +2016-08-24 12:06:35,257 DEBUG: Best view : Clinic_ +2016-08-24 12:06:44,518 DEBUG: Start: Iteration 114 +2016-08-24 12:06:44,539 DEBUG: View 0 : 0.445497630332 +2016-08-24 12:06:44,548 DEBUG: View 1 : 0.597156398104 +2016-08-24 12:06:44,669 DEBUG: View 2 : 0.563981042654 +2016-08-24 12:06:44,679 DEBUG: View 3 : 0.611374407583 +2016-08-24 12:06:45,064 DEBUG: Best view : Clinic_ +2016-08-24 12:06:54,444 DEBUG: Start: Iteration 115 +2016-08-24 12:06:54,465 DEBUG: View 0 : 0.526066350711 +2016-08-24 12:06:54,475 DEBUG: View 1 : 0.63981042654 +2016-08-24 12:06:54,593 DEBUG: View 2 : 0.554502369668 +2016-08-24 12:06:54,602 DEBUG: View 3 : 0.554502369668 +2016-08-24 12:06:54,988 DEBUG: Best view : MiRNA__ +2016-08-24 12:07:04,409 DEBUG: Start: Iteration 116 +2016-08-24 12:07:04,431 DEBUG: View 0 : 0.60663507109 +2016-08-24 12:07:04,441 DEBUG: View 1 : 0.734597156398 +2016-08-24 12:07:04,563 DEBUG: View 2 : 0.582938388626 +2016-08-24 12:07:04,572 DEBUG: View 3 : 0.587677725118 +2016-08-24 12:07:04,967 DEBUG: Best view : MiRNA__ +2016-08-24 12:07:14,506 DEBUG: Start: Iteration 117 +2016-08-24 12:07:14,527 DEBUG: View 0 : 0.545023696682 +2016-08-24 12:07:14,537 DEBUG: View 1 : 0.611374407583 +2016-08-24 12:07:14,654 DEBUG: View 2 : 0.60663507109 +2016-08-24 12:07:14,663 DEBUG: View 3 : 0.530805687204 +2016-08-24 12:07:15,054 DEBUG: Best view : RANSeq_ +2016-08-24 12:07:24,664 DEBUG: Start: Iteration 118 +2016-08-24 12:07:24,686 DEBUG: View 0 : 0.649289099526 +2016-08-24 12:07:24,695 DEBUG: View 1 : 0.42654028436 +2016-08-24 12:07:24,813 DEBUG: View 2 : 0.582938388626 +2016-08-24 12:07:24,823 DEBUG: View 3 : 0.620853080569 +2016-08-24 12:07:25,216 DEBUG: Best view : Methyl_ +2016-08-24 12:07:34,886 DEBUG: Start: Iteration 119 +2016-08-24 12:07:34,908 DEBUG: View 0 : 0.592417061611 +2016-08-24 12:07:34,918 DEBUG: View 1 : 0.649289099526 +2016-08-24 12:07:35,044 DEBUG: View 2 : 0.601895734597 +2016-08-24 12:07:35,053 DEBUG: View 3 : 0.601895734597 +2016-08-24 12:07:35,452 DEBUG: Best view : MiRNA__ +2016-08-24 12:07:45,211 DEBUG: Start: Iteration 120 +2016-08-24 12:07:45,232 DEBUG: View 0 : 0.545023696682 +2016-08-24 12:07:45,242 DEBUG: View 1 : 0.677725118483 +2016-08-24 12:07:45,365 DEBUG: View 2 : 0.511848341232 +2016-08-24 12:07:45,375 DEBUG: View 3 : 0.563981042654 +2016-08-24 12:07:45,780 DEBUG: Best view : MiRNA__ +2016-08-24 12:07:55,605 DEBUG: Start: Iteration 121 +2016-08-24 12:07:55,625 DEBUG: View 0 : 0.511848341232 +2016-08-24 12:07:55,635 DEBUG: View 1 : 0.578199052133 +2016-08-24 12:07:55,752 DEBUG: View 2 : 0.554502369668 +2016-08-24 12:07:55,761 DEBUG: View 3 : 0.57345971564 +2016-08-24 12:07:56,167 DEBUG: Best view : Clinic_ +2016-08-24 12:08:06,056 DEBUG: Start: Iteration 122 +2016-08-24 12:08:06,077 DEBUG: View 0 : 0.587677725118 +2016-08-24 12:08:06,087 DEBUG: View 1 : 0.611374407583 +2016-08-24 12:08:06,205 DEBUG: View 2 : 0.511848341232 +2016-08-24 12:08:06,215 DEBUG: View 3 : 0.526066350711 +2016-08-24 12:08:06,620 DEBUG: Best view : MiRNA__ +2016-08-24 12:08:16,607 DEBUG: Start: Iteration 123 +2016-08-24 12:08:16,628 DEBUG: View 0 : 0.511848341232 +2016-08-24 12:08:16,638 DEBUG: View 1 : 0.511848341232 +2016-08-24 12:08:16,760 DEBUG: View 2 : 0.530805687204 +2016-08-24 12:08:16,769 DEBUG: View 3 : 0.568720379147 +2016-08-24 12:08:17,180 DEBUG: Best view : Clinic_ +2016-08-24 12:08:27,249 DEBUG: Start: Iteration 124 +2016-08-24 12:08:27,270 DEBUG: View 0 : 0.545023696682 +2016-08-24 12:08:27,280 DEBUG: View 1 : 0.668246445498 +2016-08-24 12:08:27,393 DEBUG: View 2 : 0.57345971564 +2016-08-24 12:08:27,403 DEBUG: View 3 : 0.592417061611 +2016-08-24 12:08:27,816 DEBUG: Best view : MiRNA__ +2016-08-24 12:08:37,964 DEBUG: Start: Iteration 125 +2016-08-24 12:08:37,985 DEBUG: View 0 : 0.620853080569 +2016-08-24 12:08:37,995 DEBUG: View 1 : 0.57345971564 +2016-08-24 12:08:38,112 DEBUG: View 2 : 0.630331753555 +2016-08-24 12:08:38,121 DEBUG: View 3 : 0.654028436019 +2016-08-24 12:08:38,538 DEBUG: Best view : Clinic_ +2016-08-24 12:08:48,754 DEBUG: Start: Iteration 126 +2016-08-24 12:08:48,775 DEBUG: View 0 : 0.402843601896 +2016-08-24 12:08:48,785 DEBUG: View 1 : 0.644549763033 +2016-08-24 12:08:48,897 DEBUG: View 2 : 0.545023696682 +2016-08-24 12:08:48,906 DEBUG: View 3 : 0.672985781991 +2016-08-24 12:08:49,326 DEBUG: Best view : Clinic_ +2016-08-24 12:08:59,605 DEBUG: Start: Iteration 127 +2016-08-24 12:08:59,626 DEBUG: View 0 : 0.663507109005 +2016-08-24 12:08:59,636 DEBUG: View 1 : 0.578199052133 +2016-08-24 12:08:59,753 DEBUG: View 2 : 0.587677725118 +2016-08-24 12:08:59,763 DEBUG: View 3 : 0.568720379147 +2016-08-24 12:09:00,192 DEBUG: Best view : Methyl_ +2016-08-24 12:09:10,552 DEBUG: Start: Iteration 128 +2016-08-24 12:09:10,573 DEBUG: View 0 : 0.672985781991 +2016-08-24 12:09:10,583 DEBUG: View 1 : 0.710900473934 +2016-08-24 12:09:10,705 DEBUG: View 2 : 0.502369668246 +2016-08-24 12:09:10,714 DEBUG: View 3 : 0.568720379147 +2016-08-24 12:09:11,139 DEBUG: Best view : MiRNA__ +2016-08-24 12:09:21,574 DEBUG: Start: Iteration 129 +2016-08-24 12:09:21,595 DEBUG: View 0 : 0.663507109005 +2016-08-24 12:09:21,605 DEBUG: View 1 : 0.497630331754 +2016-08-24 12:09:21,726 DEBUG: View 2 : 0.57345971564 +2016-08-24 12:09:21,735 DEBUG: View 3 : 0.644549763033 +2016-08-24 12:09:22,164 DEBUG: Best view : Methyl_ +2016-08-24 12:09:32,723 DEBUG: Start: Iteration 130 +2016-08-24 12:09:32,744 DEBUG: View 0 : 0.611374407583 +2016-08-24 12:09:32,754 DEBUG: View 1 : 0.616113744076 +2016-08-24 12:09:32,869 DEBUG: View 2 : 0.530805687204 +2016-08-24 12:09:32,878 DEBUG: View 3 : 0.644549763033 +2016-08-24 12:09:33,308 DEBUG: Best view : Clinic_ +2016-08-24 12:09:43,918 DEBUG: Start: Iteration 131 +2016-08-24 12:09:43,939 DEBUG: View 0 : 0.554502369668 +2016-08-24 12:09:43,949 DEBUG: View 1 : 0.554502369668 +2016-08-24 12:09:44,068 DEBUG: View 2 : 0.545023696682 +2016-08-24 12:09:44,077 DEBUG: View 3 : 0.616113744076 +2016-08-24 12:09:44,512 DEBUG: Best view : Clinic_ +2016-08-24 12:09:55,225 DEBUG: Start: Iteration 132 +2016-08-24 12:09:55,246 DEBUG: View 0 : 0.563981042654 +2016-08-24 12:09:55,256 DEBUG: View 1 : 0.36018957346 +2016-08-24 12:09:55,373 DEBUG: View 2 : 0.530805687204 +2016-08-24 12:09:55,383 DEBUG: View 3 : 0.625592417062 +2016-08-24 12:09:55,820 DEBUG: Best view : Clinic_ +2016-08-24 12:10:06,593 DEBUG: Start: Iteration 133 +2016-08-24 12:10:06,614 DEBUG: View 0 : 0.530805687204 +2016-08-24 12:10:06,624 DEBUG: View 1 : 0.488151658768 +2016-08-24 12:10:06,736 DEBUG: View 2 : 0.545023696682 +2016-08-24 12:10:06,746 DEBUG: View 3 : 0.710900473934 +2016-08-24 12:10:07,184 DEBUG: Best view : Clinic_ +2016-08-24 12:10:18,015 DEBUG: Start: Iteration 134 +2016-08-24 12:10:18,036 DEBUG: View 0 : 0.440758293839 +2016-08-24 12:10:18,046 DEBUG: View 1 : 0.677725118483 +2016-08-24 12:10:18,166 DEBUG: View 2 : 0.578199052133 +2016-08-24 12:10:18,175 DEBUG: View 3 : 0.530805687204 +2016-08-24 12:10:18,618 DEBUG: Best view : MiRNA__ +2016-08-24 12:10:29,538 DEBUG: Start: Iteration 135 +2016-08-24 12:10:29,560 DEBUG: View 0 : 0.45971563981 +2016-08-24 12:10:29,569 DEBUG: View 1 : 0.601895734597 +2016-08-24 12:10:29,693 DEBUG: View 2 : 0.502369668246 +2016-08-24 12:10:29,702 DEBUG: View 3 : 0.597156398104 +2016-08-24 12:10:30,148 DEBUG: Best view : Clinic_ +2016-08-24 12:10:41,135 DEBUG: Start: Iteration 136 +2016-08-24 12:10:41,156 DEBUG: View 0 : 0.483412322275 +2016-08-24 12:10:41,165 DEBUG: View 1 : 0.710900473934 +2016-08-24 12:10:41,284 DEBUG: View 2 : 0.535545023697 +2016-08-24 12:10:41,293 DEBUG: View 3 : 0.511848341232 +2016-08-24 12:10:41,741 DEBUG: Best view : MiRNA__ +2016-08-24 12:10:52,818 DEBUG: Start: Iteration 137 +2016-08-24 12:10:52,841 DEBUG: View 0 : 0.549763033175 +2016-08-24 12:10:52,850 DEBUG: View 1 : 0.554502369668 +2016-08-24 12:10:52,964 DEBUG: View 2 : 0.469194312796 +2016-08-24 12:10:52,974 DEBUG: View 3 : 0.516587677725 +2016-08-24 12:10:53,424 DEBUG: Best view : Methyl_ +2016-08-24 12:11:04,593 DEBUG: Start: Iteration 138 +2016-08-24 12:11:04,614 DEBUG: View 0 : 0.473933649289 +2016-08-24 12:11:04,624 DEBUG: View 1 : 0.701421800948 +2016-08-24 12:11:04,741 DEBUG: View 2 : 0.54028436019 +2016-08-24 12:11:04,751 DEBUG: View 3 : 0.644549763033 +2016-08-24 12:11:05,209 DEBUG: Best view : MiRNA__ +2016-08-24 12:11:16,483 DEBUG: Start: Iteration 139 +2016-08-24 12:11:16,504 DEBUG: View 0 : 0.502369668246 +2016-08-24 12:11:16,513 DEBUG: View 1 : 0.341232227488 +2016-08-24 12:11:16,631 DEBUG: View 2 : 0.554502369668 +2016-08-24 12:11:16,640 DEBUG: View 3 : 0.578199052133 +2016-08-24 12:11:17,099 DEBUG: Best view : Clinic_ +2016-08-24 12:11:28,407 DEBUG: Start: Iteration 140 +2016-08-24 12:11:28,428 DEBUG: View 0 : 0.658767772512 +2016-08-24 12:11:28,437 DEBUG: View 1 : 0.530805687204 +2016-08-24 12:11:28,550 DEBUG: View 2 : 0.578199052133 +2016-08-24 12:11:28,559 DEBUG: View 3 : 0.511848341232 +2016-08-24 12:11:29,017 DEBUG: Best view : Methyl_ +2016-08-24 12:11:40,402 DEBUG: Start: Iteration 141 +2016-08-24 12:11:40,424 DEBUG: View 0 : 0.535545023697 +2016-08-24 12:11:40,434 DEBUG: View 1 : 0.526066350711 +2016-08-24 12:11:40,555 DEBUG: View 2 : 0.554502369668 +2016-08-24 12:11:40,564 DEBUG: View 3 : 0.672985781991 +2016-08-24 12:11:41,028 DEBUG: Best view : Clinic_ +2016-08-24 12:11:52,497 DEBUG: Start: Iteration 142 +2016-08-24 12:11:52,519 DEBUG: View 0 : 0.511848341232 +2016-08-24 12:11:52,528 DEBUG: View 1 : 0.60663507109 +2016-08-24 12:11:52,637 DEBUG: View 2 : 0.559241706161 +2016-08-24 12:11:52,646 DEBUG: View 3 : 0.526066350711 +2016-08-24 12:11:53,112 DEBUG: Best view : MiRNA__ +2016-08-24 12:12:04,623 DEBUG: Start: Iteration 143 +2016-08-24 12:12:04,644 DEBUG: View 0 : 0.57345971564 +2016-08-24 12:12:04,654 DEBUG: View 1 : 0.483412322275 +2016-08-24 12:12:04,776 DEBUG: View 2 : 0.54028436019 +2016-08-24 12:12:04,786 DEBUG: View 3 : 0.616113744076 +2016-08-24 12:12:05,252 DEBUG: Best view : Clinic_ +2016-08-24 12:12:16,866 DEBUG: Start: Iteration 144 +2016-08-24 12:12:16,887 DEBUG: View 0 : 0.526066350711 +2016-08-24 12:12:16,897 DEBUG: View 1 : 0.388625592417 +2016-08-24 12:12:17,016 DEBUG: View 2 : 0.54028436019 +2016-08-24 12:12:17,025 DEBUG: View 3 : 0.521327014218 +2016-08-24 12:12:17,502 DEBUG: Best view : RANSeq_ +2016-08-24 12:12:29,210 DEBUG: Start: Iteration 145 +2016-08-24 12:12:29,231 DEBUG: View 0 : 0.450236966825 +2016-08-24 12:12:29,241 DEBUG: View 1 : 0.620853080569 +2016-08-24 12:12:29,354 DEBUG: View 2 : 0.554502369668 +2016-08-24 12:12:29,364 DEBUG: View 3 : 0.511848341232 +2016-08-24 12:12:29,840 DEBUG: Best view : MiRNA__ +2016-08-24 12:12:41,619 DEBUG: Start: Iteration 146 +2016-08-24 12:12:41,641 DEBUG: View 0 : 0.654028436019 +2016-08-24 12:12:41,650 DEBUG: View 1 : 0.511848341232 +2016-08-24 12:12:41,771 DEBUG: View 2 : 0.592417061611 +2016-08-24 12:12:41,780 DEBUG: View 3 : 0.625592417062 +2016-08-24 12:12:42,255 DEBUG: Best view : Methyl_ +2016-08-24 12:12:54,122 DEBUG: Start: Iteration 147 +2016-08-24 12:12:54,143 DEBUG: View 0 : 0.729857819905 +2016-08-24 12:12:54,153 DEBUG: View 1 : 0.421800947867 +2016-08-24 12:12:54,271 DEBUG: View 2 : 0.592417061611 +2016-08-24 12:12:54,281 DEBUG: View 3 : 0.592417061611 +2016-08-24 12:12:54,761 DEBUG: Best view : Methyl_ +2016-08-24 12:13:06,717 DEBUG: Start: Iteration 148 +2016-08-24 12:13:06,738 DEBUG: View 0 : 0.616113744076 +2016-08-24 12:13:06,748 DEBUG: View 1 : 0.696682464455 +2016-08-24 12:13:06,866 DEBUG: View 2 : 0.54028436019 +2016-08-24 12:13:06,875 DEBUG: View 3 : 0.611374407583 +2016-08-24 12:13:07,360 DEBUG: Best view : MiRNA__ +2016-08-24 12:13:19,413 DEBUG: Start: Iteration 149 +2016-08-24 12:13:19,435 DEBUG: View 0 : 0.601895734597 +2016-08-24 12:13:19,444 DEBUG: View 1 : 0.672985781991 +2016-08-24 12:13:19,567 DEBUG: View 2 : 0.526066350711 +2016-08-24 12:13:19,576 DEBUG: View 3 : 0.554502369668 +2016-08-24 12:13:20,060 DEBUG: Best view : MiRNA__ +2016-08-24 12:13:32,162 DEBUG: Start: Iteration 150 +2016-08-24 12:13:32,183 DEBUG: View 0 : 0.42654028436 +2016-08-24 12:13:32,193 DEBUG: View 1 : 0.530805687204 +2016-08-24 12:13:32,314 DEBUG: View 2 : 0.620853080569 +2016-08-24 12:13:32,324 DEBUG: View 3 : 0.691943127962 +2016-08-24 12:13:32,822 DEBUG: Best view : Clinic_ +2016-08-24 12:13:45,034 DEBUG: Start: Iteration 151 +2016-08-24 12:13:45,056 DEBUG: View 0 : 0.57345971564 +2016-08-24 12:13:45,066 DEBUG: View 1 : 0.412322274882 +2016-08-24 12:13:45,192 DEBUG: View 2 : 0.563981042654 +2016-08-24 12:13:45,201 DEBUG: View 3 : 0.597156398104 +2016-08-24 12:13:45,693 DEBUG: Best view : Clinic_ +2016-08-24 12:13:57,957 DEBUG: Start: Iteration 152 +2016-08-24 12:13:57,979 DEBUG: View 0 : 0.530805687204 +2016-08-24 12:13:57,988 DEBUG: View 1 : 0.549763033175 +2016-08-24 12:13:58,111 DEBUG: View 2 : 0.616113744076 +2016-08-24 12:13:58,120 DEBUG: View 3 : 0.592417061611 +2016-08-24 12:13:58,616 DEBUG: Best view : RANSeq_ +2016-08-24 12:14:10,970 DEBUG: Start: Iteration 153 +2016-08-24 12:14:10,991 DEBUG: View 0 : 0.616113744076 +2016-08-24 12:14:11,001 DEBUG: View 1 : 0.57345971564 +2016-08-24 12:14:11,123 DEBUG: View 2 : 0.54028436019 +2016-08-24 12:14:11,133 DEBUG: View 3 : 0.530805687204 +2016-08-24 12:14:11,628 DEBUG: Best view : Methyl_ +2016-08-24 12:14:24,069 DEBUG: Start: Iteration 154 +2016-08-24 12:14:24,090 DEBUG: View 0 : 0.630331753555 +2016-08-24 12:14:24,100 DEBUG: View 1 : 0.682464454976 +2016-08-24 12:14:24,218 DEBUG: View 2 : 0.60663507109 +2016-08-24 12:14:24,227 DEBUG: View 3 : 0.601895734597 +2016-08-24 12:14:24,731 DEBUG: Best view : MiRNA__ +2016-08-24 12:14:37,258 DEBUG: Start: Iteration 155 +2016-08-24 12:14:37,279 DEBUG: View 0 : 0.592417061611 +2016-08-24 12:14:37,288 DEBUG: View 1 : 0.483412322275 +2016-08-24 12:14:37,409 DEBUG: View 2 : 0.554502369668 +2016-08-24 12:14:37,418 DEBUG: View 3 : 0.672985781991 +2016-08-24 12:14:37,917 DEBUG: Best view : Clinic_ +2016-08-24 12:14:50,508 DEBUG: Start: Iteration 156 +2016-08-24 12:14:50,529 DEBUG: View 0 : 0.549763033175 +2016-08-24 12:14:50,539 DEBUG: View 1 : 0.625592417062 +2016-08-24 12:14:50,655 DEBUG: View 2 : 0.530805687204 +2016-08-24 12:14:50,664 DEBUG: View 3 : 0.549763033175 +2016-08-24 12:14:51,169 DEBUG: Best view : MiRNA__ +2016-08-24 12:15:03,825 DEBUG: Start: Iteration 157 +2016-08-24 12:15:03,846 DEBUG: View 0 : 0.507109004739 +2016-08-24 12:15:03,855 DEBUG: View 1 : 0.592417061611 +2016-08-24 12:15:03,972 DEBUG: View 2 : 0.511848341232 +2016-08-24 12:15:03,981 DEBUG: View 3 : 0.535545023697 +2016-08-24 12:15:04,489 DEBUG: Best view : MiRNA__ +2016-08-24 12:15:17,235 DEBUG: Start: Iteration 158 +2016-08-24 12:15:17,257 DEBUG: View 0 : 0.526066350711 +2016-08-24 12:15:17,266 DEBUG: View 1 : 0.60663507109 +2016-08-24 12:15:17,384 DEBUG: View 2 : 0.625592417062 +2016-08-24 12:15:17,394 DEBUG: View 3 : 0.54028436019 +2016-08-24 12:15:17,905 DEBUG: Best view : RANSeq_ +2016-08-24 12:15:30,740 DEBUG: Start: Iteration 159 +2016-08-24 12:15:30,761 DEBUG: View 0 : 0.658767772512 +2016-08-24 12:15:30,771 DEBUG: View 1 : 0.710900473934 +2016-08-24 12:15:30,890 DEBUG: View 2 : 0.559241706161 +2016-08-24 12:15:30,899 DEBUG: View 3 : 0.663507109005 +2016-08-24 12:15:31,411 DEBUG: Best view : MiRNA__ +2016-08-24 12:15:44,313 DEBUG: Start: Iteration 160 +2016-08-24 12:15:44,334 DEBUG: View 0 : 0.568720379147 +2016-08-24 12:15:44,344 DEBUG: View 1 : 0.597156398104 +2016-08-24 12:15:44,470 DEBUG: View 2 : 0.57345971564 +2016-08-24 12:15:44,479 DEBUG: View 3 : 0.578199052133 +2016-08-24 12:15:44,994 DEBUG: Best view : Clinic_ +2016-08-24 12:15:58,000 DEBUG: Start: Iteration 161 +2016-08-24 12:15:58,021 DEBUG: View 0 : 0.815165876777 +2016-08-24 12:15:58,031 DEBUG: View 1 : 0.45971563981 +2016-08-24 12:15:58,144 DEBUG: View 2 : 0.597156398104 +2016-08-24 12:15:58,153 DEBUG: View 3 : 0.582938388626 +2016-08-24 12:15:58,671 DEBUG: Best view : Methyl_ +2016-08-24 12:16:11,725 DEBUG: Start: Iteration 162 +2016-08-24 12:16:11,746 DEBUG: View 0 : 0.578199052133 +2016-08-24 12:16:11,756 DEBUG: View 1 : 0.549763033175 +2016-08-24 12:16:11,873 DEBUG: View 2 : 0.521327014218 +2016-08-24 12:16:11,882 DEBUG: View 3 : 0.559241706161 +2016-08-24 12:16:12,403 DEBUG: Best view : Methyl_ +2016-08-24 12:16:25,556 DEBUG: Start: Iteration 163 +2016-08-24 12:16:25,577 DEBUG: View 0 : 0.464454976303 +2016-08-24 12:16:25,586 DEBUG: View 1 : 0.549763033175 +2016-08-24 12:16:25,707 DEBUG: View 2 : 0.454976303318 +2016-08-24 12:16:25,716 DEBUG: View 3 : 0.563981042654 +2016-08-24 12:16:26,241 DEBUG: Best view : Clinic_ +2016-08-24 12:16:39,475 DEBUG: Start: Iteration 164 +2016-08-24 12:16:39,497 DEBUG: View 0 : 0.625592417062 +2016-08-24 12:16:39,506 DEBUG: View 1 : 0.545023696682 +2016-08-24 12:16:39,619 DEBUG: View 2 : 0.635071090047 +2016-08-24 12:16:39,628 DEBUG: View 3 : 0.521327014218 +2016-08-24 12:16:40,153 DEBUG: Best view : RANSeq_ +2016-08-24 12:16:53,496 DEBUG: Start: Iteration 165 +2016-08-24 12:16:53,517 DEBUG: View 0 : 0.568720379147 +2016-08-24 12:16:53,527 DEBUG: View 1 : 0.635071090047 +2016-08-24 12:16:53,645 DEBUG: View 2 : 0.568720379147 +2016-08-24 12:16:53,654 DEBUG: View 3 : 0.687203791469 +2016-08-24 12:16:54,187 DEBUG: Best view : Clinic_ +2016-08-24 12:17:07,598 DEBUG: Start: Iteration 166 +2016-08-24 12:17:07,619 DEBUG: View 0 : 0.436018957346 +2016-08-24 12:17:07,629 DEBUG: View 1 : 0.563981042654 +2016-08-24 12:17:07,735 DEBUG: View 2 : 0.578199052133 +2016-08-24 12:17:07,744 DEBUG: View 3 : 0.478672985782 +2016-08-24 12:17:08,276 DEBUG: Best view : RANSeq_ +2016-08-24 12:17:21,774 DEBUG: Start: Iteration 167 +2016-08-24 12:17:21,796 DEBUG: View 0 : 0.473933649289 +2016-08-24 12:17:21,805 DEBUG: View 1 : 0.42654028436 +2016-08-24 12:17:21,922 DEBUG: View 2 : 0.545023696682 +2016-08-24 12:17:21,931 DEBUG: View 3 : 0.672985781991 +2016-08-24 12:17:22,467 DEBUG: Best view : Clinic_ +2016-08-24 12:17:36,030 DEBUG: Start: Iteration 168 +2016-08-24 12:17:36,051 DEBUG: View 0 : 0.251184834123 +2016-08-24 12:17:36,061 DEBUG: View 1 : 0.597156398104 +2016-08-24 12:17:36,181 DEBUG: View 2 : 0.530805687204 +2016-08-24 12:17:36,190 DEBUG: View 3 : 0.511848341232 +2016-08-24 12:17:36,730 DEBUG: Best view : MiRNA__ +2016-08-24 12:17:50,379 DEBUG: Start: Iteration 169 +2016-08-24 12:17:50,400 DEBUG: View 0 : 0.483412322275 +2016-08-24 12:17:50,410 DEBUG: View 1 : 0.45971563981 +2016-08-24 12:17:50,528 DEBUG: View 2 : 0.616113744076 +2016-08-24 12:17:50,537 DEBUG: View 3 : 0.578199052133 +2016-08-24 12:17:51,078 DEBUG: Best view : RANSeq_ +2016-08-24 12:18:04,862 DEBUG: Start: Iteration 170 +2016-08-24 12:18:04,884 DEBUG: View 0 : 0.559241706161 +2016-08-24 12:18:04,894 DEBUG: View 1 : 0.649289099526 +2016-08-24 12:18:05,012 DEBUG: View 2 : 0.559241706161 +2016-08-24 12:18:05,021 DEBUG: View 3 : 0.630331753555 +2016-08-24 12:18:05,570 DEBUG: Best view : MiRNA__ +2016-08-24 12:18:19,413 DEBUG: Start: Iteration 171 +2016-08-24 12:18:19,434 DEBUG: View 0 : 0.36018957346 +2016-08-24 12:18:19,444 DEBUG: View 1 : 0.511848341232 +2016-08-24 12:18:19,561 DEBUG: View 2 : 0.530805687204 +2016-08-24 12:18:19,570 DEBUG: View 3 : 0.601895734597 +2016-08-24 12:18:20,121 DEBUG: Best view : Clinic_ +2016-08-24 12:18:34,055 DEBUG: Start: Iteration 172 +2016-08-24 12:18:34,076 DEBUG: View 0 : 0.672985781991 +2016-08-24 12:18:34,085 DEBUG: View 1 : 0.497630331754 +2016-08-24 12:18:34,207 DEBUG: View 2 : 0.635071090047 +2016-08-24 12:18:34,216 DEBUG: View 3 : 0.658767772512 +2016-08-24 12:18:34,767 DEBUG: Best view : Clinic_ +2016-08-24 12:18:48,760 DEBUG: Start: Iteration 173 +2016-08-24 12:18:48,781 DEBUG: View 0 : 0.54028436019 +2016-08-24 12:18:48,790 DEBUG: View 1 : 0.473933649289 +2016-08-24 12:18:48,903 DEBUG: View 2 : 0.592417061611 +2016-08-24 12:18:48,912 DEBUG: View 3 : 0.597156398104 +2016-08-24 12:18:49,465 DEBUG: Best view : Clinic_ +2016-08-24 12:19:03,546 DEBUG: Start: Iteration 174 +2016-08-24 12:19:03,567 DEBUG: View 0 : 0.436018957346 +2016-08-24 12:19:03,577 DEBUG: View 1 : 0.488151658768 +2016-08-24 12:19:03,694 DEBUG: View 2 : 0.535545023697 +2016-08-24 12:19:03,704 DEBUG: View 3 : 0.616113744076 +2016-08-24 12:19:04,260 DEBUG: Best view : Clinic_ +2016-08-24 12:19:18,387 DEBUG: Start: Iteration 175 +2016-08-24 12:19:18,408 DEBUG: View 0 : 0.620853080569 +2016-08-24 12:19:18,417 DEBUG: View 1 : 0.578199052133 +2016-08-24 12:19:18,530 DEBUG: View 2 : 0.592417061611 +2016-08-24 12:19:18,539 DEBUG: View 3 : 0.57345971564 +2016-08-24 12:19:19,102 DEBUG: Best view : Methyl_ +2016-08-24 12:19:33,321 DEBUG: Start: Iteration 176 +2016-08-24 12:19:33,343 DEBUG: View 0 : 0.611374407583 +2016-08-24 12:19:33,353 DEBUG: View 1 : 0.355450236967 +2016-08-24 12:19:33,475 DEBUG: View 2 : 0.545023696682 +2016-08-24 12:19:33,484 DEBUG: View 3 : 0.635071090047 +2016-08-24 12:19:34,046 DEBUG: Best view : Clinic_ +2016-08-24 12:19:48,336 DEBUG: Start: Iteration 177 +2016-08-24 12:19:48,357 DEBUG: View 0 : 0.559241706161 +2016-08-24 12:19:48,367 DEBUG: View 1 : 0.516587677725 +2016-08-24 12:19:48,483 DEBUG: View 2 : 0.616113744076 +2016-08-24 12:19:48,492 DEBUG: View 3 : 0.691943127962 +2016-08-24 12:19:49,059 DEBUG: Best view : Clinic_ +2016-08-24 12:20:03,424 DEBUG: Start: Iteration 178 +2016-08-24 12:20:03,446 DEBUG: View 0 : 0.620853080569 +2016-08-24 12:20:03,455 DEBUG: View 1 : 0.668246445498 +2016-08-24 12:20:03,569 DEBUG: View 2 : 0.521327014218 +2016-08-24 12:20:03,578 DEBUG: View 3 : 0.549763033175 +2016-08-24 12:20:04,145 DEBUG: Best view : MiRNA__ +2016-08-24 12:20:18,599 DEBUG: Start: Iteration 179 +2016-08-24 12:20:18,620 DEBUG: View 0 : 0.578199052133 +2016-08-24 12:20:18,629 DEBUG: View 1 : 0.625592417062 +2016-08-24 12:20:18,751 DEBUG: View 2 : 0.60663507109 +2016-08-24 12:20:18,760 DEBUG: View 3 : 0.710900473934 +2016-08-24 12:20:19,336 DEBUG: Best view : Clinic_ +2016-08-24 12:20:33,854 DEBUG: Start: Iteration 180 +2016-08-24 12:20:33,875 DEBUG: View 0 : 0.511848341232 +2016-08-24 12:20:33,884 DEBUG: View 1 : 0.611374407583 +2016-08-24 12:20:34,004 DEBUG: View 2 : 0.507109004739 +2016-08-24 12:20:34,013 DEBUG: View 3 : 0.663507109005 +2016-08-24 12:20:34,586 DEBUG: Best view : Clinic_ +2016-08-24 12:20:49,180 DEBUG: Start: Iteration 181 +2016-08-24 12:20:49,201 DEBUG: View 0 : 0.45971563981 +2016-08-24 12:20:49,211 DEBUG: View 1 : 0.383886255924 +2016-08-24 12:20:49,328 DEBUG: View 2 : 0.568720379147 +2016-08-24 12:20:49,338 DEBUG: View 3 : 0.710900473934 +2016-08-24 12:20:49,925 DEBUG: Best view : Clinic_ +2016-08-24 12:21:04,606 DEBUG: Start: Iteration 182 +2016-08-24 12:21:04,628 DEBUG: View 0 : 0.587677725118 +2016-08-24 12:21:04,637 DEBUG: View 1 : 0.582938388626 +2016-08-24 12:21:04,757 DEBUG: View 2 : 0.530805687204 +2016-08-24 12:21:04,766 DEBUG: View 3 : 0.559241706161 +2016-08-24 12:21:05,345 DEBUG: Best view : Clinic_ +2016-08-24 12:21:20,109 DEBUG: Start: Iteration 183 +2016-08-24 12:21:20,131 DEBUG: View 0 : 0.696682464455 +2016-08-24 12:21:20,140 DEBUG: View 1 : 0.625592417062 +2016-08-24 12:21:20,257 DEBUG: View 2 : 0.521327014218 +2016-08-24 12:21:20,266 DEBUG: View 3 : 0.587677725118 +2016-08-24 12:21:20,850 DEBUG: Best view : Methyl_ +2016-08-24 12:21:35,677 DEBUG: Start: Iteration 184 +2016-08-24 12:21:35,698 DEBUG: View 0 : 0.483412322275 +2016-08-24 12:21:35,708 DEBUG: View 1 : 0.620853080569 +2016-08-24 12:21:35,825 DEBUG: View 2 : 0.563981042654 +2016-08-24 12:21:35,835 DEBUG: View 3 : 0.54028436019 +2016-08-24 12:21:36,423 DEBUG: Best view : MiRNA__ +2016-08-24 12:21:51,330 DEBUG: Start: Iteration 185 +2016-08-24 12:21:51,351 DEBUG: View 0 : 0.635071090047 +2016-08-24 12:21:51,361 DEBUG: View 1 : 0.706161137441 +2016-08-24 12:21:51,480 DEBUG: View 2 : 0.616113744076 +2016-08-24 12:21:51,490 DEBUG: View 3 : 0.54028436019 +2016-08-24 12:21:52,074 DEBUG: Best view : MiRNA__ +2016-08-24 12:22:07,069 DEBUG: Start: Iteration 186 +2016-08-24 12:22:07,090 DEBUG: View 0 : 0.545023696682 +2016-08-24 12:22:07,100 DEBUG: View 1 : 0.45971563981 +2016-08-24 12:22:07,220 DEBUG: View 2 : 0.60663507109 +2016-08-24 12:22:07,229 DEBUG: View 3 : 0.530805687204 +2016-08-24 12:22:07,825 DEBUG: Best view : RANSeq_ +2016-08-24 12:22:22,929 DEBUG: Start: Iteration 187 +2016-08-24 12:22:22,950 DEBUG: View 0 : 0.672985781991 +2016-08-24 12:22:22,959 DEBUG: View 1 : 0.725118483412 +2016-08-24 12:22:23,078 DEBUG: View 2 : 0.592417061611 +2016-08-24 12:22:23,088 DEBUG: View 3 : 0.620853080569 +2016-08-24 12:22:23,683 DEBUG: Best view : MiRNA__ +2016-08-24 12:22:38,861 DEBUG: Start: Iteration 188 +2016-08-24 12:22:38,882 DEBUG: View 0 : 0.625592417062 +2016-08-24 12:22:38,892 DEBUG: View 1 : 0.549763033175 +2016-08-24 12:22:39,013 DEBUG: View 2 : 0.554502369668 +2016-08-24 12:22:39,022 DEBUG: View 3 : 0.677725118483 +2016-08-24 12:22:39,617 DEBUG: Best view : Clinic_ +2016-08-24 12:22:54,875 DEBUG: Start: Iteration 189 +2016-08-24 12:22:54,896 DEBUG: View 0 : 0.530805687204 +2016-08-24 12:22:54,906 DEBUG: View 1 : 0.412322274882 +2016-08-24 12:22:55,034 DEBUG: View 2 : 0.597156398104 +2016-08-24 12:22:55,043 DEBUG: View 3 : 0.582938388626 +2016-08-24 12:22:55,648 DEBUG: Best view : RANSeq_ +2016-08-24 12:23:10,946 DEBUG: Start: Iteration 190 +2016-08-24 12:23:10,967 DEBUG: View 0 : 0.502369668246 +2016-08-24 12:23:10,977 DEBUG: View 1 : 0.440758293839 +2016-08-24 12:23:11,109 DEBUG: View 2 : 0.473933649289 +2016-08-24 12:23:11,118 DEBUG: View 3 : 0.625592417062 +2016-08-24 12:23:11,721 DEBUG: Best view : Clinic_ +2016-08-24 12:23:27,156 DEBUG: Start: Iteration 191 +2016-08-24 12:23:27,177 DEBUG: View 0 : 0.497630331754 +2016-08-24 12:23:27,187 DEBUG: View 1 : 0.644549763033 +2016-08-24 12:23:27,310 DEBUG: View 2 : 0.587677725118 +2016-08-24 12:23:27,320 DEBUG: View 3 : 0.63981042654 +2016-08-24 12:23:27,920 DEBUG: Best view : Clinic_ +2016-08-24 12:23:43,375 DEBUG: Start: Iteration 192 +2016-08-24 12:23:43,396 DEBUG: View 0 : 0.620853080569 +2016-08-24 12:23:43,406 DEBUG: View 1 : 0.620853080569 +2016-08-24 12:23:43,540 DEBUG: View 2 : 0.54028436019 +2016-08-24 12:23:43,551 DEBUG: View 3 : 0.587677725118 +2016-08-24 12:23:44,160 DEBUG: Best view : Methyl_ +2016-08-24 12:23:59,708 DEBUG: Start: Iteration 193 +2016-08-24 12:23:59,730 DEBUG: View 0 : 0.516587677725 +2016-08-24 12:23:59,739 DEBUG: View 1 : 0.417061611374 +2016-08-24 12:23:59,880 DEBUG: View 2 : 0.545023696682 +2016-08-24 12:23:59,892 DEBUG: View 3 : 0.535545023697 +2016-08-24 12:24:00,504 DEBUG: Best view : Clinic_ +2016-08-24 12:24:16,134 DEBUG: Start: Iteration 194 +2016-08-24 12:24:16,155 DEBUG: View 0 : 0.39336492891 +2016-08-24 12:24:16,165 DEBUG: View 1 : 0.478672985782 +2016-08-24 12:24:16,296 DEBUG: View 2 : 0.511848341232 +2016-08-24 12:24:16,308 DEBUG: View 3 : 0.658767772512 +2016-08-24 12:24:16,929 DEBUG: Best view : Clinic_ +2016-08-24 12:24:32,642 DEBUG: Start: Iteration 195 +2016-08-24 12:24:32,663 DEBUG: View 0 : 0.587677725118 +2016-08-24 12:24:32,673 DEBUG: View 1 : 0.587677725118 +2016-08-24 12:24:32,808 DEBUG: View 2 : 0.587677725118 +2016-08-24 12:24:32,819 DEBUG: View 3 : 0.545023696682 +2016-08-24 12:24:33,438 DEBUG: Best view : RANSeq_ +2016-08-24 12:24:49,256 DEBUG: Start: Iteration 196 +2016-08-24 12:24:49,277 DEBUG: View 0 : 0.592417061611 +2016-08-24 12:24:49,287 DEBUG: View 1 : 0.469194312796 +2016-08-24 12:24:49,418 DEBUG: View 2 : 0.649289099526 +2016-08-24 12:24:49,430 DEBUG: View 3 : 0.492890995261 +2016-08-24 12:24:50,049 DEBUG: Best view : RANSeq_ +2016-08-24 12:25:05,942 DEBUG: Start: Iteration 197 +2016-08-24 12:25:05,961 DEBUG: View 0 : 0.497630331754 +2016-08-24 12:25:05,971 DEBUG: View 1 : 0.549763033175 +2016-08-24 12:25:06,106 DEBUG: View 2 : 0.578199052133 +2016-08-24 12:25:06,118 DEBUG: View 3 : 0.554502369668 +2016-08-24 12:25:06,739 DEBUG: Best view : RANSeq_ +2016-08-24 12:25:22,740 DEBUG: Start: Iteration 198 +2016-08-24 12:25:22,761 DEBUG: View 0 : 0.535545023697 +2016-08-24 12:25:22,771 DEBUG: View 1 : 0.672985781991 +2016-08-24 12:25:22,906 DEBUG: View 2 : 0.578199052133 +2016-08-24 12:25:22,918 DEBUG: View 3 : 0.559241706161 +2016-08-24 12:25:23,544 DEBUG: Best view : MiRNA__ +2016-08-24 12:25:39,634 DEBUG: Start: Iteration 199 +2016-08-24 12:25:39,655 DEBUG: View 0 : 0.597156398104 +2016-08-24 12:25:39,665 DEBUG: View 1 : 0.691943127962 +2016-08-24 12:25:39,791 DEBUG: View 2 : 0.521327014218 +2016-08-24 12:25:39,803 DEBUG: View 3 : 0.625592417062 +2016-08-24 12:25:40,445 DEBUG: Best view : MiRNA__ +2016-08-24 12:25:56,609 DEBUG: Start: Iteration 200 +2016-08-24 12:25:56,631 DEBUG: View 0 : 0.644549763033 +2016-08-24 12:25:56,640 DEBUG: View 1 : 0.54028436019 +2016-08-24 12:25:56,772 DEBUG: View 2 : 0.60663507109 +2016-08-24 12:25:56,783 DEBUG: View 3 : 0.701421800948 +2016-08-24 12:25:57,413 DEBUG: Best view : Clinic_ +2016-08-24 12:26:13,644 DEBUG: Start: Iteration 201 +2016-08-24 12:26:13,665 DEBUG: View 0 : 0.440758293839 +2016-08-24 12:26:13,675 DEBUG: View 1 : 0.635071090047 +2016-08-24 12:26:13,806 DEBUG: View 2 : 0.620853080569 +2016-08-24 12:26:13,818 DEBUG: View 3 : 0.511848341232 +2016-08-24 12:26:14,451 DEBUG: Best view : RANSeq_ +2016-08-24 12:26:30,791 DEBUG: Start: Iteration 202 +2016-08-24 12:26:30,813 DEBUG: View 0 : 0.54028436019 +2016-08-24 12:26:30,822 DEBUG: View 1 : 0.398104265403 +2016-08-24 12:26:30,963 DEBUG: View 2 : 0.587677725118 +2016-08-24 12:26:30,974 DEBUG: View 3 : 0.559241706161 +2016-08-24 12:26:31,610 DEBUG: Best view : RANSeq_ +2016-08-24 12:26:48,031 DEBUG: Start: Iteration 203 +2016-08-24 12:26:48,052 DEBUG: View 0 : 0.630331753555 +2016-08-24 12:26:48,062 DEBUG: View 1 : 0.54028436019 +2016-08-24 12:26:48,172 DEBUG: View 2 : 0.597156398104 +2016-08-24 12:26:48,184 DEBUG: View 3 : 0.663507109005 +2016-08-24 12:26:48,822 DEBUG: Best view : Clinic_ +2016-08-24 12:27:05,312 DEBUG: Start: Iteration 204 +2016-08-24 12:27:05,334 DEBUG: View 0 : 0.478672985782 +2016-08-24 12:27:05,344 DEBUG: View 1 : 0.473933649289 +2016-08-24 12:27:05,472 DEBUG: View 2 : 0.563981042654 +2016-08-24 12:27:05,484 DEBUG: View 3 : 0.672985781991 +2016-08-24 12:27:06,126 DEBUG: Best view : Clinic_ +2016-08-24 12:27:22,687 DEBUG: Start: Iteration 205 +2016-08-24 12:27:22,709 DEBUG: View 0 : 0.625592417062 +2016-08-24 12:27:22,718 DEBUG: View 1 : 0.568720379147 +2016-08-24 12:27:22,856 DEBUG: View 2 : 0.582938388626 +2016-08-24 12:27:22,868 DEBUG: View 3 : 0.635071090047 +2016-08-24 12:27:23,510 DEBUG: Best view : Clinic_ +2016-08-24 12:27:40,173 DEBUG: Start: Iteration 206 +2016-08-24 12:27:40,194 DEBUG: View 0 : 0.483412322275 +2016-08-24 12:27:40,204 DEBUG: View 1 : 0.483412322275 +2016-08-24 12:27:40,338 DEBUG: View 2 : 0.60663507109 +2016-08-24 12:27:40,349 DEBUG: View 3 : 0.601895734597 +2016-08-24 12:27:41,001 DEBUG: Best view : RANSeq_ +2016-08-24 12:27:57,762 DEBUG: Start: Iteration 207 +2016-08-24 12:27:57,783 DEBUG: View 0 : 0.601895734597 +2016-08-24 12:27:57,793 DEBUG: View 1 : 0.663507109005 +2016-08-24 12:27:57,928 DEBUG: View 2 : 0.563981042654 +2016-08-24 12:27:57,939 DEBUG: View 3 : 0.559241706161 +2016-08-24 12:27:58,591 DEBUG: Best view : MiRNA__ +2016-08-24 12:28:15,463 DEBUG: Start: Iteration 208 +2016-08-24 12:28:15,484 DEBUG: View 0 : 0.620853080569 +2016-08-24 12:28:15,494 DEBUG: View 1 : 0.57345971564 +2016-08-24 12:28:15,627 DEBUG: View 2 : 0.597156398104 +2016-08-24 12:28:15,638 DEBUG: View 3 : 0.611374407583 +2016-08-24 12:28:16,292 DEBUG: Best view : Clinic_ +2016-08-24 12:28:33,226 DEBUG: Start: Iteration 209 +2016-08-24 12:28:33,247 DEBUG: View 0 : 0.511848341232 +2016-08-24 12:28:33,257 DEBUG: View 1 : 0.677725118483 +2016-08-24 12:28:33,393 DEBUG: View 2 : 0.601895734597 +2016-08-24 12:28:33,404 DEBUG: View 3 : 0.582938388626 +2016-08-24 12:28:34,062 DEBUG: Best view : MiRNA__ +2016-08-24 12:28:51,028 DEBUG: Start: Iteration 210 +2016-08-24 12:28:51,049 DEBUG: View 0 : 0.535545023697 +2016-08-24 12:28:51,059 DEBUG: View 1 : 0.578199052133 +2016-08-24 12:28:51,182 DEBUG: View 2 : 0.587677725118 +2016-08-24 12:28:51,194 DEBUG: View 3 : 0.616113744076 +2016-08-24 12:28:51,859 DEBUG: Best view : Clinic_ +2016-08-24 12:29:08,915 DEBUG: Start: Iteration 211 +2016-08-24 12:29:08,936 DEBUG: View 0 : 0.582938388626 +2016-08-24 12:29:08,945 DEBUG: View 1 : 0.654028436019 +2016-08-24 12:29:09,080 DEBUG: View 2 : 0.526066350711 +2016-08-24 12:29:09,091 DEBUG: View 3 : 0.535545023697 +2016-08-24 12:29:09,755 DEBUG: Best view : MiRNA__ +2016-08-24 12:29:26,868 DEBUG: Start: Iteration 212 +2016-08-24 12:29:26,889 DEBUG: View 0 : 0.483412322275 +2016-08-24 12:29:26,899 DEBUG: View 1 : 0.483412322275 +2016-08-24 12:29:27,034 DEBUG: View 2 : 0.582938388626 +2016-08-24 12:29:27,046 DEBUG: View 3 : 0.668246445498 +2016-08-24 12:29:27,711 DEBUG: Best view : Clinic_ +2016-08-24 12:29:44,959 DEBUG: Start: Iteration 213 +2016-08-24 12:29:44,980 DEBUG: View 0 : 0.464454976303 +2016-08-24 12:29:44,990 DEBUG: View 1 : 0.507109004739 +2016-08-24 12:29:45,125 DEBUG: View 2 : 0.578199052133 +2016-08-24 12:29:45,136 DEBUG: View 3 : 0.60663507109 +2016-08-24 12:29:45,810 DEBUG: Best view : Clinic_ +2016-08-24 12:30:03,096 DEBUG: Start: Iteration 214 +2016-08-24 12:30:03,118 DEBUG: View 0 : 0.568720379147 +2016-08-24 12:30:03,127 DEBUG: View 1 : 0.549763033175 +2016-08-24 12:30:03,252 DEBUG: View 2 : 0.625592417062 +2016-08-24 12:30:03,263 DEBUG: View 3 : 0.502369668246 +2016-08-24 12:30:03,934 DEBUG: Best view : RANSeq_ +2016-08-24 12:30:21,334 DEBUG: Start: Iteration 215 +2016-08-24 12:30:21,355 DEBUG: View 0 : 0.492890995261 +2016-08-24 12:30:21,365 DEBUG: View 1 : 0.687203791469 +2016-08-24 12:30:21,499 DEBUG: View 2 : 0.488151658768 +2016-08-24 12:30:21,508 DEBUG: View 3 : 0.483412322275 +2016-08-24 12:30:22,180 DEBUG: Best view : MiRNA__ +2016-08-24 12:30:39,659 DEBUG: Start: Iteration 216 +2016-08-24 12:30:39,680 DEBUG: View 0 : 0.507109004739 +2016-08-24 12:30:39,690 DEBUG: View 1 : 0.720379146919 +2016-08-24 12:30:39,811 DEBUG: View 2 : 0.492890995261 +2016-08-24 12:30:39,820 DEBUG: View 3 : 0.691943127962 +2016-08-24 12:30:40,498 DEBUG: Best view : MiRNA__ +2016-08-24 12:30:58,038 DEBUG: Start: Iteration 217 +2016-08-24 12:30:58,059 DEBUG: View 0 : 0.668246445498 +2016-08-24 12:30:58,069 DEBUG: View 1 : 0.682464454976 +2016-08-24 12:30:58,190 DEBUG: View 2 : 0.587677725118 +2016-08-24 12:30:58,200 DEBUG: View 3 : 0.526066350711 +2016-08-24 12:30:58,880 DEBUG: Best view : MiRNA__ +2016-08-24 12:31:16,516 DEBUG: Start: Iteration 218 +2016-08-24 12:31:16,537 DEBUG: View 0 : 0.535545023697 +2016-08-24 12:31:16,547 DEBUG: View 1 : 0.63981042654 +2016-08-24 12:31:16,670 DEBUG: View 2 : 0.535545023697 +2016-08-24 12:31:16,679 DEBUG: View 3 : 0.635071090047 +2016-08-24 12:31:17,364 DEBUG: Best view : Clinic_ +2016-08-24 12:31:35,062 DEBUG: Start: Iteration 219 +2016-08-24 12:31:35,083 DEBUG: View 0 : 0.436018957346 +2016-08-24 12:31:35,092 DEBUG: View 1 : 0.502369668246 +2016-08-24 12:31:35,218 DEBUG: View 2 : 0.521327014218 +2016-08-24 12:31:35,227 DEBUG: View 3 : 0.649289099526 +2016-08-24 12:31:35,914 DEBUG: Best view : Clinic_ +2016-08-24 12:31:53,669 DEBUG: Start: Iteration 220 +2016-08-24 12:31:53,690 DEBUG: View 0 : 0.706161137441 +2016-08-24 12:31:53,700 DEBUG: View 1 : 0.620853080569 +2016-08-24 12:31:53,823 DEBUG: View 2 : 0.54028436019 +2016-08-24 12:31:53,832 DEBUG: View 3 : 0.592417061611 +2016-08-24 12:31:54,527 DEBUG: Best view : Methyl_ +2016-08-24 12:32:12,385 DEBUG: Start: Iteration 221 +2016-08-24 12:32:12,406 DEBUG: View 0 : 0.502369668246 +2016-08-24 12:32:12,416 DEBUG: View 1 : 0.492890995261 +2016-08-24 12:32:12,539 DEBUG: View 2 : 0.592417061611 +2016-08-24 12:32:12,548 DEBUG: View 3 : 0.554502369668 +2016-08-24 12:32:13,236 DEBUG: Best view : RANSeq_ +2016-08-24 12:32:31,134 DEBUG: Start: Iteration 222 +2016-08-24 12:32:31,155 DEBUG: View 0 : 0.587677725118 +2016-08-24 12:32:31,165 DEBUG: View 1 : 0.483412322275 +2016-08-24 12:32:31,296 DEBUG: View 2 : 0.549763033175 +2016-08-24 12:32:31,305 DEBUG: View 3 : 0.54028436019 +2016-08-24 12:32:32,001 DEBUG: Best view : Methyl_ +2016-08-24 12:32:49,999 DEBUG: Start: Iteration 223 +2016-08-24 12:32:50,020 DEBUG: View 0 : 0.497630331754 +2016-08-24 12:32:50,029 DEBUG: View 1 : 0.81990521327 +2016-08-24 12:32:50,164 DEBUG: View 2 : 0.568720379147 +2016-08-24 12:32:50,174 DEBUG: View 3 : 0.60663507109 +2016-08-24 12:32:50,871 DEBUG: Best view : MiRNA__ +2016-08-24 12:33:08,927 DEBUG: Start: Iteration 224 +2016-08-24 12:33:08,948 DEBUG: View 0 : 0.464454976303 +2016-08-24 12:33:08,957 DEBUG: View 1 : 0.293838862559 +2016-08-24 12:33:09,076 DEBUG: View 2 : 0.644549763033 +2016-08-24 12:33:09,085 DEBUG: View 3 : 0.630331753555 +2016-08-24 12:33:09,787 DEBUG: Best view : RANSeq_ +2016-08-24 12:33:27,976 DEBUG: Start: Iteration 225 +2016-08-24 12:33:27,997 DEBUG: View 0 : 0.388625592417 +2016-08-24 12:33:28,007 DEBUG: View 1 : 0.805687203791 +2016-08-24 12:33:28,130 DEBUG: View 2 : 0.545023696682 +2016-08-24 12:33:28,140 DEBUG: View 3 : 0.611374407583 +2016-08-24 12:33:28,840 DEBUG: Best view : MiRNA__ +2016-08-24 12:33:47,106 DEBUG: Start: Iteration 226 +2016-08-24 12:33:47,128 DEBUG: View 0 : 0.530805687204 +2016-08-24 12:33:47,138 DEBUG: View 1 : 0.677725118483 +2016-08-24 12:33:47,268 DEBUG: View 2 : 0.516587677725 +2016-08-24 12:33:47,278 DEBUG: View 3 : 0.649289099526 +2016-08-24 12:33:47,984 DEBUG: Best view : Clinic_ +2016-08-24 12:34:06,263 DEBUG: Start: Iteration 227 +2016-08-24 12:34:06,284 DEBUG: View 0 : 0.57345971564 +2016-08-24 12:34:06,294 DEBUG: View 1 : 0.620853080569 +2016-08-24 12:34:06,422 DEBUG: View 2 : 0.530805687204 +2016-08-24 12:34:06,432 DEBUG: View 3 : 0.60663507109 +2016-08-24 12:34:07,137 DEBUG: Best view : Clinic_ +2016-08-24 12:34:25,806 DEBUG: Start: Iteration 228 +2016-08-24 12:34:25,830 DEBUG: View 0 : 0.563981042654 +2016-08-24 12:34:25,843 DEBUG: View 1 : 0.526066350711 +2016-08-24 12:34:26,007 DEBUG: View 2 : 0.568720379147 +2016-08-24 12:34:26,017 DEBUG: View 3 : 0.530805687204 +2016-08-24 12:34:26,767 DEBUG: Best view : RANSeq_ +2016-08-24 12:34:46,243 DEBUG: Start: Iteration 229 +2016-08-24 12:34:46,265 DEBUG: View 0 : 0.57345971564 +2016-08-24 12:34:46,276 DEBUG: View 1 : 0.654028436019 +2016-08-24 12:34:46,453 DEBUG: View 2 : 0.535545023697 +2016-08-24 12:34:46,463 DEBUG: View 3 : 0.592417061611 +2016-08-24 12:34:47,215 DEBUG: Best view : MiRNA__ +2016-08-24 12:35:05,992 DEBUG: Start: Iteration 230 +2016-08-24 12:35:06,013 DEBUG: View 0 : 0.616113744076 +2016-08-24 12:35:06,023 DEBUG: View 1 : 0.431279620853 +2016-08-24 12:35:06,139 DEBUG: View 2 : 0.521327014218 +2016-08-24 12:35:06,150 DEBUG: View 3 : 0.597156398104 +2016-08-24 12:35:06,863 DEBUG: Best view : Clinic_ +2016-08-24 12:35:25,551 DEBUG: Start: Iteration 231 +2016-08-24 12:35:25,573 DEBUG: View 0 : 0.450236966825 +2016-08-24 12:35:25,583 DEBUG: View 1 : 0.635071090047 +2016-08-24 12:35:25,703 DEBUG: View 2 : 0.616113744076 +2016-08-24 12:35:25,713 DEBUG: View 3 : 0.545023696682 +2016-08-24 12:35:26,428 DEBUG: Best view : RANSeq_ +2016-08-24 12:35:45,202 DEBUG: Start: Iteration 232 +2016-08-24 12:35:45,223 DEBUG: View 0 : 0.620853080569 +2016-08-24 12:35:45,233 DEBUG: View 1 : 0.469194312796 +2016-08-24 12:35:45,356 DEBUG: View 2 : 0.554502369668 +2016-08-24 12:35:45,366 DEBUG: View 3 : 0.478672985782 +2016-08-24 12:35:46,085 DEBUG: Best view : Methyl_ +2016-08-24 12:36:04,939 DEBUG: Start: Iteration 233 +2016-08-24 12:36:04,960 DEBUG: View 0 : 0.554502369668 +2016-08-24 12:36:04,970 DEBUG: View 1 : 0.568720379147 +2016-08-24 12:36:05,097 DEBUG: View 2 : 0.521327014218 +2016-08-24 12:36:05,106 DEBUG: View 3 : 0.568720379147 +2016-08-24 12:36:05,830 DEBUG: Best view : Clinic_ +2016-08-24 12:36:24,753 DEBUG: Start: Iteration 234 +2016-08-24 12:36:24,773 DEBUG: View 0 : 0.530805687204 +2016-08-24 12:36:24,783 DEBUG: View 1 : 0.511848341232 +2016-08-24 12:36:24,899 DEBUG: View 2 : 0.563981042654 +2016-08-24 12:36:24,908 DEBUG: View 3 : 0.563981042654 +2016-08-24 12:36:25,636 DEBUG: Best view : Clinic_ +2016-08-24 12:36:44,616 DEBUG: Start: Iteration 235 +2016-08-24 12:36:44,637 DEBUG: View 0 : 0.469194312796 +2016-08-24 12:36:44,647 DEBUG: View 1 : 0.42654028436 +2016-08-24 12:36:44,761 DEBUG: View 2 : 0.535545023697 +2016-08-24 12:36:44,770 DEBUG: View 3 : 0.701421800948 +2016-08-24 12:36:45,502 DEBUG: Best view : Clinic_ +2016-08-24 12:37:04,540 DEBUG: Start: Iteration 236 +2016-08-24 12:37:04,562 DEBUG: View 0 : 0.445497630332 +2016-08-24 12:37:04,573 DEBUG: View 1 : 0.478672985782 +2016-08-24 12:37:04,691 DEBUG: View 2 : 0.592417061611 +2016-08-24 12:37:04,700 DEBUG: View 3 : 0.701421800948 +2016-08-24 12:37:05,432 DEBUG: Best view : Clinic_ +2016-08-24 12:37:24,538 DEBUG: Start: Iteration 237 +2016-08-24 12:37:24,559 DEBUG: View 0 : 0.511848341232 +2016-08-24 12:37:24,569 DEBUG: View 1 : 0.582938388626 +2016-08-24 12:37:24,691 DEBUG: View 2 : 0.563981042654 +2016-08-24 12:37:24,700 DEBUG: View 3 : 0.625592417062 +2016-08-24 12:37:25,438 DEBUG: Best view : Clinic_ +2016-08-24 12:37:44,807 DEBUG: Start: Iteration 238 +2016-08-24 12:37:44,828 DEBUG: View 0 : 0.625592417062 +2016-08-24 12:37:44,838 DEBUG: View 1 : 0.597156398104 +2016-08-24 12:37:44,955 DEBUG: View 2 : 0.521327014218 +2016-08-24 12:37:44,964 DEBUG: View 3 : 0.559241706161 +2016-08-24 12:37:45,704 DEBUG: Best view : Methyl_ +2016-08-24 12:38:05,054 DEBUG: Start: Iteration 239 +2016-08-24 12:38:05,076 DEBUG: View 0 : 0.725118483412 +2016-08-24 12:38:05,085 DEBUG: View 1 : 0.682464454976 +2016-08-24 12:38:05,204 DEBUG: View 2 : 0.568720379147 +2016-08-24 12:38:05,213 DEBUG: View 3 : 0.516587677725 +2016-08-24 12:38:05,956 DEBUG: Best view : Methyl_ +2016-08-24 12:38:25,314 DEBUG: Start: Iteration 240 +2016-08-24 12:38:25,335 DEBUG: View 0 : 0.530805687204 +2016-08-24 12:38:25,345 DEBUG: View 1 : 0.635071090047 +2016-08-24 12:38:25,474 DEBUG: View 2 : 0.578199052133 +2016-08-24 12:38:25,483 DEBUG: View 3 : 0.563981042654 +2016-08-24 12:38:26,227 DEBUG: Best view : MiRNA__ +2016-08-24 12:38:45,701 DEBUG: Start: Iteration 241 +2016-08-24 12:38:45,723 DEBUG: View 0 : 0.545023696682 +2016-08-24 12:38:45,733 DEBUG: View 1 : 0.677725118483 +2016-08-24 12:38:45,846 DEBUG: View 2 : 0.559241706161 +2016-08-24 12:38:45,856 DEBUG: View 3 : 0.649289099526 +2016-08-24 12:38:46,600 DEBUG: Best view : MiRNA__ +2016-08-24 12:39:06,116 DEBUG: Start: Iteration 242 +2016-08-24 12:39:06,137 DEBUG: View 0 : 0.549763033175 +2016-08-24 12:39:06,147 DEBUG: View 1 : 0.658767772512 +2016-08-24 12:39:06,265 DEBUG: View 2 : 0.535545023697 +2016-08-24 12:39:06,275 DEBUG: View 3 : 0.687203791469 +2016-08-24 12:39:07,024 DEBUG: Best view : Clinic_ +2016-08-24 12:39:26,644 DEBUG: Start: Iteration 243 +2016-08-24 12:39:26,665 DEBUG: View 0 : 0.748815165877 +2016-08-24 12:39:26,675 DEBUG: View 1 : 0.483412322275 +2016-08-24 12:39:26,796 DEBUG: View 2 : 0.545023696682 +2016-08-24 12:39:26,805 DEBUG: View 3 : 0.57345971564 +2016-08-24 12:39:27,561 DEBUG: Best view : Methyl_ +2016-08-24 12:39:47,265 DEBUG: Start: Iteration 244 +2016-08-24 12:39:47,286 DEBUG: View 0 : 0.502369668246 +2016-08-24 12:39:47,296 DEBUG: View 1 : 0.45971563981 +2016-08-24 12:39:47,413 DEBUG: View 2 : 0.620853080569 +2016-08-24 12:39:47,422 DEBUG: View 3 : 0.497630331754 +2016-08-24 12:39:48,175 DEBUG: Best view : RANSeq_ +2016-08-24 12:40:07,943 DEBUG: Start: Iteration 245 +2016-08-24 12:40:07,964 DEBUG: View 0 : 0.492890995261 +2016-08-24 12:40:07,974 DEBUG: View 1 : 0.57345971564 +2016-08-24 12:40:08,075 DEBUG: View 2 : 0.630331753555 +2016-08-24 12:40:08,085 DEBUG: View 3 : 0.507109004739 +2016-08-24 12:40:08,845 DEBUG: Best view : RANSeq_ +2016-08-24 12:40:28,754 DEBUG: Start: Iteration 246 +2016-08-24 12:40:28,775 DEBUG: View 0 : 0.729857819905 +2016-08-24 12:40:28,785 DEBUG: View 1 : 0.57345971564 +2016-08-24 12:40:28,902 DEBUG: View 2 : 0.60663507109 +2016-08-24 12:40:28,911 DEBUG: View 3 : 0.677725118483 +2016-08-24 12:40:29,672 DEBUG: Best view : Methyl_ +2016-08-24 12:40:49,632 DEBUG: Start: Iteration 247 +2016-08-24 12:40:49,654 DEBUG: View 0 : 0.440758293839 +2016-08-24 12:40:49,663 DEBUG: View 1 : 0.369668246445 +2016-08-24 12:40:49,781 DEBUG: View 2 : 0.587677725118 +2016-08-24 12:40:49,790 DEBUG: View 3 : 0.611374407583 +2016-08-24 12:40:50,557 DEBUG: Best view : Clinic_ +2016-08-24 12:41:10,634 DEBUG: Start: Iteration 248 +2016-08-24 12:41:10,653 DEBUG: View 0 : 0.592417061611 +2016-08-24 12:41:10,663 DEBUG: View 1 : 0.763033175355 +2016-08-24 12:41:10,785 DEBUG: View 2 : 0.530805687204 +2016-08-24 12:41:10,794 DEBUG: View 3 : 0.601895734597 +2016-08-24 12:41:11,561 DEBUG: Best view : MiRNA__ +2016-08-24 12:41:31,677 DEBUG: Start: Iteration 249 +2016-08-24 12:41:31,698 DEBUG: View 0 : 0.488151658768 +2016-08-24 12:41:31,708 DEBUG: View 1 : 0.777251184834 +2016-08-24 12:41:31,832 DEBUG: View 2 : 0.625592417062 +2016-08-24 12:41:31,841 DEBUG: View 3 : 0.545023696682 +2016-08-24 12:41:32,606 DEBUG: Best view : MiRNA__ +2016-08-24 12:41:52,512 DEBUG: Start: Iteration 250 +2016-08-24 12:41:52,533 DEBUG: View 0 : 0.635071090047 +2016-08-24 12:41:52,543 DEBUG: View 1 : 0.687203791469 +2016-08-24 12:41:52,666 DEBUG: View 2 : 0.545023696682 +2016-08-24 12:41:52,676 DEBUG: View 3 : 0.691943127962 +2016-08-24 12:41:53,438 DEBUG: Best view : Clinic_ +2016-08-24 12:42:13,324 DEBUG: Start: Iteration 251 +2016-08-24 12:42:13,346 DEBUG: View 0 : 0.620853080569 +2016-08-24 12:42:13,356 DEBUG: View 1 : 0.364928909953 +2016-08-24 12:42:13,476 DEBUG: View 2 : 0.625592417062 +2016-08-24 12:42:13,486 DEBUG: View 3 : 0.57345971564 +2016-08-24 12:42:14,258 DEBUG: Best view : RANSeq_ +2016-08-24 12:42:34,246 DEBUG: Start: Iteration 252 +2016-08-24 12:42:34,267 DEBUG: View 0 : 0.597156398104 +2016-08-24 12:42:34,276 DEBUG: View 1 : 0.407582938389 +2016-08-24 12:42:34,390 DEBUG: View 2 : 0.511848341232 +2016-08-24 12:42:34,400 DEBUG: View 3 : 0.492890995261 +2016-08-24 12:42:35,175 DEBUG: Best view : Methyl_ +2016-08-24 12:42:55,285 DEBUG: Start: Iteration 253 +2016-08-24 12:42:55,307 DEBUG: View 0 : 0.521327014218 +2016-08-24 12:42:55,317 DEBUG: View 1 : 0.582938388626 +2016-08-24 12:42:55,443 DEBUG: View 2 : 0.568720379147 +2016-08-24 12:42:55,453 DEBUG: View 3 : 0.597156398104 +2016-08-24 12:42:56,233 DEBUG: Best view : Clinic_ +2016-08-24 12:43:16,372 DEBUG: Start: Iteration 254 +2016-08-24 12:43:16,393 DEBUG: View 0 : 0.516587677725 +2016-08-24 12:43:16,403 DEBUG: View 1 : 0.473933649289 +2016-08-24 12:43:16,532 DEBUG: View 2 : 0.516587677725 +2016-08-24 12:43:16,543 DEBUG: View 3 : 0.497630331754 +2016-08-24 12:43:17,330 DEBUG: Best view : Methyl_ +2016-08-24 12:43:37,613 DEBUG: Start: Iteration 255 +2016-08-24 12:43:37,634 DEBUG: View 0 : 0.473933649289 +2016-08-24 12:43:37,644 DEBUG: View 1 : 0.63981042654 +2016-08-24 12:43:37,771 DEBUG: View 2 : 0.60663507109 +2016-08-24 12:43:37,782 DEBUG: View 3 : 0.578199052133 +2016-08-24 12:43:38,562 DEBUG: Best view : MiRNA__ +2016-08-24 12:43:58,879 DEBUG: Start: Iteration 256 +2016-08-24 12:43:58,900 DEBUG: View 0 : 0.469194312796 +2016-08-24 12:43:58,909 DEBUG: View 1 : 0.601895734597 +2016-08-24 12:43:59,033 DEBUG: View 2 : 0.597156398104 +2016-08-24 12:43:59,044 DEBUG: View 3 : 0.663507109005 +2016-08-24 12:43:59,827 DEBUG: Best view : Clinic_ +2016-08-24 12:44:20,227 DEBUG: Start: Iteration 257 +2016-08-24 12:44:20,249 DEBUG: View 0 : 0.554502369668 +2016-08-24 12:44:20,259 DEBUG: View 1 : 0.625592417062 +2016-08-24 12:44:20,387 DEBUG: View 2 : 0.592417061611 +2016-08-24 12:44:20,398 DEBUG: View 3 : 0.507109004739 +2016-08-24 12:44:21,184 DEBUG: Best view : MiRNA__ +2016-08-24 12:44:41,641 DEBUG: Start: Iteration 258 +2016-08-24 12:44:41,662 DEBUG: View 0 : 0.454976303318 +2016-08-24 12:44:41,673 DEBUG: View 1 : 0.478672985782 +2016-08-24 12:44:41,799 DEBUG: View 2 : 0.559241706161 +2016-08-24 12:44:41,810 DEBUG: View 3 : 0.649289099526 +2016-08-24 12:44:42,597 DEBUG: Best view : Clinic_ +2016-08-24 12:45:03,175 DEBUG: Start: Iteration 259 +2016-08-24 12:45:03,196 DEBUG: View 0 : 0.625592417062 +2016-08-24 12:45:03,206 DEBUG: View 1 : 0.701421800948 +2016-08-24 12:45:03,329 DEBUG: View 2 : 0.516587677725 +2016-08-24 12:45:03,340 DEBUG: View 3 : 0.582938388626 +2016-08-24 12:45:04,129 DEBUG: Best view : MiRNA__ +2016-08-24 12:45:24,744 DEBUG: Start: Iteration 260 +2016-08-24 12:45:24,765 DEBUG: View 0 : 0.616113744076 +2016-08-24 12:45:24,774 DEBUG: View 1 : 0.625592417062 +2016-08-24 12:45:24,899 DEBUG: View 2 : 0.592417061611 +2016-08-24 12:45:24,909 DEBUG: View 3 : 0.549763033175 +2016-08-24 12:45:25,705 DEBUG: Best view : MiRNA__ +2016-08-24 12:45:46,401 DEBUG: Start: Iteration 261 +2016-08-24 12:45:46,423 DEBUG: View 0 : 0.535545023697 +2016-08-24 12:45:46,432 DEBUG: View 1 : 0.663507109005 +2016-08-24 12:45:46,559 DEBUG: View 2 : 0.568720379147 +2016-08-24 12:45:46,570 DEBUG: View 3 : 0.620853080569 +2016-08-24 12:45:47,370 DEBUG: Best view : MiRNA__ +2016-08-24 12:46:08,132 DEBUG: Start: Iteration 262 +2016-08-24 12:46:08,153 DEBUG: View 0 : 0.54028436019 +2016-08-24 12:46:08,163 DEBUG: View 1 : 0.620853080569 +2016-08-24 12:46:08,294 DEBUG: View 2 : 0.559241706161 +2016-08-24 12:46:08,305 DEBUG: View 3 : 0.545023696682 +2016-08-24 12:46:09,099 DEBUG: Best view : MiRNA__ +2016-08-24 12:46:29,920 DEBUG: Start: Iteration 263 +2016-08-24 12:46:29,941 DEBUG: View 0 : 0.568720379147 +2016-08-24 12:46:29,951 DEBUG: View 1 : 0.644549763033 +2016-08-24 12:46:30,079 DEBUG: View 2 : 0.526066350711 +2016-08-24 12:46:30,090 DEBUG: View 3 : 0.611374407583 +2016-08-24 12:46:30,901 DEBUG: Best view : Clinic_ +2016-08-24 12:46:51,789 DEBUG: Start: Iteration 264 +2016-08-24 12:46:51,810 DEBUG: View 0 : 0.60663507109 +2016-08-24 12:46:51,820 DEBUG: View 1 : 0.483412322275 +2016-08-24 12:46:51,936 DEBUG: View 2 : 0.630331753555 +2016-08-24 12:46:51,947 DEBUG: View 3 : 0.635071090047 +2016-08-24 12:46:52,749 DEBUG: Best view : Clinic_ +2016-08-24 12:47:13,747 DEBUG: Start: Iteration 265 +2016-08-24 12:47:13,769 DEBUG: View 0 : 0.691943127962 +2016-08-24 12:47:13,778 DEBUG: View 1 : 0.402843601896 +2016-08-24 12:47:13,907 DEBUG: View 2 : 0.521327014218 +2016-08-24 12:47:13,918 DEBUG: View 3 : 0.578199052133 +2016-08-24 12:47:14,728 DEBUG: Best view : Methyl_ +2016-08-24 12:47:35,822 DEBUG: Start: Iteration 266 +2016-08-24 12:47:35,843 DEBUG: View 0 : 0.677725118483 +2016-08-24 12:47:35,853 DEBUG: View 1 : 0.706161137441 +2016-08-24 12:47:35,975 DEBUG: View 2 : 0.597156398104 +2016-08-24 12:47:35,985 DEBUG: View 3 : 0.597156398104 +2016-08-24 12:47:36,793 DEBUG: Best view : MiRNA__ +2016-08-24 12:47:57,934 DEBUG: Start: Iteration 267 +2016-08-24 12:47:57,955 DEBUG: View 0 : 0.559241706161 +2016-08-24 12:47:57,964 DEBUG: View 1 : 0.744075829384 +2016-08-24 12:47:58,093 DEBUG: View 2 : 0.549763033175 +2016-08-24 12:47:58,103 DEBUG: View 3 : 0.630331753555 +2016-08-24 12:47:58,921 DEBUG: Best view : MiRNA__ +2016-08-24 12:48:20,152 DEBUG: Start: Iteration 268 +2016-08-24 12:48:20,173 DEBUG: View 0 : 0.526066350711 +2016-08-24 12:48:20,182 DEBUG: View 1 : 0.57345971564 +2016-08-24 12:48:20,306 DEBUG: View 2 : 0.57345971564 +2016-08-24 12:48:20,316 DEBUG: View 3 : 0.701421800948 +2016-08-24 12:48:21,134 DEBUG: Best view : Clinic_ +2016-08-24 12:48:42,436 DEBUG: Start: Iteration 269 +2016-08-24 12:48:42,456 DEBUG: View 0 : 0.42654028436 +2016-08-24 12:48:42,466 DEBUG: View 1 : 0.57345971564 +2016-08-24 12:48:42,592 DEBUG: View 2 : 0.497630331754 +2016-08-24 12:48:42,602 DEBUG: View 3 : 0.611374407583 +2016-08-24 12:48:43,424 DEBUG: Best view : Clinic_ +2016-08-24 12:49:04,786 DEBUG: Start: Iteration 270 +2016-08-24 12:49:04,807 DEBUG: View 0 : 0.57345971564 +2016-08-24 12:49:04,816 DEBUG: View 1 : 0.412322274882 +2016-08-24 12:49:04,945 DEBUG: View 2 : 0.630331753555 +2016-08-24 12:49:04,956 DEBUG: View 3 : 0.478672985782 +2016-08-24 12:49:05,789 DEBUG: Best view : RANSeq_ +2016-08-24 12:49:27,239 DEBUG: Start: Iteration 271 +2016-08-24 12:49:27,260 DEBUG: View 0 : 0.568720379147 +2016-08-24 12:49:27,270 DEBUG: View 1 : 0.521327014218 +2016-08-24 12:49:27,396 DEBUG: View 2 : 0.568720379147 +2016-08-24 12:49:27,407 DEBUG: View 3 : 0.654028436019 +2016-08-24 12:49:28,229 DEBUG: Best view : Clinic_ +2016-08-24 12:49:49,823 DEBUG: Start: Iteration 272 +2016-08-24 12:49:49,845 DEBUG: View 0 : 0.616113744076 +2016-08-24 12:49:49,854 DEBUG: View 1 : 0.545023696682 +2016-08-24 12:49:49,981 DEBUG: View 2 : 0.611374407583 +2016-08-24 12:49:49,992 DEBUG: View 3 : 0.535545023697 +2016-08-24 12:49:50,819 DEBUG: Best view : RANSeq_ +2016-08-24 12:50:12,458 DEBUG: Start: Iteration 273 +2016-08-24 12:50:12,480 DEBUG: View 0 : 0.502369668246 +2016-08-24 12:50:12,489 DEBUG: View 1 : 0.635071090047 +2016-08-24 12:50:12,618 DEBUG: View 2 : 0.530805687204 +2016-08-24 12:50:12,628 DEBUG: View 3 : 0.507109004739 +2016-08-24 12:50:13,463 DEBUG: Best view : MiRNA__ +2016-08-24 12:50:35,159 DEBUG: Start: Iteration 274 +2016-08-24 12:50:35,180 DEBUG: View 0 : 0.436018957346 +2016-08-24 12:50:35,189 DEBUG: View 1 : 0.587677725118 +2016-08-24 12:50:35,317 DEBUG: View 2 : 0.601895734597 +2016-08-24 12:50:35,328 DEBUG: View 3 : 0.554502369668 +2016-08-24 12:50:36,162 DEBUG: Best view : RANSeq_ +2016-08-24 12:50:57,942 DEBUG: Start: Iteration 275 +2016-08-24 12:50:57,963 DEBUG: View 0 : 0.473933649289 +2016-08-24 12:50:57,973 DEBUG: View 1 : 0.658767772512 +2016-08-24 12:50:58,092 DEBUG: View 2 : 0.526066350711 +2016-08-24 12:50:58,102 DEBUG: View 3 : 0.57345971564 +2016-08-24 12:50:58,936 DEBUG: Best view : MiRNA__ +2016-08-24 12:51:20,806 DEBUG: Start: Iteration 276 +2016-08-24 12:51:20,827 DEBUG: View 0 : 0.530805687204 +2016-08-24 12:51:20,837 DEBUG: View 1 : 0.729857819905 +2016-08-24 12:51:20,957 DEBUG: View 2 : 0.511848341232 +2016-08-24 12:51:20,968 DEBUG: View 3 : 0.57345971564 +2016-08-24 12:51:21,806 DEBUG: Best view : MiRNA__ +2016-08-24 12:51:43,736 DEBUG: Start: Iteration 277 +2016-08-24 12:51:43,757 DEBUG: View 0 : 0.464454976303 +2016-08-24 12:51:43,767 DEBUG: View 1 : 0.668246445498 +2016-08-24 12:51:43,893 DEBUG: View 2 : 0.654028436019 +2016-08-24 12:51:43,903 DEBUG: View 3 : 0.582938388626 +2016-08-24 12:51:44,745 DEBUG: Best view : RANSeq_ +2016-08-24 12:52:06,799 DEBUG: Start: Iteration 278 +2016-08-24 12:52:06,820 DEBUG: View 0 : 0.526066350711 +2016-08-24 12:52:06,830 DEBUG: View 1 : 0.706161137441 +2016-08-24 12:52:06,956 DEBUG: View 2 : 0.563981042654 +2016-08-24 12:52:06,966 DEBUG: View 3 : 0.563981042654 +2016-08-24 12:52:07,817 DEBUG: Best view : MiRNA__ +2016-08-24 12:52:29,952 DEBUG: Start: Iteration 279 +2016-08-24 12:52:29,973 DEBUG: View 0 : 0.644549763033 +2016-08-24 12:52:29,983 DEBUG: View 1 : 0.473933649289 +2016-08-24 12:52:30,112 DEBUG: View 2 : 0.597156398104 +2016-08-24 12:52:30,123 DEBUG: View 3 : 0.630331753555 +2016-08-24 12:52:30,970 DEBUG: Best view : Methyl_ +2016-08-24 12:52:53,162 DEBUG: Start: Iteration 280 +2016-08-24 12:52:53,183 DEBUG: View 0 : 0.521327014218 +2016-08-24 12:52:53,193 DEBUG: View 1 : 0.379146919431 +2016-08-24 12:52:53,322 DEBUG: View 2 : 0.582938388626 +2016-08-24 12:52:53,333 DEBUG: View 3 : 0.658767772512 +2016-08-24 12:52:54,181 DEBUG: Best view : Clinic_ +2016-08-24 12:53:16,493 DEBUG: Start: Iteration 281 +2016-08-24 12:53:16,514 DEBUG: View 0 : 0.559241706161 +2016-08-24 12:53:16,524 DEBUG: View 1 : 0.60663507109 +2016-08-24 12:53:16,648 DEBUG: View 2 : 0.521327014218 +2016-08-24 12:53:16,659 DEBUG: View 3 : 0.60663507109 +2016-08-24 12:53:17,515 DEBUG: Best view : Clinic_ +2016-08-24 12:53:39,938 DEBUG: Start: Iteration 282 +2016-08-24 12:53:39,959 DEBUG: View 0 : 0.568720379147 +2016-08-24 12:53:39,969 DEBUG: View 1 : 0.317535545024 +2016-08-24 12:53:40,093 DEBUG: View 2 : 0.625592417062 +2016-08-24 12:53:40,104 DEBUG: View 3 : 0.654028436019 +2016-08-24 12:53:40,961 DEBUG: Best view : Clinic_ +2016-08-24 12:54:03,344 DEBUG: Start: Iteration 283 +2016-08-24 12:54:03,366 DEBUG: View 0 : 0.521327014218 +2016-08-24 12:54:03,375 DEBUG: View 1 : 0.578199052133 +2016-08-24 12:54:03,496 DEBUG: View 2 : 0.60663507109 +2016-08-24 12:54:03,506 DEBUG: View 3 : 0.701421800948 +2016-08-24 12:54:04,364 DEBUG: Best view : Clinic_ +2016-08-24 12:54:26,851 DEBUG: Start: Iteration 284 +2016-08-24 12:54:26,872 DEBUG: View 0 : 0.630331753555 +2016-08-24 12:54:26,882 DEBUG: View 1 : 0.63981042654 +2016-08-24 12:54:27,010 DEBUG: View 2 : 0.60663507109 +2016-08-24 12:54:27,021 DEBUG: View 3 : 0.616113744076 +2016-08-24 12:54:27,891 DEBUG: Best view : MiRNA__ +2016-08-24 12:54:50,442 DEBUG: Start: Iteration 285 +2016-08-24 12:54:50,463 DEBUG: View 0 : 0.469194312796 +2016-08-24 12:54:50,473 DEBUG: View 1 : 0.635071090047 +2016-08-24 12:54:50,598 DEBUG: View 2 : 0.507109004739 +2016-08-24 12:54:50,609 DEBUG: View 3 : 0.592417061611 +2016-08-24 12:54:51,471 DEBUG: Best view : MiRNA__ +2016-08-24 12:55:14,160 DEBUG: Start: Iteration 286 +2016-08-24 12:55:14,181 DEBUG: View 0 : 0.497630331754 +2016-08-24 12:55:14,190 DEBUG: View 1 : 0.597156398104 +2016-08-24 12:55:14,316 DEBUG: View 2 : 0.530805687204 +2016-08-24 12:55:14,326 DEBUG: View 3 : 0.635071090047 +2016-08-24 12:55:15,212 DEBUG: Best view : Clinic_ +2016-08-24 12:55:37,935 DEBUG: Start: Iteration 287 +2016-08-24 12:55:37,954 DEBUG: View 0 : 0.398104265403 +2016-08-24 12:55:37,964 DEBUG: View 1 : 0.445497630332 +2016-08-24 12:55:38,095 DEBUG: View 2 : 0.578199052133 +2016-08-24 12:55:38,106 DEBUG: View 3 : 0.568720379147 +2016-08-24 12:55:38,977 DEBUG: Best view : Clinic_ +2016-08-24 12:56:01,705 DEBUG: Start: Iteration 288 +2016-08-24 12:56:01,726 DEBUG: View 0 : 0.597156398104 +2016-08-24 12:56:01,735 DEBUG: View 1 : 0.483412322275 +2016-08-24 12:56:01,866 DEBUG: View 2 : 0.530805687204 +2016-08-24 12:56:01,877 DEBUG: View 3 : 0.492890995261 +2016-08-24 12:56:02,747 DEBUG: Best view : Methyl_ +2016-08-24 12:56:25,635 DEBUG: Start: Iteration 289 +2016-08-24 12:56:25,656 DEBUG: View 0 : 0.530805687204 +2016-08-24 12:56:25,665 DEBUG: View 1 : 0.644549763033 +2016-08-24 12:56:25,792 DEBUG: View 2 : 0.568720379147 +2016-08-24 12:56:25,804 DEBUG: View 3 : 0.625592417062 +2016-08-24 12:56:26,676 DEBUG: Best view : Clinic_ +2016-08-24 12:56:49,632 DEBUG: Start: Iteration 290 +2016-08-24 12:56:49,653 DEBUG: View 0 : 0.497630331754 +2016-08-24 12:56:49,663 DEBUG: View 1 : 0.582938388626 +2016-08-24 12:56:49,798 DEBUG: View 2 : 0.554502369668 +2016-08-24 12:56:49,809 DEBUG: View 3 : 0.563981042654 +2016-08-24 12:56:50,683 DEBUG: Best view : Clinic_ +2016-08-24 12:57:13,765 DEBUG: Start: Iteration 291 +2016-08-24 12:57:13,786 DEBUG: View 0 : 0.483412322275 +2016-08-24 12:57:13,796 DEBUG: View 1 : 0.412322274882 +2016-08-24 12:57:13,930 DEBUG: View 2 : 0.592417061611 +2016-08-24 12:57:13,942 DEBUG: View 3 : 0.568720379147 +2016-08-24 12:57:14,822 DEBUG: Best view : RANSeq_ +2016-08-24 12:57:37,933 DEBUG: Start: Iteration 292 +2016-08-24 12:57:37,955 DEBUG: View 0 : 0.511848341232 +2016-08-24 12:57:37,964 DEBUG: View 1 : 0.445497630332 +2016-08-24 12:57:38,094 DEBUG: View 2 : 0.620853080569 +2016-08-24 12:57:38,106 DEBUG: View 3 : 0.601895734597 +2016-08-24 12:57:38,988 DEBUG: Best view : RANSeq_ +2016-08-24 12:58:02,193 DEBUG: Start: Iteration 293 +2016-08-24 12:58:02,215 DEBUG: View 0 : 0.578199052133 +2016-08-24 12:58:02,225 DEBUG: View 1 : 0.454976303318 +2016-08-24 12:58:02,357 DEBUG: View 2 : 0.587677725118 +2016-08-24 12:58:02,368 DEBUG: View 3 : 0.625592417062 +2016-08-24 12:58:03,251 DEBUG: Best view : Clinic_ +2016-08-24 12:58:26,533 DEBUG: Start: Iteration 294 +2016-08-24 12:58:26,554 DEBUG: View 0 : 0.597156398104 +2016-08-24 12:58:26,564 DEBUG: View 1 : 0.39336492891 +2016-08-24 12:58:26,688 DEBUG: View 2 : 0.57345971564 +2016-08-24 12:58:26,699 DEBUG: View 3 : 0.597156398104 +2016-08-24 12:58:27,585 DEBUG: Best view : Clinic_ +2016-08-24 12:58:50,953 DEBUG: Start: Iteration 295 +2016-08-24 12:58:50,974 DEBUG: View 0 : 0.488151658768 +2016-08-24 12:58:50,984 DEBUG: View 1 : 0.715639810427 +2016-08-24 12:58:51,111 DEBUG: View 2 : 0.582938388626 +2016-08-24 12:58:51,122 DEBUG: View 3 : 0.568720379147 +2016-08-24 12:58:52,015 DEBUG: Best view : MiRNA__ +2016-08-24 12:59:15,436 DEBUG: Start: Iteration 296 +2016-08-24 12:59:15,457 DEBUG: View 0 : 0.507109004739 +2016-08-24 12:59:15,466 DEBUG: View 1 : 0.530805687204 +2016-08-24 12:59:15,594 DEBUG: View 2 : 0.587677725118 +2016-08-24 12:59:15,604 DEBUG: View 3 : 0.597156398104 +2016-08-24 12:59:16,503 DEBUG: Best view : Clinic_ +2016-08-24 12:59:40,003 DEBUG: Start: Iteration 297 +2016-08-24 12:59:40,024 DEBUG: View 0 : 0.563981042654 +2016-08-24 12:59:40,033 DEBUG: View 1 : 0.582938388626 +2016-08-24 12:59:40,159 DEBUG: View 2 : 0.578199052133 +2016-08-24 12:59:40,169 DEBUG: View 3 : 0.530805687204 +2016-08-24 12:59:41,074 DEBUG: Best view : RANSeq_ +2016-08-24 13:00:04,679 DEBUG: Start: Iteration 298 +2016-08-24 13:00:04,700 DEBUG: View 0 : 0.440758293839 +2016-08-24 13:00:04,709 DEBUG: View 1 : 0.545023696682 +2016-08-24 13:00:04,837 DEBUG: View 2 : 0.559241706161 +2016-08-24 13:00:04,847 DEBUG: View 3 : 0.658767772512 +2016-08-24 13:00:05,752 DEBUG: Best view : Clinic_ +2016-08-24 13:00:29,468 DEBUG: Start: Iteration 299 +2016-08-24 13:00:29,489 DEBUG: View 0 : 0.620853080569 +2016-08-24 13:00:29,498 DEBUG: View 1 : 0.440758293839 +2016-08-24 13:00:29,623 DEBUG: View 2 : 0.559241706161 +2016-08-24 13:00:29,634 DEBUG: View 3 : 0.620853080569 +2016-08-24 13:00:30,543 DEBUG: Best view : Clinic_ +2016-08-24 13:00:54,312 DEBUG: Start: Iteration 300 +2016-08-24 13:00:54,334 DEBUG: View 0 : 0.587677725118 +2016-08-24 13:00:54,343 DEBUG: View 1 : 0.549763033175 +2016-08-24 13:00:54,474 DEBUG: View 2 : 0.60663507109 +2016-08-24 13:00:54,485 DEBUG: View 3 : 0.568720379147 +2016-08-24 13:00:55,389 DEBUG: Best view : RANSeq_ +2016-08-24 13:01:19,318 DEBUG: Start: Iteration 301 +2016-08-24 13:01:19,339 DEBUG: View 0 : 0.511848341232 +2016-08-24 13:01:19,349 DEBUG: View 1 : 0.60663507109 +2016-08-24 13:01:19,478 DEBUG: View 2 : 0.630331753555 +2016-08-24 13:01:19,489 DEBUG: View 3 : 0.549763033175 +2016-08-24 13:01:20,406 DEBUG: Best view : RANSeq_ +2016-08-24 13:01:44,342 DEBUG: Start: Iteration 302 +2016-08-24 13:01:44,363 DEBUG: View 0 : 0.507109004739 +2016-08-24 13:01:44,373 DEBUG: View 1 : 0.611374407583 +2016-08-24 13:01:44,499 DEBUG: View 2 : 0.554502369668 +2016-08-24 13:01:44,510 DEBUG: View 3 : 0.57345971564 +2016-08-24 13:01:45,420 DEBUG: Best view : Clinic_ +2016-08-24 13:02:09,473 DEBUG: Start: Iteration 303 +2016-08-24 13:02:09,494 DEBUG: View 0 : 0.663507109005 +2016-08-24 13:02:09,504 DEBUG: View 1 : 0.554502369668 +2016-08-24 13:02:09,629 DEBUG: View 2 : 0.530805687204 +2016-08-24 13:02:09,640 DEBUG: View 3 : 0.549763033175 +2016-08-24 13:02:10,560 DEBUG: Best view : Methyl_ +2016-08-24 13:02:34,701 DEBUG: Start: Iteration 304 +2016-08-24 13:02:34,722 DEBUG: View 0 : 0.597156398104 +2016-08-24 13:02:34,732 DEBUG: View 1 : 0.729857819905 +2016-08-24 13:02:34,853 DEBUG: View 2 : 0.587677725118 +2016-08-24 13:02:34,864 DEBUG: View 3 : 0.620853080569 +2016-08-24 13:02:35,788 DEBUG: Best view : MiRNA__ +2016-08-24 13:02:59,937 DEBUG: Start: Iteration 305 +2016-08-24 13:02:59,958 DEBUG: View 0 : 0.473933649289 +2016-08-24 13:02:59,968 DEBUG: View 1 : 0.601895734597 +2016-08-24 13:03:00,090 DEBUG: View 2 : 0.625592417062 +2016-08-24 13:03:00,101 DEBUG: View 3 : 0.516587677725 +2016-08-24 13:03:01,023 DEBUG: Best view : RANSeq_ +2016-08-24 13:03:25,286 DEBUG: Start: Iteration 306 +2016-08-24 13:03:25,307 DEBUG: View 0 : 0.454976303318 +2016-08-24 13:03:25,317 DEBUG: View 1 : 0.710900473934 +2016-08-24 13:03:25,451 DEBUG: View 2 : 0.559241706161 +2016-08-24 13:03:25,461 DEBUG: View 3 : 0.563981042654 +2016-08-24 13:03:26,384 DEBUG: Best view : MiRNA__ +2016-08-24 13:03:50,762 DEBUG: Start: Iteration 307 +2016-08-24 13:03:50,783 DEBUG: View 0 : 0.644549763033 +2016-08-24 13:03:50,793 DEBUG: View 1 : 0.611374407583 +2016-08-24 13:03:50,921 DEBUG: View 2 : 0.511848341232 +2016-08-24 13:03:50,932 DEBUG: View 3 : 0.635071090047 +2016-08-24 13:03:51,861 DEBUG: Best view : Clinic_ +2016-08-24 13:04:16,296 DEBUG: Start: Iteration 308 +2016-08-24 13:04:16,317 DEBUG: View 0 : 0.582938388626 +2016-08-24 13:04:16,326 DEBUG: View 1 : 0.677725118483 +2016-08-24 13:04:16,452 DEBUG: View 2 : 0.54028436019 +2016-08-24 13:04:16,463 DEBUG: View 3 : 0.582938388626 +2016-08-24 13:04:17,396 DEBUG: Best view : MiRNA__ +2016-08-24 13:04:41,935 DEBUG: Start: Iteration 309 +2016-08-24 13:04:41,954 DEBUG: View 0 : 0.530805687204 +2016-08-24 13:04:41,964 DEBUG: View 1 : 0.63981042654 +2016-08-24 13:04:42,095 DEBUG: View 2 : 0.549763033175 +2016-08-24 13:04:42,106 DEBUG: View 3 : 0.54028436019 +2016-08-24 13:04:43,048 DEBUG: Best view : MiRNA__ +2016-08-24 13:05:07,600 DEBUG: Start: Iteration 310 +2016-08-24 13:05:07,621 DEBUG: View 0 : 0.620853080569 +2016-08-24 13:05:07,632 DEBUG: View 1 : 0.592417061611 +2016-08-24 13:05:07,760 DEBUG: View 2 : 0.578199052133 +2016-08-24 13:05:07,771 DEBUG: View 3 : 0.554502369668 +2016-08-24 13:05:08,706 DEBUG: Best view : Methyl_ +2016-08-24 13:05:33,385 DEBUG: Start: Iteration 311 +2016-08-24 13:05:33,406 DEBUG: View 0 : 0.81990521327 +2016-08-24 13:05:33,416 DEBUG: View 1 : 0.644549763033 +2016-08-24 13:05:33,542 DEBUG: View 2 : 0.521327014218 +2016-08-24 13:05:33,552 DEBUG: View 3 : 0.601895734597 +2016-08-24 13:05:34,490 DEBUG: Best view : Methyl_ +2016-08-24 13:05:59,216 DEBUG: Start: Iteration 312 +2016-08-24 13:05:59,237 DEBUG: View 0 : 0.440758293839 +2016-08-24 13:05:59,246 DEBUG: View 1 : 0.578199052133 +2016-08-24 13:05:59,373 DEBUG: View 2 : 0.545023696682 +2016-08-24 13:05:59,384 DEBUG: View 3 : 0.682464454976 +2016-08-24 13:06:00,326 DEBUG: Best view : Clinic_ +2016-08-24 13:06:25,148 DEBUG: Start: Iteration 313 +2016-08-24 13:06:25,169 DEBUG: View 0 : 0.597156398104 +2016-08-24 13:06:25,179 DEBUG: View 1 : 0.715639810427 +2016-08-24 13:06:25,314 DEBUG: View 2 : 0.535545023697 +2016-08-24 13:06:25,325 DEBUG: View 3 : 0.672985781991 +2016-08-24 13:06:26,268 DEBUG: Best view : MiRNA__ +2016-08-24 13:06:51,146 DEBUG: Start: Iteration 314 +2016-08-24 13:06:51,167 DEBUG: View 0 : 0.563981042654 +2016-08-24 13:06:51,176 DEBUG: View 1 : 0.620853080569 +2016-08-24 13:06:51,304 DEBUG: View 2 : 0.663507109005 +2016-08-24 13:06:51,315 DEBUG: View 3 : 0.611374407583 +2016-08-24 13:06:52,260 DEBUG: Best view : RANSeq_ +2016-08-24 13:07:17,317 DEBUG: Start: Iteration 315 +2016-08-24 13:07:17,338 DEBUG: View 0 : 0.568720379147 +2016-08-24 13:07:17,348 DEBUG: View 1 : 0.379146919431 +2016-08-24 13:07:17,474 DEBUG: View 2 : 0.582938388626 +2016-08-24 13:07:17,485 DEBUG: View 3 : 0.568720379147 +2016-08-24 13:07:18,436 DEBUG: Best view : RANSeq_ +2016-08-24 13:07:43,598 DEBUG: Start: Iteration 316 +2016-08-24 13:07:43,619 DEBUG: View 0 : 0.407582938389 +2016-08-24 13:07:43,629 DEBUG: View 1 : 0.545023696682 +2016-08-24 13:07:43,759 DEBUG: View 2 : 0.592417061611 +2016-08-24 13:07:43,770 DEBUG: View 3 : 0.710900473934 +2016-08-24 13:07:44,721 DEBUG: Best view : Clinic_ +2016-08-24 13:08:09,887 DEBUG: Start: Iteration 317 +2016-08-24 13:08:09,908 DEBUG: View 0 : 0.696682464455 +2016-08-24 13:08:09,918 DEBUG: View 1 : 0.625592417062 +2016-08-24 13:08:10,041 DEBUG: View 2 : 0.578199052133 +2016-08-24 13:08:10,052 DEBUG: View 3 : 0.682464454976 +2016-08-24 13:08:11,006 DEBUG: Best view : Methyl_ +2016-08-24 13:08:36,231 DEBUG: Start: Iteration 318 +2016-08-24 13:08:36,252 DEBUG: View 0 : 0.63981042654 +2016-08-24 13:08:36,261 DEBUG: View 1 : 0.611374407583 +2016-08-24 13:08:36,388 DEBUG: View 2 : 0.535545023697 +2016-08-24 13:08:36,399 DEBUG: View 3 : 0.57345971564 +2016-08-24 13:08:37,367 DEBUG: Best view : Methyl_ +2016-08-24 13:09:02,676 DEBUG: Start: Iteration 319 +2016-08-24 13:09:02,697 DEBUG: View 0 : 0.701421800948 +2016-08-24 13:09:02,706 DEBUG: View 1 : 0.597156398104 +2016-08-24 13:09:02,833 DEBUG: View 2 : 0.497630331754 +2016-08-24 13:09:02,844 DEBUG: View 3 : 0.530805687204 +2016-08-24 13:09:03,803 DEBUG: Best view : Methyl_ +2016-08-24 13:09:29,304 DEBUG: Start: Iteration 320 +2016-08-24 13:09:29,325 DEBUG: View 0 : 0.516587677725 +2016-08-24 13:09:29,335 DEBUG: View 1 : 0.625592417062 +2016-08-24 13:09:29,462 DEBUG: View 2 : 0.545023696682 +2016-08-24 13:09:29,473 DEBUG: View 3 : 0.578199052133 +2016-08-24 13:09:30,442 DEBUG: Best view : Clinic_ +2016-08-24 13:09:55,977 DEBUG: Start: Iteration 321 +2016-08-24 13:09:55,998 DEBUG: View 0 : 0.611374407583 +2016-08-24 13:09:56,008 DEBUG: View 1 : 0.492890995261 +2016-08-24 13:09:56,129 DEBUG: View 2 : 0.492890995261 +2016-08-24 13:09:56,140 DEBUG: View 3 : 0.60663507109 +2016-08-24 13:09:57,108 DEBUG: Best view : Clinic_ +2016-08-24 13:10:22,680 DEBUG: Start: Iteration 322 +2016-08-24 13:10:22,699 DEBUG: View 0 : 0.502369668246 +2016-08-24 13:10:22,709 DEBUG: View 1 : 0.644549763033 +2016-08-24 13:10:22,836 DEBUG: View 2 : 0.497630331754 +2016-08-24 13:10:22,847 DEBUG: View 3 : 0.682464454976 +2016-08-24 13:10:23,824 DEBUG: Best view : Clinic_ +2016-08-24 13:10:49,464 DEBUG: Start: Iteration 323 +2016-08-24 13:10:49,485 DEBUG: View 0 : 0.464454976303 +2016-08-24 13:10:49,495 DEBUG: View 1 : 0.445497630332 +2016-08-24 13:10:49,627 DEBUG: View 2 : 0.597156398104 +2016-08-24 13:10:49,638 DEBUG: View 3 : 0.63981042654 +2016-08-24 13:10:50,603 DEBUG: Best view : Clinic_ +2016-08-24 13:11:16,319 DEBUG: Start: Iteration 324 +2016-08-24 13:11:16,340 DEBUG: View 0 : 0.545023696682 +2016-08-24 13:11:16,350 DEBUG: View 1 : 0.701421800948 +2016-08-24 13:11:16,481 DEBUG: View 2 : 0.57345971564 +2016-08-24 13:11:16,492 DEBUG: View 3 : 0.478672985782 +2016-08-24 13:11:17,473 DEBUG: Best view : MiRNA__ +2016-08-24 13:11:43,320 DEBUG: Start: Iteration 325 +2016-08-24 13:11:43,341 DEBUG: View 0 : 0.587677725118 +2016-08-24 13:11:43,351 DEBUG: View 1 : 0.649289099526 +2016-08-24 13:11:43,469 DEBUG: View 2 : 0.488151658768 +2016-08-24 13:11:43,480 DEBUG: View 3 : 0.63981042654 +2016-08-24 13:11:44,462 DEBUG: Best view : Clinic_ +2016-08-24 13:12:10,284 DEBUG: Start: Iteration 326 +2016-08-24 13:12:10,305 DEBUG: View 0 : 0.57345971564 +2016-08-24 13:12:10,315 DEBUG: View 1 : 0.729857819905 +2016-08-24 13:12:10,445 DEBUG: View 2 : 0.616113744076 +2016-08-24 13:12:10,457 DEBUG: View 3 : 0.677725118483 +2016-08-24 13:12:11,437 DEBUG: Best view : MiRNA__ +2016-08-24 13:12:37,412 DEBUG: Start: Iteration 327 +2016-08-24 13:12:37,433 DEBUG: View 0 : 0.630331753555 +2016-08-24 13:12:37,442 DEBUG: View 1 : 0.620853080569 +2016-08-24 13:12:37,574 DEBUG: View 2 : 0.559241706161 +2016-08-24 13:12:37,585 DEBUG: View 3 : 0.559241706161 +2016-08-24 13:12:38,570 DEBUG: Best view : MiRNA__ +2016-08-24 13:13:04,614 DEBUG: Start: Iteration 328 +2016-08-24 13:13:04,635 DEBUG: View 0 : 0.592417061611 +2016-08-24 13:13:04,645 DEBUG: View 1 : 0.60663507109 +2016-08-24 13:13:04,781 DEBUG: View 2 : 0.597156398104 +2016-08-24 13:13:04,792 DEBUG: View 3 : 0.620853080569 +2016-08-24 13:13:05,777 DEBUG: Best view : Clinic_ +2016-08-24 13:13:31,866 DEBUG: Start: Iteration 329 +2016-08-24 13:13:31,887 DEBUG: View 0 : 0.582938388626 +2016-08-24 13:13:31,896 DEBUG: View 1 : 0.635071090047 +2016-08-24 13:13:32,023 DEBUG: View 2 : 0.488151658768 +2016-08-24 13:13:32,035 DEBUG: View 3 : 0.60663507109 +2016-08-24 13:13:33,028 DEBUG: Best view : Clinic_ +2016-08-24 13:13:59,177 DEBUG: Start: Iteration 330 +2016-08-24 13:13:59,198 DEBUG: View 0 : 0.492890995261 +2016-08-24 13:13:59,208 DEBUG: View 1 : 0.620853080569 +2016-08-24 13:13:59,338 DEBUG: View 2 : 0.630331753555 +2016-08-24 13:13:59,350 DEBUG: View 3 : 0.483412322275 +2016-08-24 13:14:00,344 DEBUG: Best view : RANSeq_ +2016-08-24 13:14:26,647 DEBUG: Start: Iteration 331 +2016-08-24 13:14:26,668 DEBUG: View 0 : 0.597156398104 +2016-08-24 13:14:26,677 DEBUG: View 1 : 0.630331753555 +2016-08-24 13:14:26,812 DEBUG: View 2 : 0.63981042654 +2016-08-24 13:14:26,824 DEBUG: View 3 : 0.511848341232 +2016-08-24 13:14:27,820 DEBUG: Best view : RANSeq_ +2016-08-24 13:14:54,213 DEBUG: Start: Iteration 332 +2016-08-24 13:14:54,234 DEBUG: View 0 : 0.421800947867 +2016-08-24 13:14:54,243 DEBUG: View 1 : 0.507109004739 +2016-08-24 13:14:54,382 DEBUG: View 2 : 0.625592417062 +2016-08-24 13:14:54,394 DEBUG: View 3 : 0.526066350711 +2016-08-24 13:14:55,386 DEBUG: Best view : RANSeq_ +2016-08-24 13:15:21,825 DEBUG: Start: Iteration 333 +2016-08-24 13:15:21,846 DEBUG: View 0 : 0.582938388626 +2016-08-24 13:15:21,856 DEBUG: View 1 : 0.677725118483 +2016-08-24 13:15:21,980 DEBUG: View 2 : 0.497630331754 +2016-08-24 13:15:21,992 DEBUG: View 3 : 0.682464454976 +2016-08-24 13:15:22,993 DEBUG: Best view : Clinic_ +2016-08-24 13:15:49,454 DEBUG: Start: Iteration 334 +2016-08-24 13:15:49,475 DEBUG: View 0 : 0.644549763033 +2016-08-24 13:15:49,485 DEBUG: View 1 : 0.630331753555 +2016-08-24 13:15:49,616 DEBUG: View 2 : 0.545023696682 +2016-08-24 13:15:49,627 DEBUG: View 3 : 0.682464454976 +2016-08-24 13:15:50,634 DEBUG: Best view : Clinic_ +2016-08-24 13:16:17,257 DEBUG: Start: Iteration 335 +2016-08-24 13:16:17,278 DEBUG: View 0 : 0.582938388626 +2016-08-24 13:16:17,288 DEBUG: View 1 : 0.497630331754 +2016-08-24 13:16:17,429 DEBUG: View 2 : 0.559241706161 +2016-08-24 13:16:17,441 DEBUG: View 3 : 0.578199052133 +2016-08-24 13:16:18,444 DEBUG: Best view : Clinic_ +2016-08-24 13:16:45,102 DEBUG: Start: Iteration 336 +2016-08-24 13:16:45,123 DEBUG: View 0 : 0.772511848341 +2016-08-24 13:16:45,132 DEBUG: View 1 : 0.592417061611 +2016-08-24 13:16:45,262 DEBUG: View 2 : 0.497630331754 +2016-08-24 13:16:45,272 DEBUG: View 3 : 0.535545023697 +2016-08-24 13:16:46,283 DEBUG: Best view : Methyl_ +2016-08-24 13:17:12,988 DEBUG: Start: Iteration 337 +2016-08-24 13:17:13,009 DEBUG: View 0 : 0.45971563981 +2016-08-24 13:17:13,018 DEBUG: View 1 : 0.843601895735 +2016-08-24 13:17:13,155 DEBUG: View 2 : 0.521327014218 +2016-08-24 13:17:13,164 DEBUG: View 3 : 0.563981042654 +2016-08-24 13:17:14,174 DEBUG: Best view : MiRNA__ +2016-08-24 13:17:40,947 DEBUG: Start: Iteration 338 +2016-08-24 13:17:40,968 DEBUG: View 0 : 0.578199052133 +2016-08-24 13:17:40,978 DEBUG: View 1 : 0.701421800948 +2016-08-24 13:17:41,102 DEBUG: View 2 : 0.559241706161 +2016-08-24 13:17:41,111 DEBUG: View 3 : 0.625592417062 +2016-08-24 13:17:42,125 DEBUG: Best view : MiRNA__ +2016-08-24 13:18:08,964 DEBUG: Start: Iteration 339 +2016-08-24 13:18:08,985 DEBUG: View 0 : 0.445497630332 +2016-08-24 13:18:08,995 DEBUG: View 1 : 0.691943127962 +2016-08-24 13:18:09,116 DEBUG: View 2 : 0.592417061611 +2016-08-24 13:18:09,126 DEBUG: View 3 : 0.630331753555 +2016-08-24 13:18:10,144 DEBUG: Best view : MiRNA__ +2016-08-24 13:18:37,137 DEBUG: Start: Iteration 340 +2016-08-24 13:18:37,158 DEBUG: View 0 : 0.516587677725 +2016-08-24 13:18:37,168 DEBUG: View 1 : 0.829383886256 +2016-08-24 13:18:37,289 DEBUG: View 2 : 0.630331753555 +2016-08-24 13:18:37,298 DEBUG: View 3 : 0.535545023697 +2016-08-24 13:18:38,321 DEBUG: Best view : MiRNA__ +2016-08-24 13:19:05,398 DEBUG: Start: Iteration 341 +2016-08-24 13:19:05,419 DEBUG: View 0 : 0.54028436019 +2016-08-24 13:19:05,429 DEBUG: View 1 : 0.687203791469 +2016-08-24 13:19:05,558 DEBUG: View 2 : 0.54028436019 +2016-08-24 13:19:05,567 DEBUG: View 3 : 0.682464454976 +2016-08-24 13:19:06,592 DEBUG: Best view : Clinic_ +2016-08-24 13:19:33,682 DEBUG: Start: Iteration 342 +2016-08-24 13:19:33,703 DEBUG: View 0 : 0.526066350711 +2016-08-24 13:19:33,712 DEBUG: View 1 : 0.398104265403 +2016-08-24 13:19:33,846 DEBUG: View 2 : 0.526066350711 +2016-08-24 13:19:33,855 DEBUG: View 3 : 0.677725118483 +2016-08-24 13:19:34,880 DEBUG: Best view : Clinic_ +2016-08-24 13:20:02,169 DEBUG: Start: Iteration 343 +2016-08-24 13:20:02,190 DEBUG: View 0 : 0.421800947867 +2016-08-24 13:20:02,200 DEBUG: View 1 : 0.350710900474 +2016-08-24 13:20:02,331 DEBUG: View 2 : 0.535545023697 +2016-08-24 13:20:02,340 DEBUG: View 3 : 0.554502369668 +2016-08-24 13:20:03,376 DEBUG: Best view : Clinic_ +2016-08-24 13:20:31,151 DEBUG: Start: Iteration 344 +2016-08-24 13:20:31,173 DEBUG: View 0 : 0.616113744076 +2016-08-24 13:20:31,182 DEBUG: View 1 : 0.715639810427 +2016-08-24 13:20:31,302 DEBUG: View 2 : 0.578199052133 +2016-08-24 13:20:31,312 DEBUG: View 3 : 0.625592417062 +2016-08-24 13:20:32,370 DEBUG: Best view : MiRNA__ +2016-08-24 13:21:00,542 DEBUG: Start: Iteration 345 +2016-08-24 13:21:00,564 DEBUG: View 0 : 0.436018957346 +2016-08-24 13:21:00,575 DEBUG: View 1 : 0.578199052133 +2016-08-24 13:21:00,701 DEBUG: View 2 : 0.530805687204 +2016-08-24 13:21:00,711 DEBUG: View 3 : 0.620853080569 +2016-08-24 13:21:01,779 DEBUG: Best view : Clinic_ +2016-08-24 13:21:29,765 DEBUG: Start: Iteration 346 +2016-08-24 13:21:29,786 DEBUG: View 0 : 0.63981042654 +2016-08-24 13:21:29,796 DEBUG: View 1 : 0.473933649289 +2016-08-24 13:21:29,922 DEBUG: View 2 : 0.592417061611 +2016-08-24 13:21:29,931 DEBUG: View 3 : 0.691943127962 +2016-08-24 13:21:30,995 DEBUG: Best view : Clinic_ +2016-08-24 13:21:59,180 DEBUG: Start: Iteration 347 +2016-08-24 13:21:59,201 DEBUG: View 0 : 0.587677725118 +2016-08-24 13:21:59,211 DEBUG: View 1 : 0.687203791469 +2016-08-24 13:21:59,335 DEBUG: View 2 : 0.54028436019 +2016-08-24 13:21:59,345 DEBUG: View 3 : 0.611374407583 +2016-08-24 13:22:00,434 DEBUG: Best view : MiRNA__ +2016-08-24 13:22:28,518 DEBUG: Start: Iteration 348 +2016-08-24 13:22:28,539 DEBUG: View 0 : 0.521327014218 +2016-08-24 13:22:28,549 DEBUG: View 1 : 0.563981042654 +2016-08-24 13:22:28,662 DEBUG: View 2 : 0.635071090047 +2016-08-24 13:22:28,672 DEBUG: View 3 : 0.545023696682 +2016-08-24 13:22:29,716 DEBUG: Best view : RANSeq_ +2016-08-24 13:22:57,657 DEBUG: Start: Iteration 349 +2016-08-24 13:22:57,678 DEBUG: View 0 : 0.601895734597 +2016-08-24 13:22:57,687 DEBUG: View 1 : 0.255924170616 +2016-08-24 13:22:57,819 DEBUG: View 2 : 0.578199052133 +2016-08-24 13:22:57,829 DEBUG: View 3 : 0.45971563981 +2016-08-24 13:22:58,880 DEBUG: Best view : Methyl_ +2016-08-24 13:23:26,842 DEBUG: Start: Iteration 350 +2016-08-24 13:23:26,863 DEBUG: View 0 : 0.559241706161 +2016-08-24 13:23:26,873 DEBUG: View 1 : 0.526066350711 +2016-08-24 13:23:26,995 DEBUG: View 2 : 0.545023696682 +2016-08-24 13:23:27,006 DEBUG: View 3 : 0.563981042654 +2016-08-24 13:23:28,055 DEBUG: Best view : Clinic_ +2016-08-24 13:23:56,069 DEBUG: Start: Iteration 351 +2016-08-24 13:23:56,090 DEBUG: View 0 : 0.563981042654 +2016-08-24 13:23:56,099 DEBUG: View 1 : 0.597156398104 +2016-08-24 13:23:56,229 DEBUG: View 2 : 0.554502369668 +2016-08-24 13:23:56,241 DEBUG: View 3 : 0.611374407583 +2016-08-24 13:23:57,313 DEBUG: Best view : Clinic_ +2016-08-24 13:24:25,267 DEBUG: Start: Iteration 352 +2016-08-24 13:24:25,288 DEBUG: View 0 : 0.658767772512 +2016-08-24 13:24:25,297 DEBUG: View 1 : 0.668246445498 +2016-08-24 13:24:25,435 DEBUG: View 2 : 0.63981042654 +2016-08-24 13:24:25,446 DEBUG: View 3 : 0.691943127962 +2016-08-24 13:24:26,503 DEBUG: Best view : Clinic_ +2016-08-24 13:24:55,334 DEBUG: Start: Iteration 353 +2016-08-24 13:24:55,356 DEBUG: View 0 : 0.715639810427 +2016-08-24 13:24:55,368 DEBUG: View 1 : 0.383886255924 +2016-08-24 13:24:55,509 DEBUG: View 2 : 0.568720379147 +2016-08-24 13:24:55,520 DEBUG: View 3 : 0.620853080569 +2016-08-24 13:24:56,581 DEBUG: Best view : Methyl_ +2016-08-24 13:25:25,491 DEBUG: Start: Iteration 354 +2016-08-24 13:25:25,512 DEBUG: View 0 : 0.687203791469 +2016-08-24 13:25:25,522 DEBUG: View 1 : 0.592417061611 +2016-08-24 13:25:25,677 DEBUG: View 2 : 0.601895734597 +2016-08-24 13:25:25,690 DEBUG: View 3 : 0.587677725118 +2016-08-24 13:25:26,866 DEBUG: Best view : Methyl_ +2016-08-24 13:25:55,868 DEBUG: Start: Iteration 355 +2016-08-24 13:25:55,889 DEBUG: View 0 : 0.450236966825 +2016-08-24 13:25:55,899 DEBUG: View 1 : 0.597156398104 +2016-08-24 13:25:56,036 DEBUG: View 2 : 0.549763033175 +2016-08-24 13:25:56,048 DEBUG: View 3 : 0.563981042654 +2016-08-24 13:25:57,138 DEBUG: Best view : Clinic_ +2016-08-24 13:26:26,039 DEBUG: Start: Iteration 356 +2016-08-24 13:26:26,060 DEBUG: View 0 : 0.535545023697 +2016-08-24 13:26:26,070 DEBUG: View 1 : 0.625592417062 +2016-08-24 13:26:26,209 DEBUG: View 2 : 0.502369668246 +2016-08-24 13:26:26,220 DEBUG: View 3 : 0.630331753555 +2016-08-24 13:26:27,295 DEBUG: Best view : Clinic_ +2016-08-24 13:26:56,537 DEBUG: Start: Iteration 357 +2016-08-24 13:26:56,559 DEBUG: View 0 : 0.521327014218 +2016-08-24 13:26:56,568 DEBUG: View 1 : 0.758293838863 +2016-08-24 13:26:56,704 DEBUG: View 2 : 0.635071090047 +2016-08-24 13:26:56,715 DEBUG: View 3 : 0.592417061611 +2016-08-24 13:26:57,821 DEBUG: Best view : MiRNA__ +2016-08-24 13:27:26,994 DEBUG: Start: Iteration 358 +2016-08-24 13:27:27,015 DEBUG: View 0 : 0.630331753555 +2016-08-24 13:27:27,025 DEBUG: View 1 : 0.616113744076 +2016-08-24 13:27:27,162 DEBUG: View 2 : 0.578199052133 +2016-08-24 13:27:27,174 DEBUG: View 3 : 0.554502369668 +2016-08-24 13:27:28,247 DEBUG: Best view : Methyl_ +2016-08-24 13:27:58,044 DEBUG: Start: Iteration 359 +2016-08-24 13:27:58,064 DEBUG: View 0 : 0.545023696682 +2016-08-24 13:27:58,074 DEBUG: View 1 : 0.469194312796 +2016-08-24 13:27:58,197 DEBUG: View 2 : 0.578199052133 +2016-08-24 13:27:58,209 DEBUG: View 3 : 0.616113744076 +2016-08-24 13:27:59,367 DEBUG: Best view : Clinic_ +2016-08-24 13:28:28,618 DEBUG: Start: Iteration 360 +2016-08-24 13:28:28,639 DEBUG: View 0 : 0.620853080569 +2016-08-24 13:28:28,650 DEBUG: View 1 : 0.379146919431 +2016-08-24 13:28:28,788 DEBUG: View 2 : 0.587677725118 +2016-08-24 13:28:28,800 DEBUG: View 3 : 0.625592417062 +2016-08-24 13:28:30,145 DEBUG: Best view : Clinic_ +2016-08-24 13:28:59,484 DEBUG: Start: Iteration 361 +2016-08-24 13:28:59,505 DEBUG: View 0 : 0.57345971564 +2016-08-24 13:28:59,515 DEBUG: View 1 : 0.620853080569 +2016-08-24 13:28:59,644 DEBUG: View 2 : 0.592417061611 +2016-08-24 13:28:59,655 DEBUG: View 3 : 0.563981042654 +2016-08-24 13:29:00,763 DEBUG: Best view : MiRNA__ +2016-08-24 13:29:30,434 DEBUG: Start: Iteration 362 +2016-08-24 13:29:30,455 DEBUG: View 0 : 0.620853080569 +2016-08-24 13:29:30,465 DEBUG: View 1 : 0.45971563981 +2016-08-24 13:29:30,598 DEBUG: View 2 : 0.554502369668 +2016-08-24 13:29:30,610 DEBUG: View 3 : 0.592417061611 +2016-08-24 13:29:31,731 DEBUG: Best view : Clinic_ +2016-08-24 13:30:01,786 DEBUG: Start: Iteration 363 +2016-08-24 13:30:01,807 DEBUG: View 0 : 0.630331753555 +2016-08-24 13:30:01,816 DEBUG: View 1 : 0.502369668246 +2016-08-24 13:30:01,953 DEBUG: View 2 : 0.60663507109 +2016-08-24 13:30:01,964 DEBUG: View 3 : 0.507109004739 +2016-08-24 13:30:03,086 DEBUG: Best view : Methyl_ +2016-08-24 13:30:32,971 DEBUG: Start: Iteration 364 +2016-08-24 13:30:32,993 DEBUG: View 0 : 0.554502369668 +2016-08-24 13:30:33,003 DEBUG: View 1 : 0.644549763033 +2016-08-24 13:30:33,126 DEBUG: View 2 : 0.592417061611 +2016-08-24 13:30:33,137 DEBUG: View 3 : 0.616113744076 +2016-08-24 13:30:34,239 DEBUG: Best view : Clinic_ +2016-08-24 13:31:04,052 DEBUG: Start: Iteration 365 +2016-08-24 13:31:04,072 DEBUG: View 0 : 0.545023696682 +2016-08-24 13:31:04,082 DEBUG: View 1 : 0.706161137441 +2016-08-24 13:31:04,215 DEBUG: View 2 : 0.492890995261 +2016-08-24 13:31:04,226 DEBUG: View 3 : 0.554502369668 +2016-08-24 13:31:05,331 DEBUG: Best view : MiRNA__ +2016-08-24 13:31:35,076 DEBUG: Start: Iteration 366 +2016-08-24 13:31:35,096 DEBUG: View 0 : 0.658767772512 +2016-08-24 13:31:35,106 DEBUG: View 1 : 0.54028436019 +2016-08-24 13:31:35,242 DEBUG: View 2 : 0.554502369668 +2016-08-24 13:31:35,253 DEBUG: View 3 : 0.587677725118 +2016-08-24 13:31:36,362 DEBUG: Best view : Methyl_ +2016-08-24 13:32:05,866 DEBUG: Start: Iteration 367 +2016-08-24 13:32:05,887 DEBUG: View 0 : 0.630331753555 +2016-08-24 13:32:05,897 DEBUG: View 1 : 0.677725118483 +2016-08-24 13:32:06,019 DEBUG: View 2 : 0.587677725118 +2016-08-24 13:32:06,030 DEBUG: View 3 : 0.592417061611 +2016-08-24 13:32:07,151 DEBUG: Best view : MiRNA__ +2016-08-24 13:32:37,659 DEBUG: Start: Iteration 368 +2016-08-24 13:32:37,680 DEBUG: View 0 : 0.625592417062 +2016-08-24 13:32:37,691 DEBUG: View 1 : 0.563981042654 +2016-08-24 13:32:37,812 DEBUG: View 2 : 0.511848341232 +2016-08-24 13:32:37,822 DEBUG: View 3 : 0.563981042654 +2016-08-24 13:32:38,995 DEBUG: Best view : Methyl_ +2016-08-24 13:33:09,312 DEBUG: Start: Iteration 369 +2016-08-24 13:33:09,334 DEBUG: View 0 : 0.464454976303 +2016-08-24 13:33:09,348 DEBUG: View 1 : 0.549763033175 +2016-08-24 13:33:09,482 DEBUG: View 2 : 0.578199052133 +2016-08-24 13:33:09,498 DEBUG: View 3 : 0.625592417062 +2016-08-24 13:33:10,676 DEBUG: Best view : Clinic_ +2016-08-24 13:33:40,714 DEBUG: Start: Iteration 370 +2016-08-24 13:33:40,736 DEBUG: View 0 : 0.507109004739 +2016-08-24 13:33:40,745 DEBUG: View 1 : 0.644549763033 +2016-08-24 13:33:40,862 DEBUG: View 2 : 0.559241706161 +2016-08-24 13:33:40,872 DEBUG: View 3 : 0.611374407583 +2016-08-24 13:33:41,996 DEBUG: Best view : Clinic_ +2016-08-24 13:34:11,589 DEBUG: Start: Iteration 371 +2016-08-24 13:34:11,611 DEBUG: View 0 : 0.516587677725 +2016-08-24 13:34:11,620 DEBUG: View 1 : 0.450236966825 +2016-08-24 13:34:11,740 DEBUG: View 2 : 0.597156398104 +2016-08-24 13:34:11,749 DEBUG: View 3 : 0.582938388626 +2016-08-24 13:34:12,914 DEBUG: Best view : Clinic_ +2016-08-24 13:34:42,966 DEBUG: Start: Iteration 372 +2016-08-24 13:34:42,987 DEBUG: View 0 : 0.54028436019 +2016-08-24 13:34:42,997 DEBUG: View 1 : 0.597156398104 +2016-08-24 13:34:43,125 DEBUG: View 2 : 0.620853080569 +2016-08-24 13:34:43,134 DEBUG: View 3 : 0.611374407583 +2016-08-24 13:34:44,307 DEBUG: Best view : RANSeq_ +2016-08-24 13:35:14,647 DEBUG: Start: Iteration 373 +2016-08-24 13:35:14,668 DEBUG: View 0 : 0.654028436019 +2016-08-24 13:35:14,680 DEBUG: View 1 : 0.421800947867 +2016-08-24 13:35:14,805 DEBUG: View 2 : 0.578199052133 +2016-08-24 13:35:14,814 DEBUG: View 3 : 0.578199052133 +2016-08-24 13:35:15,960 DEBUG: Best view : Methyl_ +2016-08-24 13:35:46,317 DEBUG: Start: Iteration 374 +2016-08-24 13:35:46,339 DEBUG: View 0 : 0.492890995261 +2016-08-24 13:35:46,349 DEBUG: View 1 : 0.625592417062 +2016-08-24 13:35:46,466 DEBUG: View 2 : 0.535545023697 +2016-08-24 13:35:46,475 DEBUG: View 3 : 0.511848341232 +2016-08-24 13:35:47,650 DEBUG: Best view : MiRNA__ +2016-08-24 13:36:17,996 DEBUG: Start: Iteration 375 +2016-08-24 13:36:18,018 DEBUG: View 0 : 0.587677725118 +2016-08-24 13:36:18,028 DEBUG: View 1 : 0.388625592417 +2016-08-24 13:36:18,170 DEBUG: View 2 : 0.563981042654 +2016-08-24 13:36:18,181 DEBUG: View 3 : 0.630331753555 +2016-08-24 13:36:19,343 DEBUG: Best view : Clinic_ +2016-08-24 13:36:49,753 DEBUG: Start: Iteration 376 +2016-08-24 13:36:49,774 DEBUG: View 0 : 0.445497630332 +2016-08-24 13:36:49,784 DEBUG: View 1 : 0.616113744076 +2016-08-24 13:36:49,904 DEBUG: View 2 : 0.554502369668 +2016-08-24 13:36:49,913 DEBUG: View 3 : 0.597156398104 +2016-08-24 13:36:51,145 DEBUG: Best view : Clinic_ +2016-08-24 13:37:21,399 DEBUG: Start: Iteration 377 +2016-08-24 13:37:21,420 DEBUG: View 0 : 0.545023696682 +2016-08-24 13:37:21,430 DEBUG: View 1 : 0.611374407583 +2016-08-24 13:37:21,550 DEBUG: View 2 : 0.502369668246 +2016-08-24 13:37:21,560 DEBUG: View 3 : 0.521327014218 +2016-08-24 13:37:22,689 DEBUG: Best view : MiRNA__ +2016-08-24 13:37:52,749 DEBUG: Start: Iteration 378 +2016-08-24 13:37:52,770 DEBUG: View 0 : 0.42654028436 +2016-08-24 13:37:52,779 DEBUG: View 1 : 0.587677725118 +2016-08-24 13:37:52,902 DEBUG: View 2 : 0.582938388626 +2016-08-24 13:37:52,912 DEBUG: View 3 : 0.620853080569 +2016-08-24 13:37:54,077 DEBUG: Best view : Clinic_ +2016-08-24 13:38:24,175 DEBUG: Start: Iteration 379 +2016-08-24 13:38:24,197 DEBUG: View 0 : 0.625592417062 +2016-08-24 13:38:24,206 DEBUG: View 1 : 0.75355450237 +2016-08-24 13:38:24,329 DEBUG: View 2 : 0.526066350711 +2016-08-24 13:38:24,338 DEBUG: View 3 : 0.620853080569 +2016-08-24 13:38:25,566 DEBUG: Best view : MiRNA__ +2016-08-24 13:38:55,931 DEBUG: Start: Iteration 380 +2016-08-24 13:38:55,953 DEBUG: View 0 : 0.535545023697 +2016-08-24 13:38:55,962 DEBUG: View 1 : 0.677725118483 +2016-08-24 13:38:56,079 DEBUG: View 2 : 0.635071090047 +2016-08-24 13:38:56,088 DEBUG: View 3 : 0.616113744076 +2016-08-24 13:38:57,256 DEBUG: Best view : MiRNA__ +2016-08-24 13:39:27,647 DEBUG: Start: Iteration 381 +2016-08-24 13:39:27,668 DEBUG: View 0 : 0.473933649289 +2016-08-24 13:39:27,678 DEBUG: View 1 : 0.620853080569 +2016-08-24 13:39:27,798 DEBUG: View 2 : 0.578199052133 +2016-08-24 13:39:27,808 DEBUG: View 3 : 0.616113744076 +2016-08-24 13:39:28,946 DEBUG: Best view : Clinic_ +2016-08-24 13:40:00,455 DEBUG: Start: Iteration 382 +2016-08-24 13:40:00,481 DEBUG: View 0 : 0.42654028436 +2016-08-24 13:40:00,492 DEBUG: View 1 : 0.436018957346 +2016-08-24 13:40:00,631 DEBUG: View 2 : 0.635071090047 +2016-08-24 13:40:00,643 DEBUG: View 3 : 0.616113744076 +2016-08-24 13:40:01,991 DEBUG: Best view : RANSeq_ +2016-08-24 13:40:32,518 DEBUG: Start: Iteration 383 +2016-08-24 13:40:32,539 DEBUG: View 0 : 0.436018957346 +2016-08-24 13:40:32,548 DEBUG: View 1 : 0.60663507109 +2016-08-24 13:40:32,668 DEBUG: View 2 : 0.507109004739 +2016-08-24 13:40:32,678 DEBUG: View 3 : 0.563981042654 +2016-08-24 13:40:33,824 DEBUG: Best view : Clinic_ +2016-08-24 13:41:04,952 DEBUG: Start: Iteration 384 +2016-08-24 13:41:04,974 DEBUG: View 0 : 0.587677725118 +2016-08-24 13:41:04,983 DEBUG: View 1 : 0.597156398104 +2016-08-24 13:41:05,103 DEBUG: View 2 : 0.597156398104 +2016-08-24 13:41:05,112 DEBUG: View 3 : 0.545023696682 +2016-08-24 13:41:06,291 DEBUG: Best view : MiRNA__ +2016-08-24 13:41:37,036 DEBUG: Start: Iteration 385 +2016-08-24 13:41:37,056 DEBUG: View 0 : 0.530805687204 +2016-08-24 13:41:37,066 DEBUG: View 1 : 0.630331753555 +2016-08-24 13:41:37,181 DEBUG: View 2 : 0.535545023697 +2016-08-24 13:41:37,191 DEBUG: View 3 : 0.582938388626 +2016-08-24 13:41:38,358 DEBUG: Best view : MiRNA__ +2016-08-24 13:42:09,865 DEBUG: Start: Iteration 386 +2016-08-24 13:42:09,889 DEBUG: View 0 : 0.635071090047 +2016-08-24 13:42:09,902 DEBUG: View 1 : 0.582938388626 +2016-08-24 13:42:10,037 DEBUG: View 2 : 0.57345971564 +2016-08-24 13:42:10,046 DEBUG: View 3 : 0.663507109005 +2016-08-24 13:42:11,381 DEBUG: Best view : Clinic_ +2016-08-24 13:42:43,246 DEBUG: Start: Iteration 387 +2016-08-24 13:42:43,270 DEBUG: View 0 : 0.530805687204 +2016-08-24 13:42:43,281 DEBUG: View 1 : 0.497630331754 +2016-08-24 13:42:43,425 DEBUG: View 2 : 0.554502369668 +2016-08-24 13:42:43,436 DEBUG: View 3 : 0.663507109005 +2016-08-24 13:42:44,706 DEBUG: Best view : Clinic_ +2016-08-24 13:43:15,848 DEBUG: Start: Iteration 388 +2016-08-24 13:43:15,869 DEBUG: View 0 : 0.54028436019 +2016-08-24 13:43:15,879 DEBUG: View 1 : 0.654028436019 +2016-08-24 13:43:15,990 DEBUG: View 2 : 0.568720379147 +2016-08-24 13:43:15,999 DEBUG: View 3 : 0.563981042654 +2016-08-24 13:43:17,163 DEBUG: Best view : MiRNA__ +2016-08-24 13:43:48,364 DEBUG: Start: Iteration 389 +2016-08-24 13:43:48,385 DEBUG: View 0 : 0.635071090047 +2016-08-24 13:43:48,394 DEBUG: View 1 : 0.687203791469 +2016-08-24 13:43:48,501 DEBUG: View 2 : 0.578199052133 +2016-08-24 13:43:48,510 DEBUG: View 3 : 0.625592417062 +2016-08-24 13:43:49,674 DEBUG: Best view : MiRNA__ +2016-08-24 13:44:21,139 DEBUG: Start: Iteration 390 +2016-08-24 13:44:21,160 DEBUG: View 0 : 0.492890995261 +2016-08-24 13:44:21,170 DEBUG: View 1 : 0.45971563981 +2016-08-24 13:44:21,292 DEBUG: View 2 : 0.502369668246 +2016-08-24 13:44:21,301 DEBUG: View 3 : 0.563981042654 +2016-08-24 13:44:22,530 DEBUG: Best view : Clinic_ +2016-08-24 13:44:54,159 DEBUG: Start: Iteration 391 +2016-08-24 13:44:54,180 DEBUG: View 0 : 0.497630331754 +2016-08-24 13:44:54,190 DEBUG: View 1 : 0.483412322275 +2016-08-24 13:44:54,307 DEBUG: View 2 : 0.582938388626 +2016-08-24 13:44:54,318 DEBUG: View 3 : 0.554502369668 +2016-08-24 13:44:55,517 DEBUG: Best view : RANSeq_ +2016-08-24 13:45:27,112 DEBUG: Start: Iteration 392 +2016-08-24 13:45:27,133 DEBUG: View 0 : 0.473933649289 +2016-08-24 13:45:27,143 DEBUG: View 1 : 0.601895734597 +2016-08-24 13:45:27,260 DEBUG: View 2 : 0.601895734597 +2016-08-24 13:45:27,270 DEBUG: View 3 : 0.635071090047 +2016-08-24 13:45:28,443 DEBUG: Best view : Clinic_ +2016-08-24 13:46:00,019 DEBUG: Start: Iteration 393 +2016-08-24 13:46:00,040 DEBUG: View 0 : 0.691943127962 +2016-08-24 13:46:00,050 DEBUG: View 1 : 0.421800947867 +2016-08-24 13:46:00,166 DEBUG: View 2 : 0.521327014218 +2016-08-24 13:46:00,175 DEBUG: View 3 : 0.559241706161 +2016-08-24 13:46:01,367 DEBUG: Best view : Methyl_ +2016-08-24 13:46:33,081 DEBUG: Start: Iteration 394 +2016-08-24 13:46:33,102 DEBUG: View 0 : 0.549763033175 +2016-08-24 13:46:33,111 DEBUG: View 1 : 0.545023696682 +2016-08-24 13:46:33,231 DEBUG: View 2 : 0.592417061611 +2016-08-24 13:46:33,240 DEBUG: View 3 : 0.635071090047 +2016-08-24 13:46:34,419 DEBUG: Best view : Clinic_ +2016-08-24 13:47:06,196 DEBUG: Start: Iteration 395 +2016-08-24 13:47:06,221 DEBUG: View 0 : 0.464454976303 +2016-08-24 13:47:06,232 DEBUG: View 1 : 0.597156398104 +2016-08-24 13:47:06,363 DEBUG: View 2 : 0.578199052133 +2016-08-24 13:47:06,372 DEBUG: View 3 : 0.578199052133 +2016-08-24 13:47:07,572 DEBUG: Best view : Clinic_ +2016-08-24 13:47:39,732 DEBUG: Start: Iteration 396 +2016-08-24 13:47:39,754 DEBUG: View 0 : 0.582938388626 +2016-08-24 13:47:39,764 DEBUG: View 1 : 0.658767772512 +2016-08-24 13:47:39,911 DEBUG: View 2 : 0.554502369668 +2016-08-24 13:47:39,920 DEBUG: View 3 : 0.545023696682 +2016-08-24 13:47:41,213 DEBUG: Best view : MiRNA__ +2016-08-24 13:48:13,299 DEBUG: Start: Iteration 397 +2016-08-24 13:48:13,320 DEBUG: View 0 : 0.635071090047 +2016-08-24 13:48:13,330 DEBUG: View 1 : 0.644549763033 +2016-08-24 13:48:13,453 DEBUG: View 2 : 0.611374407583 +2016-08-24 13:48:13,463 DEBUG: View 3 : 0.654028436019 +2016-08-24 13:48:14,683 DEBUG: Best view : Clinic_ +2016-08-24 13:48:47,260 DEBUG: Start: Iteration 398 +2016-08-24 13:48:47,281 DEBUG: View 0 : 0.54028436019 +2016-08-24 13:48:47,290 DEBUG: View 1 : 0.625592417062 +2016-08-24 13:48:47,425 DEBUG: View 2 : 0.535545023697 +2016-08-24 13:48:47,435 DEBUG: View 3 : 0.545023696682 +2016-08-24 13:48:48,673 DEBUG: Best view : MiRNA__ +2016-08-24 13:49:20,843 DEBUG: Start: Iteration 399 +2016-08-24 13:49:20,864 DEBUG: View 0 : 0.829383886256 +2016-08-24 13:49:20,874 DEBUG: View 1 : 0.744075829384 +2016-08-24 13:49:20,991 DEBUG: View 2 : 0.597156398104 +2016-08-24 13:49:21,000 DEBUG: View 3 : 0.549763033175 +2016-08-24 13:49:22,365 DEBUG: Best view : Methyl_ +2016-08-24 13:49:55,510 DEBUG: Start: Iteration 400 +2016-08-24 13:49:55,537 DEBUG: View 0 : 0.620853080569 +2016-08-24 13:49:55,548 DEBUG: View 1 : 0.649289099526 +2016-08-24 13:49:55,685 DEBUG: View 2 : 0.635071090047 +2016-08-24 13:49:55,695 DEBUG: View 3 : 0.691943127962 +2016-08-24 13:49:57,078 DEBUG: Best view : Clinic_ +2016-08-24 13:50:30,035 DEBUG: Start: Iteration 401 +2016-08-24 13:50:30,056 DEBUG: View 0 : 0.436018957346 +2016-08-24 13:50:30,065 DEBUG: View 1 : 0.677725118483 +2016-08-24 13:50:30,179 DEBUG: View 2 : 0.635071090047 +2016-08-24 13:50:30,188 DEBUG: View 3 : 0.597156398104 +2016-08-24 13:50:31,383 DEBUG: Best view : MiRNA__ +2016-08-24 13:51:03,983 DEBUG: Start: Iteration 402 +2016-08-24 13:51:04,005 DEBUG: View 0 : 0.620853080569 +2016-08-24 13:51:04,014 DEBUG: View 1 : 0.644549763033 +2016-08-24 13:51:04,129 DEBUG: View 2 : 0.597156398104 +2016-08-24 13:51:04,138 DEBUG: View 3 : 0.706161137441 +2016-08-24 13:51:05,329 DEBUG: Best view : Clinic_ +2016-08-24 13:51:37,241 DEBUG: Start: Iteration 403 +2016-08-24 13:51:37,263 DEBUG: View 0 : 0.549763033175 +2016-08-24 13:51:37,273 DEBUG: View 1 : 0.369668246445 +2016-08-24 13:51:37,388 DEBUG: View 2 : 0.592417061611 +2016-08-24 13:51:37,397 DEBUG: View 3 : 0.658767772512 +2016-08-24 13:51:38,606 DEBUG: Best view : Clinic_ +2016-08-24 13:52:11,139 DEBUG: Start: Iteration 404 +2016-08-24 13:52:11,160 DEBUG: View 0 : 0.620853080569 +2016-08-24 13:52:11,169 DEBUG: View 1 : 0.559241706161 +2016-08-24 13:52:11,289 DEBUG: View 2 : 0.559241706161 +2016-08-24 13:52:11,298 DEBUG: View 3 : 0.554502369668 +2016-08-24 13:52:12,508 DEBUG: Best view : Methyl_ +2016-08-24 13:52:44,577 DEBUG: Start: Iteration 405 +2016-08-24 13:52:44,598 DEBUG: View 0 : 0.620853080569 +2016-08-24 13:52:44,608 DEBUG: View 1 : 0.625592417062 +2016-08-24 13:52:44,723 DEBUG: View 2 : 0.492890995261 +2016-08-24 13:52:44,732 DEBUG: View 3 : 0.625592417062 +2016-08-24 13:52:45,935 DEBUG: Best view : Clinic_ +2016-08-24 13:53:19,104 DEBUG: Start: Iteration 406 +2016-08-24 13:53:19,125 DEBUG: View 0 : 0.535545023697 +2016-08-24 13:53:19,134 DEBUG: View 1 : 0.625592417062 +2016-08-24 13:53:19,257 DEBUG: View 2 : 0.601895734597 +2016-08-24 13:53:19,266 DEBUG: View 3 : 0.658767772512 +2016-08-24 13:53:20,642 DEBUG: Best view : Clinic_ +2016-08-24 13:53:53,732 DEBUG: Start: Iteration 407 +2016-08-24 13:53:53,754 DEBUG: View 0 : 0.810426540284 +2016-08-24 13:53:53,764 DEBUG: View 1 : 0.341232227488 +2016-08-24 13:53:53,883 DEBUG: View 2 : 0.601895734597 +2016-08-24 13:53:53,892 DEBUG: View 3 : 0.611374407583 +2016-08-24 13:53:55,101 DEBUG: Best view : Methyl_ +2016-08-24 13:54:27,648 DEBUG: Start: Iteration 408 +2016-08-24 13:54:27,669 DEBUG: View 0 : 0.507109004739 +2016-08-24 13:54:27,679 DEBUG: View 1 : 0.464454976303 +2016-08-24 13:54:27,798 DEBUG: View 2 : 0.526066350711 +2016-08-24 13:54:27,807 DEBUG: View 3 : 0.436018957346 +2016-08-24 13:54:29,031 DEBUG: Best view : RANSeq_ +2016-08-24 13:55:02,477 DEBUG: Start: Iteration 409 +2016-08-24 13:55:02,498 DEBUG: View 0 : 0.663507109005 +2016-08-24 13:55:02,508 DEBUG: View 1 : 0.417061611374 +2016-08-24 13:55:02,624 DEBUG: View 2 : 0.63981042654 +2016-08-24 13:55:02,633 DEBUG: View 3 : 0.597156398104 +2016-08-24 13:55:03,877 DEBUG: Best view : Methyl_ +2016-08-24 13:55:37,510 DEBUG: Start: Iteration 410 +2016-08-24 13:55:37,531 DEBUG: View 0 : 0.658767772512 +2016-08-24 13:55:37,541 DEBUG: View 1 : 0.630331753555 +2016-08-24 13:55:37,664 DEBUG: View 2 : 0.620853080569 +2016-08-24 13:55:37,673 DEBUG: View 3 : 0.545023696682 +2016-08-24 13:55:38,897 DEBUG: Best view : Methyl_ +2016-08-24 13:56:12,501 DEBUG: Start: Iteration 411 +2016-08-24 13:56:12,523 DEBUG: View 0 : 0.635071090047 +2016-08-24 13:56:12,533 DEBUG: View 1 : 0.644549763033 +2016-08-24 13:56:12,666 DEBUG: View 2 : 0.516587677725 +2016-08-24 13:56:12,677 DEBUG: View 3 : 0.663507109005 +2016-08-24 13:56:13,983 DEBUG: Best view : Clinic_ +2016-08-24 13:56:47,750 DEBUG: Start: Iteration 412 +2016-08-24 13:56:47,771 DEBUG: View 0 : 0.502369668246 +2016-08-24 13:56:47,781 DEBUG: View 1 : 0.57345971564 +2016-08-24 13:56:47,892 DEBUG: View 2 : 0.63981042654 +2016-08-24 13:56:47,901 DEBUG: View 3 : 0.630331753555 +2016-08-24 13:56:49,135 DEBUG: Best view : Clinic_ +2016-08-24 13:57:23,645 DEBUG: Start: Iteration 413 +2016-08-24 13:57:23,666 DEBUG: View 0 : 0.488151658768 +2016-08-24 13:57:23,677 DEBUG: View 1 : 0.663507109005 +2016-08-24 13:57:23,802 DEBUG: View 2 : 0.582938388626 +2016-08-24 13:57:23,811 DEBUG: View 3 : 0.568720379147 +2016-08-24 13:57:25,057 DEBUG: Best view : MiRNA__ +2016-08-24 13:57:59,361 DEBUG: Start: Iteration 414 +2016-08-24 13:57:59,382 DEBUG: View 0 : 0.644549763033 +2016-08-24 13:57:59,391 DEBUG: View 1 : 0.63981042654 +2016-08-24 13:57:59,507 DEBUG: View 2 : 0.559241706161 +2016-08-24 13:57:59,516 DEBUG: View 3 : 0.582938388626 +2016-08-24 13:58:00,773 DEBUG: Best view : Methyl_ +2016-08-24 13:58:34,062 DEBUG: Start: Iteration 415 +2016-08-24 13:58:34,083 DEBUG: View 0 : 0.511848341232 +2016-08-24 13:58:34,093 DEBUG: View 1 : 0.597156398104 +2016-08-24 13:58:34,220 DEBUG: View 2 : 0.549763033175 +2016-08-24 13:58:34,229 DEBUG: View 3 : 0.554502369668 +2016-08-24 13:58:35,453 DEBUG: Best view : MiRNA__ +2016-08-24 13:59:08,331 DEBUG: Start: Iteration 416 +2016-08-24 13:59:08,352 DEBUG: View 0 : 0.54028436019 +2016-08-24 13:59:08,362 DEBUG: View 1 : 0.601895734597 +2016-08-24 13:59:08,476 DEBUG: View 2 : 0.616113744076 +2016-08-24 13:59:08,485 DEBUG: View 3 : 0.578199052133 +2016-08-24 13:59:09,711 DEBUG: Best view : MiRNA__ +2016-08-24 13:59:43,368 DEBUG: Start: Iteration 417 +2016-08-24 13:59:43,389 DEBUG: View 0 : 0.454976303318 +2016-08-24 13:59:43,399 DEBUG: View 1 : 0.710900473934 +2016-08-24 13:59:43,519 DEBUG: View 2 : 0.568720379147 +2016-08-24 13:59:43,528 DEBUG: View 3 : 0.687203791469 +2016-08-24 13:59:44,841 DEBUG: Best view : MiRNA__ +2016-08-24 14:00:18,976 DEBUG: Start: Iteration 418 +2016-08-24 14:00:18,997 DEBUG: View 0 : 0.658767772512 +2016-08-24 14:00:19,008 DEBUG: View 1 : 0.578199052133 +2016-08-24 14:00:19,124 DEBUG: View 2 : 0.592417061611 +2016-08-24 14:00:19,133 DEBUG: View 3 : 0.545023696682 +2016-08-24 14:00:20,396 DEBUG: Best view : Methyl_ +2016-08-24 14:00:54,344 DEBUG: Start: Iteration 419 +2016-08-24 14:00:54,365 DEBUG: View 0 : 0.516587677725 +2016-08-24 14:00:54,375 DEBUG: View 1 : 0.635071090047 +2016-08-24 14:00:54,498 DEBUG: View 2 : 0.568720379147 +2016-08-24 14:00:54,507 DEBUG: View 3 : 0.57345971564 +2016-08-24 14:00:55,752 DEBUG: Best view : MiRNA__ +2016-08-24 14:01:30,338 DEBUG: Start: Iteration 420 +2016-08-24 14:01:30,359 DEBUG: View 0 : 0.592417061611 +2016-08-24 14:01:30,369 DEBUG: View 1 : 0.677725118483 +2016-08-24 14:01:30,504 DEBUG: View 2 : 0.554502369668 +2016-08-24 14:01:30,514 DEBUG: View 3 : 0.60663507109 +2016-08-24 14:01:31,799 DEBUG: Best view : MiRNA__ +2016-08-24 14:02:05,514 DEBUG: Start: Iteration 421 +2016-08-24 14:02:05,535 DEBUG: View 0 : 0.545023696682 +2016-08-24 14:02:05,545 DEBUG: View 1 : 0.777251184834 +2016-08-24 14:02:05,681 DEBUG: View 2 : 0.597156398104 +2016-08-24 14:02:05,691 DEBUG: View 3 : 0.635071090047 +2016-08-24 14:02:06,975 DEBUG: Best view : MiRNA__ +2016-08-24 14:02:40,836 DEBUG: Start: Iteration 422 +2016-08-24 14:02:40,857 DEBUG: View 0 : 0.597156398104 +2016-08-24 14:02:40,867 DEBUG: View 1 : 0.672985781991 +2016-08-24 14:02:40,989 DEBUG: View 2 : 0.554502369668 +2016-08-24 14:02:40,998 DEBUG: View 3 : 0.616113744076 +2016-08-24 14:02:42,282 DEBUG: Best view : MiRNA__ +2016-08-24 14:03:16,292 DEBUG: Start: Iteration 423 +2016-08-24 14:03:16,313 DEBUG: View 0 : 0.507109004739 +2016-08-24 14:03:16,322 DEBUG: View 1 : 0.497630331754 +2016-08-24 14:03:16,440 DEBUG: View 2 : 0.507109004739 +2016-08-24 14:03:16,449 DEBUG: View 3 : 0.620853080569 +2016-08-24 14:03:17,705 DEBUG: Best view : Clinic_ +2016-08-24 14:03:52,074 DEBUG: Start: Iteration 424 +2016-08-24 14:03:52,095 DEBUG: View 0 : 0.601895734597 +2016-08-24 14:03:52,104 DEBUG: View 1 : 0.616113744076 +2016-08-24 14:03:52,220 DEBUG: View 2 : 0.597156398104 +2016-08-24 14:03:52,229 DEBUG: View 3 : 0.497630331754 +2016-08-24 14:03:53,482 DEBUG: Best view : RANSeq_ +2016-08-24 14:04:27,383 DEBUG: Start: Iteration 425 +2016-08-24 14:04:27,404 DEBUG: View 0 : 0.454976303318 +2016-08-24 14:04:27,414 DEBUG: View 1 : 0.644549763033 +2016-08-24 14:04:27,534 DEBUG: View 2 : 0.563981042654 +2016-08-24 14:04:27,543 DEBUG: View 3 : 0.497630331754 +2016-08-24 14:04:28,823 DEBUG: Best view : MiRNA__ +2016-08-24 14:05:03,346 DEBUG: Start: Iteration 426 +2016-08-24 14:05:03,367 DEBUG: View 0 : 0.492890995261 +2016-08-24 14:05:03,377 DEBUG: View 1 : 0.549763033175 +2016-08-24 14:05:03,497 DEBUG: View 2 : 0.535545023697 +2016-08-24 14:05:03,506 DEBUG: View 3 : 0.469194312796 +2016-08-24 14:05:04,788 DEBUG: Best view : MiRNA__ +2016-08-24 14:05:39,257 DEBUG: Start: Iteration 427 +2016-08-24 14:05:39,279 DEBUG: View 0 : 0.620853080569 +2016-08-24 14:05:39,288 DEBUG: View 1 : 0.469194312796 +2016-08-24 14:05:39,410 DEBUG: View 2 : 0.559241706161 +2016-08-24 14:05:39,419 DEBUG: View 3 : 0.568720379147 +2016-08-24 14:05:40,675 DEBUG: Best view : Methyl_ +2016-08-24 14:06:14,724 DEBUG: Start: Iteration 428 +2016-08-24 14:06:14,745 DEBUG: View 0 : 0.582938388626 +2016-08-24 14:06:14,755 DEBUG: View 1 : 0.654028436019 +2016-08-24 14:06:14,913 DEBUG: View 2 : 0.530805687204 +2016-08-24 14:06:14,927 DEBUG: View 3 : 0.668246445498 +2016-08-24 14:06:16,235 DEBUG: Best view : Clinic_ +2016-08-24 14:06:50,711 DEBUG: Start: Iteration 429 +2016-08-24 14:06:50,731 DEBUG: View 0 : 0.611374407583 +2016-08-24 14:06:50,741 DEBUG: View 1 : 0.649289099526 +2016-08-24 14:06:50,867 DEBUG: View 2 : 0.611374407583 +2016-08-24 14:06:50,879 DEBUG: View 3 : 0.625592417062 +2016-08-24 14:06:52,142 DEBUG: Best view : Clinic_ +2016-08-24 14:07:25,955 DEBUG: Start: Iteration 430 +2016-08-24 14:07:25,977 DEBUG: View 0 : 0.488151658768 +2016-08-24 14:07:25,986 DEBUG: View 1 : 0.663507109005 +2016-08-24 14:07:26,117 DEBUG: View 2 : 0.521327014218 +2016-08-24 14:07:26,129 DEBUG: View 3 : 0.440758293839 +2016-08-24 14:07:27,392 DEBUG: Best view : MiRNA__ +2016-08-24 14:08:01,799 DEBUG: Start: Iteration 431 +2016-08-24 14:08:01,820 DEBUG: View 0 : 0.644549763033 +2016-08-24 14:08:01,830 DEBUG: View 1 : 0.63981042654 +2016-08-24 14:08:01,953 DEBUG: View 2 : 0.563981042654 +2016-08-24 14:08:01,965 DEBUG: View 3 : 0.526066350711 +2016-08-24 14:08:03,237 DEBUG: Best view : Methyl_ +2016-08-24 14:08:37,425 DEBUG: Start: Iteration 432 +2016-08-24 14:08:37,446 DEBUG: View 0 : 0.511848341232 +2016-08-24 14:08:37,455 DEBUG: View 1 : 0.649289099526 +2016-08-24 14:08:37,583 DEBUG: View 2 : 0.502369668246 +2016-08-24 14:08:37,594 DEBUG: View 3 : 0.654028436019 +2016-08-24 14:08:38,862 DEBUG: Best view : Clinic_ +2016-08-24 14:09:13,162 DEBUG: Start: Iteration 433 +2016-08-24 14:09:13,183 DEBUG: View 0 : 0.57345971564 +2016-08-24 14:09:13,192 DEBUG: View 1 : 0.454976303318 +2016-08-24 14:09:13,326 DEBUG: View 2 : 0.60663507109 +2016-08-24 14:09:13,338 DEBUG: View 3 : 0.696682464455 +2016-08-24 14:09:14,619 DEBUG: Best view : Clinic_ +2016-08-24 14:09:50,222 DEBUG: Start: Iteration 434 +2016-08-24 14:09:50,243 DEBUG: View 0 : 0.473933649289 +2016-08-24 14:09:50,253 DEBUG: View 1 : 0.469194312796 +2016-08-24 14:09:50,388 DEBUG: View 2 : 0.611374407583 +2016-08-24 14:09:50,399 DEBUG: View 3 : 0.473933649289 +2016-08-24 14:09:51,683 DEBUG: Best view : RANSeq_ +2016-08-24 14:10:26,874 DEBUG: Start: Iteration 435 +2016-08-24 14:10:26,896 DEBUG: View 0 : 0.464454976303 +2016-08-24 14:10:26,906 DEBUG: View 1 : 0.616113744076 +2016-08-24 14:10:27,058 DEBUG: View 2 : 0.554502369668 +2016-08-24 14:10:27,068 DEBUG: View 3 : 0.691943127962 +2016-08-24 14:10:28,544 DEBUG: Best view : Clinic_ +2016-08-24 14:11:04,720 DEBUG: Start: Iteration 436 +2016-08-24 14:11:04,741 DEBUG: View 0 : 0.417061611374 +2016-08-24 14:11:04,750 DEBUG: View 1 : 0.635071090047 +2016-08-24 14:11:04,869 DEBUG: View 2 : 0.464454976303 +2016-08-24 14:11:04,879 DEBUG: View 3 : 0.654028436019 +2016-08-24 14:11:06,172 DEBUG: Best view : MiRNA__ +2016-08-24 14:11:40,928 DEBUG: Start: Iteration 437 +2016-08-24 14:11:40,949 DEBUG: View 0 : 0.625592417062 +2016-08-24 14:11:40,959 DEBUG: View 1 : 0.483412322275 +2016-08-24 14:11:41,090 DEBUG: View 2 : 0.488151658768 +2016-08-24 14:11:41,099 DEBUG: View 3 : 0.587677725118 +2016-08-24 14:11:42,392 DEBUG: Best view : Methyl_ +2016-08-24 14:12:17,624 DEBUG: Start: Iteration 438 +2016-08-24 14:12:17,645 DEBUG: View 0 : 0.431279620853 +2016-08-24 14:12:17,655 DEBUG: View 1 : 0.644549763033 +2016-08-24 14:12:17,781 DEBUG: View 2 : 0.620853080569 +2016-08-24 14:12:17,790 DEBUG: View 3 : 0.507109004739 +2016-08-24 14:12:19,346 DEBUG: Best view : RANSeq_ +2016-08-24 14:12:55,038 DEBUG: Start: Iteration 439 +2016-08-24 14:12:55,063 DEBUG: View 0 : 0.630331753555 +2016-08-24 14:12:55,073 DEBUG: View 1 : 0.611374407583 +2016-08-24 14:12:55,216 DEBUG: View 2 : 0.597156398104 +2016-08-24 14:12:55,225 DEBUG: View 3 : 0.635071090047 +2016-08-24 14:12:56,554 DEBUG: Best view : Clinic_ +2016-08-24 14:13:32,726 DEBUG: Start: Iteration 440 +2016-08-24 14:13:32,747 DEBUG: View 0 : 0.611374407583 +2016-08-24 14:13:32,758 DEBUG: View 1 : 0.587677725118 +2016-08-24 14:13:32,905 DEBUG: View 2 : 0.625592417062 +2016-08-24 14:13:32,916 DEBUG: View 3 : 0.57345971564 +2016-08-24 14:13:34,216 DEBUG: Best view : RANSeq_ +2016-08-24 14:14:09,458 DEBUG: Start: Iteration 441 +2016-08-24 14:14:09,479 DEBUG: View 0 : 0.563981042654 +2016-08-24 14:14:09,489 DEBUG: View 1 : 0.810426540284 +2016-08-24 14:14:09,624 DEBUG: View 2 : 0.578199052133 +2016-08-24 14:14:09,636 DEBUG: View 3 : 0.597156398104 +2016-08-24 14:14:10,973 DEBUG: Best view : MiRNA__ +2016-08-24 14:14:46,186 DEBUG: Start: Iteration 442 +2016-08-24 14:14:46,208 DEBUG: View 0 : 0.672985781991 +2016-08-24 14:14:46,218 DEBUG: View 1 : 0.464454976303 +2016-08-24 14:14:46,347 DEBUG: View 2 : 0.654028436019 +2016-08-24 14:14:46,358 DEBUG: View 3 : 0.57345971564 +2016-08-24 14:14:47,659 DEBUG: Best view : Methyl_ +2016-08-24 14:15:24,290 DEBUG: Start: Iteration 443 +2016-08-24 14:15:24,311 DEBUG: View 0 : 0.658767772512 +2016-08-24 14:15:24,321 DEBUG: View 1 : 0.658767772512 +2016-08-24 14:15:24,494 DEBUG: View 2 : 0.559241706161 +2016-08-24 14:15:24,507 DEBUG: View 3 : 0.511848341232 +2016-08-24 14:15:25,989 DEBUG: Best view : Methyl_ +2016-08-24 14:16:02,481 DEBUG: Start: Iteration 444 +2016-08-24 14:16:02,502 DEBUG: View 0 : 0.568720379147 +2016-08-24 14:16:02,511 DEBUG: View 1 : 0.611374407583 +2016-08-24 14:16:02,641 DEBUG: View 2 : 0.630331753555 +2016-08-24 14:16:02,652 DEBUG: View 3 : 0.706161137441 +2016-08-24 14:16:04,126 DEBUG: Best view : Clinic_ +2016-08-24 14:16:40,930 DEBUG: Start: Iteration 445 +2016-08-24 14:16:40,951 DEBUG: View 0 : 0.625592417062 +2016-08-24 14:16:40,960 DEBUG: View 1 : 0.492890995261 +2016-08-24 14:16:41,091 DEBUG: View 2 : 0.54028436019 +2016-08-24 14:16:41,102 DEBUG: View 3 : 0.516587677725 +2016-08-24 14:16:42,421 DEBUG: Best view : Methyl_ +2016-08-24 14:17:18,422 DEBUG: Start: Iteration 446 +2016-08-24 14:17:18,444 DEBUG: View 0 : 0.478672985782 +2016-08-24 14:17:18,453 DEBUG: View 1 : 0.63981042654 +2016-08-24 14:17:18,602 DEBUG: View 2 : 0.60663507109 +2016-08-24 14:17:18,612 DEBUG: View 3 : 0.620853080569 +2016-08-24 14:17:20,117 DEBUG: Best view : Clinic_ +2016-08-24 14:17:57,426 DEBUG: Start: Iteration 447 +2016-08-24 14:17:57,450 DEBUG: View 0 : 0.469194312796 +2016-08-24 14:17:57,461 DEBUG: View 1 : 0.601895734597 +2016-08-24 14:17:57,600 DEBUG: View 2 : 0.597156398104 +2016-08-24 14:17:57,611 DEBUG: View 3 : 0.568720379147 +2016-08-24 14:17:59,029 DEBUG: Best view : RANSeq_ +2016-08-24 14:18:35,354 DEBUG: Start: Iteration 448 +2016-08-24 14:18:35,375 DEBUG: View 0 : 0.630331753555 +2016-08-24 14:18:35,385 DEBUG: View 1 : 0.507109004739 +2016-08-24 14:18:35,505 DEBUG: View 2 : 0.616113744076 +2016-08-24 14:18:35,514 DEBUG: View 3 : 0.649289099526 +2016-08-24 14:18:36,846 DEBUG: Best view : Clinic_ +2016-08-24 14:19:13,619 DEBUG: Start: Iteration 449 +2016-08-24 14:19:13,641 DEBUG: View 0 : 0.616113744076 +2016-08-24 14:19:13,651 DEBUG: View 1 : 0.554502369668 +2016-08-24 14:19:13,792 DEBUG: View 2 : 0.559241706161 +2016-08-24 14:19:13,801 DEBUG: View 3 : 0.521327014218 +2016-08-24 14:19:15,250 DEBUG: Best view : Methyl_ +2016-08-24 14:19:52,835 DEBUG: Start: Iteration 450 +2016-08-24 14:19:52,856 DEBUG: View 0 : 0.454976303318 +2016-08-24 14:19:52,865 DEBUG: View 1 : 0.649289099526 +2016-08-24 14:19:53,007 DEBUG: View 2 : 0.57345971564 +2016-08-24 14:19:53,042 DEBUG: View 3 : 0.554502369668 +2016-08-24 14:19:54,465 DEBUG: Best view : MiRNA__ +2016-08-24 14:20:31,239 DEBUG: Start: Iteration 451 +2016-08-24 14:20:31,261 DEBUG: View 0 : 0.559241706161 +2016-08-24 14:20:31,271 DEBUG: View 1 : 0.473933649289 +2016-08-24 14:20:31,395 DEBUG: View 2 : 0.535545023697 +2016-08-24 14:20:31,407 DEBUG: View 3 : 0.658767772512 +2016-08-24 14:20:32,738 DEBUG: Best view : Clinic_ +2016-08-24 14:21:09,265 DEBUG: Start: Iteration 452 +2016-08-24 14:21:09,286 DEBUG: View 0 : 0.601895734597 +2016-08-24 14:21:09,296 DEBUG: View 1 : 0.582938388626 +2016-08-24 14:21:09,420 DEBUG: View 2 : 0.57345971564 +2016-08-24 14:21:09,432 DEBUG: View 3 : 0.644549763033 +2016-08-24 14:21:10,870 DEBUG: Best view : Clinic_ +2016-08-24 14:21:47,810 DEBUG: Start: Iteration 453 +2016-08-24 14:21:47,835 DEBUG: View 0 : 0.473933649289 +2016-08-24 14:21:47,852 DEBUG: View 1 : 0.578199052133 +2016-08-24 14:21:48,046 DEBUG: View 2 : 0.559241706161 +2016-08-24 14:21:48,058 DEBUG: View 3 : 0.57345971564 +2016-08-24 14:21:49,470 DEBUG: Best view : Clinic_ +2016-08-24 14:22:26,194 DEBUG: Start: Iteration 454 +2016-08-24 14:22:26,214 DEBUG: View 0 : 0.492890995261 +2016-08-24 14:22:26,224 DEBUG: View 1 : 0.516587677725 +2016-08-24 14:22:26,352 DEBUG: View 2 : 0.559241706161 +2016-08-24 14:22:26,363 DEBUG: View 3 : 0.535545023697 +2016-08-24 14:22:27,705 DEBUG: Best view : RANSeq_ +2016-08-24 14:23:05,443 DEBUG: Start: Iteration 455 +2016-08-24 14:23:05,468 DEBUG: View 0 : 0.445497630332 +2016-08-24 14:23:05,479 DEBUG: View 1 : 0.597156398104 +2016-08-24 14:23:05,630 DEBUG: View 2 : 0.611374407583 +2016-08-24 14:23:05,642 DEBUG: View 3 : 0.601895734597 +2016-08-24 14:23:06,986 DEBUG: Best view : RANSeq_ +2016-08-24 14:23:44,594 DEBUG: Start: Iteration 456 +2016-08-24 14:23:44,616 DEBUG: View 0 : 0.578199052133 +2016-08-24 14:23:44,626 DEBUG: View 1 : 0.57345971564 +2016-08-24 14:23:44,757 DEBUG: View 2 : 0.620853080569 +2016-08-24 14:23:44,768 DEBUG: View 3 : 0.559241706161 +2016-08-24 14:23:46,145 DEBUG: Best view : RANSeq_ +2016-08-24 14:24:23,164 DEBUG: Start: Iteration 457 +2016-08-24 14:24:23,185 DEBUG: View 0 : 0.554502369668 +2016-08-24 14:24:23,194 DEBUG: View 1 : 0.682464454976 +2016-08-24 14:24:23,314 DEBUG: View 2 : 0.578199052133 +2016-08-24 14:24:23,325 DEBUG: View 3 : 0.507109004739 +2016-08-24 14:24:24,700 DEBUG: Best view : MiRNA__ +2016-08-24 14:25:02,897 DEBUG: Start: Iteration 458 +2016-08-24 14:25:02,918 DEBUG: View 0 : 0.440758293839 +2016-08-24 14:25:02,928 DEBUG: View 1 : 0.483412322275 +2016-08-24 14:25:03,068 DEBUG: View 2 : 0.563981042654 +2016-08-24 14:25:03,077 DEBUG: View 3 : 0.587677725118 +2016-08-24 14:25:04,547 DEBUG: Best view : Clinic_ +2016-08-24 14:25:42,116 DEBUG: Start: Iteration 459 +2016-08-24 14:25:42,137 DEBUG: View 0 : 0.644549763033 +2016-08-24 14:25:42,147 DEBUG: View 1 : 0.54028436019 +2016-08-24 14:25:42,279 DEBUG: View 2 : 0.578199052133 +2016-08-24 14:25:42,289 DEBUG: View 3 : 0.535545023697 +2016-08-24 14:25:43,672 DEBUG: Best view : Methyl_ +2016-08-24 14:26:20,762 DEBUG: Start: Iteration 460 +2016-08-24 14:26:20,783 DEBUG: View 0 : 0.60663507109 +2016-08-24 14:26:20,793 DEBUG: View 1 : 0.668246445498 +2016-08-24 14:26:20,907 DEBUG: View 2 : 0.559241706161 +2016-08-24 14:26:20,916 DEBUG: View 3 : 0.587677725118 +2016-08-24 14:26:22,282 DEBUG: Best view : MiRNA__ +2016-08-24 14:26:59,239 DEBUG: Start: Iteration 461 +2016-08-24 14:26:59,260 DEBUG: View 0 : 0.611374407583 +2016-08-24 14:26:59,269 DEBUG: View 1 : 0.469194312796 +2016-08-24 14:26:59,405 DEBUG: View 2 : 0.516587677725 +2016-08-24 14:26:59,415 DEBUG: View 3 : 0.516587677725 +2016-08-24 14:27:00,776 DEBUG: Best view : Methyl_ +2016-08-24 14:27:38,287 DEBUG: Start: Iteration 462 +2016-08-24 14:27:38,308 DEBUG: View 0 : 0.559241706161 +2016-08-24 14:27:38,317 DEBUG: View 1 : 0.587677725118 +2016-08-24 14:27:38,464 DEBUG: View 2 : 0.582938388626 +2016-08-24 14:27:38,474 DEBUG: View 3 : 0.60663507109 +2016-08-24 14:27:39,847 DEBUG: Best view : Clinic_ +2016-08-24 14:28:18,037 DEBUG: Start: Iteration 463 +2016-08-24 14:28:18,062 DEBUG: View 0 : 0.436018957346 +2016-08-24 14:28:18,072 DEBUG: View 1 : 0.630331753555 +2016-08-24 14:28:18,228 DEBUG: View 2 : 0.554502369668 +2016-08-24 14:28:18,237 DEBUG: View 3 : 0.611374407583 +2016-08-24 14:28:19,596 DEBUG: Best view : Clinic_ +2016-08-24 14:28:56,597 DEBUG: Start: Iteration 464 +2016-08-24 14:28:56,619 DEBUG: View 0 : 0.57345971564 +2016-08-24 14:28:56,628 DEBUG: View 1 : 0.677725118483 +2016-08-24 14:28:56,758 DEBUG: View 2 : 0.511848341232 +2016-08-24 14:28:56,767 DEBUG: View 3 : 0.682464454976 +2016-08-24 14:28:58,130 DEBUG: Best view : Clinic_ +2016-08-24 14:29:35,413 DEBUG: Start: Iteration 465 +2016-08-24 14:29:35,434 DEBUG: View 0 : 0.663507109005 +2016-08-24 14:29:35,444 DEBUG: View 1 : 0.597156398104 +2016-08-24 14:29:35,556 DEBUG: View 2 : 0.535545023697 +2016-08-24 14:29:35,566 DEBUG: View 3 : 0.582938388626 +2016-08-24 14:29:36,961 DEBUG: Best view : Methyl_ +2016-08-24 14:30:14,881 DEBUG: Start: Iteration 466 +2016-08-24 14:30:14,902 DEBUG: View 0 : 0.620853080569 +2016-08-24 14:30:14,912 DEBUG: View 1 : 0.597156398104 +2016-08-24 14:30:15,025 DEBUG: View 2 : 0.54028436019 +2016-08-24 14:30:15,035 DEBUG: View 3 : 0.706161137441 +2016-08-24 14:30:16,512 DEBUG: Best view : Clinic_ +2016-08-24 14:30:55,095 DEBUG: Start: Iteration 467 +2016-08-24 14:30:55,116 DEBUG: View 0 : 0.407582938389 +2016-08-24 14:30:55,126 DEBUG: View 1 : 0.587677725118 +2016-08-24 14:30:55,250 DEBUG: View 2 : 0.611374407583 +2016-08-24 14:30:55,259 DEBUG: View 3 : 0.554502369668 +2016-08-24 14:30:56,684 DEBUG: Best view : RANSeq_ +2016-08-24 14:31:34,469 DEBUG: Start: Iteration 468 +2016-08-24 14:31:34,489 DEBUG: View 0 : 0.668246445498 +2016-08-24 14:31:34,498 DEBUG: View 1 : 0.668246445498 +2016-08-24 14:31:34,620 DEBUG: View 2 : 0.483412322275 +2016-08-24 14:31:34,629 DEBUG: View 3 : 0.654028436019 +2016-08-24 14:31:36,027 DEBUG: Best view : Methyl_ +2016-08-24 14:32:14,205 DEBUG: Start: Iteration 469 +2016-08-24 14:32:14,226 DEBUG: View 0 : 0.535545023697 +2016-08-24 14:32:14,235 DEBUG: View 1 : 0.739336492891 +2016-08-24 14:32:14,353 DEBUG: View 2 : 0.649289099526 +2016-08-24 14:32:14,362 DEBUG: View 3 : 0.601895734597 +2016-08-24 14:32:15,787 DEBUG: Best view : MiRNA__ +2016-08-24 14:32:54,091 DEBUG: Start: Iteration 470 +2016-08-24 14:32:54,114 DEBUG: View 0 : 0.60663507109 +2016-08-24 14:32:54,124 DEBUG: View 1 : 0.502369668246 +2016-08-24 14:32:54,243 DEBUG: View 2 : 0.578199052133 +2016-08-24 14:32:54,253 DEBUG: View 3 : 0.568720379147 +2016-08-24 14:32:55,737 DEBUG: Best view : Methyl_ +2016-08-24 14:33:34,003 DEBUG: Start: Iteration 471 +2016-08-24 14:33:34,024 DEBUG: View 0 : 0.559241706161 +2016-08-24 14:33:34,033 DEBUG: View 1 : 0.720379146919 +2016-08-24 14:33:34,146 DEBUG: View 2 : 0.549763033175 +2016-08-24 14:33:34,156 DEBUG: View 3 : 0.654028436019 +2016-08-24 14:33:35,545 DEBUG: Best view : MiRNA__ +2016-08-24 14:34:13,876 DEBUG: Start: Iteration 472 +2016-08-24 14:34:13,897 DEBUG: View 0 : 0.611374407583 +2016-08-24 14:34:13,906 DEBUG: View 1 : 0.616113744076 +2016-08-24 14:34:14,030 DEBUG: View 2 : 0.578199052133 +2016-08-24 14:34:14,040 DEBUG: View 3 : 0.658767772512 +2016-08-24 14:34:15,463 DEBUG: Best view : Clinic_ +2016-08-24 14:34:54,173 DEBUG: Start: Iteration 473 +2016-08-24 14:34:54,194 DEBUG: View 0 : 0.611374407583 +2016-08-24 14:34:54,203 DEBUG: View 1 : 0.611374407583 +2016-08-24 14:34:54,329 DEBUG: View 2 : 0.545023696682 +2016-08-24 14:34:54,339 DEBUG: View 3 : 0.554502369668 +2016-08-24 14:34:55,732 DEBUG: Best view : MiRNA__ +2016-08-24 14:35:34,082 DEBUG: Start: Iteration 474 +2016-08-24 14:35:34,103 DEBUG: View 0 : 0.511848341232 +2016-08-24 14:35:34,112 DEBUG: View 1 : 0.75355450237 +2016-08-24 14:35:34,239 DEBUG: View 2 : 0.473933649289 +2016-08-24 14:35:34,249 DEBUG: View 3 : 0.620853080569 +2016-08-24 14:35:35,798 DEBUG: Best view : MiRNA__ +2016-08-24 14:36:14,378 DEBUG: Start: Iteration 475 +2016-08-24 14:36:14,399 DEBUG: View 0 : 0.516587677725 +2016-08-24 14:36:14,408 DEBUG: View 1 : 0.507109004739 +2016-08-24 14:36:14,537 DEBUG: View 2 : 0.611374407583 +2016-08-24 14:36:14,547 DEBUG: View 3 : 0.592417061611 +2016-08-24 14:36:16,022 DEBUG: Best view : RANSeq_ +2016-08-24 14:36:54,417 DEBUG: Start: Iteration 476 +2016-08-24 14:36:54,438 DEBUG: View 0 : 0.668246445498 +2016-08-24 14:36:54,448 DEBUG: View 1 : 0.687203791469 +2016-08-24 14:36:54,562 DEBUG: View 2 : 0.497630331754 +2016-08-24 14:36:54,572 DEBUG: View 3 : 0.578199052133 +2016-08-24 14:36:56,022 DEBUG: Best view : MiRNA__ +2016-08-24 14:37:33,927 DEBUG: Start: Iteration 477 +2016-08-24 14:37:33,948 DEBUG: View 0 : 0.587677725118 +2016-08-24 14:37:33,957 DEBUG: View 1 : 0.374407582938 +2016-08-24 14:37:34,072 DEBUG: View 2 : 0.483412322275 +2016-08-24 14:37:34,082 DEBUG: View 3 : 0.563981042654 +2016-08-24 14:37:35,484 DEBUG: Best view : Clinic_ +2016-08-24 14:38:13,694 DEBUG: Start: Iteration 478 +2016-08-24 14:38:13,715 DEBUG: View 0 : 0.554502369668 +2016-08-24 14:38:13,725 DEBUG: View 1 : 0.554502369668 +2016-08-24 14:38:13,838 DEBUG: View 2 : 0.601895734597 +2016-08-24 14:38:13,848 DEBUG: View 3 : 0.554502369668 +2016-08-24 14:38:15,290 DEBUG: Best view : RANSeq_ +2016-08-24 14:38:53,757 DEBUG: Start: Iteration 479 +2016-08-24 14:38:53,778 DEBUG: View 0 : 0.554502369668 +2016-08-24 14:38:53,788 DEBUG: View 1 : 0.630331753555 +2016-08-24 14:38:53,912 DEBUG: View 2 : 0.516587677725 +2016-08-24 14:38:53,922 DEBUG: View 3 : 0.625592417062 +2016-08-24 14:38:55,346 DEBUG: Best view : Clinic_ +2016-08-24 14:39:34,401 DEBUG: Start: Iteration 480 +2016-08-24 14:39:34,425 DEBUG: View 0 : 0.545023696682 +2016-08-24 14:39:34,440 DEBUG: View 1 : 0.668246445498 +2016-08-24 14:39:34,579 DEBUG: View 2 : 0.582938388626 +2016-08-24 14:39:34,589 DEBUG: View 3 : 0.691943127962 +2016-08-24 14:39:36,125 DEBUG: Best view : Clinic_ +2016-08-24 14:40:14,887 DEBUG: Start: Iteration 481 +2016-08-24 14:40:14,908 DEBUG: View 0 : 0.54028436019 +2016-08-24 14:40:14,918 DEBUG: View 1 : 0.668246445498 +2016-08-24 14:40:15,053 DEBUG: View 2 : 0.507109004739 +2016-08-24 14:40:15,066 DEBUG: View 3 : 0.535545023697 +2016-08-24 14:40:16,577 DEBUG: Best view : MiRNA__ +2016-08-24 14:40:55,468 DEBUG: Start: Iteration 482 +2016-08-24 14:40:55,489 DEBUG: View 0 : 0.488151658768 +2016-08-24 14:40:55,499 DEBUG: View 1 : 0.630331753555 +2016-08-24 14:40:55,629 DEBUG: View 2 : 0.554502369668 +2016-08-24 14:40:55,640 DEBUG: View 3 : 0.592417061611 +2016-08-24 14:40:57,059 DEBUG: Best view : MiRNA__ +2016-08-24 14:41:35,975 DEBUG: Start: Iteration 483 +2016-08-24 14:41:35,995 DEBUG: View 0 : 0.578199052133 +2016-08-24 14:41:36,005 DEBUG: View 1 : 0.601895734597 +2016-08-24 14:41:36,148 DEBUG: View 2 : 0.54028436019 +2016-08-24 14:41:36,160 DEBUG: View 3 : 0.563981042654 +2016-08-24 14:41:37,599 DEBUG: Best view : Clinic_ +2016-08-24 14:42:16,484 DEBUG: Start: Iteration 484 +2016-08-24 14:42:16,505 DEBUG: View 0 : 0.611374407583 +2016-08-24 14:42:16,515 DEBUG: View 1 : 0.535545023697 +2016-08-24 14:42:16,644 DEBUG: View 2 : 0.60663507109 +2016-08-24 14:42:16,656 DEBUG: View 3 : 0.701421800948 +2016-08-24 14:42:18,100 DEBUG: Best view : Clinic_ +2016-08-24 14:42:57,361 DEBUG: Start: Iteration 485 +2016-08-24 14:42:57,385 DEBUG: View 0 : 0.563981042654 +2016-08-24 14:42:57,394 DEBUG: View 1 : 0.398104265403 +2016-08-24 14:42:57,528 DEBUG: View 2 : 0.582938388626 +2016-08-24 14:42:57,540 DEBUG: View 3 : 0.587677725118 +2016-08-24 14:42:59,092 DEBUG: Best view : Clinic_ +2016-08-24 14:43:38,145 DEBUG: Start: Iteration 486 +2016-08-24 14:43:38,166 DEBUG: View 0 : 0.45971563981 +2016-08-24 14:43:38,176 DEBUG: View 1 : 0.582938388626 +2016-08-24 14:43:38,310 DEBUG: View 2 : 0.616113744076 +2016-08-24 14:43:38,322 DEBUG: View 3 : 0.620853080569 +2016-08-24 14:43:39,765 DEBUG: Best view : Clinic_ +2016-08-24 14:44:19,272 DEBUG: Start: Iteration 487 +2016-08-24 14:44:19,297 DEBUG: View 0 : 0.554502369668 +2016-08-24 14:44:19,308 DEBUG: View 1 : 0.668246445498 +2016-08-24 14:44:19,463 DEBUG: View 2 : 0.526066350711 +2016-08-24 14:44:19,476 DEBUG: View 3 : 0.649289099526 +2016-08-24 14:44:20,936 DEBUG: Best view : Clinic_ +2016-08-24 14:45:00,133 DEBUG: Start: Iteration 488 +2016-08-24 14:45:00,155 DEBUG: View 0 : 0.507109004739 +2016-08-24 14:45:00,164 DEBUG: View 1 : 0.635071090047 +2016-08-24 14:45:00,292 DEBUG: View 2 : 0.559241706161 +2016-08-24 14:45:00,304 DEBUG: View 3 : 0.568720379147 +2016-08-24 14:45:01,790 DEBUG: Best view : MiRNA__ +2016-08-24 14:45:40,751 DEBUG: Start: Iteration 489 +2016-08-24 14:45:40,770 DEBUG: View 0 : 0.549763033175 +2016-08-24 14:45:40,780 DEBUG: View 1 : 0.488151658768 +2016-08-24 14:45:40,918 DEBUG: View 2 : 0.559241706161 +2016-08-24 14:45:40,930 DEBUG: View 3 : 0.568720379147 +2016-08-24 14:45:42,383 DEBUG: Best view : Clinic_ +2016-08-24 14:46:21,819 DEBUG: Start: Iteration 490 +2016-08-24 14:46:21,840 DEBUG: View 0 : 0.450236966825 +2016-08-24 14:46:21,850 DEBUG: View 1 : 0.535545023697 +2016-08-24 14:46:21,980 DEBUG: View 2 : 0.611374407583 +2016-08-24 14:46:21,991 DEBUG: View 3 : 0.511848341232 +2016-08-24 14:46:23,445 DEBUG: Best view : RANSeq_ +2016-08-24 14:47:03,443 DEBUG: Start: Iteration 491 +2016-08-24 14:47:03,465 DEBUG: View 0 : 0.492890995261 +2016-08-24 14:47:03,475 DEBUG: View 1 : 0.630331753555 +2016-08-24 14:47:03,604 DEBUG: View 2 : 0.549763033175 +2016-08-24 14:47:03,616 DEBUG: View 3 : 0.582938388626 +2016-08-24 14:47:05,066 DEBUG: Best view : MiRNA__ +2016-08-24 14:47:44,382 DEBUG: Start: Iteration 492 +2016-08-24 14:47:44,404 DEBUG: View 0 : 0.654028436019 +2016-08-24 14:47:44,413 DEBUG: View 1 : 0.478672985782 +2016-08-24 14:47:44,543 DEBUG: View 2 : 0.57345971564 +2016-08-24 14:47:44,555 DEBUG: View 3 : 0.568720379147 +2016-08-24 14:47:46,025 DEBUG: Best view : Methyl_ +2016-08-24 14:48:26,539 DEBUG: Start: Iteration 493 +2016-08-24 14:48:26,562 DEBUG: View 0 : 0.421800947867 +2016-08-24 14:48:26,571 DEBUG: View 1 : 0.677725118483 +2016-08-24 14:48:26,712 DEBUG: View 2 : 0.516587677725 +2016-08-24 14:48:26,725 DEBUG: View 3 : 0.625592417062 +2016-08-24 14:48:28,443 DEBUG: Best view : MiRNA__ +2016-08-24 14:49:08,581 DEBUG: Start: Iteration 494 +2016-08-24 14:49:08,602 DEBUG: View 0 : 0.502369668246 +2016-08-24 14:49:08,612 DEBUG: View 1 : 0.502369668246 +2016-08-24 14:49:08,767 DEBUG: View 2 : 0.587677725118 +2016-08-24 14:49:08,776 DEBUG: View 3 : 0.554502369668 +2016-08-24 14:49:10,262 DEBUG: Best view : RANSeq_ +2016-08-24 14:49:49,722 DEBUG: Start: Iteration 495 +2016-08-24 14:49:49,742 DEBUG: View 0 : 0.497630331754 +2016-08-24 14:49:49,752 DEBUG: View 1 : 0.488151658768 +2016-08-24 14:49:49,869 DEBUG: View 2 : 0.563981042654 +2016-08-24 14:49:49,878 DEBUG: View 3 : 0.60663507109 +2016-08-24 14:49:51,372 DEBUG: Best view : Clinic_ +2016-08-24 14:50:31,344 DEBUG: Start: Iteration 496 +2016-08-24 14:50:31,368 DEBUG: View 0 : 0.464454976303 +2016-08-24 14:50:31,379 DEBUG: View 1 : 0.563981042654 +2016-08-24 14:50:31,540 DEBUG: View 2 : 0.535545023697 +2016-08-24 14:50:31,551 DEBUG: View 3 : 0.677725118483 +2016-08-24 14:50:33,064 DEBUG: Best view : Clinic_ +2016-08-24 14:51:12,832 DEBUG: Start: Iteration 497 +2016-08-24 14:51:12,853 DEBUG: View 0 : 0.436018957346 +2016-08-24 14:51:12,862 DEBUG: View 1 : 0.274881516588 +2016-08-24 14:51:13,000 DEBUG: View 2 : 0.492890995261 +2016-08-24 14:51:13,010 DEBUG: View 3 : 0.592417061611 +2016-08-24 14:51:14,493 DEBUG: Best view : Clinic_ +2016-08-24 14:51:54,078 DEBUG: Start: Iteration 498 +2016-08-24 14:51:54,099 DEBUG: View 0 : 0.696682464455 +2016-08-24 14:51:54,109 DEBUG: View 1 : 0.649289099526 +2016-08-24 14:51:54,236 DEBUG: View 2 : 0.545023696682 +2016-08-24 14:51:54,247 DEBUG: View 3 : 0.511848341232 +2016-08-24 14:51:55,773 DEBUG: Best view : Methyl_ +2016-08-24 14:52:35,842 DEBUG: Start: Iteration 499 +2016-08-24 14:52:35,863 DEBUG: View 0 : 0.620853080569 +2016-08-24 14:52:35,873 DEBUG: View 1 : 0.587677725118 +2016-08-24 14:52:35,995 DEBUG: View 2 : 0.63981042654 +2016-08-24 14:52:36,005 DEBUG: View 3 : 0.677725118483 +2016-08-24 14:52:37,485 DEBUG: Best view : Clinic_ +2016-08-24 14:53:17,616 DEBUG: Start: Iteration 500 +2016-08-24 14:53:17,637 DEBUG: View 0 : 0.563981042654 +2016-08-24 14:53:17,648 DEBUG: View 1 : 0.554502369668 +2016-08-24 14:53:17,772 DEBUG: View 2 : 0.563981042654 +2016-08-24 14:53:17,782 DEBUG: View 3 : 0.63981042654 +2016-08-24 14:53:19,276 DEBUG: Best view : Clinic_ +2016-08-24 14:53:59,709 DEBUG: Start: Iteration 501 +2016-08-24 14:53:59,730 DEBUG: View 0 : 0.549763033175 +2016-08-24 14:53:59,740 DEBUG: View 1 : 0.682464454976 +2016-08-24 14:53:59,869 DEBUG: View 2 : 0.611374407583 +2016-08-24 14:53:59,879 DEBUG: View 3 : 0.502369668246 +2016-08-24 14:54:01,355 DEBUG: Best view : MiRNA__ +2016-08-24 14:54:42,269 DEBUG: 6.43108861106e-05 proche de zero ? +2016-08-24 14:54:42,269 DEBUG: Start: Iteration 502 +2016-08-24 14:54:42,293 DEBUG: View 0 : 0.350710900474 +2016-08-24 14:54:42,304 DEBUG: View 1 : 0.488151658768 +2016-08-24 14:54:42,455 DEBUG: View 2 : 0.582938388626 +2016-08-24 14:54:42,466 DEBUG: View 3 : 0.578199052133 +2016-08-24 14:54:43,961 DEBUG: Best view : Clinic_ +2016-08-24 14:55:24,658 DEBUG: 6.42019701749e-05 proche de zero ? +2016-08-24 14:55:24,658 DEBUG: Start: Iteration 503 +2016-08-24 14:55:24,684 DEBUG: View 0 : 0.521327014218 +2016-08-24 14:55:24,695 DEBUG: View 1 : 0.559241706161 +2016-08-24 14:55:24,844 DEBUG: View 2 : 0.559241706161 +2016-08-24 14:55:24,855 DEBUG: View 3 : 0.545023696682 +2016-08-24 14:55:26,433 DEBUG: Best view : RANSeq_ +2016-08-24 14:56:07,371 DEBUG: 6.40932219808e-05 proche de zero ? +2016-08-24 14:56:07,372 DEBUG: Start: Iteration 504 +2016-08-24 14:56:07,396 DEBUG: View 0 : 0.582938388626 +2016-08-24 14:56:07,410 DEBUG: View 1 : 0.516587677725 +2016-08-24 14:56:07,564 DEBUG: View 2 : 0.464454976303 +2016-08-24 14:56:07,576 DEBUG: View 3 : 0.545023696682 +2016-08-24 14:56:09,062 DEBUG: Best view : Clinic_ +2016-08-24 14:56:49,356 DEBUG: 6.39846425015e-05 proche de zero ? +2016-08-24 14:56:49,357 DEBUG: Start: Iteration 505 +2016-08-24 14:56:49,386 DEBUG: View 0 : 0.469194312796 +2016-08-24 14:56:49,398 DEBUG: View 1 : 0.57345971564 +2016-08-24 14:56:49,520 DEBUG: View 2 : 0.511848341232 +2016-08-24 14:56:49,533 DEBUG: View 3 : 0.63981042654 +2016-08-24 14:56:51,030 DEBUG: Best view : Clinic_ +2016-08-24 14:57:31,246 DEBUG: 6.38762326861e-05 proche de zero ? +2016-08-24 14:57:31,246 DEBUG: Start: Iteration 506 +2016-08-24 14:57:31,276 DEBUG: View 0 : 0.445497630332 +2016-08-24 14:57:31,294 DEBUG: View 1 : 0.63981042654 +2016-08-24 14:57:31,445 DEBUG: View 2 : 0.625592417062 +2016-08-24 14:57:31,457 DEBUG: View 3 : 0.592417061611 +2016-08-24 14:57:32,969 DEBUG: Best view : RANSeq_ +2016-08-24 14:58:13,419 DEBUG: 6.37679934601e-05 proche de zero ? +2016-08-24 14:58:13,420 DEBUG: Start: Iteration 507 +2016-08-24 14:58:13,444 DEBUG: View 0 : 0.388625592417 +2016-08-24 14:58:13,455 DEBUG: View 1 : 0.677725118483 +2016-08-24 14:58:13,595 DEBUG: View 2 : 0.521327014218 +2016-08-24 14:58:13,608 DEBUG: View 3 : 0.563981042654 +2016-08-24 14:58:15,125 DEBUG: Best view : MiRNA__ +2016-08-24 14:58:56,247 DEBUG: 6.36473362773e-05 proche de zero ? +2016-08-24 14:58:56,247 DEBUG: Start: Iteration 508 +2016-08-24 14:58:56,278 DEBUG: View 0 : 0.611374407583 +2016-08-24 14:58:56,287 DEBUG: View 1 : 0.497630331754 +2016-08-24 14:58:56,432 DEBUG: View 2 : 0.578199052133 +2016-08-24 14:58:56,444 DEBUG: View 3 : 0.635071090047 +2016-08-24 14:58:57,984 DEBUG: Best view : Clinic_ +2016-08-24 14:59:39,248 DEBUG: 6.35269610662e-05 proche de zero ? +2016-08-24 14:59:39,249 DEBUG: Start: Iteration 509 +2016-08-24 14:59:39,273 DEBUG: View 0 : 0.454976303318 +2016-08-24 14:59:39,285 DEBUG: View 1 : 0.654028436019 +2016-08-24 14:59:39,428 DEBUG: View 2 : 0.587677725118 +2016-08-24 14:59:39,439 DEBUG: View 3 : 0.691943127962 +2016-08-24 14:59:40,975 DEBUG: Best view : Clinic_ +2016-08-24 15:00:21,819 DEBUG: 6.34193719181e-05 proche de zero ? +2016-08-24 15:00:21,820 DEBUG: Start: Iteration 510 +2016-08-24 15:00:21,845 DEBUG: View 0 : 0.587677725118 +2016-08-24 15:00:21,856 DEBUG: View 1 : 0.663507109005 +2016-08-24 15:00:21,994 DEBUG: View 2 : 0.582938388626 +2016-08-24 15:00:22,011 DEBUG: View 3 : 0.601895734597 +2016-08-24 15:00:23,521 DEBUG: Best view : MiRNA__ +2016-08-24 15:01:04,544 DEBUG: 6.33119559779e-05 proche de zero ? +2016-08-24 15:01:04,544 DEBUG: Start: Iteration 511 +2016-08-24 15:01:04,569 DEBUG: View 0 : 0.341232227488 +2016-08-24 15:01:04,579 DEBUG: View 1 : 0.421800947867 +2016-08-24 15:01:04,714 DEBUG: View 2 : 0.559241706161 +2016-08-24 15:01:04,727 DEBUG: View 3 : 0.57345971564 +2016-08-24 15:01:06,266 DEBUG: Best view : Clinic_ +2016-08-24 15:01:47,018 DEBUG: 6.32047140654e-05 proche de zero ? +2016-08-24 15:01:47,018 DEBUG: Start: Iteration 512 +2016-08-24 15:01:47,042 DEBUG: View 0 : 0.526066350711 +2016-08-24 15:01:47,053 DEBUG: View 1 : 0.364928909953 +2016-08-24 15:01:47,210 DEBUG: View 2 : 0.511848341232 +2016-08-24 15:01:47,220 DEBUG: View 3 : 0.630331753555 +2016-08-24 15:01:48,727 DEBUG: Best view : Clinic_ +2016-08-24 15:02:29,648 DEBUG: 6.30976469783e-05 proche de zero ? +2016-08-24 15:02:29,648 DEBUG: Start: Iteration 513 +2016-08-24 15:02:29,673 DEBUG: View 0 : 0.601895734597 +2016-08-24 15:02:29,685 DEBUG: View 1 : 0.473933649289 +2016-08-24 15:02:29,850 DEBUG: View 2 : 0.625592417062 +2016-08-24 15:02:29,859 DEBUG: View 3 : 0.710900473934 +2016-08-24 15:02:31,405 DEBUG: Best view : Clinic_ +2016-08-24 15:03:12,445 DEBUG: 6.29907554935e-05 proche de zero ? +2016-08-24 15:03:12,445 DEBUG: Start: Iteration 514 +2016-08-24 15:03:12,470 DEBUG: View 0 : 0.60663507109 +2016-08-24 15:03:12,481 DEBUG: View 1 : 0.677725118483 +2016-08-24 15:03:12,621 DEBUG: View 2 : 0.60663507109 +2016-08-24 15:03:12,637 DEBUG: View 3 : 0.559241706161 +2016-08-24 15:03:14,153 DEBUG: Best view : MiRNA__ +2016-08-24 15:03:55,418 DEBUG: 6.28840403669e-05 proche de zero ? +2016-08-24 15:03:55,418 DEBUG: Start: Iteration 515 +2016-08-24 15:03:55,452 DEBUG: View 0 : 0.672985781991 +2016-08-24 15:03:55,469 DEBUG: View 1 : 0.729857819905 +2016-08-24 15:03:55,590 DEBUG: View 2 : 0.526066350711 +2016-08-24 15:03:55,599 DEBUG: View 3 : 0.616113744076 +2016-08-24 15:03:57,134 DEBUG: Best view : MiRNA__ +2016-08-24 15:04:38,371 DEBUG: 6.27775023341e-05 proche de zero ? +2016-08-24 15:04:38,371 DEBUG: Start: Iteration 516 +2016-08-24 15:04:38,405 DEBUG: View 0 : 0.616113744076 +2016-08-24 15:04:38,421 DEBUG: View 1 : 0.625592417062 +2016-08-24 15:04:38,562 DEBUG: View 2 : 0.488151658768 +2016-08-24 15:04:38,571 DEBUG: View 3 : 0.554502369668 +2016-08-24 15:04:40,107 DEBUG: Best view : MiRNA__ +2016-08-24 15:05:21,425 DEBUG: 6.26711421105e-05 proche de zero ? +2016-08-24 15:05:21,426 DEBUG: Start: Iteration 517 +2016-08-24 15:05:21,451 DEBUG: View 0 : 0.582938388626 +2016-08-24 15:05:21,462 DEBUG: View 1 : 0.559241706161 +2016-08-24 15:05:21,590 DEBUG: View 2 : 0.582938388626 +2016-08-24 15:05:21,599 DEBUG: View 3 : 0.54028436019 +2016-08-24 15:05:23,158 DEBUG: Best view : RANSeq_ +2016-08-24 15:06:04,833 DEBUG: 6.25649603915e-05 proche de zero ? +2016-08-24 15:06:04,833 DEBUG: Start: Iteration 518 +2016-08-24 15:06:04,858 DEBUG: View 0 : 0.616113744076 +2016-08-24 15:06:04,869 DEBUG: View 1 : 0.473933649289 +2016-08-24 15:06:05,004 DEBUG: View 2 : 0.57345971564 +2016-08-24 15:06:05,014 DEBUG: View 3 : 0.578199052133 +2016-08-24 15:06:06,594 DEBUG: Best view : Clinic_ +2016-08-24 15:06:48,955 DEBUG: 6.24589578535e-05 proche de zero ? +2016-08-24 15:06:48,956 DEBUG: Start: Iteration 519 +2016-08-24 15:06:48,980 DEBUG: View 0 : 0.635071090047 +2016-08-24 15:06:48,991 DEBUG: View 1 : 0.57345971564 +2016-08-24 15:06:49,152 DEBUG: View 2 : 0.469194312796 +2016-08-24 15:06:49,163 DEBUG: View 3 : 0.710900473934 +2016-08-24 15:06:50,826 DEBUG: Best view : Clinic_ +2016-08-24 15:07:33,656 DEBUG: 6.23531351532e-05 proche de zero ? +2016-08-24 15:07:33,656 DEBUG: Start: Iteration 520 +2016-08-24 15:07:33,680 DEBUG: View 0 : 0.554502369668 +2016-08-24 15:07:33,691 DEBUG: View 1 : 0.800947867299 +2016-08-24 15:07:33,850 DEBUG: View 2 : 0.592417061611 +2016-08-24 15:07:33,859 DEBUG: View 3 : 0.649289099526 +2016-08-24 15:07:35,393 DEBUG: Best view : MiRNA__ +2016-08-24 15:08:17,754 DEBUG: 6.22474929289e-05 proche de zero ? +2016-08-24 15:08:17,755 DEBUG: Start: Iteration 521 +2016-08-24 15:08:17,779 DEBUG: View 0 : 0.625592417062 +2016-08-24 15:08:17,790 DEBUG: View 1 : 0.654028436019 +2016-08-24 15:08:17,926 DEBUG: View 2 : 0.578199052133 +2016-08-24 15:08:17,935 DEBUG: View 3 : 0.597156398104 +2016-08-24 15:08:19,472 DEBUG: Best view : MiRNA__ +2016-08-24 15:09:00,815 DEBUG: 6.21420318002e-05 proche de zero ? +2016-08-24 15:09:00,815 DEBUG: Start: Iteration 522 +2016-08-24 15:09:00,840 DEBUG: View 0 : 0.578199052133 +2016-08-24 15:09:00,852 DEBUG: View 1 : 0.644549763033 +2016-08-24 15:09:00,991 DEBUG: View 2 : 0.60663507109 +2016-08-24 15:09:01,000 DEBUG: View 3 : 0.488151658768 +2016-08-24 15:09:02,525 DEBUG: Best view : MiRNA__ +2016-08-24 15:09:44,500 DEBUG: 6.20367523684e-05 proche de zero ? +2016-08-24 15:09:44,501 DEBUG: Start: Iteration 523 +2016-08-24 15:09:44,525 DEBUG: View 0 : 0.492890995261 +2016-08-24 15:09:44,535 DEBUG: View 1 : 0.720379146919 +2016-08-24 15:09:44,661 DEBUG: View 2 : 0.587677725118 +2016-08-24 15:09:44,670 DEBUG: View 3 : 0.630331753555 +2016-08-24 15:09:46,207 DEBUG: Best view : MiRNA__ +2016-08-24 15:10:29,196 DEBUG: 6.19197235513e-05 proche de zero ? +2016-08-24 15:10:29,196 DEBUG: Start: Iteration 524 +2016-08-24 15:10:29,412 DEBUG: View 0 : 0.601895734597 +2016-08-24 15:10:29,438 DEBUG: View 1 : 0.469194312796 +2016-08-24 15:10:29,851 DEBUG: View 2 : 0.597156398104 +2016-08-24 15:10:29,862 DEBUG: View 3 : 0.549763033175 +2016-08-24 15:10:31,523 DEBUG: Best view : Methyl_ +2016-08-24 15:11:15,637 DEBUG: 6.18148708249e-05 proche de zero ? +2016-08-24 15:11:15,637 DEBUG: Start: Iteration 525 +2016-08-24 15:11:15,662 DEBUG: View 0 : 0.663507109005 +2016-08-24 15:11:15,674 DEBUG: View 1 : 0.677725118483 +2016-08-24 15:11:15,811 DEBUG: View 2 : 0.559241706161 +2016-08-24 15:11:15,821 DEBUG: View 3 : 0.582938388626 +2016-08-24 15:11:17,608 DEBUG: Best view : MiRNA__ +2016-08-24 15:12:01,649 DEBUG: 6.17102011088e-05 proche de zero ? +2016-08-24 15:12:01,650 DEBUG: Start: Iteration 526 +2016-08-24 15:12:01,674 DEBUG: View 0 : 0.284360189573 +2016-08-24 15:12:01,685 DEBUG: View 1 : 0.587677725118 +2016-08-24 15:12:01,813 DEBUG: View 2 : 0.545023696682 +2016-08-24 15:12:01,822 DEBUG: View 3 : 0.57345971564 +2016-08-24 15:12:03,531 DEBUG: Best view : Clinic_ +2016-08-24 15:12:47,530 DEBUG: 6.16057149375e-05 proche de zero ? +2016-08-24 15:12:47,531 DEBUG: Start: Iteration 527 +2016-08-24 15:12:47,568 DEBUG: View 0 : 0.687203791469 +2016-08-24 15:12:47,585 DEBUG: View 1 : 0.578199052133 +2016-08-24 15:12:47,742 DEBUG: View 2 : 0.658767772512 +2016-08-24 15:12:47,753 DEBUG: View 3 : 0.630331753555 +2016-08-24 15:12:49,328 DEBUG: Best view : Methyl_ +2016-08-24 15:13:31,667 DEBUG: 6.15014128287e-05 proche de zero ? +2016-08-24 15:13:31,668 DEBUG: Start: Iteration 528 +2016-08-24 15:13:31,692 DEBUG: View 0 : 0.507109004739 +2016-08-24 15:13:31,703 DEBUG: View 1 : 0.559241706161 +2016-08-24 15:13:31,836 DEBUG: View 2 : 0.526066350711 +2016-08-24 15:13:31,845 DEBUG: View 3 : 0.469194312796 +2016-08-24 15:13:33,405 DEBUG: Best view : MiRNA__ +2016-08-24 15:14:16,032 DEBUG: 6.13972952838e-05 proche de zero ? +2016-08-24 15:14:16,032 DEBUG: Start: Iteration 529 +2016-08-24 15:14:16,055 DEBUG: View 0 : 0.436018957346 +2016-08-24 15:14:16,064 DEBUG: View 1 : 0.654028436019 +2016-08-24 15:14:16,191 DEBUG: View 2 : 0.635071090047 +2016-08-24 15:14:16,200 DEBUG: View 3 : 0.57345971564 +2016-08-24 15:14:18,060 DEBUG: Best view : RANSeq_ +2016-08-24 15:15:02,190 DEBUG: 6.12933627878e-05 proche de zero ? +2016-08-24 15:15:02,190 DEBUG: Start: Iteration 530 +2016-08-24 15:15:02,219 DEBUG: View 0 : 0.635071090047 +2016-08-24 15:15:02,236 DEBUG: View 1 : 0.649289099526 +2016-08-24 15:15:02,391 DEBUG: View 2 : 0.587677725118 +2016-08-24 15:15:02,408 DEBUG: View 3 : 0.530805687204 +2016-08-24 15:15:04,103 DEBUG: Best view : MiRNA__ +2016-08-24 15:15:47,898 DEBUG: 6.11896158096e-05 proche de zero ? +2016-08-24 15:15:47,899 DEBUG: Start: Iteration 531 +2016-08-24 15:15:47,937 DEBUG: View 0 : 0.469194312796 +2016-08-24 15:15:47,957 DEBUG: View 1 : 0.45971563981 +2016-08-24 15:15:48,105 DEBUG: View 2 : 0.549763033175 +2016-08-24 15:15:48,116 DEBUG: View 3 : 0.597156398104 +2016-08-24 15:15:49,811 DEBUG: Best view : Clinic_ +2016-08-24 15:16:34,198 DEBUG: 6.10860548028e-05 proche de zero ? +2016-08-24 15:16:34,198 DEBUG: Start: Iteration 532 +2016-08-24 15:16:34,225 DEBUG: View 0 : 0.54028436019 +2016-08-24 15:16:34,238 DEBUG: View 1 : 0.687203791469 +2016-08-24 15:16:34,404 DEBUG: View 2 : 0.620853080569 +2016-08-24 15:16:34,415 DEBUG: View 3 : 0.649289099526 +2016-08-24 15:16:36,063 DEBUG: Best view : MiRNA__ +2016-08-24 15:17:20,598 DEBUG: 6.09826802051e-05 proche de zero ? +2016-08-24 15:17:20,598 DEBUG: Start: Iteration 533 +2016-08-24 15:17:20,622 DEBUG: View 0 : 0.658767772512 +2016-08-24 15:17:20,633 DEBUG: View 1 : 0.620853080569 +2016-08-24 15:17:20,763 DEBUG: View 2 : 0.568720379147 +2016-08-24 15:17:20,775 DEBUG: View 3 : 0.54028436019 +2016-08-24 15:17:22,446 DEBUG: Best view : Methyl_ +2016-08-24 15:18:06,572 DEBUG: 6.08794924395e-05 proche de zero ? +2016-08-24 15:18:06,572 DEBUG: Start: Iteration 534 +2016-08-24 15:18:06,596 DEBUG: View 0 : 0.601895734597 +2016-08-24 15:18:06,605 DEBUG: View 1 : 0.625592417062 +2016-08-24 15:18:06,755 DEBUG: View 2 : 0.492890995261 +2016-08-24 15:18:06,767 DEBUG: View 3 : 0.701421800948 +2016-08-24 15:18:08,389 DEBUG: Best view : Clinic_ +2016-08-24 15:18:54,278 DEBUG: 6.07764919137e-05 proche de zero ? +2016-08-24 15:18:54,279 DEBUG: Start: Iteration 535 +2016-08-24 15:18:54,640 DEBUG: View 0 : 0.549763033175 +2016-08-24 15:18:54,662 DEBUG: View 1 : 0.421800947867 +2016-08-24 15:18:56,081 DEBUG: View 2 : 0.587677725118 +2016-08-24 15:18:56,104 DEBUG: View 3 : 0.630331753555 +2016-08-24 15:18:57,810 DEBUG: Best view : Clinic_ +2016-08-24 15:19:42,131 DEBUG: 6.0673679021e-05 proche de zero ? +2016-08-24 15:19:42,131 DEBUG: Start: Iteration 536 +2016-08-24 15:19:42,156 DEBUG: View 0 : 0.578199052133 +2016-08-24 15:19:42,166 DEBUG: View 1 : 0.601895734597 +2016-08-24 15:19:42,283 DEBUG: View 2 : 0.54028436019 +2016-08-24 15:19:42,292 DEBUG: View 3 : 0.578199052133 +2016-08-24 15:19:43,942 DEBUG: Best view : Clinic_ +2016-08-24 15:20:27,085 DEBUG: 6.05710541401e-05 proche de zero ? +2016-08-24 15:20:27,085 DEBUG: Start: Iteration 537 +2016-08-24 15:20:27,107 DEBUG: View 0 : 0.436018957346 +2016-08-24 15:20:27,117 DEBUG: View 1 : 0.473933649289 +2016-08-24 15:20:27,252 DEBUG: View 2 : 0.563981042654 +2016-08-24 15:20:27,265 DEBUG: View 3 : 0.696682464455 +2016-08-24 15:20:28,953 DEBUG: Best view : Clinic_ +2016-08-24 15:21:13,372 DEBUG: 6.04686176355e-05 proche de zero ? +2016-08-24 15:21:13,372 DEBUG: Start: Iteration 538 +2016-08-24 15:21:13,397 DEBUG: View 0 : 0.587677725118 +2016-08-24 15:21:13,407 DEBUG: View 1 : 0.511848341232 +2016-08-24 15:21:13,545 DEBUG: View 2 : 0.511848341232 +2016-08-24 15:21:13,556 DEBUG: View 3 : 0.563981042654 +2016-08-24 15:21:15,151 DEBUG: Best view : Clinic_ +2016-08-24 15:21:59,346 DEBUG: 6.03663698579e-05 proche de zero ? +2016-08-24 15:21:59,347 DEBUG: Start: Iteration 539 +2016-08-24 15:22:00,071 DEBUG: View 0 : 0.492890995261 +2016-08-24 15:22:00,093 DEBUG: View 1 : 0.620853080569 +2016-08-24 15:22:01,161 DEBUG: View 2 : 0.578199052133 +2016-08-24 15:22:01,193 DEBUG: View 3 : 0.672985781991 +2016-08-24 15:22:03,131 DEBUG: Best view : Clinic_ +2016-08-24 15:22:48,366 DEBUG: 6.02643111442e-05 proche de zero ? +2016-08-24 15:22:48,366 DEBUG: Start: Iteration 540 +2016-08-24 15:22:48,389 DEBUG: View 0 : 0.630331753555 +2016-08-24 15:22:48,399 DEBUG: View 1 : 0.691943127962 +2016-08-24 15:22:48,523 DEBUG: View 2 : 0.563981042654 +2016-08-24 15:22:48,532 DEBUG: View 3 : 0.611374407583 +2016-08-24 15:22:50,133 DEBUG: Best view : MiRNA__ +2016-08-24 15:23:33,606 DEBUG: 6.01624418179e-05 proche de zero ? +2016-08-24 15:23:33,607 DEBUG: Start: Iteration 541 +2016-08-24 15:23:33,630 DEBUG: View 0 : 0.592417061611 +2016-08-24 15:23:33,640 DEBUG: View 1 : 0.545023696682 +2016-08-24 15:23:33,771 DEBUG: View 2 : 0.635071090047 +2016-08-24 15:23:33,781 DEBUG: View 3 : 0.597156398104 +2016-08-24 15:23:35,443 DEBUG: Best view : RANSeq_ +2016-08-24 15:24:18,979 DEBUG: 6.0060762189e-05 proche de zero ? +2016-08-24 15:24:18,979 DEBUG: Start: Iteration 542 +2016-08-24 15:24:19,003 DEBUG: View 0 : 0.630331753555 +2016-08-24 15:24:19,013 DEBUG: View 1 : 0.492890995261 +2016-08-24 15:24:19,135 DEBUG: View 2 : 0.592417061611 +2016-08-24 15:24:19,144 DEBUG: View 3 : 0.63981042654 +2016-08-24 15:24:20,737 DEBUG: Best view : Clinic_ +2016-08-24 15:25:03,911 DEBUG: 5.99592725547e-05 proche de zero ? +2016-08-24 15:25:03,911 DEBUG: Start: Iteration 543 +2016-08-24 15:25:03,936 DEBUG: View 0 : 0.568720379147 +2016-08-24 15:25:03,946 DEBUG: View 1 : 0.601895734597 +2016-08-24 15:25:04,091 DEBUG: View 2 : 0.611374407583 +2016-08-24 15:25:04,104 DEBUG: View 3 : 0.601895734597 +2016-08-24 15:25:05,694 DEBUG: Best view : RANSeq_ +2016-08-24 15:25:49,244 DEBUG: 5.98579731994e-05 proche de zero ? +2016-08-24 15:25:49,245 DEBUG: Start: Iteration 544 +2016-08-24 15:25:49,269 DEBUG: View 0 : 0.654028436019 +2016-08-24 15:25:49,278 DEBUG: View 1 : 0.625592417062 +2016-08-24 15:25:49,417 DEBUG: View 2 : 0.578199052133 +2016-08-24 15:25:49,430 DEBUG: View 3 : 0.60663507109 +2016-08-24 15:25:51,062 DEBUG: Best view : Methyl_ +2016-08-24 15:26:34,788 DEBUG: 5.97568643947e-05 proche de zero ? +2016-08-24 15:26:34,788 DEBUG: Start: Iteration 545 +2016-08-24 15:26:34,813 DEBUG: View 0 : 0.450236966825 +2016-08-24 15:26:34,824 DEBUG: View 1 : 0.559241706161 +2016-08-24 15:26:34,971 DEBUG: View 2 : 0.483412322275 +2016-08-24 15:26:34,983 DEBUG: View 3 : 0.545023696682 +2016-08-24 15:26:36,583 DEBUG: Best view : Clinic_ +2016-08-24 15:27:20,428 DEBUG: 5.96559463999e-05 proche de zero ? +2016-08-24 15:27:20,428 DEBUG: Start: Iteration 546 +2016-08-24 15:27:20,453 DEBUG: View 0 : 0.545023696682 +2016-08-24 15:27:20,464 DEBUG: View 1 : 0.488151658768 +2016-08-24 15:27:20,609 DEBUG: View 2 : 0.592417061611 +2016-08-24 15:27:20,621 DEBUG: View 3 : 0.663507109005 +2016-08-24 15:27:22,232 DEBUG: Best view : Clinic_ +2016-08-24 15:28:06,308 DEBUG: 5.95552194623e-05 proche de zero ? +2016-08-24 15:28:06,309 DEBUG: Start: Iteration 547 +2016-08-24 15:28:06,335 DEBUG: View 0 : 0.488151658768 +2016-08-24 15:28:06,346 DEBUG: View 1 : 0.796208530806 +2016-08-24 15:28:06,484 DEBUG: View 2 : 0.54028436019 +2016-08-24 15:28:06,496 DEBUG: View 3 : 0.582938388626 +2016-08-24 15:28:08,119 DEBUG: Best view : MiRNA__ +2016-08-24 15:28:52,144 DEBUG: 5.94546838169e-05 proche de zero ? +2016-08-24 15:28:52,144 DEBUG: Start: Iteration 548 +2016-08-24 15:28:52,168 DEBUG: View 0 : 0.483412322275 +2016-08-24 15:28:52,178 DEBUG: View 1 : 0.521327014218 +2016-08-24 15:28:52,310 DEBUG: View 2 : 0.530805687204 +2016-08-24 15:28:52,322 DEBUG: View 3 : 0.582938388626 +2016-08-24 15:28:53,922 DEBUG: Best view : Clinic_ +2016-08-24 15:29:38,112 DEBUG: 5.93543396871e-05 proche de zero ? +2016-08-24 15:29:38,113 DEBUG: Start: Iteration 549 +2016-08-24 15:29:38,139 DEBUG: View 0 : 0.549763033175 +2016-08-24 15:29:38,152 DEBUG: View 1 : 0.649289099526 +2016-08-24 15:29:38,291 DEBUG: View 2 : 0.568720379147 +2016-08-24 15:29:38,303 DEBUG: View 3 : 0.511848341232 +2016-08-24 15:29:39,936 DEBUG: Best view : MiRNA__ +2016-08-24 15:30:24,016 DEBUG: 5.92541872847e-05 proche de zero ? +2016-08-24 15:30:24,016 DEBUG: Start: Iteration 550 +2016-08-24 15:30:24,039 DEBUG: View 0 : 0.57345971564 +2016-08-24 15:30:24,049 DEBUG: View 1 : 0.578199052133 +2016-08-24 15:30:24,182 DEBUG: View 2 : 0.60663507109 +2016-08-24 15:30:24,193 DEBUG: View 3 : 0.578199052133 +2016-08-24 15:30:25,802 DEBUG: Best view : RANSeq_ +2016-08-24 15:31:09,943 DEBUG: 5.91542268102e-05 proche de zero ? +2016-08-24 15:31:09,944 DEBUG: Start: Iteration 551 +2016-08-24 15:31:09,968 DEBUG: View 0 : 0.630331753555 +2016-08-24 15:31:09,979 DEBUG: View 1 : 0.654028436019 +2016-08-24 15:31:10,127 DEBUG: View 2 : 0.649289099526 +2016-08-24 15:31:10,136 DEBUG: View 3 : 0.630331753555 +2016-08-24 15:31:11,803 DEBUG: Best view : RANSeq_ +2016-08-24 15:31:56,974 DEBUG: 5.90544584529e-05 proche de zero ? +2016-08-24 15:31:56,974 DEBUG: Start: Iteration 552 +2016-08-24 15:31:56,998 DEBUG: View 0 : 0.530805687204 +2016-08-24 15:31:57,009 DEBUG: View 1 : 0.616113744076 +2016-08-24 15:31:57,162 DEBUG: View 2 : 0.54028436019 +2016-08-24 15:31:57,173 DEBUG: View 3 : 0.587677725118 +2016-08-24 15:31:58,845 DEBUG: Best view : MiRNA__ +2016-08-24 15:32:45,571 DEBUG: 5.89548823909e-05 proche de zero ? +2016-08-24 15:32:45,571 DEBUG: Start: Iteration 553 +2016-08-24 15:32:45,595 DEBUG: View 0 : 0.554502369668 +2016-08-24 15:32:45,605 DEBUG: View 1 : 0.398104265403 +2016-08-24 15:32:45,762 DEBUG: View 2 : 0.559241706161 +2016-08-24 15:32:45,772 DEBUG: View 3 : 0.478672985782 +2016-08-24 15:32:47,481 DEBUG: Best view : RANSeq_ +2016-08-24 15:33:33,740 DEBUG: 5.88554987916e-05 proche de zero ? +2016-08-24 15:33:33,740 DEBUG: Start: Iteration 554 +2016-08-24 15:33:33,764 DEBUG: View 0 : 0.478672985782 +2016-08-24 15:33:33,775 DEBUG: View 1 : 0.516587677725 +2016-08-24 15:33:33,902 DEBUG: View 2 : 0.545023696682 +2016-08-24 15:33:33,912 DEBUG: View 3 : 0.620853080569 +2016-08-24 15:33:35,669 DEBUG: Best view : Clinic_ +2016-08-24 15:34:20,273 DEBUG: 5.8756307812e-05 proche de zero ? +2016-08-24 15:34:20,273 DEBUG: Start: Iteration 555 +2016-08-24 15:34:20,299 DEBUG: View 0 : 0.554502369668 +2016-08-24 15:34:20,310 DEBUG: View 1 : 0.597156398104 +2016-08-24 15:34:20,438 DEBUG: View 2 : 0.587677725118 +2016-08-24 15:34:20,447 DEBUG: View 3 : 0.630331753555 +2016-08-24 15:34:22,103 DEBUG: Best view : Clinic_ +2016-08-24 15:35:07,929 DEBUG: 5.86573095984e-05 proche de zero ? +2016-08-24 15:35:07,930 DEBUG: Start: Iteration 556 +2016-08-24 15:35:07,955 DEBUG: View 0 : 0.592417061611 +2016-08-24 15:35:07,967 DEBUG: View 1 : 0.663507109005 +2016-08-24 15:35:08,095 DEBUG: View 2 : 0.616113744076 +2016-08-24 15:35:08,104 DEBUG: View 3 : 0.549763033175 +2016-08-24 15:35:09,807 DEBUG: Best view : MiRNA__ +2016-08-24 15:35:58,044 DEBUG: 5.85585042868e-05 proche de zero ? +2016-08-24 15:35:58,044 DEBUG: Start: Iteration 557 +2016-08-24 15:35:58,069 DEBUG: View 0 : 0.535545023697 +2016-08-24 15:35:58,080 DEBUG: View 1 : 0.710900473934 +2016-08-24 15:35:58,243 DEBUG: View 2 : 0.597156398104 +2016-08-24 15:35:58,254 DEBUG: View 3 : 0.57345971564 +2016-08-24 15:36:00,159 DEBUG: Best view : MiRNA__ +2016-08-24 15:36:52,201 DEBUG: 5.84598920032e-05 proche de zero ? +2016-08-24 15:36:52,327 DEBUG: Start: Iteration 558 +2016-08-24 15:36:54,210 DEBUG: View 0 : 0.559241706161 +2016-08-24 15:36:54,232 DEBUG: View 1 : 0.350710900474 +2016-08-24 15:36:55,005 DEBUG: View 2 : 0.587677725118 +2016-08-24 15:36:56,248 DEBUG: View 3 : 0.601895734597 +2016-08-24 15:36:58,070 DEBUG: Best view : Clinic_ +2016-08-24 15:37:46,240 DEBUG: 5.83614728638e-05 proche de zero ? +2016-08-24 15:37:46,240 DEBUG: Start: Iteration 559 +2016-08-24 15:37:46,265 DEBUG: View 0 : 0.388625592417 +2016-08-24 15:37:46,276 DEBUG: View 1 : 0.563981042654 +2016-08-24 15:37:46,403 DEBUG: View 2 : 0.521327014218 +2016-08-24 15:37:46,412 DEBUG: View 3 : 0.568720379147 +2016-08-24 15:37:48,074 DEBUG: Best view : Clinic_ +2016-08-24 15:38:34,352 DEBUG: 5.82632469748e-05 proche de zero ? +2016-08-24 15:38:34,352 DEBUG: Start: Iteration 560 +2016-08-24 15:38:34,389 DEBUG: View 0 : 0.530805687204 +2016-08-24 15:38:34,402 DEBUG: View 1 : 0.592417061611 +2016-08-24 15:38:34,530 DEBUG: View 2 : 0.483412322275 +2016-08-24 15:38:34,540 DEBUG: View 3 : 0.568720379147 +2016-08-24 15:38:36,229 DEBUG: Best view : MiRNA__ +2016-08-24 15:39:22,206 DEBUG: 5.81652144331e-05 proche de zero ? +2016-08-24 15:39:22,206 DEBUG: Start: Iteration 561 +2016-08-24 15:39:22,229 DEBUG: View 0 : 0.469194312796 +2016-08-24 15:39:22,239 DEBUG: View 1 : 0.706161137441 +2016-08-24 15:39:22,360 DEBUG: View 2 : 0.497630331754 +2016-08-24 15:39:22,369 DEBUG: View 3 : 0.502369668246 +2016-08-24 15:39:24,075 DEBUG: Best view : MiRNA__ +2016-08-24 15:40:10,837 DEBUG: 5.80673753259e-05 proche de zero ? +2016-08-24 15:40:10,837 DEBUG: Start: Iteration 562 +2016-08-24 15:40:10,859 DEBUG: View 0 : 0.492890995261 +2016-08-24 15:40:10,869 DEBUG: View 1 : 0.668246445498 +2016-08-24 15:40:10,987 DEBUG: View 2 : 0.492890995261 +2016-08-24 15:40:10,997 DEBUG: View 3 : 0.516587677725 +2016-08-24 15:40:12,696 DEBUG: Best view : MiRNA__ +2016-08-24 15:40:59,048 DEBUG: 5.79697297312e-05 proche de zero ? +2016-08-24 15:40:59,048 DEBUG: Start: Iteration 563 +2016-08-24 15:40:59,071 DEBUG: View 0 : 0.526066350711 +2016-08-24 15:40:59,081 DEBUG: View 1 : 0.582938388626 +2016-08-24 15:40:59,203 DEBUG: View 2 : 0.559241706161 +2016-08-24 15:40:59,212 DEBUG: View 3 : 0.483412322275 +2016-08-24 15:41:00,908 DEBUG: Best view : RANSeq_ +2016-08-24 15:41:47,728 DEBUG: 5.78722777182e-05 proche de zero ? +2016-08-24 15:41:47,728 DEBUG: Start: Iteration 564 +2016-08-24 15:41:47,751 DEBUG: View 0 : 0.611374407583 +2016-08-24 15:41:47,760 DEBUG: View 1 : 0.75355450237 +2016-08-24 15:41:47,883 DEBUG: View 2 : 0.57345971564 +2016-08-24 15:41:47,893 DEBUG: View 3 : 0.616113744076 +2016-08-24 15:41:49,554 DEBUG: Best view : MiRNA__ +2016-08-24 15:42:36,097 DEBUG: 5.77750193467e-05 proche de zero ? +2016-08-24 15:42:36,097 DEBUG: Start: Iteration 565 +2016-08-24 15:42:36,119 DEBUG: View 0 : 0.635071090047 +2016-08-24 15:42:36,129 DEBUG: View 1 : 0.554502369668 +2016-08-24 15:42:36,252 DEBUG: View 2 : 0.549763033175 +2016-08-24 15:42:36,262 DEBUG: View 3 : 0.492890995261 +2016-08-24 15:42:37,977 DEBUG: Best view : Methyl_ +2016-08-24 15:43:24,037 DEBUG: 5.76779546681e-05 proche de zero ? +2016-08-24 15:43:24,037 DEBUG: Start: Iteration 566 +2016-08-24 15:43:24,061 DEBUG: View 0 : 0.635071090047 +2016-08-24 15:43:24,072 DEBUG: View 1 : 0.654028436019 +2016-08-24 15:43:24,198 DEBUG: View 2 : 0.592417061611 +2016-08-24 15:43:24,208 DEBUG: View 3 : 0.592417061611 +2016-08-24 15:43:25,937 DEBUG: Best view : MiRNA__ +2016-08-24 15:44:11,585 DEBUG: 5.75810837249e-05 proche de zero ? +2016-08-24 15:44:11,585 DEBUG: Start: Iteration 567 +2016-08-24 15:44:11,607 DEBUG: View 0 : 0.582938388626 +2016-08-24 15:44:11,617 DEBUG: View 1 : 0.578199052133 +2016-08-24 15:44:11,732 DEBUG: View 2 : 0.601895734597 +2016-08-24 15:44:11,741 DEBUG: View 3 : 0.582938388626 +2016-08-24 15:44:13,424 DEBUG: Best view : RANSeq_ +2016-08-24 15:45:00,021 DEBUG: 5.74844065512e-05 proche de zero ? +2016-08-24 15:45:00,022 DEBUG: Start: Iteration 568 +2016-08-24 15:45:00,044 DEBUG: View 0 : 0.440758293839 +2016-08-24 15:45:00,054 DEBUG: View 1 : 0.473933649289 +2016-08-24 15:45:00,181 DEBUG: View 2 : 0.488151658768 +2016-08-24 15:45:00,191 DEBUG: View 3 : 0.578199052133 +2016-08-24 15:45:01,914 DEBUG: Best view : Clinic_ +2016-08-24 15:45:48,690 DEBUG: 5.73879231729e-05 proche de zero ? +2016-08-24 15:45:48,690 DEBUG: Start: Iteration 569 +2016-08-24 15:45:48,713 DEBUG: View 0 : 0.663507109005 +2016-08-24 15:45:48,723 DEBUG: View 1 : 0.383886255924 +2016-08-24 15:45:48,840 DEBUG: View 2 : 0.592417061611 +2016-08-24 15:45:48,849 DEBUG: View 3 : 0.635071090047 +2016-08-24 15:45:50,539 DEBUG: Best view : Methyl_ +2016-08-24 15:46:37,307 DEBUG: 5.72916336075e-05 proche de zero ? +2016-08-24 15:46:37,308 DEBUG: Start: Iteration 570 +2016-08-24 15:46:37,332 DEBUG: View 0 : 0.630331753555 +2016-08-24 15:46:37,347 DEBUG: View 1 : 0.630331753555 +2016-08-24 15:46:37,468 DEBUG: View 2 : 0.60663507109 +2016-08-24 15:46:37,479 DEBUG: View 3 : 0.592417061611 +2016-08-24 15:46:39,281 DEBUG: Best view : Methyl_ +2016-08-24 15:47:25,307 DEBUG: 5.71955378646e-05 proche de zero ? +2016-08-24 15:47:25,308 DEBUG: Start: Iteration 571 +2016-08-24 15:47:25,331 DEBUG: View 0 : 0.763033175355 +2016-08-24 15:47:25,341 DEBUG: View 1 : 0.682464454976 +2016-08-24 15:47:25,471 DEBUG: View 2 : 0.554502369668 +2016-08-24 15:47:25,481 DEBUG: View 3 : 0.563981042654 +2016-08-24 15:47:27,250 DEBUG: Best view : Methyl_ +2016-08-24 15:48:14,586 DEBUG: 5.70996359457e-05 proche de zero ? +2016-08-24 15:48:14,586 DEBUG: Start: Iteration 572 +2016-08-24 15:48:14,607 DEBUG: View 0 : 0.635071090047 +2016-08-24 15:48:14,619 DEBUG: View 1 : 0.39336492891 +2016-08-24 15:48:14,737 DEBUG: View 2 : 0.559241706161 +2016-08-24 15:48:14,747 DEBUG: View 3 : 0.649289099526 +2016-08-24 15:48:16,681 DEBUG: Best view : Clinic_ +2016-08-24 15:49:05,561 DEBUG: 5.70039278448e-05 proche de zero ? +2016-08-24 15:49:05,561 DEBUG: Start: Iteration 573 +2016-08-24 15:49:05,583 DEBUG: View 0 : 0.725118483412 +2016-08-24 15:49:05,593 DEBUG: View 1 : 0.516587677725 +2016-08-24 15:49:05,714 DEBUG: View 2 : 0.597156398104 +2016-08-24 15:49:05,723 DEBUG: View 3 : 0.649289099526 +2016-08-24 15:49:07,444 DEBUG: Best view : Methyl_ +2016-08-24 15:49:54,785 DEBUG: 5.69084135481e-05 proche de zero ? +2016-08-24 15:49:54,785 DEBUG: Start: Iteration 574 +2016-08-24 15:49:54,807 DEBUG: View 0 : 0.521327014218 +2016-08-24 15:49:54,817 DEBUG: View 1 : 0.729857819905 +2016-08-24 15:49:54,937 DEBUG: View 2 : 0.592417061611 +2016-08-24 15:49:54,946 DEBUG: View 3 : 0.668246445498 +2016-08-24 15:49:56,655 DEBUG: Best view : MiRNA__ +2016-08-24 15:50:45,854 DEBUG: 5.68130930342e-05 proche de zero ? +2016-08-24 15:50:45,854 DEBUG: Start: Iteration 575 +2016-08-24 15:50:45,876 DEBUG: View 0 : 0.398104265403 +2016-08-24 15:50:45,885 DEBUG: View 1 : 0.668246445498 +2016-08-24 15:50:46,010 DEBUG: View 2 : 0.57345971564 +2016-08-24 15:50:46,020 DEBUG: View 3 : 0.592417061611 +2016-08-24 15:50:47,761 DEBUG: Best view : MiRNA__ +2016-08-24 15:51:34,498 DEBUG: 5.67280869189e-05 proche de zero ? +2016-08-24 15:51:34,498 DEBUG: Start: Iteration 576 +2016-08-24 15:51:34,520 DEBUG: View 0 : 0.582938388626 +2016-08-24 15:51:34,531 DEBUG: View 1 : 0.616113744076 +2016-08-24 15:51:34,650 DEBUG: View 2 : 0.582938388626 +2016-08-24 15:51:34,659 DEBUG: View 3 : 0.436018957346 +2016-08-24 15:51:36,373 DEBUG: Best view : MiRNA__ +2016-08-24 15:52:24,031 DEBUG: 5.6643196095e-05 proche de zero ? +2016-08-24 15:52:24,031 DEBUG: Start: Iteration 577 +2016-08-24 15:52:24,053 DEBUG: View 0 : 0.473933649289 +2016-08-24 15:52:24,062 DEBUG: View 1 : 0.421800947867 +2016-08-24 15:52:24,187 DEBUG: View 2 : 0.578199052133 +2016-08-24 15:52:24,196 DEBUG: View 3 : 0.611374407583 +2016-08-24 15:52:25,951 DEBUG: Best view : Clinic_ +2016-08-24 15:53:13,077 DEBUG: 5.65584211559e-05 proche de zero ? +2016-08-24 15:53:13,077 DEBUG: Start: Iteration 578 +2016-08-24 15:53:13,100 DEBUG: View 0 : 0.374407582938 +2016-08-24 15:53:13,111 DEBUG: View 1 : 0.658767772512 +2016-08-24 15:53:13,256 DEBUG: View 2 : 0.511848341232 +2016-08-24 15:53:13,267 DEBUG: View 3 : 0.654028436019 +2016-08-24 15:53:15,260 DEBUG: Best view : Clinic_ +2016-08-24 15:54:03,129 DEBUG: 5.64637334828e-05 proche de zero ? +2016-08-24 15:54:03,129 DEBUG: Start: Iteration 579 +2016-08-24 15:54:03,154 DEBUG: View 0 : 0.554502369668 +2016-08-24 15:54:03,164 DEBUG: View 1 : 0.554502369668 +2016-08-24 15:54:03,304 DEBUG: View 2 : 0.601895734597 +2016-08-24 15:54:03,313 DEBUG: View 3 : 0.644549763033 +2016-08-24 15:54:05,055 DEBUG: Best view : Clinic_ +2016-08-24 15:54:52,005 DEBUG: 5.63792391847e-05 proche de zero ? +2016-08-24 15:54:52,005 DEBUG: Start: Iteration 580 +2016-08-24 15:54:52,027 DEBUG: View 0 : 0.563981042654 +2016-08-24 15:54:52,036 DEBUG: View 1 : 0.388625592417 +2016-08-24 15:54:52,159 DEBUG: View 2 : 0.635071090047 +2016-08-24 15:54:52,168 DEBUG: View 3 : 0.568720379147 +2016-08-24 15:54:53,905 DEBUG: Best view : RANSeq_ +2016-08-24 15:55:42,320 DEBUG: 5.6284893273e-05 proche de zero ? +2016-08-24 15:55:42,320 DEBUG: Start: Iteration 581 +2016-08-24 15:55:42,359 DEBUG: View 0 : 0.60663507109 +2016-08-24 15:55:42,377 DEBUG: View 1 : 0.658767772512 +2016-08-24 15:55:42,540 DEBUG: View 2 : 0.563981042654 +2016-08-24 15:55:42,549 DEBUG: View 3 : 0.54028436019 +2016-08-24 15:55:44,296 DEBUG: Best view : MiRNA__ +2016-08-24 15:56:32,161 DEBUG: 5.61907418602e-05 proche de zero ? +2016-08-24 15:56:32,161 DEBUG: Start: Iteration 582 +2016-08-24 15:56:32,183 DEBUG: View 0 : 0.625592417062 +2016-08-24 15:56:32,193 DEBUG: View 1 : 0.483412322275 +2016-08-24 15:56:32,312 DEBUG: View 2 : 0.57345971564 +2016-08-24 15:56:32,321 DEBUG: View 3 : 0.630331753555 +2016-08-24 15:56:34,074 DEBUG: Best view : Clinic_ +2016-08-24 15:57:22,663 DEBUG: 5.60967848622e-05 proche de zero ? +2016-08-24 15:57:22,663 DEBUG: Start: Iteration 583 +2016-08-24 15:57:22,698 DEBUG: View 0 : 0.625592417062 +2016-08-24 15:57:22,710 DEBUG: View 1 : 0.507109004739 +2016-08-24 15:57:22,848 DEBUG: View 2 : 0.545023696682 +2016-08-24 15:57:22,859 DEBUG: View 3 : 0.597156398104 +2016-08-24 15:57:24,791 DEBUG: Best view : Methyl_ +2016-08-24 15:58:13,942 DEBUG: 5.60030221883e-05 proche de zero ? +2016-08-24 15:58:13,943 DEBUG: Start: Iteration 584 +2016-08-24 15:58:13,965 DEBUG: View 0 : 0.587677725118 +2016-08-24 15:58:13,976 DEBUG: View 1 : 0.663507109005 +2016-08-24 15:58:14,103 DEBUG: View 2 : 0.601895734597 +2016-08-24 15:58:14,113 DEBUG: View 3 : 0.559241706161 +2016-08-24 15:58:15,877 DEBUG: Best view : MiRNA__ +2016-08-24 15:59:04,748 DEBUG: 5.59094537419e-05 proche de zero ? +2016-08-24 15:59:04,749 DEBUG: Start: Iteration 585 +2016-08-24 15:59:04,770 DEBUG: View 0 : 0.601895734597 +2016-08-24 15:59:04,780 DEBUG: View 1 : 0.516587677725 +2016-08-24 15:59:04,901 DEBUG: View 2 : 0.483412322275 +2016-08-24 15:59:04,910 DEBUG: View 3 : 0.563981042654 +2016-08-24 15:59:06,785 DEBUG: Best view : Methyl_ +2016-08-24 15:59:54,484 DEBUG: 5.58160794201e-05 proche de zero ? +2016-08-24 15:59:54,484 DEBUG: Start: Iteration 586 +2016-08-24 15:59:54,506 DEBUG: View 0 : 0.568720379147 +2016-08-24 15:59:54,516 DEBUG: View 1 : 0.535545023697 +2016-08-24 15:59:54,633 DEBUG: View 2 : 0.568720379147 +2016-08-24 15:59:54,642 DEBUG: View 3 : 0.706161137441 +2016-08-24 15:59:56,355 DEBUG: Best view : Clinic_ +2016-08-24 16:00:44,580 DEBUG: 5.5722899114e-05 proche de zero ? +2016-08-24 16:00:44,580 DEBUG: Start: Iteration 587 +2016-08-24 16:00:44,602 DEBUG: View 0 : 0.668246445498 +2016-08-24 16:00:44,612 DEBUG: View 1 : 0.649289099526 +2016-08-24 16:00:44,734 DEBUG: View 2 : 0.507109004739 +2016-08-24 16:00:44,743 DEBUG: View 3 : 0.57345971564 +2016-08-24 16:00:46,475 DEBUG: Best view : Methyl_ +2016-08-24 16:01:33,775 DEBUG: 5.5639675002e-05 proche de zero ? +2016-08-24 16:01:33,775 DEBUG: Start: Iteration 588 +2016-08-24 16:01:33,797 DEBUG: View 0 : 0.526066350711 +2016-08-24 16:01:33,807 DEBUG: View 1 : 0.625592417062 +2016-08-24 16:01:33,931 DEBUG: View 2 : 0.582938388626 +2016-08-24 16:01:33,941 DEBUG: View 3 : 0.60663507109 +2016-08-24 16:01:35,687 DEBUG: Best view : MiRNA__ +2016-08-24 16:02:23,165 DEBUG: 5.55565704549e-05 proche de zero ? +2016-08-24 16:02:23,165 DEBUG: Start: Iteration 589 +2016-08-24 16:02:23,187 DEBUG: View 0 : 0.568720379147 +2016-08-24 16:02:23,196 DEBUG: View 1 : 0.668246445498 +2016-08-24 16:02:23,317 DEBUG: View 2 : 0.635071090047 +2016-08-24 16:02:23,326 DEBUG: View 3 : 0.54028436019 +2016-08-24 16:02:25,045 DEBUG: Best view : MiRNA__ +2016-08-24 16:03:12,485 DEBUG: 5.54735859372e-05 proche de zero ? +2016-08-24 16:03:12,485 DEBUG: Start: Iteration 590 +2016-08-24 16:03:12,510 DEBUG: View 0 : 0.672985781991 +2016-08-24 16:03:12,521 DEBUG: View 1 : 0.317535545024 +2016-08-24 16:03:12,658 DEBUG: View 2 : 0.516587677725 +2016-08-24 16:03:12,668 DEBUG: View 3 : 0.616113744076 +2016-08-24 16:03:14,546 DEBUG: Best view : Methyl_ +2016-08-24 16:04:01,915 DEBUG: 5.53907219025e-05 proche de zero ? +2016-08-24 16:04:01,915 DEBUG: Start: Iteration 591 +2016-08-24 16:04:01,937 DEBUG: View 0 : 0.554502369668 +2016-08-24 16:04:01,947 DEBUG: View 1 : 0.450236966825 +2016-08-24 16:04:02,066 DEBUG: View 2 : 0.625592417062 +2016-08-24 16:04:02,075 DEBUG: View 3 : 0.568720379147 +2016-08-24 16:04:03,799 DEBUG: Best view : RANSeq_ +2016-08-24 16:04:50,961 DEBUG: 5.53079787937e-05 proche de zero ? +2016-08-24 16:04:50,961 DEBUG: Start: Iteration 592 +2016-08-24 16:04:50,983 DEBUG: View 0 : 0.644549763033 +2016-08-24 16:04:50,994 DEBUG: View 1 : 0.734597156398 +2016-08-24 16:04:51,111 DEBUG: View 2 : 0.644549763033 +2016-08-24 16:04:51,120 DEBUG: View 3 : 0.60663507109 +2016-08-24 16:04:52,847 DEBUG: Best view : MiRNA__ +2016-08-24 16:05:40,087 DEBUG: 5.52253570429e-05 proche de zero ? +2016-08-24 16:05:40,087 DEBUG: Start: Iteration 593 +2016-08-24 16:05:40,109 DEBUG: View 0 : 0.507109004739 +2016-08-24 16:05:40,119 DEBUG: View 1 : 0.701421800948 +2016-08-24 16:05:40,235 DEBUG: View 2 : 0.473933649289 +2016-08-24 16:05:40,245 DEBUG: View 3 : 0.625592417062 +2016-08-24 16:05:41,978 DEBUG: Best view : MiRNA__ +2016-08-24 16:06:29,547 DEBUG: 5.51428570719e-05 proche de zero ? +2016-08-24 16:06:29,547 DEBUG: Start: Iteration 594 +2016-08-24 16:06:29,569 DEBUG: View 0 : 0.445497630332 +2016-08-24 16:06:29,579 DEBUG: View 1 : 0.355450236967 +2016-08-24 16:06:29,699 DEBUG: View 2 : 0.530805687204 +2016-08-24 16:06:29,708 DEBUG: View 3 : 0.57345971564 +2016-08-24 16:06:31,458 DEBUG: Best view : Clinic_ +2016-08-24 16:07:19,034 DEBUG: 5.5060479292e-05 proche de zero ? +2016-08-24 16:07:19,034 DEBUG: Start: Iteration 595 +2016-08-24 16:07:19,057 DEBUG: View 0 : 0.563981042654 +2016-08-24 16:07:19,067 DEBUG: View 1 : 0.502369668246 +2016-08-24 16:07:19,187 DEBUG: View 2 : 0.601895734597 +2016-08-24 16:07:19,196 DEBUG: View 3 : 0.658767772512 +2016-08-24 16:07:20,939 DEBUG: Best view : Clinic_ +2016-08-24 16:08:08,827 DEBUG: 5.49782241045e-05 proche de zero ? +2016-08-24 16:08:08,827 DEBUG: Start: Iteration 596 +2016-08-24 16:08:08,849 DEBUG: View 0 : 0.511848341232 +2016-08-24 16:08:08,859 DEBUG: View 1 : 0.554502369668 +2016-08-24 16:08:08,981 DEBUG: View 2 : 0.60663507109 +2016-08-24 16:08:08,990 DEBUG: View 3 : 0.687203791469 +2016-08-24 16:08:10,760 DEBUG: Best view : Clinic_ +2016-08-24 16:08:58,882 DEBUG: 5.48960919006e-05 proche de zero ? +2016-08-24 16:08:58,882 DEBUG: Start: Iteration 597 +2016-08-24 16:08:58,913 DEBUG: View 0 : 0.478672985782 +2016-08-24 16:08:58,933 DEBUG: View 1 : 0.696682464455 +2016-08-24 16:08:59,084 DEBUG: View 2 : 0.625592417062 +2016-08-24 16:08:59,095 DEBUG: View 3 : 0.587677725118 +2016-08-24 16:09:00,892 DEBUG: Best view : MiRNA__ +2016-08-24 16:09:49,241 DEBUG: 5.48140830615e-05 proche de zero ? +2016-08-24 16:09:49,241 DEBUG: Start: Iteration 598 +2016-08-24 16:09:49,263 DEBUG: View 0 : 0.582938388626 +2016-08-24 16:09:49,272 DEBUG: View 1 : 0.616113744076 +2016-08-24 16:09:49,391 DEBUG: View 2 : 0.554502369668 +2016-08-24 16:09:49,400 DEBUG: View 3 : 0.592417061611 +2016-08-24 16:09:51,155 DEBUG: Best view : Clinic_ +2016-08-24 16:10:39,013 DEBUG: 5.47321979589e-05 proche de zero ? +2016-08-24 16:10:39,013 DEBUG: Start: Iteration 599 +2016-08-24 16:10:39,035 DEBUG: View 0 : 0.592417061611 +2016-08-24 16:10:39,045 DEBUG: View 1 : 0.592417061611 +2016-08-24 16:10:39,166 DEBUG: View 2 : 0.497630331754 +2016-08-24 16:10:39,176 DEBUG: View 3 : 0.578199052133 +2016-08-24 16:10:40,931 DEBUG: Best view : MiRNA__ +2016-08-24 16:11:28,926 DEBUG: 5.46504369546e-05 proche de zero ? +2016-08-24 16:11:28,926 DEBUG: Start: Iteration 600 +2016-08-24 16:11:28,948 DEBUG: View 0 : 0.431279620853 +2016-08-24 16:11:28,957 DEBUG: View 1 : 0.663507109005 +2016-08-24 16:11:29,078 DEBUG: View 2 : 0.620853080569 +2016-08-24 16:11:29,087 DEBUG: View 3 : 0.616113744076 +2016-08-24 16:11:30,845 DEBUG: Best view : MiRNA__ +2016-08-24 16:12:18,982 DEBUG: 5.45688004013e-05 proche de zero ? +2016-08-24 16:12:18,983 DEBUG: Start: Iteration 601 +2016-08-24 16:12:19,004 DEBUG: View 0 : 0.345971563981 +2016-08-24 16:12:19,014 DEBUG: View 1 : 0.696682464455 +2016-08-24 16:12:19,131 DEBUG: View 2 : 0.57345971564 +2016-08-24 16:12:19,141 DEBUG: View 3 : 0.620853080569 +2016-08-24 16:12:20,902 DEBUG: Best view : MiRNA__ +2016-08-24 16:13:09,183 DEBUG: 5.4487288642e-05 proche de zero ? +2016-08-24 16:13:09,183 DEBUG: Start: Iteration 602 +2016-08-24 16:13:09,205 DEBUG: View 0 : 0.545023696682 +2016-08-24 16:13:09,214 DEBUG: View 1 : 0.57345971564 +2016-08-24 16:13:09,342 DEBUG: View 2 : 0.582938388626 +2016-08-24 16:13:09,352 DEBUG: View 3 : 0.582938388626 +2016-08-24 16:13:11,147 DEBUG: Best view : Clinic_ +2016-08-24 16:13:59,514 DEBUG: 5.44059020109e-05 proche de zero ? +2016-08-24 16:13:59,514 DEBUG: Start: Iteration 603 +2016-08-24 16:13:59,536 DEBUG: View 0 : 0.57345971564 +2016-08-24 16:13:59,545 DEBUG: View 1 : 0.535545023697 +2016-08-24 16:13:59,674 DEBUG: View 2 : 0.559241706161 +2016-08-24 16:13:59,684 DEBUG: View 3 : 0.710900473934 +2016-08-24 16:14:01,459 DEBUG: Best view : Clinic_ +2016-08-24 16:14:49,977 DEBUG: 5.43246408327e-05 proche de zero ? +2016-08-24 16:14:49,977 DEBUG: Start: Iteration 604 +2016-08-24 16:14:49,999 DEBUG: View 0 : 0.748815165877 +2016-08-24 16:14:50,009 DEBUG: View 1 : 0.691943127962 +2016-08-24 16:14:50,131 DEBUG: View 2 : 0.625592417062 +2016-08-24 16:14:50,140 DEBUG: View 3 : 0.57345971564 +2016-08-24 16:14:51,957 DEBUG: Best view : Methyl_ +2016-08-24 16:15:41,515 DEBUG: 5.42435054237e-05 proche de zero ? +2016-08-24 16:15:41,515 DEBUG: Start: Iteration 605 +2016-08-24 16:15:41,537 DEBUG: View 0 : 0.421800947867 +2016-08-24 16:15:41,547 DEBUG: View 1 : 0.635071090047 +2016-08-24 16:15:41,663 DEBUG: View 2 : 0.597156398104 +2016-08-24 16:15:41,673 DEBUG: View 3 : 0.54028436019 +2016-08-24 16:15:43,441 DEBUG: Best view : MiRNA__ +2016-08-24 16:16:32,734 DEBUG: 5.41624960909e-05 proche de zero ? +2016-08-24 16:16:32,734 DEBUG: Start: Iteration 606 +2016-08-24 16:16:32,759 DEBUG: View 0 : 0.601895734597 +2016-08-24 16:16:32,770 DEBUG: View 1 : 0.644549763033 +2016-08-24 16:16:32,925 DEBUG: View 2 : 0.521327014218 +2016-08-24 16:16:32,937 DEBUG: View 3 : 0.582938388626 +2016-08-24 16:16:34,787 DEBUG: Best view : MiRNA__ +2016-08-24 16:17:23,226 DEBUG: 5.4081613133e-05 proche de zero ? +2016-08-24 16:17:23,226 DEBUG: Start: Iteration 607 +2016-08-24 16:17:23,248 DEBUG: View 0 : 0.630331753555 +2016-08-24 16:17:23,258 DEBUG: View 1 : 0.578199052133 +2016-08-24 16:17:23,376 DEBUG: View 2 : 0.635071090047 +2016-08-24 16:17:23,386 DEBUG: View 3 : 0.668246445498 +2016-08-24 16:17:25,176 DEBUG: Best view : Clinic_ +2016-08-24 16:18:13,881 DEBUG: 5.400085684e-05 proche de zero ? +2016-08-24 16:18:13,881 DEBUG: Start: Iteration 608 +2016-08-24 16:18:13,903 DEBUG: View 0 : 0.644549763033 +2016-08-24 16:18:13,912 DEBUG: View 1 : 0.355450236967 +2016-08-24 16:18:14,026 DEBUG: View 2 : 0.492890995261 +2016-08-24 16:18:14,036 DEBUG: View 3 : 0.635071090047 +2016-08-24 16:18:15,817 DEBUG: Best view : Clinic_ +2016-08-24 16:19:04,326 DEBUG: 5.39202274935e-05 proche de zero ? +2016-08-24 16:19:04,327 DEBUG: Start: Iteration 609 +2016-08-24 16:19:04,348 DEBUG: View 0 : 0.473933649289 +2016-08-24 16:19:04,358 DEBUG: View 1 : 0.535545023697 +2016-08-24 16:19:04,480 DEBUG: View 2 : 0.549763033175 +2016-08-24 16:19:04,490 DEBUG: View 3 : 0.672985781991 +2016-08-24 16:19:06,282 DEBUG: Best view : Clinic_ +2016-08-24 16:19:54,903 DEBUG: 5.38397253669e-05 proche de zero ? +2016-08-24 16:19:54,903 DEBUG: Start: Iteration 610 +2016-08-24 16:19:54,924 DEBUG: View 0 : 0.568720379147 +2016-08-24 16:19:54,934 DEBUG: View 1 : 0.691943127962 +2016-08-24 16:19:55,050 DEBUG: View 2 : 0.554502369668 +2016-08-24 16:19:55,061 DEBUG: View 3 : 0.60663507109 +2016-08-24 16:19:56,858 DEBUG: Best view : MiRNA__ +2016-08-24 16:20:45,411 DEBUG: 5.37593507254e-05 proche de zero ? +2016-08-24 16:20:45,412 DEBUG: Start: Iteration 611 +2016-08-24 16:20:45,433 DEBUG: View 0 : 0.445497630332 +2016-08-24 16:20:45,443 DEBUG: View 1 : 0.511848341232 +2016-08-24 16:20:45,571 DEBUG: View 2 : 0.497630331754 +2016-08-24 16:20:45,581 DEBUG: View 3 : 0.554502369668 +2016-08-24 16:20:47,384 DEBUG: Best view : Clinic_ +2016-08-24 16:21:36,123 DEBUG: 5.3679103826e-05 proche de zero ? +2016-08-24 16:21:36,124 DEBUG: Start: Iteration 612 +2016-08-24 16:21:36,145 DEBUG: View 0 : 0.478672985782 +2016-08-24 16:21:36,155 DEBUG: View 1 : 0.630331753555 +2016-08-24 16:21:36,304 DEBUG: View 2 : 0.616113744076 +2016-08-24 16:21:36,313 DEBUG: View 3 : 0.649289099526 +2016-08-24 16:21:38,101 DEBUG: Best view : Clinic_ +2016-08-24 16:22:28,302 DEBUG: 5.3598984918e-05 proche de zero ? +2016-08-24 16:22:28,302 DEBUG: Start: Iteration 613 +2016-08-24 16:22:28,325 DEBUG: View 0 : 0.488151658768 +2016-08-24 16:22:28,334 DEBUG: View 1 : 0.60663507109 +2016-08-24 16:22:28,475 DEBUG: View 2 : 0.578199052133 +2016-08-24 16:22:28,485 DEBUG: View 3 : 0.587677725118 +2016-08-24 16:22:30,299 DEBUG: Best view : MiRNA__ +2016-08-24 16:23:19,384 DEBUG: 5.35189942428e-05 proche de zero ? +2016-08-24 16:23:19,384 DEBUG: Start: Iteration 614 +2016-08-24 16:23:19,406 DEBUG: View 0 : 0.654028436019 +2016-08-24 16:23:19,415 DEBUG: View 1 : 0.60663507109 +2016-08-24 16:23:19,552 DEBUG: View 2 : 0.554502369668 +2016-08-24 16:23:19,564 DEBUG: View 3 : 0.60663507109 +2016-08-24 16:23:21,373 DEBUG: Best view : Methyl_ +2016-08-24 16:24:10,622 DEBUG: 5.3439132034e-05 proche de zero ? +2016-08-24 16:24:10,622 DEBUG: Start: Iteration 615 +2016-08-24 16:24:10,645 DEBUG: View 0 : 0.559241706161 +2016-08-24 16:24:10,655 DEBUG: View 1 : 0.658767772512 +2016-08-24 16:24:10,783 DEBUG: View 2 : 0.559241706161 +2016-08-24 16:24:10,794 DEBUG: View 3 : 0.601895734597 +2016-08-24 16:24:12,596 DEBUG: Best view : MiRNA__ +2016-08-24 16:25:01,702 DEBUG: 5.33593985177e-05 proche de zero ? +2016-08-24 16:25:01,703 DEBUG: Start: Iteration 616 +2016-08-24 16:25:01,725 DEBUG: View 0 : 0.63981042654 +2016-08-24 16:25:01,736 DEBUG: View 1 : 0.488151658768 +2016-08-24 16:25:01,866 DEBUG: View 2 : 0.587677725118 +2016-08-24 16:25:01,878 DEBUG: View 3 : 0.568720379147 +2016-08-24 16:25:03,674 DEBUG: Best view : Methyl_ +2016-08-24 16:25:53,123 DEBUG: 5.32797939126e-05 proche de zero ? +2016-08-24 16:25:53,123 DEBUG: Start: Iteration 617 +2016-08-24 16:25:53,145 DEBUG: View 0 : 0.796208530806 +2016-08-24 16:25:53,156 DEBUG: View 1 : 0.630331753555 +2016-08-24 16:25:53,292 DEBUG: View 2 : 0.554502369668 +2016-08-24 16:25:53,304 DEBUG: View 3 : 0.545023696682 +2016-08-24 16:25:55,142 DEBUG: Best view : Methyl_ +2016-08-24 16:26:44,515 DEBUG: 5.32092650058e-05 proche de zero ? +2016-08-24 16:26:44,515 DEBUG: Start: Iteration 618 +2016-08-24 16:26:44,537 DEBUG: View 0 : 0.587677725118 +2016-08-24 16:26:44,549 DEBUG: View 1 : 0.635071090047 +2016-08-24 16:26:44,686 DEBUG: View 2 : 0.473933649289 +2016-08-24 16:26:44,697 DEBUG: View 3 : 0.57345971564 +2016-08-24 16:26:46,509 DEBUG: Best view : MiRNA__ +2016-08-24 16:27:36,201 DEBUG: 5.31298792906e-05 proche de zero ? +2016-08-24 16:27:36,201 DEBUG: Start: Iteration 619 +2016-08-24 16:27:36,225 DEBUG: View 0 : 0.563981042654 +2016-08-24 16:27:36,235 DEBUG: View 1 : 0.649289099526 +2016-08-24 16:27:36,365 DEBUG: View 2 : 0.563981042654 +2016-08-24 16:27:36,376 DEBUG: View 3 : 0.57345971564 +2016-08-24 16:27:38,191 DEBUG: Best view : MiRNA__ +2016-08-24 16:28:27,719 DEBUG: 5.30506233104e-05 proche de zero ? +2016-08-24 16:28:27,719 DEBUG: Start: Iteration 620 +2016-08-24 16:28:27,741 DEBUG: View 0 : 0.497630331754 +2016-08-24 16:28:27,753 DEBUG: View 1 : 0.800947867299 +2016-08-24 16:28:27,886 DEBUG: View 2 : 0.559241706161 +2016-08-24 16:28:27,896 DEBUG: View 3 : 0.597156398104 +2016-08-24 16:28:29,803 DEBUG: Best view : MiRNA__ +2016-08-24 16:29:19,334 DEBUG: 5.29803680113e-05 proche de zero ? +2016-08-24 16:29:19,335 DEBUG: Start: Iteration 621 +2016-08-24 16:29:24,389 DEBUG: View 0 : 0.587677725118 +2016-08-24 16:29:24,398 DEBUG: View 1 : 0.691943127962 +2016-08-24 16:29:24,532 DEBUG: View 2 : 0.545023696682 +2016-08-24 16:29:24,541 DEBUG: View 3 : 0.473933649289 +2016-08-24 16:29:26,362 DEBUG: Best view : MiRNA__ +2016-08-24 16:30:16,056 DEBUG: 5.29013330137e-05 proche de zero ? +2016-08-24 16:30:16,056 DEBUG: Start: Iteration 622 +2016-08-24 16:30:16,078 DEBUG: View 0 : 0.473933649289 +2016-08-24 16:30:16,088 DEBUG: View 1 : 0.530805687204 +2016-08-24 16:30:16,232 DEBUG: View 2 : 0.587677725118 +2016-08-24 16:30:16,244 DEBUG: View 3 : 0.587677725118 +2016-08-24 16:30:18,066 DEBUG: Best view : Clinic_ +2016-08-24 16:31:08,022 DEBUG: 5.28224285036e-05 proche de zero ? +2016-08-24 16:31:08,022 DEBUG: Start: Iteration 623 +2016-08-24 16:31:08,045 DEBUG: View 0 : 0.625592417062 +2016-08-24 16:31:08,055 DEBUG: View 1 : 0.57345971564 +2016-08-24 16:31:08,186 DEBUG: View 2 : 0.563981042654 +2016-08-24 16:31:08,197 DEBUG: View 3 : 0.492890995261 +2016-08-24 16:31:10,022 DEBUG: Best view : Methyl_ +2016-08-24 16:31:59,790 DEBUG: 5.27436546477e-05 proche de zero ? +2016-08-24 16:31:59,790 DEBUG: Start: Iteration 624 +2016-08-24 16:31:59,813 DEBUG: View 0 : 0.625592417062 +2016-08-24 16:31:59,824 DEBUG: View 1 : 0.492890995261 +2016-08-24 16:31:59,961 DEBUG: View 2 : 0.502369668246 +2016-08-24 16:31:59,973 DEBUG: View 3 : 0.592417061611 +2016-08-24 16:32:01,813 DEBUG: Best view : Clinic_ +2016-08-24 16:32:51,910 DEBUG: 5.26650116059e-05 proche de zero ? +2016-08-24 16:32:51,910 DEBUG: Start: Iteration 625 +2016-08-24 16:32:51,932 DEBUG: View 0 : 0.521327014218 +2016-08-24 16:32:51,942 DEBUG: View 1 : 0.57345971564 +2016-08-24 16:32:52,076 DEBUG: View 2 : 0.597156398104 +2016-08-24 16:32:52,088 DEBUG: View 3 : 0.511848341232 +2016-08-24 16:32:53,919 DEBUG: Best view : MiRNA__ +2016-08-24 16:33:43,825 DEBUG: 5.25864995314e-05 proche de zero ? +2016-08-24 16:33:43,825 DEBUG: Start: Iteration 626 +2016-08-24 16:33:43,846 DEBUG: View 0 : 0.464454976303 +2016-08-24 16:33:43,856 DEBUG: View 1 : 0.687203791469 +2016-08-24 16:33:43,984 DEBUG: View 2 : 0.469194312796 +2016-08-24 16:33:43,996 DEBUG: View 3 : 0.592417061611 +2016-08-24 16:33:45,827 DEBUG: Best view : MiRNA__ +2016-08-24 16:34:35,741 DEBUG: 5.25081185713e-05 proche de zero ? +2016-08-24 16:34:35,741 DEBUG: Start: Iteration 627 +2016-08-24 16:34:35,763 DEBUG: View 0 : 0.559241706161 +2016-08-24 16:34:35,773 DEBUG: View 1 : 0.672985781991 +2016-08-24 16:34:35,904 DEBUG: View 2 : 0.530805687204 +2016-08-24 16:34:35,915 DEBUG: View 3 : 0.630331753555 +2016-08-24 16:34:37,740 DEBUG: Best view : MiRNA__ +2016-08-24 16:35:27,702 DEBUG: 5.24298688663e-05 proche de zero ? +2016-08-24 16:35:27,702 DEBUG: Start: Iteration 628 +2016-08-24 16:35:27,724 DEBUG: View 0 : 0.563981042654 +2016-08-24 16:35:27,734 DEBUG: View 1 : 0.663507109005 +2016-08-24 16:35:27,869 DEBUG: View 2 : 0.587677725118 +2016-08-24 16:35:27,881 DEBUG: View 3 : 0.521327014218 +2016-08-24 16:35:29,718 DEBUG: Best view : MiRNA__ +2016-08-24 16:36:20,008 DEBUG: 5.23517505506e-05 proche de zero ? +2016-08-24 16:36:20,008 DEBUG: Start: Iteration 629 +2016-08-24 16:36:20,030 DEBUG: View 0 : 0.654028436019 +2016-08-24 16:36:20,040 DEBUG: View 1 : 0.649289099526 +2016-08-24 16:36:20,164 DEBUG: View 2 : 0.497630331754 +2016-08-24 16:36:20,176 DEBUG: View 3 : 0.60663507109 +2016-08-24 16:36:22,019 DEBUG: Best view : Methyl_ +2016-08-24 16:37:13,881 DEBUG: 5.22737637527e-05 proche de zero ? +2016-08-24 16:37:13,882 DEBUG: Start: Iteration 630 +2016-08-24 16:37:13,903 DEBUG: View 0 : 0.649289099526 +2016-08-24 16:37:13,913 DEBUG: View 1 : 0.672985781991 +2016-08-24 16:37:14,046 DEBUG: View 2 : 0.545023696682 +2016-08-24 16:37:14,058 DEBUG: View 3 : 0.549763033175 +2016-08-24 16:37:16,082 DEBUG: Best view : MiRNA__ +2016-08-24 16:38:06,920 DEBUG: 5.21959085947e-05 proche de zero ? +2016-08-24 16:38:06,921 DEBUG: Start: Iteration 631 +2016-08-24 16:38:06,943 DEBUG: View 0 : 0.54028436019 +2016-08-24 16:38:06,953 DEBUG: View 1 : 0.57345971564 +2016-08-24 16:38:07,079 DEBUG: View 2 : 0.616113744076 +2016-08-24 16:38:07,090 DEBUG: View 3 : 0.563981042654 +2016-08-24 16:38:08,965 DEBUG: Best view : RANSeq_ +2016-08-24 16:38:59,459 DEBUG: 5.21181851928e-05 proche de zero ? +2016-08-24 16:38:59,459 DEBUG: Start: Iteration 632 +2016-08-24 16:38:59,481 DEBUG: View 0 : 0.42654028436 +2016-08-24 16:38:59,491 DEBUG: View 1 : 0.54028436019 +2016-08-24 16:38:59,622 DEBUG: View 2 : 0.601895734597 +2016-08-24 16:38:59,634 DEBUG: View 3 : 0.60663507109 +2016-08-24 16:39:01,506 DEBUG: Best view : Clinic_ +2016-08-24 16:39:52,607 DEBUG: 5.20405936574e-05 proche de zero ? +2016-08-24 16:39:52,607 DEBUG: Start: Iteration 633 +2016-08-24 16:39:52,629 DEBUG: View 0 : 0.526066350711 +2016-08-24 16:39:52,639 DEBUG: View 1 : 0.559241706161 +2016-08-24 16:39:52,769 DEBUG: View 2 : 0.644549763033 +2016-08-24 16:39:52,780 DEBUG: View 3 : 0.54028436019 +2016-08-24 16:39:54,689 DEBUG: Best view : RANSeq_ +2016-08-24 16:40:46,923 DEBUG: 5.19631340932e-05 proche de zero ? +2016-08-24 16:40:46,924 DEBUG: Start: Iteration 634 +2016-08-24 16:40:46,945 DEBUG: View 0 : 0.620853080569 +2016-08-24 16:40:46,955 DEBUG: View 1 : 0.682464454976 +2016-08-24 16:40:47,087 DEBUG: View 2 : 0.559241706161 +2016-08-24 16:40:47,098 DEBUG: View 3 : 0.611374407583 +2016-08-24 16:40:49,029 DEBUG: Best view : MiRNA__ +2016-08-24 16:41:40,415 DEBUG: 5.18858065989e-05 proche de zero ? +2016-08-24 16:41:40,415 DEBUG: Start: Iteration 635 +2016-08-24 16:41:40,439 DEBUG: View 0 : 0.710900473934 +2016-08-24 16:41:40,451 DEBUG: View 1 : 0.511848341232 +2016-08-24 16:41:40,618 DEBUG: View 2 : 0.616113744076 +2016-08-24 16:41:40,632 DEBUG: View 3 : 0.592417061611 +2016-08-24 16:41:42,629 DEBUG: Best view : Methyl_ +2016-08-24 16:42:35,543 DEBUG: 5.1808611268e-05 proche de zero ? +2016-08-24 16:42:35,543 DEBUG: Start: Iteration 636 +2016-08-24 16:42:35,565 DEBUG: View 0 : 0.488151658768 +2016-08-24 16:42:35,575 DEBUG: View 1 : 0.559241706161 +2016-08-24 16:42:35,711 DEBUG: View 2 : 0.545023696682 +2016-08-24 16:42:35,724 DEBUG: View 3 : 0.687203791469 +2016-08-24 16:42:37,626 DEBUG: Best view : Clinic_ +2016-08-24 16:43:31,235 DEBUG: 5.17315481882e-05 proche de zero ? +2016-08-24 16:43:31,235 DEBUG: Start: Iteration 637 +2016-08-24 16:43:31,257 DEBUG: View 0 : 0.421800947867 +2016-08-24 16:43:31,267 DEBUG: View 1 : 0.597156398104 +2016-08-24 16:43:31,411 DEBUG: View 2 : 0.601895734597 +2016-08-24 16:43:31,420 DEBUG: View 3 : 0.687203791469 +2016-08-24 16:43:33,273 DEBUG: Best view : Clinic_ +2016-08-24 16:44:24,284 DEBUG: 5.16630764724e-05 proche de zero ? +2016-08-24 16:44:24,284 DEBUG: Start: Iteration 638 +2016-08-24 16:44:24,306 DEBUG: View 0 : 0.578199052133 +2016-08-24 16:44:24,316 DEBUG: View 1 : 0.620853080569 +2016-08-24 16:44:24,441 DEBUG: View 2 : 0.563981042654 +2016-08-24 16:44:24,450 DEBUG: View 3 : 0.57345971564 +2016-08-24 16:44:26,329 DEBUG: Best view : Methyl_ +2016-08-24 16:45:17,253 DEBUG: 5.15946775578e-05 proche de zero ? +2016-08-24 16:45:17,253 DEBUG: Start: Iteration 639 +2016-08-24 16:45:17,275 DEBUG: View 0 : 0.379146919431 +2016-08-24 16:45:17,285 DEBUG: View 1 : 0.454976303318 +2016-08-24 16:45:17,408 DEBUG: View 2 : 0.554502369668 +2016-08-24 16:45:17,418 DEBUG: View 3 : 0.502369668246 +2016-08-24 16:45:19,271 DEBUG: Best view : RANSeq_ +2016-08-24 16:46:10,385 DEBUG: 5.15263519555e-05 proche de zero ? +2016-08-24 16:46:10,386 DEBUG: Start: Iteration 640 +2016-08-24 16:46:10,408 DEBUG: View 0 : 0.582938388626 +2016-08-24 16:46:10,418 DEBUG: View 1 : 0.597156398104 +2016-08-24 16:46:10,548 DEBUG: View 2 : 0.549763033175 +2016-08-24 16:46:10,559 DEBUG: View 3 : 0.559241706161 +2016-08-24 16:46:12,480 DEBUG: Best view : Clinic_ +2016-08-24 16:47:05,838 DEBUG: 5.14581001676e-05 proche de zero ? +2016-08-24 16:47:05,839 DEBUG: Start: Iteration 641 +2016-08-24 16:47:05,860 DEBUG: View 0 : 0.497630331754 +2016-08-24 16:47:05,870 DEBUG: View 1 : 0.677725118483 +2016-08-24 16:47:05,990 DEBUG: View 2 : 0.578199052133 +2016-08-24 16:47:06,000 DEBUG: View 3 : 0.445497630332 +2016-08-24 16:47:07,908 DEBUG: Best view : MiRNA__ +2016-08-24 16:47:59,781 DEBUG: 5.13899226877e-05 proche de zero ? +2016-08-24 16:47:59,781 DEBUG: Start: Iteration 642 +2016-08-24 16:47:59,802 DEBUG: View 0 : 0.682464454976 +2016-08-24 16:47:59,812 DEBUG: View 1 : 0.672985781991 +2016-08-24 16:47:59,933 DEBUG: View 2 : 0.554502369668 +2016-08-24 16:47:59,943 DEBUG: View 3 : 0.687203791469 +2016-08-24 16:48:01,831 DEBUG: Best view : Clinic_ +2016-08-24 16:48:54,427 DEBUG: 5.13218200004e-05 proche de zero ? +2016-08-24 16:48:54,427 DEBUG: Start: Iteration 643 +2016-08-24 16:48:54,450 DEBUG: View 0 : 0.601895734597 +2016-08-24 16:48:54,462 DEBUG: View 1 : 0.630331753555 +2016-08-24 16:48:54,581 DEBUG: View 2 : 0.507109004739 +2016-08-24 16:48:54,590 DEBUG: View 3 : 0.649289099526 +2016-08-24 16:48:56,518 DEBUG: Best view : Clinic_ +2016-08-24 16:49:48,909 DEBUG: 5.12454719495e-05 proche de zero ? +2016-08-24 16:49:48,909 DEBUG: Start: Iteration 644 +2016-08-24 16:49:48,931 DEBUG: View 0 : 0.492890995261 +2016-08-24 16:49:48,940 DEBUG: View 1 : 0.60663507109 +2016-08-24 16:49:49,056 DEBUG: View 2 : 0.483412322275 +2016-08-24 16:49:49,065 DEBUG: View 3 : 0.60663507109 +2016-08-24 16:49:50,963 DEBUG: Best view : Clinic_ +2016-08-24 16:50:43,820 DEBUG: 5.11692577604e-05 proche de zero ? +2016-08-24 16:50:43,820 DEBUG: Start: Iteration 645 +2016-08-24 16:50:43,842 DEBUG: View 0 : 0.521327014218 +2016-08-24 16:50:43,852 DEBUG: View 1 : 0.725118483412 +2016-08-24 16:50:43,974 DEBUG: View 2 : 0.545023696682 +2016-08-24 16:50:43,983 DEBUG: View 3 : 0.625592417062 +2016-08-24 16:50:45,972 DEBUG: Best view : MiRNA__ +2016-08-24 16:51:38,015 DEBUG: 5.10931774675e-05 proche de zero ? +2016-08-24 16:51:38,015 DEBUG: Start: Iteration 646 +2016-08-24 16:51:38,036 DEBUG: View 0 : 0.431279620853 +2016-08-24 16:51:38,046 DEBUG: View 1 : 0.777251184834 +2016-08-24 16:51:38,158 DEBUG: View 2 : 0.60663507109 +2016-08-24 16:51:38,167 DEBUG: View 3 : 0.668246445498 +2016-08-24 16:51:40,048 DEBUG: Best view : MiRNA__ +2016-08-24 16:52:32,446 DEBUG: 5.10172311008e-05 proche de zero ? +2016-08-24 16:52:32,447 DEBUG: Start: Iteration 647 +2016-08-24 16:52:32,468 DEBUG: View 0 : 0.706161137441 +2016-08-24 16:52:32,478 DEBUG: View 1 : 0.654028436019 +2016-08-24 16:52:32,592 DEBUG: View 2 : 0.592417061611 +2016-08-24 16:52:32,601 DEBUG: View 3 : 0.54028436019 +2016-08-24 16:52:34,507 DEBUG: Best view : Methyl_ +2016-08-24 16:53:27,202 DEBUG: 5.09414186855e-05 proche de zero ? +2016-08-24 16:53:27,202 DEBUG: Start: Iteration 648 +2016-08-24 16:53:27,223 DEBUG: View 0 : 0.635071090047 +2016-08-24 16:53:27,233 DEBUG: View 1 : 0.654028436019 +2016-08-24 16:53:27,354 DEBUG: View 2 : 0.507109004739 +2016-08-24 16:53:27,364 DEBUG: View 3 : 0.497630331754 +2016-08-24 16:53:29,269 DEBUG: Best view : MiRNA__ +2016-08-24 16:54:21,571 DEBUG: 5.08657402423e-05 proche de zero ? +2016-08-24 16:54:21,571 DEBUG: Start: Iteration 649 +2016-08-24 16:54:21,593 DEBUG: View 0 : 0.715639810427 +2016-08-24 16:54:21,605 DEBUG: View 1 : 0.630331753555 +2016-08-24 16:54:21,732 DEBUG: View 2 : 0.559241706161 +2016-08-24 16:54:21,741 DEBUG: View 3 : 0.54028436019 +2016-08-24 16:54:23,723 DEBUG: Best view : Methyl_ +2016-08-24 16:55:16,895 DEBUG: 5.07901957873e-05 proche de zero ? +2016-08-24 16:55:16,895 DEBUG: Start: Iteration 650 +2016-08-24 16:55:16,916 DEBUG: View 0 : 0.483412322275 +2016-08-24 16:55:16,927 DEBUG: View 1 : 0.549763033175 +2016-08-24 16:55:17,048 DEBUG: View 2 : 0.587677725118 +2016-08-24 16:55:17,057 DEBUG: View 3 : 0.578199052133 +2016-08-24 16:55:19,081 DEBUG: Best view : RANSeq_ +2016-08-24 16:56:11,954 DEBUG: 5.07147853324e-05 proche de zero ? +2016-08-24 16:56:11,954 DEBUG: Start: Iteration 651 +2016-08-24 16:56:11,976 DEBUG: View 0 : 0.568720379147 +2016-08-24 16:56:11,986 DEBUG: View 1 : 0.464454976303 +2016-08-24 16:56:12,106 DEBUG: View 2 : 0.582938388626 +2016-08-24 16:56:12,115 DEBUG: View 3 : 0.611374407583 +2016-08-24 16:56:14,038 DEBUG: Best view : Clinic_ +2016-08-24 16:57:06,332 DEBUG: 5.0639508885e-05 proche de zero ? +2016-08-24 16:57:06,332 DEBUG: Start: Iteration 652 +2016-08-24 16:57:06,355 DEBUG: View 0 : 0.521327014218 +2016-08-24 16:57:06,365 DEBUG: View 1 : 0.445497630332 +2016-08-24 16:57:06,476 DEBUG: View 2 : 0.578199052133 +2016-08-24 16:57:06,485 DEBUG: View 3 : 0.630331753555 +2016-08-24 16:57:08,488 DEBUG: Best view : Clinic_ diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-134900-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-134900-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..2eee6f4a93cc7cb0798b9e25df10e6af0e680add --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-134900-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log @@ -0,0 +1,19 @@ +2016-08-24 13:49:00,493 INFO: Start: Read HDF5 Database Files for ModifiedMultiOmic +2016-08-24 13:49:00,493 INFO: Info: Labels used: No, Yes +2016-08-24 13:49:00,494 INFO: Info: Length of dataset:347 +2016-08-24 13:49:00,507 INFO: ### Main Programm for Multiview Classification +2016-08-24 13:49:00,507 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Fusion ; Cores : 4 +2016-08-24 13:49:00,508 INFO: Info: Shape of Methyl_ :(347, 25978) +2016-08-24 13:49:00,508 INFO: Info: Shape of MiRNA__ :(347, 1046) +2016-08-24 13:49:00,509 INFO: Info: Shape of RANSeq_ :(347, 73599) +2016-08-24 13:49:00,509 INFO: Info: Shape of Clinic_ :(347, 127) +2016-08-24 13:49:00,509 INFO: Done: Read Database Files +2016-08-24 13:49:00,509 INFO: Start: Determine validation split for ratio 0.7 +2016-08-24 13:49:00,513 INFO: Done: Determine validation split +2016-08-24 13:49:00,513 INFO: Start: Determine 5 folds +2016-08-24 13:49:00,522 INFO: Info: Length of Learning Sets: 196 +2016-08-24 13:49:00,522 INFO: Info: Length of Testing Sets: 48 +2016-08-24 13:49:00,522 INFO: Info: Length of Validation Set: 103 +2016-08-24 13:49:00,522 INFO: Done: Determine folds +2016-08-24 13:49:00,522 INFO: Start: Learning with Fusion and 5 folds +2016-08-24 13:49:00,522 INFO: Start: Fold number 1 diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-135019-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-135019-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..b60809d54d95b042f5111084b02092729cdf943a --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-135019-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log @@ -0,0 +1,19 @@ +2016-08-24 13:50:19,043 INFO: Start: Read HDF5 Database Files for ModifiedMultiOmic +2016-08-24 13:50:19,043 INFO: Info: Labels used: No, Yes +2016-08-24 13:50:19,044 INFO: Info: Length of dataset:347 +2016-08-24 13:50:19,045 INFO: ### Main Programm for Multiview Classification +2016-08-24 13:50:19,045 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Fusion ; Cores : 4 +2016-08-24 13:50:19,046 INFO: Info: Shape of Methyl_ :(347, 25978) +2016-08-24 13:50:19,046 INFO: Info: Shape of MiRNA__ :(347, 1046) +2016-08-24 13:50:19,047 INFO: Info: Shape of RANSeq_ :(347, 73599) +2016-08-24 13:50:19,047 INFO: Info: Shape of Clinic_ :(347, 127) +2016-08-24 13:50:19,047 INFO: Done: Read Database Files +2016-08-24 13:50:19,047 INFO: Start: Determine validation split for ratio 0.7 +2016-08-24 13:50:19,051 INFO: Done: Determine validation split +2016-08-24 13:50:19,051 INFO: Start: Determine 5 folds +2016-08-24 13:50:19,059 INFO: Info: Length of Learning Sets: 196 +2016-08-24 13:50:19,059 INFO: Info: Length of Testing Sets: 48 +2016-08-24 13:50:19,059 INFO: Info: Length of Validation Set: 103 +2016-08-24 13:50:19,059 INFO: Done: Determine folds +2016-08-24 13:50:19,059 INFO: Start: Learning with Fusion and 5 folds +2016-08-24 13:50:19,059 INFO: Start: Fold number 1 diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-135102-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-135102-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..0e0edeb3c203310af4c7d9ab5524fa25fb8fc957 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-135102-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log @@ -0,0 +1,19 @@ +2016-08-24 13:51:02,963 INFO: Start: Read HDF5 Database Files for ModifiedMultiOmic +2016-08-24 13:51:02,964 INFO: Info: Labels used: No, Yes +2016-08-24 13:51:02,964 INFO: Info: Length of dataset:347 +2016-08-24 13:51:02,965 INFO: ### Main Programm for Multiview Classification +2016-08-24 13:51:02,966 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Fusion ; Cores : 4 +2016-08-24 13:51:02,966 INFO: Info: Shape of Methyl_ :(347, 25978) +2016-08-24 13:51:02,966 INFO: Info: Shape of MiRNA__ :(347, 1046) +2016-08-24 13:51:02,967 INFO: Info: Shape of RANSeq_ :(347, 73599) +2016-08-24 13:51:02,967 INFO: Info: Shape of Clinic_ :(347, 127) +2016-08-24 13:51:02,967 INFO: Done: Read Database Files +2016-08-24 13:51:02,968 INFO: Start: Determine validation split for ratio 0.7 +2016-08-24 13:51:02,971 INFO: Done: Determine validation split +2016-08-24 13:51:02,971 INFO: Start: Determine 5 folds +2016-08-24 13:51:02,981 INFO: Info: Length of Learning Sets: 196 +2016-08-24 13:51:02,981 INFO: Info: Length of Testing Sets: 48 +2016-08-24 13:51:02,981 INFO: Info: Length of Validation Set: 103 +2016-08-24 13:51:02,981 INFO: Done: Determine folds +2016-08-24 13:51:02,981 INFO: Start: Learning with Fusion and 5 folds +2016-08-24 13:51:02,982 INFO: Start: Fold number 1 diff --git a/Code/Multiview/Results/2016_04_26-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_04_26-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG similarity index 100% rename from Code/Multiview/Results/2016_04_26-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_04_26-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG diff --git a/Code/Multiview/Results/2016_04_26-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_04_26-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG.log similarity index 100% rename from Code/Multiview/Results/2016_04_26-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_04_26-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG.log diff --git a/Code/Multiview/Results/2016_04_26-CMultiV-Mumbo-phog-hist_decaf_cq-hist-Awa-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_04_26-CMultiV-Mumbo-phog-hist_decaf_cq-hist-Awa-LOG.log similarity index 100% rename from Code/Multiview/Results/2016_04_26-CMultiV-Mumbo-phog-hist_decaf_cq-hist-Awa-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_04_26-CMultiV-Mumbo-phog-hist_decaf_cq-hist-Awa-LOG.log diff --git a/Code/Multiview/Results/2016_06_16-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_16-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG similarity index 100% rename from Code/Multiview/Results/2016_06_16-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_16-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG diff --git a/Code/Multiview/Results/2016_06_16-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_16-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG.log similarity index 100% rename from Code/Multiview/Results/2016_06_16-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_16-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG.log diff --git a/Code/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_cq-hist_decaf-Awa-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_cq-hist_decaf-Awa-LOG.log similarity index 100% rename from Code/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_cq-hist_decaf-Awa-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_cq-hist_decaf-Awa-LOG.log diff --git a/Code/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG similarity index 100% rename from Code/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG diff --git a/Code/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG.log similarity index 100% rename from Code/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG.log diff --git a/Code/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_decaf_cq-hist-Awa-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_decaf_cq-hist-Awa-LOG similarity index 100% rename from Code/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_decaf_cq-hist-Awa-LOG rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_decaf_cq-hist-Awa-LOG diff --git a/Code/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_decaf_cq-hist-Awa-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_decaf_cq-hist-Awa-LOG.log similarity index 100% rename from Code/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_decaf_cq-hist-Awa-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_decaf_cq-hist-Awa-LOG.log diff --git a/Code/Multiview/Results/2016_06_20-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_20-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG similarity index 100% rename from Code/Multiview/Results/2016_06_20-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_20-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG diff --git a/Code/Multiview/Results/2016_06_20-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_20-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG.log similarity index 100% rename from Code/Multiview/Results/2016_06_20-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_20-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG.log diff --git a/Code/Multiview/Results/2016_06_23-CMultiV-Mumbo-Methylation_RNA-seq_miRNA-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_23-CMultiV-Mumbo-Methylation_RNA-seq_miRNA-MultiOmic-LOG similarity index 100% rename from Code/Multiview/Results/2016_06_23-CMultiV-Mumbo-Methylation_RNA-seq_miRNA-MultiOmic-LOG rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_23-CMultiV-Mumbo-Methylation_RNA-seq_miRNA-MultiOmic-LOG diff --git a/Code/Multiview/Results/2016_06_23-CMultiV-Mumbo-Methylation_RNA-seq_miRNA-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_23-CMultiV-Mumbo-Methylation_RNA-seq_miRNA-MultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/2016_06_23-CMultiV-Mumbo-Methylation_RNA-seq_miRNA-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_23-CMultiV-Mumbo-Methylation_RNA-seq_miRNA-MultiOmic-LOG.log diff --git a/Code/Multiview/Results/2016_06_23-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_23-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG similarity index 100% rename from Code/Multiview/Results/2016_06_23-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_23-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG diff --git a/Code/Multiview/Results/2016_06_23-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_23-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/2016_06_23-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_23-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log diff --git a/Code/Multiview/Results/2016_07_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_07_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG similarity index 100% rename from Code/Multiview/Results/2016_07_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_07_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG diff --git a/Code/Multiview/Results/2016_07_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_07_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/2016_07_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_07_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log diff --git a/Code/Multiview/Results/2016_07_12-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_07_12-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG similarity index 100% rename from Code/Multiview/Results/2016_07_12-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_07_12-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG diff --git a/Code/Multiview/Results/2016_07_12-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_07_12-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/2016_07_12-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_07_12-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log diff --git a/Code/Multiview/Results/2016_07_12-CMultiV-Mumbo-a_b_c_d-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_07_12-CMultiV-Mumbo-a_b_c_d-MultiOmic-LOG similarity index 100% rename from Code/Multiview/Results/2016_07_12-CMultiV-Mumbo-a_b_c_d-MultiOmic-LOG rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_07_12-CMultiV-Mumbo-a_b_c_d-MultiOmic-LOG diff --git a/Code/Multiview/Results/2016_07_12-CMultiV-Mumbo-a_b_c_d-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_07_12-CMultiV-Mumbo-a_b_c_d-MultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/2016_07_12-CMultiV-Mumbo-a_b_c_d-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_07_12-CMultiV-Mumbo-a_b_c_d-MultiOmic-LOG.log diff --git a/Code/Multiview/Results/2016_08_01-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_01-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG similarity index 100% rename from Code/Multiview/Results/2016_08_01-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_01-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG diff --git a/Code/Multiview/Results/2016_08_01-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_01-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/2016_08_01-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_01-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log diff --git a/Code/Multiview/Results/2016_08_01-CMultiV-Mumbo-RGB_HOG SIFT-Caltech-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_01-CMultiV-Mumbo-RGB_HOG SIFT-Caltech-LOG.log similarity index 100% rename from Code/Multiview/Results/2016_08_01-CMultiV-Mumbo-RGB_HOG SIFT-Caltech-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_01-CMultiV-Mumbo-RGB_HOG SIFT-Caltech-LOG.log diff --git a/Code/Multiview/Results/2016_08_02-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_02-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG.log similarity index 100% rename from Code/Multiview/Results/2016_08_02-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_02-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG.log diff --git a/Code/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG similarity index 100% rename from Code/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG diff --git a/Code/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG.log similarity index 100% rename from Code/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG.log diff --git a/Code/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG similarity index 100% rename from Code/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG diff --git a/Code/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log diff --git a/Code/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG similarity index 100% rename from Code/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG diff --git a/Code/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG.log similarity index 100% rename from Code/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG.log diff --git a/Code/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG similarity index 100% rename from Code/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG diff --git a/Code/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log diff --git a/Code/Multiview/Results/2016_08_10-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_10-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG similarity index 100% rename from Code/Multiview/Results/2016_08_10-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_10-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG diff --git a/Code/Multiview/Results/2016_08_10-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_10-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/2016_08_10-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_10-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log diff --git a/Code/Multiview/Results/2016_08_11-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_11-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG similarity index 100% rename from Code/Multiview/Results/2016_08_11-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_11-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG diff --git a/Code/Multiview/Results/2016_08_11-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_11-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/2016_08_11-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_11-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log diff --git a/Code/Multiview/Results/2016_08_11-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical_PseudoRNASeq-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_11-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical_PseudoRNASeq-MultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/2016_08_11-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical_PseudoRNASeq-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_11-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical_PseudoRNASeq-MultiOmic-LOG.log diff --git a/Code/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG similarity index 100% rename from Code/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG diff --git a/Code/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log diff --git a/Code/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical_PseudoRNASeq-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical_PseudoRNASeq-MultiOmic-LOG similarity index 100% rename from Code/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical_PseudoRNASeq-MultiOmic-LOG rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical_PseudoRNASeq-MultiOmic-LOG diff --git a/Code/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical_PseudoRNASeq-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical_PseudoRNASeq-MultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical_PseudoRNASeq-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical_PseudoRNASeq-MultiOmic-LOG.log diff --git a/Code/Multiview/Results/2016_08_15-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_15-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG similarity index 100% rename from Code/Multiview/Results/2016_08_15-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_15-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG diff --git a/Code/Multiview/Results/2016_08_15-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_15-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/2016_08_15-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_15-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log diff --git a/Code/Multiview/Results/2016_08_16-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_16-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG similarity index 100% rename from Code/Multiview/Results/2016_08_16-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_16-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG diff --git a/Code/Multiview/Results/2016_08_16-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_16-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/2016_08_16-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_16-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log diff --git a/Code/Multiview/Results/2016_08_17-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_17-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG similarity index 100% rename from Code/Multiview/Results/2016_08_17-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_17-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG diff --git a/Code/Multiview/Results/2016_08_17-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_17-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/2016_08_17-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_17-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log diff --git a/Code/Multiview/Results/2016_08_17-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_17-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG similarity index 100% rename from Code/Multiview/Results/2016_08_17-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_17-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG diff --git a/Code/Multiview/Results/2016_08_17-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_17-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/2016_08_17-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_17-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log diff --git a/Code/Multiview/Results/2016_08_18-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_18-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG similarity index 100% rename from Code/Multiview/Results/2016_08_18-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_18-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG diff --git a/Code/Multiview/Results/2016_08_18-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_18-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log similarity index 100% rename from Code/Multiview/Results/2016_08_18-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_18-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log diff --git a/Code/Multiview/Results/2016_08_19-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_19-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG similarity index 100% rename from Code/Multiview/Results/2016_08_19-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_19-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG diff --git a/Code/Multiview/Results/2016_08_19-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_19-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log similarity index 100% rename from Code/Multiview/Results/2016_08_19-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_19-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter1-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter1-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter1-MultiOmic.txt diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter1-MultiOmicaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter1-MultiOmicaccuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter1-MultiOmicaccuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter1-MultiOmicaccuracyByIteration.png diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter100-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter100-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter100-MultiOmic.txt diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter100-MultiOmicaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter100-MultiOmicaccuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter100-MultiOmicaccuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter100-MultiOmicaccuracyByIteration.png diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate0.8-nbIter30-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate0.8-nbIter30-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate0.8-nbIter30-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate0.8-nbIter30-MultiOmic.txt diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate0.8-nbIter30-MultiOmicaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate0.8-nbIter30-MultiOmicaccuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate0.8-nbIter30-MultiOmicaccuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate0.8-nbIter30-MultiOmicaccuracyByIteration.png diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate1.0-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate1.0-nbIter100-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate1.0-nbIter100-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate1.0-nbIter100-MultiOmic.txt diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate1.0-nbIter100-MultiOmicaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate1.0-nbIter100-MultiOmicaccuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate1.0-nbIter100-MultiOmicaccuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate1.0-nbIter100-MultiOmicaccuracyByIteration.png diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate0.8-nbIter30-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate0.8-nbIter30-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate0.8-nbIter30-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate0.8-nbIter30-MultiOmic.txt diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate0.8-nbIter30-MultiOmicaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate0.8-nbIter30-MultiOmicaccuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate0.8-nbIter30-MultiOmicaccuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate0.8-nbIter30-MultiOmicaccuracyByIteration.png diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate1.0-nbIter10-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate1.0-nbIter10-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate1.0-nbIter10-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate1.0-nbIter10-MultiOmic.txt diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate1.0-nbIter10-MultiOmicaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate1.0-nbIter10-MultiOmicaccuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate1.0-nbIter10-MultiOmicaccuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate1.0-nbIter10-MultiOmicaccuracyByIteration.png diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter1-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter1-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter1-MultiOmic.txt diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter1-MultiOmicaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter1-MultiOmicaccuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter1-MultiOmicaccuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter1-MultiOmicaccuracyByIteration.png diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter10-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter10-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter10-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter10-MultiOmic.txt diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter10-MultiOmicaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter10-MultiOmicaccuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter10-MultiOmicaccuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter10-MultiOmicaccuracyByIteration.png diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-bat-beaver-rat-rabbit-fox-pig-walrus-chihuahua-moose-squirrel-learnRate0.3-nbIter10-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-bat-beaver-rat-rabbit-fox-pig-walrus-chihuahua-moose-squirrel-learnRate0.3-nbIter10-Awa.txt similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-bat-beaver-rat-rabbit-fox-pig-walrus-chihuahua-moose-squirrel-learnRate0.3-nbIter10-Awa.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-bat-beaver-rat-rabbit-fox-pig-walrus-chihuahua-moose-squirrel-learnRate0.3-nbIter10-Awa.txt diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-bat-beaver-rat-rabbit-fox-pig-walrus-chihuahua-moose-squirrel-learnRate0.3-nbIter10-AwaaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-bat-beaver-rat-rabbit-fox-pig-walrus-chihuahua-moose-squirrel-learnRate0.3-nbIter10-AwaaccuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-bat-beaver-rat-rabbit-fox-pig-walrus-chihuahua-moose-squirrel-learnRate0.3-nbIter10-AwaaccuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-bat-beaver-rat-rabbit-fox-pig-walrus-chihuahua-moose-squirrel-learnRate0.3-nbIter10-AwaaccuracyByIteration.png diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-deer-persian+cat-chihuahua-sheep-siamese+cat-antelope-german+shepherd-rat-moose-killer+whale-learnRate0.3-nbIter10-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-deer-persian+cat-chihuahua-sheep-siamese+cat-antelope-german+shepherd-rat-moose-killer+whale-learnRate0.3-nbIter10-Awa.txt similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-deer-persian+cat-chihuahua-sheep-siamese+cat-antelope-german+shepherd-rat-moose-killer+whale-learnRate0.3-nbIter10-Awa.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-deer-persian+cat-chihuahua-sheep-siamese+cat-antelope-german+shepherd-rat-moose-killer+whale-learnRate0.3-nbIter10-Awa.txt diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-deer-persian+cat-chihuahua-sheep-siamese+cat-antelope-german+shepherd-rat-moose-killer+whale-learnRate0.3-nbIter10-AwaaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-deer-persian+cat-chihuahua-sheep-siamese+cat-antelope-german+shepherd-rat-moose-killer+whale-learnRate0.3-nbIter10-AwaaccuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-deer-persian+cat-chihuahua-sheep-siamese+cat-antelope-german+shepherd-rat-moose-killer+whale-learnRate0.3-nbIter10-AwaaccuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-deer-persian+cat-chihuahua-sheep-siamese+cat-antelope-german+shepherd-rat-moose-killer+whale-learnRate0.3-nbIter10-AwaaccuracyByIteration.png diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-german+shepherd-otter-blue+whale-antelope-rhinoceros-humpback+whale-elephant-grizzly+bear-dolphin-gorilla-learnRate0.3-nbIter50-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-german+shepherd-otter-blue+whale-antelope-rhinoceros-humpback+whale-elephant-grizzly+bear-dolphin-gorilla-learnRate0.3-nbIter50-Awa.txt similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-german+shepherd-otter-blue+whale-antelope-rhinoceros-humpback+whale-elephant-grizzly+bear-dolphin-gorilla-learnRate0.3-nbIter50-Awa.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-german+shepherd-otter-blue+whale-antelope-rhinoceros-humpback+whale-elephant-grizzly+bear-dolphin-gorilla-learnRate0.3-nbIter50-Awa.txt diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-german+shepherd-otter-blue+whale-antelope-rhinoceros-humpback+whale-elephant-grizzly+bear-dolphin-gorilla-learnRate0.3-nbIter50-AwaaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-german+shepherd-otter-blue+whale-antelope-rhinoceros-humpback+whale-elephant-grizzly+bear-dolphin-gorilla-learnRate0.3-nbIter50-AwaaccuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-german+shepherd-otter-blue+whale-antelope-rhinoceros-humpback+whale-elephant-grizzly+bear-dolphin-gorilla-learnRate0.3-nbIter50-AwaaccuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-german+shepherd-otter-blue+whale-antelope-rhinoceros-humpback+whale-elephant-grizzly+bear-dolphin-gorilla-learnRate0.3-nbIter50-AwaaccuracyByIteration.png diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-giant+panda-chimpanzee-antelope-german+shepherd-seal-killer+whale-giraffe-rat-squirrel-mouse-learnRate0.3-nbIter10-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-giant+panda-chimpanzee-antelope-german+shepherd-seal-killer+whale-giraffe-rat-squirrel-mouse-learnRate0.3-nbIter10-Awa.txt similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-giant+panda-chimpanzee-antelope-german+shepherd-seal-killer+whale-giraffe-rat-squirrel-mouse-learnRate0.3-nbIter10-Awa.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-giant+panda-chimpanzee-antelope-german+shepherd-seal-killer+whale-giraffe-rat-squirrel-mouse-learnRate0.3-nbIter10-Awa.txt diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-giant+panda-chimpanzee-antelope-german+shepherd-seal-killer+whale-giraffe-rat-squirrel-mouse-learnRate0.3-nbIter10-AwaaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-giant+panda-chimpanzee-antelope-german+shepherd-seal-killer+whale-giraffe-rat-squirrel-mouse-learnRate0.3-nbIter10-AwaaccuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-giant+panda-chimpanzee-antelope-german+shepherd-seal-killer+whale-giraffe-rat-squirrel-mouse-learnRate0.3-nbIter10-AwaaccuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-giant+panda-chimpanzee-antelope-german+shepherd-seal-killer+whale-giraffe-rat-squirrel-mouse-learnRate0.3-nbIter10-AwaaccuracyByIteration.png diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-antelope-moose-polar+bear-skunk-blue+whale-dalmatian-killer+whale-wolf-walrus-learnRate0.3-nbIter50-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-antelope-moose-polar+bear-skunk-blue+whale-dalmatian-killer+whale-wolf-walrus-learnRate0.3-nbIter50-Awa.txt similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-antelope-moose-polar+bear-skunk-blue+whale-dalmatian-killer+whale-wolf-walrus-learnRate0.3-nbIter50-Awa.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-antelope-moose-polar+bear-skunk-blue+whale-dalmatian-killer+whale-wolf-walrus-learnRate0.3-nbIter50-Awa.txt diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-antelope-moose-polar+bear-skunk-blue+whale-dalmatian-killer+whale-wolf-walrus-learnRate0.3-nbIter50-AwaaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-antelope-moose-polar+bear-skunk-blue+whale-dalmatian-killer+whale-wolf-walrus-learnRate0.3-nbIter50-AwaaccuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-antelope-moose-polar+bear-skunk-blue+whale-dalmatian-killer+whale-wolf-walrus-learnRate0.3-nbIter50-AwaaccuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-antelope-moose-polar+bear-skunk-blue+whale-dalmatian-killer+whale-wolf-walrus-learnRate0.3-nbIter50-AwaaccuracyByIteration.png diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-german+shepherd-humpback+whale-rabbit-dalmatian-persian+cat-giraffe-weasel-blue+whale-killer+whale-learnRate0.5-nbIter50-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-german+shepherd-humpback+whale-rabbit-dalmatian-persian+cat-giraffe-weasel-blue+whale-killer+whale-learnRate0.5-nbIter50-Awa.txt similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-german+shepherd-humpback+whale-rabbit-dalmatian-persian+cat-giraffe-weasel-blue+whale-killer+whale-learnRate0.5-nbIter50-Awa.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-german+shepherd-humpback+whale-rabbit-dalmatian-persian+cat-giraffe-weasel-blue+whale-killer+whale-learnRate0.5-nbIter50-Awa.txt diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-german+shepherd-humpback+whale-rabbit-dalmatian-persian+cat-giraffe-weasel-blue+whale-killer+whale-learnRate0.5-nbIter50-AwaaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-german+shepherd-humpback+whale-rabbit-dalmatian-persian+cat-giraffe-weasel-blue+whale-killer+whale-learnRate0.5-nbIter50-AwaaccuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-german+shepherd-humpback+whale-rabbit-dalmatian-persian+cat-giraffe-weasel-blue+whale-killer+whale-learnRate0.5-nbIter50-AwaaccuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-german+shepherd-humpback+whale-rabbit-dalmatian-persian+cat-giraffe-weasel-blue+whale-killer+whale-learnRate0.5-nbIter50-AwaaccuracyByIteration.png diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-persian+cat-giraffe-beaver-hamster-deer-mole-grizzly+bear-mouse-otter-rhinoceros-learnRate0.3-nbIter50-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-persian+cat-giraffe-beaver-hamster-deer-mole-grizzly+bear-mouse-otter-rhinoceros-learnRate0.3-nbIter50-Awa.txt similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-persian+cat-giraffe-beaver-hamster-deer-mole-grizzly+bear-mouse-otter-rhinoceros-learnRate0.3-nbIter50-Awa.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-persian+cat-giraffe-beaver-hamster-deer-mole-grizzly+bear-mouse-otter-rhinoceros-learnRate0.3-nbIter50-Awa.txt diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-persian+cat-giraffe-beaver-hamster-deer-mole-grizzly+bear-mouse-otter-rhinoceros-learnRate0.3-nbIter50-AwaaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-persian+cat-giraffe-beaver-hamster-deer-mole-grizzly+bear-mouse-otter-rhinoceros-learnRate0.3-nbIter50-AwaaccuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-persian+cat-giraffe-beaver-hamster-deer-mole-grizzly+bear-mouse-otter-rhinoceros-learnRate0.3-nbIter50-AwaaccuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-persian+cat-giraffe-beaver-hamster-deer-mole-grizzly+bear-mouse-otter-rhinoceros-learnRate0.3-nbIter50-AwaaccuracyByIteration.png diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-sheep-wolf-polar+bear-weasel-walrus-rhinoceros-leopard-cow-lion-learnRate0.3-nbIter5-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-sheep-wolf-polar+bear-weasel-walrus-rhinoceros-leopard-cow-lion-learnRate0.3-nbIter5-Awa.txt similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-sheep-wolf-polar+bear-weasel-walrus-rhinoceros-leopard-cow-lion-learnRate0.3-nbIter5-Awa.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-sheep-wolf-polar+bear-weasel-walrus-rhinoceros-leopard-cow-lion-learnRate0.3-nbIter5-Awa.txt diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-sheep-wolf-polar+bear-weasel-walrus-rhinoceros-leopard-cow-lion-learnRate0.3-nbIter5-AwaaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-sheep-wolf-polar+bear-weasel-walrus-rhinoceros-leopard-cow-lion-learnRate0.3-nbIter5-AwaaccuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-sheep-wolf-polar+bear-weasel-walrus-rhinoceros-leopard-cow-lion-learnRate0.3-nbIter5-AwaaccuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-sheep-wolf-polar+bear-weasel-walrus-rhinoceros-leopard-cow-lion-learnRate0.3-nbIter5-AwaaccuracyByIteration.png diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-tiger-walrus-weasel-pig-sheep-dalmatian-spider+monkey-collie-mole-learnRate0.5-nbIter50-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-tiger-walrus-weasel-pig-sheep-dalmatian-spider+monkey-collie-mole-learnRate0.5-nbIter50-Awa.txt similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-tiger-walrus-weasel-pig-sheep-dalmatian-spider+monkey-collie-mole-learnRate0.5-nbIter50-Awa.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-tiger-walrus-weasel-pig-sheep-dalmatian-spider+monkey-collie-mole-learnRate0.5-nbIter50-Awa.txt diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-tiger-walrus-weasel-pig-sheep-dalmatian-spider+monkey-collie-mole-learnRate0.5-nbIter50-AwaaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-tiger-walrus-weasel-pig-sheep-dalmatian-spider+monkey-collie-mole-learnRate0.5-nbIter50-AwaaccuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-tiger-walrus-weasel-pig-sheep-dalmatian-spider+monkey-collie-mole-learnRate0.5-nbIter50-AwaaccuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-tiger-walrus-weasel-pig-sheep-dalmatian-spider+monkey-collie-mole-learnRate0.5-nbIter50-AwaaccuracyByIteration.png diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-antelope-grizzly+bear-killer+whale-beaver-dalmatian-learnRate0.5-nbIter40-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-antelope-grizzly+bear-killer+whale-beaver-dalmatian-learnRate0.5-nbIter40-Awa.txt similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-antelope-grizzly+bear-killer+whale-beaver-dalmatian-learnRate0.5-nbIter40-Awa.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-antelope-grizzly+bear-killer+whale-beaver-dalmatian-learnRate0.5-nbIter40-Awa.txt diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-antelope-grizzly+bear-killer+whale-beaver-dalmatian-learnRate0.5-nbIter40-AwaaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-antelope-grizzly+bear-killer+whale-beaver-dalmatian-learnRate0.5-nbIter40-AwaaccuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-antelope-grizzly+bear-killer+whale-beaver-dalmatian-learnRate0.5-nbIter40-AwaaccuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-antelope-grizzly+bear-killer+whale-beaver-dalmatian-learnRate0.5-nbIter40-AwaaccuracyByIteration.png diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-beaver-moose-squirrel-seal-cow-bobcat-rat-gorilla-elephant-walrus-learnRate0.3-nbIter50-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-beaver-moose-squirrel-seal-cow-bobcat-rat-gorilla-elephant-walrus-learnRate0.3-nbIter50-Awa.txt similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-beaver-moose-squirrel-seal-cow-bobcat-rat-gorilla-elephant-walrus-learnRate0.3-nbIter50-Awa.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-beaver-moose-squirrel-seal-cow-bobcat-rat-gorilla-elephant-walrus-learnRate0.3-nbIter50-Awa.txt diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-dalmatian-tiger-rhinoceros-bat-killer+whale-learnRate0.1-nbIter50-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-dalmatian-tiger-rhinoceros-bat-killer+whale-learnRate0.1-nbIter50-Awa.txt similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-dalmatian-tiger-rhinoceros-bat-killer+whale-learnRate0.1-nbIter50-Awa.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-dalmatian-tiger-rhinoceros-bat-killer+whale-learnRate0.1-nbIter50-Awa.txt diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-giraffe-squirrel-tiger-deer-chimpanzee-learnRate0.1-nbIter50-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-giraffe-squirrel-tiger-deer-chimpanzee-learnRate0.1-nbIter50-Awa.txt similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-giraffe-squirrel-tiger-deer-chimpanzee-learnRate0.1-nbIter50-Awa.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-giraffe-squirrel-tiger-deer-chimpanzee-learnRate0.1-nbIter50-Awa.txt diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-leopard-gorilla-elephant-zebra-wolf-learnRate0.5-nbIter100-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-leopard-gorilla-elephant-zebra-wolf-learnRate0.5-nbIter100-Awa.txt similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-leopard-gorilla-elephant-zebra-wolf-learnRate0.5-nbIter100-Awa.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-leopard-gorilla-elephant-zebra-wolf-learnRate0.5-nbIter100-Awa.txt diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-leopard-gorilla-elephant-zebra-wolf-learnRate0.5-nbIter100-AwaaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-leopard-gorilla-elephant-zebra-wolf-learnRate0.5-nbIter100-AwaaccuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-leopard-gorilla-elephant-zebra-wolf-learnRate0.5-nbIter100-AwaaccuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-leopard-gorilla-elephant-zebra-wolf-learnRate0.5-nbIter100-AwaaccuracyByIteration.png diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-pig-fox-horse-rhinoceros-chimpanzee-learnRate0.5-nbIter50-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-pig-fox-horse-rhinoceros-chimpanzee-learnRate0.5-nbIter50-Awa.txt similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-pig-fox-horse-rhinoceros-chimpanzee-learnRate0.5-nbIter50-Awa.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-pig-fox-horse-rhinoceros-chimpanzee-learnRate0.5-nbIter50-Awa.txt diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-rabbit-giant+panda-rat-skunk-buffalo-learnRate0.5-nbIter200-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-rabbit-giant+panda-rat-skunk-buffalo-learnRate0.5-nbIter200-Awa.txt similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-rabbit-giant+panda-rat-skunk-buffalo-learnRate0.5-nbIter200-Awa.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-rabbit-giant+panda-rat-skunk-buffalo-learnRate0.5-nbIter200-Awa.txt diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-rabbit-giant+panda-rat-skunk-buffalo-learnRate0.5-nbIter200-AwaaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-rabbit-giant+panda-rat-skunk-buffalo-learnRate0.5-nbIter200-AwaaccuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-rabbit-giant+panda-rat-skunk-buffalo-learnRate0.5-nbIter200-AwaaccuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-rabbit-giant+panda-rat-skunk-buffalo-learnRate0.5-nbIter200-AwaaccuracyByIteration.png diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-seal-rabbit-mouse-sheep-deer-bobcat-persian+cat-elephant-ox-otter-learnRate0.1-nbIter50-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-seal-rabbit-mouse-sheep-deer-bobcat-persian+cat-elephant-ox-otter-learnRate0.1-nbIter50-Awa.txt similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-seal-rabbit-mouse-sheep-deer-bobcat-persian+cat-elephant-ox-otter-learnRate0.1-nbIter50-Awa.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-seal-rabbit-mouse-sheep-deer-bobcat-persian+cat-elephant-ox-otter-learnRate0.1-nbIter50-Awa.txt diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-siamese+cat-hamster-tiger-collie-antelope-chihuahua-polar+bear-hippopotamus-elephant-skunk-learnRate0.3-nbIter50-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-siamese+cat-hamster-tiger-collie-antelope-chihuahua-polar+bear-hippopotamus-elephant-skunk-learnRate0.3-nbIter50-Awa.txt similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-siamese+cat-hamster-tiger-collie-antelope-chihuahua-polar+bear-hippopotamus-elephant-skunk-learnRate0.3-nbIter50-Awa.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-siamese+cat-hamster-tiger-collie-antelope-chihuahua-polar+bear-hippopotamus-elephant-skunk-learnRate0.3-nbIter50-Awa.txt diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake.txt similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake.txt diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-FakeaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-FakeaccuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-FakeaccuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-FakeaccuracyByIteration.png diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter10-Fake.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter10-Fake.txt similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter10-Fake.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter10-Fake.txt diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter10-FakeaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter10-FakeaccuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter10-FakeaccuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter10-FakeaccuracyByIteration.png diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter2-Fake.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter2-Fake.txt similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter2-Fake.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter2-Fake.txt diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter2-FakeaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter2-FakeaccuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter2-FakeaccuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter2-FakeaccuracyByIteration.png diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate4.0-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate4.0-nbIter2-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate4.0-nbIter2-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate4.0-nbIter2-MultiOmic.txt diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate4.0-nbIter2-MultiOmicaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate4.0-nbIter2-MultiOmicaccuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate4.0-nbIter2-MultiOmicaccuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate4.0-nbIter2-MultiOmicaccuracyByIteration.png diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmicaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmicaccuracyByIteration.png similarity index 100% rename from Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmicaccuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmicaccuracyByIteration.png diff --git a/Code/Multiview/__init__.py b/Code/MonoMutliViewClassifiers/Multiview/__init__.py similarity index 100% rename from Code/Multiview/__init__.py rename to Code/MonoMutliViewClassifiers/Multiview/__init__.py diff --git a/Code/Multiview/profile b/Code/MonoMutliViewClassifiers/Multiview/profile similarity index 100% rename from Code/Multiview/profile rename to Code/MonoMutliViewClassifiers/Multiview/profile diff --git a/Code/Multiview/res b/Code/MonoMutliViewClassifiers/Multiview/res similarity index 100% rename from Code/Multiview/res rename to Code/MonoMutliViewClassifiers/Multiview/res diff --git a/Code/Multiview/run.py b/Code/MonoMutliViewClassifiers/Multiview/run.py similarity index 60% rename from Code/Multiview/run.py rename to Code/MonoMutliViewClassifiers/Multiview/run.py index 3c60436dbb6dcad9e53111d2fb6af820873f767f..7a3b56c14df4a47148331c8aa740f6417d2f9d9d 100644 --- a/Code/Multiview/run.py +++ b/Code/MonoMutliViewClassifiers/Multiview/run.py @@ -1,6 +1,6 @@ # coding=utf-8 import os -os.system('python ExecMultiview.py -log --name ModifiedMultiOmic --type .csv --views Methyl:MiRNA:RNASEQ:Clinical --pathF /home/bbauvin/Documents/Data/Data_multi_omics/ --CL_split 0.7 --CL_nbFolds 2 --CL_nb_class 2 --CL_classes Positive:Negative --CL_type Fusion --CL_cores 4 --FU_type EarlyFusion --FU_method WeightedLinear') +os.system('python ExecMultiview.py -log --name ModifiedMultiOmic --type .hdf5 --views Methyl:MiRNA:RNASEQ:Clinical --pathF /home/bbauvin/Documents/Data/Data_multi_omics/ --CL_split 0.7 --CL_nbFolds 5 --CL_nb_class 2 --CL_classes Positive:Negative --CL_type Fusion --CL_cores 4 --FU_type EarlyFusion --FU_method WeightedLinear') # /donnees/pj_bdd_bbauvin/Data_multi_omics/ # # /home/bbauvin/Documents/Data/Data_multi_omics/ diff --git a/Code/ResultAnalysis.py b/Code/MonoMutliViewClassifiers/ResultAnalysis.py similarity index 100% rename from Code/ResultAnalysis.py rename to Code/MonoMutliViewClassifiers/ResultAnalysis.py diff --git a/Code/Results/20160822-132504-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-132214-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log similarity index 100% rename from Code/Results/20160822-132504-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Results/20160822-132214-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log diff --git a/Code/MonoMutliViewClassifiers/Results/20160822-132504-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-132504-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/Code/Results/20160822-132643-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-132643-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log similarity index 100% rename from Code/Results/20160822-132643-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Results/20160822-132643-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log diff --git a/Code/Results/20160822-133011-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-133011-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log similarity index 100% rename from Code/Results/20160822-133011-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Results/20160822-133011-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log diff --git a/Code/Results/20160822-133020-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-133020-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log similarity index 100% rename from Code/Results/20160822-133020-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Results/20160822-133020-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log diff --git a/Code/Results/20160822-133220-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-133220-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log similarity index 100% rename from Code/Results/20160822-133220-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Results/20160822-133220-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log diff --git a/Code/Results/20160822-133238-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-133238-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log similarity index 100% rename from Code/Results/20160822-133238-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Results/20160822-133238-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log diff --git a/Code/Results/20160822-133410-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-133410-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log similarity index 100% rename from Code/Results/20160822-133410-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Results/20160822-133410-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log diff --git a/Code/Results/20160822-133436-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-133436-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log similarity index 100% rename from Code/Results/20160822-133436-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Results/20160822-133436-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log diff --git a/Code/Results/20160822-133458-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-133458-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log similarity index 100% rename from Code/Results/20160822-133458-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Results/20160822-133458-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log diff --git a/Code/Results/20160822-133530-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-133530-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log similarity index 100% rename from Code/Results/20160822-133530-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Results/20160822-133530-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log diff --git a/Code/Results/20160822-133639-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-133639-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log similarity index 100% rename from Code/Results/20160822-133639-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Results/20160822-133639-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log diff --git a/Code/Results/20160822-133846-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-133846-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log similarity index 100% rename from Code/Results/20160822-133846-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Results/20160822-133846-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log diff --git a/Code/Results/20160822-134037-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-134037-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log similarity index 100% rename from Code/Results/20160822-134037-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Results/20160822-134037-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log diff --git a/Code/Results/20160822-134211-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-134211-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log similarity index 100% rename from Code/Results/20160822-134211-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Results/20160822-134211-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log diff --git a/Code/Results/20160822-134319Results-Mumbo-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.9-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Results/20160822-134319Results-Mumbo-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.9-MultiOmic-accuracyByIteration.png similarity index 100% rename from Code/Results/20160822-134319Results-Mumbo-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.9-MultiOmic-accuracyByIteration.png rename to Code/MonoMutliViewClassifiers/Results/20160822-134319Results-Mumbo-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.9-MultiOmic-accuracyByIteration.png diff --git a/Code/Results/20160822-134319Results-Mumbo-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.9-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Results/20160822-134319Results-Mumbo-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.9-MultiOmic.txt similarity index 100% rename from Code/Results/20160822-134319Results-Mumbo-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.9-MultiOmic.txt rename to Code/MonoMutliViewClassifiers/Results/20160822-134319Results-Mumbo-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.9-MultiOmic.txt diff --git a/Code/Results/20160822-140630-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-140630-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log similarity index 100% rename from Code/Results/20160822-140630-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Results/20160822-140630-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log diff --git a/Code/Results/20160822-140803-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-140803-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log similarity index 100% rename from Code/Results/20160822-140803-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Results/20160822-140803-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log diff --git a/Code/Results/20160822-140845-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-140845-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log similarity index 100% rename from Code/Results/20160822-140845-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Results/20160822-140845-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log diff --git a/Code/Results/20160822-140937-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-140937-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log similarity index 100% rename from Code/Results/20160822-140937-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Results/20160822-140937-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log diff --git a/Code/Results/20160822-141037-CMultiV-Benchmark-Methyl_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-141037-CMultiV-Benchmark-Methyl_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log similarity index 100% rename from Code/Results/20160822-141037-CMultiV-Benchmark-Methyl_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Results/20160822-141037-CMultiV-Benchmark-Methyl_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log diff --git a/Code/Results/20160822-141112-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-141112-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log similarity index 100% rename from Code/Results/20160822-141112-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Results/20160822-141112-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log diff --git a/Code/Results/20160822-141147-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-141147-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log similarity index 100% rename from Code/Results/20160822-141147-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Results/20160822-141147-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log diff --git a/Code/Results/20160822-141207-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-141207-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log similarity index 100% rename from Code/Results/20160822-141207-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Results/20160822-141207-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log diff --git a/Code/Results/20160822-141238-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-141238-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log similarity index 100% rename from Code/Results/20160822-141238-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Results/20160822-141238-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log diff --git a/Code/Results/20160822-141345-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-141345-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log similarity index 100% rename from Code/Results/20160822-141345-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Results/20160822-141345-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log diff --git a/Code/Results/20160822-141834-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-141834-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log similarity index 100% rename from Code/Results/20160822-141834-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Results/20160822-141834-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log diff --git a/Code/Results/20160822-142903-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-142903-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log similarity index 100% rename from Code/Results/20160822-142903-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Results/20160822-142903-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log diff --git a/Code/Results/20160822-142943-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-142943-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log similarity index 100% rename from Code/Results/20160822-142943-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Results/20160822-142943-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log diff --git a/Code/Results/20160822-143254-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-143254-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log similarity index 100% rename from Code/Results/20160822-143254-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Results/20160822-143254-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log diff --git a/Code/Results/20160822-143512-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-143512-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log similarity index 100% rename from Code/Results/20160822-143512-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Results/20160822-143512-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log diff --git a/Code/Results/20160822-143553-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-143553-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log similarity index 100% rename from Code/Results/20160822-143553-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Results/20160822-143553-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log diff --git a/Code/Results/20160822-150532-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-150532-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log similarity index 100% rename from Code/Results/20160822-150532-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Results/20160822-150532-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log diff --git a/Code/Results/20160822-150705-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-150705-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log similarity index 100% rename from Code/Results/20160822-150705-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Results/20160822-150705-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log diff --git a/Code/Results/20160822-150714-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-150714-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log similarity index 100% rename from Code/Results/20160822-150714-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Results/20160822-150714-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log diff --git a/Code/Results/20160822-152212-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-152212-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log similarity index 100% rename from Code/Results/20160822-152212-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Results/20160822-152212-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log diff --git a/Code/Results/20160822-153503-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-153503-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log similarity index 100% rename from Code/Results/20160822-153503-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Results/20160822-153503-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log diff --git a/Code/Results/20160822-154718-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-154718-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log similarity index 100% rename from Code/Results/20160822-154718-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Results/20160822-154718-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log diff --git a/Code/Results/20160822-155011-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-155011-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log similarity index 100% rename from Code/Results/20160822-155011-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Results/20160822-155011-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log diff --git a/Code/Results/20160822-155240-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-155240-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log similarity index 100% rename from Code/Results/20160822-155240-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Results/20160822-155240-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log diff --git a/Code/Results/20160822-155839-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-155839-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log similarity index 100% rename from Code/Results/20160822-155839-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Results/20160822-155839-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log diff --git a/Code/Results/20160823-105758-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160823-105758-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log similarity index 100% rename from Code/Results/20160823-105758-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Results/20160823-105758-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log diff --git a/Code/Results/20160823-110509-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160823-110509-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log similarity index 100% rename from Code/Results/20160823-110509-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Results/20160823-110509-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log diff --git a/Code/Results/20160823-110659-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160823-110659-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log similarity index 100% rename from Code/Results/20160823-110659-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Results/20160823-110659-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log diff --git a/Code/Results/20160823-110859-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160823-110859-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log similarity index 100% rename from Code/Results/20160823-110859-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Results/20160823-110859-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log diff --git a/Code/Results/20160823-111036-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160823-111036-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log similarity index 100% rename from Code/Results/20160823-111036-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Results/20160823-111036-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log diff --git a/Code/Results/20160823-111124-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160823-111124-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log similarity index 100% rename from Code/Results/20160823-111124-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log rename to Code/MonoMutliViewClassifiers/Results/20160823-111124-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log diff --git a/Code/MonoMutliViewClassifiers/Results/20160823-111945-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160823-111945-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..fd3749c7189ef9c1be055f1c47708747136ec41e --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Results/20160823-111945-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log @@ -0,0 +1,32 @@ +2016-08-23 11:19:45,964 INFO: Begginging +2016-08-23 11:19:45,968 INFO: ### Main Programm for Multiview Classification +2016-08-23 11:19:45,968 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Mumbo ; Cores : 1 +2016-08-23 11:19:45,968 INFO: Info: Shape of Methyl :(347, 25978) +2016-08-23 11:19:45,969 INFO: Info: Shape of MiRNA_ :(347, 1046) +2016-08-23 11:19:45,969 INFO: Info: Shape of RANSeq :(347, 73599) +2016-08-23 11:19:45,970 INFO: Info: Shape of Clinic :(347, 127) +2016-08-23 11:19:45,970 INFO: Done: Read Database Files +2016-08-23 11:19:45,970 INFO: Start: Determine validation split for ratio 0.9 +2016-08-23 11:19:45,973 INFO: Done: Determine validation split +2016-08-23 11:19:45,973 INFO: Start: Determine 2 folds +2016-08-23 11:19:45,998 INFO: Info: Length of Learning Sets: 157 +2016-08-23 11:19:45,999 INFO: Info: Length of Testing Sets: 156 +2016-08-23 11:19:45,999 INFO: Info: Length of Validation Set: 34 +2016-08-23 11:19:45,999 INFO: Done: Determine folds +2016-08-23 11:19:45,999 INFO: Start: Learning with Mumbo and 2 folds +2016-08-23 11:19:45,999 INFO: Start: Gridsearching best settings for monoview classifiers +2016-08-23 11:20:15,162 INFO: Done: Gridsearching best settings for monoview classifiers +2016-08-23 11:20:15,162 INFO: Start: Fold number 1 +2016-08-23 11:20:15,177 DEBUG: Start: Iteration 1 +2016-08-23 11:20:15,221 DEBUG: View 0 : 0.715083798883 +2016-08-23 11:20:15,235 DEBUG: View 1 : 0.720670391061 +2016-08-23 11:20:15,275 DEBUG: View 2 : 0.385474860335 +2016-08-23 11:20:15,285 DEBUG: View 3 : 0.54748603352 +2016-08-23 11:20:15,325 DEBUG: Best view : RANSeq +2016-08-23 11:20:15,334 DEBUG: Start: Iteration 2 +2016-08-23 11:20:15,355 DEBUG: View 0 : 0.357541899441 +2016-08-23 11:20:15,364 DEBUG: View 1 : 0.290502793296 +2016-08-23 11:20:15,405 DEBUG: View 2 : 0.614525139665 +2016-08-23 11:20:15,414 DEBUG: View 3 : 0.357541899441 +2016-08-23 11:20:15,460 DEBUG: Best view : RANSeq +2016-08-23 11:20:15,470 INFO: Start: Classification diff --git a/Code/MonoMutliViewClassifiers/Results/20160823-112110-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160823-112110-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..dd4dfe9dcc71e9829fe151d380f53f5668d59174 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Results/20160823-112110-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log @@ -0,0 +1,157 @@ +2016-08-23 11:21:10,029 INFO: Begginging +2016-08-23 11:21:10,033 INFO: ### Main Programm for Multiview Classification +2016-08-23 11:21:10,033 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Mumbo ; Cores : 1 +2016-08-23 11:21:10,034 INFO: Info: Shape of Methyl :(347, 25978) +2016-08-23 11:21:10,034 INFO: Info: Shape of MiRNA_ :(347, 1046) +2016-08-23 11:21:10,034 INFO: Info: Shape of RANSeq :(347, 73599) +2016-08-23 11:21:10,035 INFO: Info: Shape of Clinic :(347, 127) +2016-08-23 11:21:10,035 INFO: Done: Read Database Files +2016-08-23 11:21:10,035 INFO: Start: Determine validation split for ratio 0.9 +2016-08-23 11:21:10,038 INFO: Done: Determine validation split +2016-08-23 11:21:10,038 INFO: Start: Determine 2 folds +2016-08-23 11:21:10,056 INFO: Info: Length of Learning Sets: 157 +2016-08-23 11:21:10,056 INFO: Info: Length of Testing Sets: 156 +2016-08-23 11:21:10,056 INFO: Info: Length of Validation Set: 34 +2016-08-23 11:21:10,056 INFO: Done: Determine folds +2016-08-23 11:21:10,056 INFO: Start: Learning with Mumbo and 2 folds +2016-08-23 11:21:10,056 INFO: Start: Gridsearching best settings for monoview classifiers +2016-08-23 11:21:38,101 INFO: Done: Gridsearching best settings for monoview classifiers +2016-08-23 11:21:38,101 INFO: Start: Fold number 1 +2016-08-23 11:21:38,116 DEBUG: Start: Iteration 1 +2016-08-23 11:21:38,135 DEBUG: View 0 : 0.619047619048 +2016-08-23 11:21:38,144 DEBUG: View 1 : 0.696428571429 +2016-08-23 11:21:38,178 DEBUG: View 2 : 0.303571428571 +2016-08-23 11:21:38,187 DEBUG: View 3 : 0.696428571429 +2016-08-23 11:21:38,223 DEBUG: Best view : MiRNA_ +2016-08-23 11:21:38,231 DEBUG: Start: Iteration 2 +2016-08-23 11:21:38,249 DEBUG: View 0 : 0.315476190476 +2016-08-23 11:21:38,258 DEBUG: View 1 : 0.690476190476 +2016-08-23 11:21:38,302 DEBUG: View 2 : 0.589285714286 +2016-08-23 11:21:38,312 DEBUG: View 3 : 0.660714285714 +2016-08-23 11:21:38,353 DEBUG: Best view : MiRNA_ +2016-08-23 11:21:38,361 INFO: Start: Classification +2016-08-23 11:21:38,625 INFO: Done: Fold number 1 +2016-08-23 11:21:38,626 INFO: Start: Fold number 2 +2016-08-23 11:21:38,640 DEBUG: Start: Iteration 1 +2016-08-23 11:21:38,657 DEBUG: View 0 : 0.710227272727 +2016-08-23 11:21:38,666 DEBUG: View 1 : 0.477272727273 +2016-08-23 11:21:38,704 DEBUG: View 2 : 0.289772727273 +2016-08-23 11:21:38,714 DEBUG: View 3 : 0.289772727273 +2016-08-23 11:21:38,751 DEBUG: Best view : Methyl +2016-08-23 11:21:38,759 DEBUG: Start: Iteration 2 +2016-08-23 11:21:38,777 DEBUG: View 0 : 0.710227272727 +2016-08-23 11:21:38,787 DEBUG: View 1 : 0.625 +2016-08-23 11:21:38,832 DEBUG: View 2 : 0.392045454545 +2016-08-23 11:21:38,842 DEBUG: View 3 : 0.306818181818 +2016-08-23 11:21:38,885 DEBUG: Best view : Methyl +2016-08-23 11:21:38,894 INFO: Start: Classification +2016-08-23 11:21:39,183 INFO: Done: Fold number 2 +2016-08-23 11:21:39,183 INFO: Done: Classification +2016-08-23 11:21:39,183 INFO: Info: Time for Classification: 29[s] +2016-08-23 11:21:39,183 INFO: Start: Result Analysis for Mumbo +2016-08-23 11:21:39,918 INFO: Result for Multiview classification with Mumbo + +Average accuracy : + -On Train : 70.3327922078 + -On Test : 73.0769230769 + -On Validation : 73.5294117647 + +Dataset info : + -Database name : MultiOmic + -Labels : No, Yes + -Views : Methyl, MiRNA_, RNASeq, Clinic + -2 folds + - Validation set length : 34 for learning rate : 0.9 + +Classification configuration : + -Algorithm used : Mumbo + -Iterations : 2 + -Weak Classifiers : DecisionTree with depth 1.0, sub-sampled at 0.006 on Methyl + -DecisionTree with depth 1.0, sub-sampled at 0.006 on MiRNA_ + -DecisionTree with depth 1.0, sub-sampled at 0.006 on RNASeq + -DecisionTree with depth 1.0, sub-sampled at 0.0065 on Clinic + + Mean average accuracies and stats for each fold : + - Fold 0 + - On Methyl : + - Mean average Accuracy : 0.467261904762 + - Percentage of time chosen : 0.0 + - On MiRNA_ : + - Mean average Accuracy : 0.693452380952 + - Percentage of time chosen : 1.0 + - On RANSeq : + - Mean average Accuracy : 0.446428571429 + - Percentage of time chosen : 0.0 + - On Clinic : + - Mean average Accuracy : 0.678571428571 + - Percentage of time chosen : 0.0 + - Fold 1 + - On Methyl : + - Mean average Accuracy : 0.710227272727 + - Percentage of time chosen : 1.0 + - On MiRNA_ : + - Mean average Accuracy : 0.551136363636 + - Percentage of time chosen : 0.0 + - On RANSeq : + - Mean average Accuracy : 0.340909090909 + - Percentage of time chosen : 0.0 + - On Clinic : + - Mean average Accuracy : 0.298295454545 + - Percentage of time chosen : 0.0 + + For each iteration : + - Iteration 1 + Fold 1 + Accuracy on train : 69.6428571429 + Accuracy on test : 73.0769230769 + Accuracy on validation : 73.5294117647 + Selected View : MiRNA_ + Fold 2 + Accuracy on train : 71.0227272727 + Accuracy on test : 73.0769230769 + Accuracy on validation : 73.5294117647 + Selected View : Methyl + - Mean : + Accuracy on train : 70.3327922078 + Accuracy on test : 73.0769230769 + - Iteration 2 + Fold 1 + Accuracy on train : 69.6428571429 + Accuracy on test : 73.0769230769 + Accuracy on validation : 73.5294117647 + Selected View : MiRNA_ + Fold 2 + Accuracy on train : 71.0227272727 + Accuracy on test : 73.0769230769 + Accuracy on validation : 73.5294117647 + Selected View : Methyl + - Mean : + Accuracy on train : 70.3327922078 + Accuracy on test : 73.0769230769 + +Computation time on 1 cores : + Database extraction time : 0:00:00 + Learn Prediction + Fold 1 0:00:28 0:00:00 + Fold 2 0:00:28 0:00:00 + Total 0:00:57 0:00:00 + So a total classification time of 0:00:29. + + +2016-08-23 11:21:40,125 INFO: Done: Result Analysis +2016-08-23 11:21:40,126 INFO: ### Main Programm for Multiview Classification +2016-08-23 11:21:40,126 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Mumbo ; Cores : 1 +2016-08-23 11:21:40,127 INFO: Info: Shape of Methyl :(347, 25978) +2016-08-23 11:21:40,127 INFO: Info: Shape of MiRNA_ :(347, 1046) +2016-08-23 11:21:40,127 INFO: Info: Shape of RANSeq :(347, 73599) +2016-08-23 11:21:40,128 INFO: Info: Shape of Clinic :(347, 127) +2016-08-23 11:21:40,128 INFO: Done: Read Database Files +2016-08-23 11:21:40,128 INFO: Start: Determine validation split for ratio 0.9 +2016-08-23 11:21:40,131 INFO: Done: Determine validation split +2016-08-23 11:21:40,131 INFO: Start: Determine 2 folds +2016-08-23 11:21:40,145 INFO: Info: Length of Learning Sets: 157 +2016-08-23 11:21:40,145 INFO: Info: Length of Testing Sets: 156 +2016-08-23 11:21:40,145 INFO: Info: Length of Validation Set: 34 +2016-08-23 11:21:40,145 INFO: Done: Determine folds +2016-08-23 11:21:40,145 INFO: Start: Learning with Mumbo and 2 folds +2016-08-23 11:21:40,145 INFO: Start: Gridsearching best settings for monoview classifiers diff --git a/Code/MonoMutliViewClassifiers/Results/20160823-112139Results-Mumbo-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.9-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Results/20160823-112139Results-Mumbo-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.9-MultiOmic-accuracyByIteration.png new file mode 100644 index 0000000000000000000000000000000000000000..532f595c4dfe64597162c05541121c52a3751a4c Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Results/20160823-112139Results-Mumbo-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.9-MultiOmic-accuracyByIteration.png differ diff --git a/Code/MonoMutliViewClassifiers/Results/20160823-112139Results-Mumbo-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.9-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Results/20160823-112139Results-Mumbo-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.9-MultiOmic.txt new file mode 100644 index 0000000000000000000000000000000000000000..ad390878712c48eebe2f1c3ed5736226ff502dfd --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Results/20160823-112139Results-Mumbo-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.9-MultiOmic.txt @@ -0,0 +1,88 @@ + Result for Multiview classification with Mumbo + +Average accuracy : + -On Train : 70.3327922078 + -On Test : 73.0769230769 + -On Validation : 73.5294117647 + +Dataset info : + -Database name : MultiOmic + -Labels : No, Yes + -Views : Methyl, MiRNA_, RNASeq, Clinic + -2 folds + - Validation set length : 34 for learning rate : 0.9 + +Classification configuration : + -Algorithm used : Mumbo + -Iterations : 2 + -Weak Classifiers : DecisionTree with depth 1.0, sub-sampled at 0.006 on Methyl + -DecisionTree with depth 1.0, sub-sampled at 0.006 on MiRNA_ + -DecisionTree with depth 1.0, sub-sampled at 0.006 on RNASeq + -DecisionTree with depth 1.0, sub-sampled at 0.0065 on Clinic + + Mean average accuracies and stats for each fold : + - Fold 0 + - On Methyl : + - Mean average Accuracy : 0.467261904762 + - Percentage of time chosen : 0.0 + - On MiRNA_ : + - Mean average Accuracy : 0.693452380952 + - Percentage of time chosen : 1.0 + - On RANSeq : + - Mean average Accuracy : 0.446428571429 + - Percentage of time chosen : 0.0 + - On Clinic : + - Mean average Accuracy : 0.678571428571 + - Percentage of time chosen : 0.0 + - Fold 1 + - On Methyl : + - Mean average Accuracy : 0.710227272727 + - Percentage of time chosen : 1.0 + - On MiRNA_ : + - Mean average Accuracy : 0.551136363636 + - Percentage of time chosen : 0.0 + - On RANSeq : + - Mean average Accuracy : 0.340909090909 + - Percentage of time chosen : 0.0 + - On Clinic : + - Mean average Accuracy : 0.298295454545 + - Percentage of time chosen : 0.0 + + For each iteration : + - Iteration 1 + Fold 1 + Accuracy on train : 69.6428571429 + Accuracy on test : 73.0769230769 + Accuracy on validation : 73.5294117647 + Selected View : MiRNA_ + Fold 2 + Accuracy on train : 71.0227272727 + Accuracy on test : 73.0769230769 + Accuracy on validation : 73.5294117647 + Selected View : Methyl + - Mean : + Accuracy on train : 70.3327922078 + Accuracy on test : 73.0769230769 + - Iteration 2 + Fold 1 + Accuracy on train : 69.6428571429 + Accuracy on test : 73.0769230769 + Accuracy on validation : 73.5294117647 + Selected View : MiRNA_ + Fold 2 + Accuracy on train : 71.0227272727 + Accuracy on test : 73.0769230769 + Accuracy on validation : 73.5294117647 + Selected View : Methyl + - Mean : + Accuracy on train : 70.3327922078 + Accuracy on test : 73.0769230769 + +Computation time on 1 cores : + Database extraction time : 0:00:00 + Learn Prediction + Fold 1 0:00:28 0:00:00 + Fold 2 0:00:28 0:00:00 + Total 0:00:57 0:00:00 + So a total classification time of 0:00:29. + diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-150940-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-150940-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..78212b4eff0eabc3fa3fa8aa7ffc302cede0ee2f --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Results/20160824-150940-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log @@ -0,0 +1,18 @@ +2016-08-24 15:09:40,867 INFO: Begginging +2016-08-24 15:09:40,868 INFO: ### Main Programm for Multiview Classification +2016-08-24 15:09:40,869 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Mumbo ; Cores : 1 +2016-08-24 15:09:40,869 INFO: Info: Shape of Methyl :(347, 25978) +2016-08-24 15:09:40,869 INFO: Info: Shape of MiRNA_ :(347, 1046) +2016-08-24 15:09:40,870 INFO: Info: Shape of RANSeq :(347, 73599) +2016-08-24 15:09:40,870 INFO: Info: Shape of Clinic :(347, 127) +2016-08-24 15:09:40,870 INFO: Done: Read Database Files +2016-08-24 15:09:40,870 INFO: Start: Determine validation split for ratio 0.9 +2016-08-24 15:09:40,873 INFO: Done: Determine validation split +2016-08-24 15:09:40,873 INFO: Start: Determine 2 folds +2016-08-24 15:09:40,885 INFO: Info: Length of Learning Sets: 157 +2016-08-24 15:09:40,885 INFO: Info: Length of Testing Sets: 156 +2016-08-24 15:09:40,886 INFO: Info: Length of Validation Set: 34 +2016-08-24 15:09:40,886 INFO: Done: Determine folds +2016-08-24 15:09:40,886 INFO: Start: Learning with Mumbo and 2 folds +2016-08-24 15:09:40,886 INFO: Start: Gridsearching best settings for monoview classifiers +2016-08-24 15:09:40,886 DEBUG: Start: Gridsearch for DecisionTree on Methyl diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-151006-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-151006-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..12fc0bf7d4fbf27971166dc3e3eae44e0b555d5b --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Results/20160824-151006-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log @@ -0,0 +1,24 @@ +2016-08-24 15:10:06,969 INFO: Begginging +2016-08-24 15:10:06,971 INFO: ### Main Programm for Multiview Classification +2016-08-24 15:10:06,971 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Mumbo ; Cores : 1 +2016-08-24 15:10:06,971 INFO: Info: Shape of Methyl :(347, 25978) +2016-08-24 15:10:06,972 INFO: Info: Shape of MiRNA_ :(347, 1046) +2016-08-24 15:10:06,972 INFO: Info: Shape of RANSeq :(347, 73599) +2016-08-24 15:10:06,973 INFO: Info: Shape of Clinic :(347, 127) +2016-08-24 15:10:06,973 INFO: Done: Read Database Files +2016-08-24 15:10:06,973 INFO: Start: Determine validation split for ratio 0.9 +2016-08-24 15:10:06,975 INFO: Done: Determine validation split +2016-08-24 15:10:06,976 INFO: Start: Determine 2 folds +2016-08-24 15:10:06,990 INFO: Info: Length of Learning Sets: 157 +2016-08-24 15:10:06,990 INFO: Info: Length of Testing Sets: 156 +2016-08-24 15:10:06,990 INFO: Info: Length of Validation Set: 34 +2016-08-24 15:10:06,990 INFO: Done: Determine folds +2016-08-24 15:10:06,990 INFO: Start: Learning with Mumbo and 2 folds +2016-08-24 15:10:06,990 INFO: Start: Gridsearching best settings for monoview classifiers +2016-08-24 15:10:06,991 DEBUG: Start: Gridsearch for DecisionTree on Methyl +2016-08-24 15:10:14,842 DEBUG: Info: Best Reslut : 0.555043227666 +2016-08-24 15:10:14,843 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 15:10:14,843 DEBUG: Start: Gridsearch for DecisionTree on MiRNA_ +2016-08-24 15:10:17,017 DEBUG: Info: Best Reslut : 0.524956772334 +2016-08-24 15:10:17,017 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 15:10:17,018 DEBUG: Start: Gridsearch for DecisionTree on RANSeq diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-151503-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-151503-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..6611dd3aa69f01dce00f27f4f49d0e0fe7c7c99a --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Results/20160824-151503-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log @@ -0,0 +1,8 @@ +2016-08-24 15:15:03,256 INFO: Begginging +2016-08-24 15:15:03,268 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 15:15:03,268 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : DecisionTree +2016-08-24 15:15:03,268 DEBUG: Start: Determine Train/Test split +2016-08-24 15:15:03,300 DEBUG: Info: Shape X_train:(312, 25978), Length of y_train:312 +2016-08-24 15:15:03,300 DEBUG: Info: Shape X_test:(35, 25978), Length of y_test:35 +2016-08-24 15:15:03,300 DEBUG: Done: Determine Train/Test split +2016-08-24 15:15:03,300 DEBUG: Start: Classification diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-151604-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-151604-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..d08108a0ee9942b041d3b43f11b829e07301a08e --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Results/20160824-151604-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log @@ -0,0 +1,8 @@ +2016-08-24 15:16:04,064 INFO: Begginging +2016-08-24 15:16:04,080 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 15:16:04,080 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : DecisionTree +2016-08-24 15:16:04,080 DEBUG: Start: Determine Train/Test split +2016-08-24 15:16:04,136 DEBUG: Info: Shape X_train:(312, 25978), Length of y_train:312 +2016-08-24 15:16:04,136 DEBUG: Info: Shape X_test:(35, 25978), Length of y_test:35 +2016-08-24 15:16:04,136 DEBUG: Done: Determine Train/Test split +2016-08-24 15:16:04,136 DEBUG: Start: Classification diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-151656-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-151656-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..f5754b56cd33c1fe66168606d1a6ee9d5024ec3e --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Results/20160824-151656-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log @@ -0,0 +1,8 @@ +2016-08-24 15:16:56,323 INFO: Begginging +2016-08-24 15:16:56,345 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 15:16:56,345 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : DecisionTree +2016-08-24 15:16:56,345 DEBUG: Start: Determine Train/Test split +2016-08-24 15:16:56,394 DEBUG: Info: Shape X_train:(312, 25978), Length of y_train:312 +2016-08-24 15:16:56,395 DEBUG: Info: Shape X_test:(35, 25978), Length of y_test:35 +2016-08-24 15:16:56,395 DEBUG: Done: Determine Train/Test split +2016-08-24 15:16:56,395 DEBUG: Start: Classification diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-151836-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-151836-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..e05049d157c4d90566ab8ce49b45efffa1ea12da --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Results/20160824-151836-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log @@ -0,0 +1,74 @@ +2016-08-24 15:18:36,539 INFO: Begginging +2016-08-24 15:18:36,572 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 15:18:36,573 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : DecisionTree +2016-08-24 15:18:36,573 DEBUG: Start: Determine Train/Test split +2016-08-24 15:18:36,682 DEBUG: Info: Shape X_train:(312, 25978), Length of y_train:312 +2016-08-24 15:18:36,682 DEBUG: Info: Shape X_test:(35, 25978), Length of y_test:35 +2016-08-24 15:18:36,682 DEBUG: Done: Determine Train/Test split +2016-08-24 15:18:36,682 DEBUG: Start: Classification +2016-08-24 15:18:43,218 DEBUG: Info: Time for Classification: 6.44028186798[s] +2016-08-24 15:18:43,218 DEBUG: Done: Classification +2016-08-24 15:18:43,248 DEBUG: Start: Statistic Results +2016-08-24 15:18:43,249 DEBUG: Info: Classification report: +2016-08-24 15:18:43,255 DEBUG: + precision recall f1-score support + + Non 0.91 0.87 0.89 23 + Oui 0.77 0.83 0.80 12 + +avg / total 0.86 0.86 0.86 35 + +2016-08-24 15:18:43,277 DEBUG: Info: Statistics: +2016-08-24 15:18:43,304 DEBUG: + Statistic Values +0 Accuracy score on test 0.857142857143 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.844444 +5 Mean of F1-Score of top 20 classes by F1-Score 0.844444 +6 Mean of F1-Score of top 30 classes by F1-Score 0.844444 +2016-08-24 15:18:43,305 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 15:18:47,165 DEBUG: Done: Statistic Results +2016-08-24 15:18:47,165 DEBUG: Start: Plot Result +2016-08-24 15:18:47,389 DEBUG: Done: Plot Result +2016-08-24 15:18:47,567 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 15:18:47,567 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : KNN +2016-08-24 15:18:47,567 DEBUG: Start: Determine Train/Test split +2016-08-24 15:18:47,603 DEBUG: Info: Shape X_train:(312, 25978), Length of y_train:312 +2016-08-24 15:18:47,604 DEBUG: Info: Shape X_test:(35, 25978), Length of y_test:35 +2016-08-24 15:18:47,604 DEBUG: Done: Determine Train/Test split +2016-08-24 15:18:47,604 DEBUG: Start: Classification +2016-08-24 15:18:57,893 DEBUG: Info: Time for Classification: 10.3103861809[s] +2016-08-24 15:18:57,893 DEBUG: Done: Classification +2016-08-24 15:18:58,420 DEBUG: Start: Statistic Results +2016-08-24 15:18:58,421 DEBUG: Info: Classification report: +2016-08-24 15:18:58,422 DEBUG: + precision recall f1-score support + + Non 0.88 0.92 0.90 24 + Oui 0.80 0.73 0.76 11 + +avg / total 0.85 0.86 0.86 35 + +2016-08-24 15:18:58,432 DEBUG: Info: Statistics: +2016-08-24 15:18:58,440 DEBUG: + Statistic Values +0 Accuracy score on test 0.857142857143 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.829932 +5 Mean of F1-Score of top 20 classes by F1-Score 0.829932 +6 Mean of F1-Score of top 30 classes by F1-Score 0.829932 +2016-08-24 15:18:58,440 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 15:18:58,814 DEBUG: Done: Statistic Results +2016-08-24 15:18:58,814 DEBUG: Start: Plot Result +2016-08-24 15:18:59,544 DEBUG: Done: Plot Result +2016-08-24 15:18:59,780 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 15:18:59,780 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : RandomForest +2016-08-24 15:18:59,780 DEBUG: Start: Determine Train/Test split +2016-08-24 15:18:59,793 DEBUG: Info: Shape X_train:(312, 25978), Length of y_train:312 +2016-08-24 15:18:59,793 DEBUG: Info: Shape X_test:(35, 25978), Length of y_test:35 +2016-08-24 15:18:59,793 DEBUG: Done: Determine Train/Test split +2016-08-24 15:18:59,793 DEBUG: Start: Classification diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-152149-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-152149-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..113ec1faddf001e6ee7d7834149ced64de7d4e71 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Results/20160824-152149-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log @@ -0,0 +1,74 @@ +2016-08-24 15:21:49,852 INFO: Begginging +2016-08-24 15:21:49,900 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 15:21:49,900 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : DecisionTree +2016-08-24 15:21:49,900 DEBUG: Start: Determine Train/Test split +2016-08-24 15:21:49,944 DEBUG: Info: Shape X_train:(312, 25978), Length of y_train:312 +2016-08-24 15:21:49,944 DEBUG: Info: Shape X_test:(35, 25978), Length of y_test:35 +2016-08-24 15:21:49,944 DEBUG: Done: Determine Train/Test split +2016-08-24 15:21:49,944 DEBUG: Start: Classification +2016-08-24 15:21:56,634 DEBUG: Info: Time for Classification: 6.73074197769[s] +2016-08-24 15:21:56,634 DEBUG: Done: Classification +2016-08-24 15:21:56,641 DEBUG: Start: Statistic Results +2016-08-24 15:21:56,642 DEBUG: Info: Classification report: +2016-08-24 15:21:56,643 DEBUG: + precision recall f1-score support + + Non 1.00 0.78 0.88 27 + Oui 0.57 1.00 0.73 8 + +avg / total 0.90 0.83 0.84 35 + +2016-08-24 15:21:56,645 DEBUG: Info: Statistics: +2016-08-24 15:21:56,659 DEBUG: + Statistic Values +0 Accuracy score on test 0.828571428571 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.801136 +5 Mean of F1-Score of top 20 classes by F1-Score 0.801136 +6 Mean of F1-Score of top 30 classes by F1-Score 0.801136 +2016-08-24 15:21:56,659 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 15:21:58,311 DEBUG: Done: Statistic Results +2016-08-24 15:21:58,311 DEBUG: Start: Plot Result +2016-08-24 15:21:58,529 DEBUG: Done: Plot Result +2016-08-24 15:21:58,545 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 15:21:58,546 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : KNN +2016-08-24 15:21:58,546 DEBUG: Start: Determine Train/Test split +2016-08-24 15:21:58,567 DEBUG: Info: Shape X_train:(312, 25978), Length of y_train:312 +2016-08-24 15:21:58,567 DEBUG: Info: Shape X_test:(35, 25978), Length of y_test:35 +2016-08-24 15:21:58,567 DEBUG: Done: Determine Train/Test split +2016-08-24 15:21:58,567 DEBUG: Start: Classification +2016-08-24 15:22:09,219 DEBUG: Info: Time for Classification: 10.6697540283[s] +2016-08-24 15:22:09,219 DEBUG: Done: Classification +2016-08-24 15:22:09,835 DEBUG: Start: Statistic Results +2016-08-24 15:22:09,836 DEBUG: Info: Classification report: +2016-08-24 15:22:09,837 DEBUG: + precision recall f1-score support + + Non 0.88 0.84 0.86 25 + Oui 0.64 0.70 0.67 10 + +avg / total 0.81 0.80 0.80 35 + +2016-08-24 15:22:09,839 DEBUG: Info: Statistics: +2016-08-24 15:22:09,847 DEBUG: + Statistic Values +0 Accuracy score on test 0.8 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.761905 +5 Mean of F1-Score of top 20 classes by F1-Score 0.761905 +6 Mean of F1-Score of top 30 classes by F1-Score 0.761905 +2016-08-24 15:22:09,847 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 15:22:10,192 DEBUG: Done: Statistic Results +2016-08-24 15:22:10,193 DEBUG: Start: Plot Result +2016-08-24 15:22:11,137 DEBUG: Done: Plot Result +2016-08-24 15:22:11,149 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 15:22:11,149 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : RandomForest +2016-08-24 15:22:11,149 DEBUG: Start: Determine Train/Test split +2016-08-24 15:22:11,164 DEBUG: Info: Shape X_train:(312, 25978), Length of y_train:312 +2016-08-24 15:22:11,164 DEBUG: Info: Shape X_test:(35, 25978), Length of y_test:35 +2016-08-24 15:22:11,164 DEBUG: Done: Determine Train/Test split +2016-08-24 15:22:11,164 DEBUG: Start: Classification diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-153240-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-153240-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..75472f2a548bf898da017ae173d51de0df658faa --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Results/20160824-153240-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log @@ -0,0 +1,107 @@ +2016-08-24 15:32:40,924 INFO: Begginging +2016-08-24 15:32:40,949 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 15:32:40,950 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : DecisionTree +2016-08-24 15:32:40,950 DEBUG: Start: Determine Train/Test split +2016-08-24 15:32:41,016 DEBUG: Info: Shape X_train:(312, 25978), Length of y_train:312 +2016-08-24 15:32:41,016 DEBUG: Info: Shape X_test:(35, 25978), Length of y_test:35 +2016-08-24 15:32:41,016 DEBUG: Done: Determine Train/Test split +2016-08-24 15:32:41,016 DEBUG: Start: Classification +2016-08-24 15:32:51,899 DEBUG: Info: Time for Classification: 10.9459741116[s] +2016-08-24 15:32:51,899 DEBUG: Done: Classification +2016-08-24 15:32:51,901 DEBUG: Start: Statistic Results +2016-08-24 15:32:51,902 DEBUG: Info: Classification report: +2016-08-24 15:32:51,903 DEBUG: + precision recall f1-score support + + Non 0.95 0.87 0.91 23 + Oui 0.79 0.92 0.85 12 + +avg / total 0.90 0.89 0.89 35 + +2016-08-24 15:32:51,916 DEBUG: Info: Statistics: +2016-08-24 15:32:51,924 DEBUG: + Statistic Values +0 Accuracy score on test 0.885714285714 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.877622 +5 Mean of F1-Score of top 20 classes by F1-Score 0.877622 +6 Mean of F1-Score of top 30 classes by F1-Score 0.877622 +2016-08-24 15:32:51,924 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 15:32:53,052 DEBUG: Done: Statistic Results +2016-08-24 15:32:53,052 DEBUG: Start: Plot Result +2016-08-24 15:32:53,269 DEBUG: Done: Plot Result +2016-08-24 15:32:53,283 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 15:32:53,283 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : KNN +2016-08-24 15:32:53,283 DEBUG: Start: Determine Train/Test split +2016-08-24 15:32:53,298 DEBUG: Info: Shape X_train:(312, 25978), Length of y_train:312 +2016-08-24 15:32:53,298 DEBUG: Info: Shape X_test:(35, 25978), Length of y_test:35 +2016-08-24 15:32:53,298 DEBUG: Done: Determine Train/Test split +2016-08-24 15:32:53,298 DEBUG: Start: Classification +2016-08-24 15:33:03,233 DEBUG: Info: Time for Classification: 9.94683003426[s] +2016-08-24 15:33:03,233 DEBUG: Done: Classification +2016-08-24 15:33:03,754 DEBUG: Start: Statistic Results +2016-08-24 15:33:03,754 DEBUG: Info: Classification report: +2016-08-24 15:33:03,755 DEBUG: + precision recall f1-score support + + Non 0.97 0.97 0.97 29 + Oui 0.83 0.83 0.83 6 + +avg / total 0.94 0.94 0.94 35 + +2016-08-24 15:33:03,757 DEBUG: Info: Statistics: +2016-08-24 15:33:03,764 DEBUG: + Statistic Values +0 Accuracy score on test 0.942857142857 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.899425 +5 Mean of F1-Score of top 20 classes by F1-Score 0.899425 +6 Mean of F1-Score of top 30 classes by F1-Score 0.899425 +2016-08-24 15:33:03,764 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 15:33:04,063 DEBUG: Done: Statistic Results +2016-08-24 15:33:04,064 DEBUG: Start: Plot Result +2016-08-24 15:33:04,789 DEBUG: Done: Plot Result +2016-08-24 15:33:04,798 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 15:33:04,799 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : RandomForest +2016-08-24 15:33:04,799 DEBUG: Start: Determine Train/Test split +2016-08-24 15:33:04,812 DEBUG: Info: Shape X_train:(312, 25978), Length of y_train:312 +2016-08-24 15:33:04,812 DEBUG: Info: Shape X_test:(35, 25978), Length of y_test:35 +2016-08-24 15:33:04,813 DEBUG: Done: Determine Train/Test split +2016-08-24 15:33:04,813 DEBUG: Start: Classification +2016-08-24 15:33:13,668 DEBUG: Info: Time for Classification: 8.86640405655[s] +2016-08-24 15:33:13,668 DEBUG: Done: Classification +2016-08-24 15:33:13,686 DEBUG: Start: Statistic Results +2016-08-24 15:33:13,687 DEBUG: Info: Classification report: +2016-08-24 15:33:13,688 DEBUG: + precision recall f1-score support + + Non 0.96 0.92 0.94 26 + Oui 0.80 0.89 0.84 9 + +avg / total 0.92 0.91 0.92 35 + +2016-08-24 15:33:13,689 DEBUG: Info: Statistics: +2016-08-24 15:33:13,697 DEBUG: + Statistic Values +0 Accuracy score on test 0.914285714286 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.891641 +5 Mean of F1-Score of top 20 classes by F1-Score 0.891641 +6 Mean of F1-Score of top 30 classes by F1-Score 0.891641 +2016-08-24 15:33:13,697 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 15:33:14,000 DEBUG: Done: Statistic Results +2016-08-24 15:33:14,000 DEBUG: Start: Plot Result +2016-08-24 15:33:14,230 DEBUG: Done: Plot Result +2016-08-24 15:33:14,239 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 15:33:14,240 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SGD +2016-08-24 15:33:14,240 DEBUG: Start: Determine Train/Test split +2016-08-24 15:33:14,254 DEBUG: Info: Shape X_train:(312, 25978), Length of y_train:312 +2016-08-24 15:33:14,254 DEBUG: Info: Shape X_test:(35, 25978), Length of y_test:35 +2016-08-24 15:33:14,254 DEBUG: Done: Determine Train/Test split +2016-08-24 15:33:14,254 DEBUG: Start: Classification diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-153513-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-153513-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..647aeee4c93fabac98536cb39057319e90b46f8c --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Results/20160824-153513-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log @@ -0,0 +1,463 @@ +2016-08-24 15:35:13,860 INFO: Begginging +2016-08-24 15:35:13,873 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 15:35:13,873 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : DecisionTree +2016-08-24 15:35:13,873 DEBUG: Start: Determine Train/Test split +2016-08-24 15:35:13,888 DEBUG: Info: Shape X_train:(312, 25978), Length of y_train:312 +2016-08-24 15:35:13,888 DEBUG: Info: Shape X_test:(35, 25978), Length of y_test:35 +2016-08-24 15:35:13,888 DEBUG: Done: Determine Train/Test split +2016-08-24 15:35:13,888 DEBUG: Start: Classification +2016-08-24 15:35:20,736 DEBUG: Info: Time for Classification: 6.85920500755[s] +2016-08-24 15:35:20,736 DEBUG: Done: Classification +2016-08-24 15:35:20,739 DEBUG: Start: Statistic Results +2016-08-24 15:35:20,740 DEBUG: Info: Classification report: +2016-08-24 15:35:20,740 DEBUG: + precision recall f1-score support + + Non 0.92 0.79 0.85 28 + Oui 0.45 0.71 0.56 7 + +avg / total 0.82 0.77 0.79 35 + +2016-08-24 15:35:20,743 DEBUG: Info: Statistics: +2016-08-24 15:35:20,750 DEBUG: + Statistic Values +0 Accuracy score on test 0.771428571429 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.700855 +5 Mean of F1-Score of top 20 classes by F1-Score 0.700855 +6 Mean of F1-Score of top 30 classes by F1-Score 0.700855 +2016-08-24 15:35:20,750 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 15:35:21,134 DEBUG: Done: Statistic Results +2016-08-24 15:35:21,134 DEBUG: Start: Plot Result +2016-08-24 15:35:21,349 DEBUG: Done: Plot Result +2016-08-24 15:35:21,361 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 15:35:21,362 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : KNN +2016-08-24 15:35:21,362 DEBUG: Start: Determine Train/Test split +2016-08-24 15:35:21,376 DEBUG: Info: Shape X_train:(312, 25978), Length of y_train:312 +2016-08-24 15:35:21,376 DEBUG: Info: Shape X_test:(35, 25978), Length of y_test:35 +2016-08-24 15:35:21,376 DEBUG: Done: Determine Train/Test split +2016-08-24 15:35:21,376 DEBUG: Start: Classification +2016-08-24 15:35:31,289 DEBUG: Info: Time for Classification: 9.92338085175[s] +2016-08-24 15:35:31,289 DEBUG: Done: Classification +2016-08-24 15:35:31,806 DEBUG: Start: Statistic Results +2016-08-24 15:35:31,806 DEBUG: Info: Classification report: +2016-08-24 15:35:31,807 DEBUG: + precision recall f1-score support + + Non 0.90 0.79 0.84 24 + Oui 0.64 0.82 0.72 11 + +avg / total 0.82 0.80 0.81 35 + +2016-08-24 15:35:31,809 DEBUG: Info: Statistics: +2016-08-24 15:35:31,816 DEBUG: + Statistic Values +0 Accuracy score on test 0.8 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.782222 +5 Mean of F1-Score of top 20 classes by F1-Score 0.782222 +6 Mean of F1-Score of top 30 classes by F1-Score 0.782222 +2016-08-24 15:35:31,816 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 15:35:32,102 DEBUG: Done: Statistic Results +2016-08-24 15:35:32,102 DEBUG: Start: Plot Result +2016-08-24 15:35:32,829 DEBUG: Done: Plot Result +2016-08-24 15:35:32,839 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 15:35:32,839 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : RandomForest +2016-08-24 15:35:32,839 DEBUG: Start: Determine Train/Test split +2016-08-24 15:35:32,853 DEBUG: Info: Shape X_train:(312, 25978), Length of y_train:312 +2016-08-24 15:35:32,853 DEBUG: Info: Shape X_test:(35, 25978), Length of y_test:35 +2016-08-24 15:35:32,853 DEBUG: Done: Determine Train/Test split +2016-08-24 15:35:32,853 DEBUG: Start: Classification +2016-08-24 15:35:40,098 DEBUG: Info: Time for Classification: 7.25602412224[s] +2016-08-24 15:35:40,099 DEBUG: Done: Classification +2016-08-24 15:35:40,107 DEBUG: Start: Statistic Results +2016-08-24 15:35:40,108 DEBUG: Info: Classification report: +2016-08-24 15:35:40,108 DEBUG: + precision recall f1-score support + + Non 1.00 0.93 0.97 30 + Oui 0.71 1.00 0.83 5 + +avg / total 0.96 0.94 0.95 35 + +2016-08-24 15:35:40,110 DEBUG: Info: Statistics: +2016-08-24 15:35:40,118 DEBUG: + Statistic Values +0 Accuracy score on test 0.942857142857 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.899425 +5 Mean of F1-Score of top 20 classes by F1-Score 0.899425 +6 Mean of F1-Score of top 30 classes by F1-Score 0.899425 +2016-08-24 15:35:40,118 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 15:35:40,419 DEBUG: Done: Statistic Results +2016-08-24 15:35:40,419 DEBUG: Start: Plot Result +2016-08-24 15:35:40,641 DEBUG: Done: Plot Result +2016-08-24 15:35:40,650 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 15:35:40,650 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SGD +2016-08-24 15:35:40,651 DEBUG: Start: Determine Train/Test split +2016-08-24 15:35:40,664 DEBUG: Info: Shape X_train:(312, 25978), Length of y_train:312 +2016-08-24 15:35:40,664 DEBUG: Info: Shape X_test:(35, 25978), Length of y_test:35 +2016-08-24 15:35:40,665 DEBUG: Done: Determine Train/Test split +2016-08-24 15:35:40,665 DEBUG: Start: Classification +2016-08-24 15:35:42,133 DEBUG: Info: Time for Classification: 1.47857999802[s] +2016-08-24 15:35:42,133 DEBUG: Done: Classification +2016-08-24 15:35:42,157 DEBUG: Start: Statistic Results +2016-08-24 15:35:42,157 DEBUG: Info: Classification report: +2016-08-24 15:35:42,159 DEBUG: + precision recall f1-score support + + Non 0.96 0.86 0.91 29 + Oui 0.56 0.83 0.67 6 + +avg / total 0.89 0.86 0.87 35 + +2016-08-24 15:35:42,162 DEBUG: Info: Statistics: +2016-08-24 15:35:42,176 DEBUG: + Statistic Values +0 Accuracy score on test 0.857142857143 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.787879 +5 Mean of F1-Score of top 20 classes by F1-Score 0.787879 +6 Mean of F1-Score of top 30 classes by F1-Score 0.787879 +2016-08-24 15:35:42,176 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 15:35:42,575 DEBUG: Done: Statistic Results +2016-08-24 15:35:42,576 DEBUG: Start: Plot Result +2016-08-24 15:35:42,919 DEBUG: Done: Plot Result +2016-08-24 15:35:42,931 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 15:35:42,932 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMLinear +2016-08-24 15:35:42,932 DEBUG: Start: Determine Train/Test split +2016-08-24 15:35:42,952 DEBUG: Info: Shape X_train:(312, 25978), Length of y_train:312 +2016-08-24 15:35:42,952 DEBUG: Info: Shape X_test:(35, 25978), Length of y_test:35 +2016-08-24 15:35:42,952 DEBUG: Done: Determine Train/Test split +2016-08-24 15:35:42,952 DEBUG: Start: Classification +2016-08-24 15:35:50,958 DEBUG: Info: Time for Classification: 8.02294683456[s] +2016-08-24 15:35:50,958 DEBUG: Done: Classification +2016-08-24 15:35:51,120 DEBUG: Start: Statistic Results +2016-08-24 15:35:51,120 DEBUG: Info: Classification report: +2016-08-24 15:35:51,121 DEBUG: + precision recall f1-score support + + Non 0.97 0.90 0.93 31 + Oui 0.50 0.75 0.60 4 + +avg / total 0.91 0.89 0.90 35 + +2016-08-24 15:35:51,123 DEBUG: Info: Statistics: +2016-08-24 15:35:51,130 DEBUG: + Statistic Values +0 Accuracy score on test 0.885714285714 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.766667 +5 Mean of F1-Score of top 20 classes by F1-Score 0.766667 +6 Mean of F1-Score of top 30 classes by F1-Score 0.766667 +2016-08-24 15:35:51,130 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 15:35:51,433 DEBUG: Done: Statistic Results +2016-08-24 15:35:51,433 DEBUG: Start: Plot Result +2016-08-24 15:35:51,806 DEBUG: Done: Plot Result +2016-08-24 15:35:51,816 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 15:35:51,816 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMRBF +2016-08-24 15:35:51,816 DEBUG: Start: Determine Train/Test split +2016-08-24 15:35:51,830 DEBUG: Info: Shape X_train:(312, 25978), Length of y_train:312 +2016-08-24 15:35:51,830 DEBUG: Info: Shape X_test:(35, 25978), Length of y_test:35 +2016-08-24 15:35:51,830 DEBUG: Done: Determine Train/Test split +2016-08-24 15:35:51,830 DEBUG: Start: Classification +2016-08-24 15:35:59,691 DEBUG: Info: Time for Classification: 7.87138581276[s] +2016-08-24 15:35:59,691 DEBUG: Done: Classification +2016-08-24 15:35:59,853 DEBUG: Start: Statistic Results +2016-08-24 15:35:59,853 DEBUG: Info: Classification report: +2016-08-24 15:35:59,854 DEBUG: + precision recall f1-score support + + Non 0.87 0.91 0.89 22 + Oui 0.83 0.77 0.80 13 + +avg / total 0.86 0.86 0.86 35 + +2016-08-24 15:35:59,856 DEBUG: Info: Statistics: +2016-08-24 15:35:59,863 DEBUG: + Statistic Values +0 Accuracy score on test 0.857142857143 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.844444 +5 Mean of F1-Score of top 20 classes by F1-Score 0.844444 +6 Mean of F1-Score of top 30 classes by F1-Score 0.844444 +2016-08-24 15:35:59,863 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 15:36:00,167 DEBUG: Done: Statistic Results +2016-08-24 15:36:00,167 DEBUG: Start: Plot Result +2016-08-24 15:36:00,556 DEBUG: Done: Plot Result +2016-08-24 15:36:00,590 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 15:36:00,590 DEBUG: ### Classification - Database:MultiOmic Feature:RNASeq train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : DecisionTree +2016-08-24 15:36:00,590 DEBUG: Start: Determine Train/Test split +2016-08-24 15:36:00,591 DEBUG: Info: Shape X_train:(312, 1046), Length of y_train:312 +2016-08-24 15:36:00,591 DEBUG: Info: Shape X_test:(35, 1046), Length of y_test:35 +2016-08-24 15:36:00,591 DEBUG: Done: Determine Train/Test split +2016-08-24 15:36:00,591 DEBUG: Start: Classification +2016-08-24 15:36:00,792 DEBUG: Info: Time for Classification: 0.19925403595[s] +2016-08-24 15:36:00,792 DEBUG: Done: Classification +2016-08-24 15:36:00,794 DEBUG: Start: Statistic Results +2016-08-24 15:36:00,794 DEBUG: Info: Classification report: +2016-08-24 15:36:00,795 DEBUG: + precision recall f1-score support + + Non 0.81 0.92 0.86 24 + Oui 0.75 0.55 0.63 11 + +avg / total 0.79 0.80 0.79 35 + +2016-08-24 15:36:00,797 DEBUG: Info: Statistics: +2016-08-24 15:36:00,804 DEBUG: + Statistic Values +0 Accuracy score on test 0.8 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.747162 +5 Mean of F1-Score of top 20 classes by F1-Score 0.747162 +6 Mean of F1-Score of top 30 classes by F1-Score 0.747162 +2016-08-24 15:36:00,804 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 15:36:01,103 DEBUG: Done: Statistic Results +2016-08-24 15:36:01,103 DEBUG: Start: Plot Result +2016-08-24 15:36:01,325 DEBUG: Done: Plot Result +2016-08-24 15:36:01,326 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 15:36:01,326 DEBUG: ### Classification - Database:MultiOmic Feature:RNASeq train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : KNN +2016-08-24 15:36:01,327 DEBUG: Start: Determine Train/Test split +2016-08-24 15:36:01,327 DEBUG: Info: Shape X_train:(312, 1046), Length of y_train:312 +2016-08-24 15:36:01,327 DEBUG: Info: Shape X_test:(35, 1046), Length of y_test:35 +2016-08-24 15:36:01,327 DEBUG: Done: Determine Train/Test split +2016-08-24 15:36:01,328 DEBUG: Start: Classification +2016-08-24 15:36:01,694 DEBUG: Info: Time for Classification: 0.363206863403[s] +2016-08-24 15:36:01,694 DEBUG: Done: Classification +2016-08-24 15:36:01,714 DEBUG: Start: Statistic Results +2016-08-24 15:36:01,715 DEBUG: Info: Classification report: +2016-08-24 15:36:01,716 DEBUG: + precision recall f1-score support + + Non 0.96 0.96 0.96 27 + Oui 0.88 0.88 0.88 8 + +avg / total 0.94 0.94 0.94 35 + +2016-08-24 15:36:01,720 DEBUG: Info: Statistics: +2016-08-24 15:36:01,731 DEBUG: + Statistic Values +0 Accuracy score on test 0.942857142857 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.918981 +5 Mean of F1-Score of top 20 classes by F1-Score 0.918981 +6 Mean of F1-Score of top 30 classes by F1-Score 0.918981 +2016-08-24 15:36:01,732 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 15:36:02,044 DEBUG: Done: Statistic Results +2016-08-24 15:36:02,044 DEBUG: Start: Plot Result +2016-08-24 15:36:02,331 DEBUG: Done: Plot Result +2016-08-24 15:36:02,332 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 15:36:02,332 DEBUG: ### Classification - Database:MultiOmic Feature:RNASeq train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : RandomForest +2016-08-24 15:36:02,333 DEBUG: Start: Determine Train/Test split +2016-08-24 15:36:02,333 DEBUG: Info: Shape X_train:(312, 1046), Length of y_train:312 +2016-08-24 15:36:02,333 DEBUG: Info: Shape X_test:(35, 1046), Length of y_test:35 +2016-08-24 15:36:02,333 DEBUG: Done: Determine Train/Test split +2016-08-24 15:36:02,334 DEBUG: Start: Classification +2016-08-24 15:36:04,885 DEBUG: Info: Time for Classification: 2.54951691628[s] +2016-08-24 15:36:04,885 DEBUG: Done: Classification +2016-08-24 15:36:04,889 DEBUG: Start: Statistic Results +2016-08-24 15:36:04,889 DEBUG: Info: Classification report: +2016-08-24 15:36:04,890 DEBUG: + precision recall f1-score support + + Non 0.93 0.97 0.95 29 + Oui 0.80 0.67 0.73 6 + +avg / total 0.91 0.91 0.91 35 + +2016-08-24 15:36:04,892 DEBUG: Info: Statistics: +2016-08-24 15:36:04,900 DEBUG: + Statistic Values +0 Accuracy score on test 0.914285714286 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.838213 +5 Mean of F1-Score of top 20 classes by F1-Score 0.838213 +6 Mean of F1-Score of top 30 classes by F1-Score 0.838213 +2016-08-24 15:36:04,900 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 15:36:05,213 DEBUG: Done: Statistic Results +2016-08-24 15:36:05,213 DEBUG: Start: Plot Result +2016-08-24 15:36:05,434 DEBUG: Done: Plot Result +2016-08-24 15:36:05,435 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 15:36:05,435 DEBUG: ### Classification - Database:MultiOmic Feature:RNASeq train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SGD +2016-08-24 15:36:05,435 DEBUG: Start: Determine Train/Test split +2016-08-24 15:36:05,436 DEBUG: Info: Shape X_train:(312, 1046), Length of y_train:312 +2016-08-24 15:36:05,436 DEBUG: Info: Shape X_test:(35, 1046), Length of y_test:35 +2016-08-24 15:36:05,436 DEBUG: Done: Determine Train/Test split +2016-08-24 15:36:05,436 DEBUG: Start: Classification +2016-08-24 15:36:05,523 DEBUG: Info: Time for Classification: 0.0844321250916[s] +2016-08-24 15:36:05,523 DEBUG: Done: Classification +2016-08-24 15:36:05,525 DEBUG: Start: Statistic Results +2016-08-24 15:36:05,525 DEBUG: Info: Classification report: +2016-08-24 15:36:05,526 DEBUG: + precision recall f1-score support + + Non 1.00 0.60 0.75 25 + Oui 0.50 1.00 0.67 10 + +avg / total 0.86 0.71 0.73 35 + +2016-08-24 15:36:05,528 DEBUG: Info: Statistics: +2016-08-24 15:36:05,536 DEBUG: + Statistic Values +0 Accuracy score on test 0.714285714286 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.708333 +5 Mean of F1-Score of top 20 classes by F1-Score 0.708333 +6 Mean of F1-Score of top 30 classes by F1-Score 0.708333 +2016-08-24 15:36:05,536 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 15:36:05,859 DEBUG: Done: Statistic Results +2016-08-24 15:36:05,859 DEBUG: Start: Plot Result +2016-08-24 15:36:06,199 DEBUG: Done: Plot Result +2016-08-24 15:36:06,200 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 15:36:06,201 DEBUG: ### Classification - Database:MultiOmic Feature:RNASeq train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMLinear +2016-08-24 15:36:06,201 DEBUG: Start: Determine Train/Test split +2016-08-24 15:36:06,201 DEBUG: Info: Shape X_train:(312, 1046), Length of y_train:312 +2016-08-24 15:36:06,201 DEBUG: Info: Shape X_test:(35, 1046), Length of y_test:35 +2016-08-24 15:36:06,202 DEBUG: Done: Determine Train/Test split +2016-08-24 15:36:06,202 DEBUG: Start: Classification +2016-08-24 15:36:11,831 DEBUG: Info: Time for Classification: 5.62734603882[s] +2016-08-24 15:36:11,831 DEBUG: Done: Classification +2016-08-24 15:36:11,836 DEBUG: Start: Statistic Results +2016-08-24 15:36:11,836 DEBUG: Info: Classification report: +2016-08-24 15:36:11,837 DEBUG: + precision recall f1-score support + + Non 0.92 0.73 0.81 30 + Oui 0.27 0.60 0.37 5 + +avg / total 0.82 0.71 0.75 35 + +2016-08-24 15:36:11,839 DEBUG: Info: Statistics: +2016-08-24 15:36:11,846 DEBUG: + Statistic Values +0 Accuracy score on test 0.714285714286 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.594907 +5 Mean of F1-Score of top 20 classes by F1-Score 0.594907 +6 Mean of F1-Score of top 30 classes by F1-Score 0.594907 +2016-08-24 15:36:11,846 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 15:36:12,215 DEBUG: Done: Statistic Results +2016-08-24 15:36:12,215 DEBUG: Start: Plot Result +2016-08-24 15:36:12,479 DEBUG: Done: Plot Result +2016-08-24 15:36:12,480 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 15:36:12,480 DEBUG: ### Classification - Database:MultiOmic Feature:RNASeq train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMRBF +2016-08-24 15:36:12,480 DEBUG: Start: Determine Train/Test split +2016-08-24 15:36:12,481 DEBUG: Info: Shape X_train:(312, 1046), Length of y_train:312 +2016-08-24 15:36:12,481 DEBUG: Info: Shape X_test:(35, 1046), Length of y_test:35 +2016-08-24 15:36:12,481 DEBUG: Done: Determine Train/Test split +2016-08-24 15:36:12,481 DEBUG: Start: Classification +2016-08-24 15:36:13,146 DEBUG: Info: Time for Classification: 0.662354946136[s] +2016-08-24 15:36:13,146 DEBUG: Done: Classification +2016-08-24 15:36:13,161 DEBUG: Start: Statistic Results +2016-08-24 15:36:13,162 DEBUG: Info: Classification report: +2016-08-24 15:36:13,185 DEBUG: + precision recall f1-score support + + Non 0.71 1.00 0.83 25 + Oui 0.00 0.00 0.00 10 + +avg / total 0.51 0.71 0.60 35 + +2016-08-24 15:36:13,187 DEBUG: Info: Statistics: +2016-08-24 15:36:13,195 DEBUG: + Statistic Values +0 Accuracy score on test 0.714285714286 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0.5 +4 Mean of F1-Score of top 10 classes by F1-Score 0.416667 +5 Mean of F1-Score of top 20 classes by F1-Score 0.416667 +6 Mean of F1-Score of top 30 classes by F1-Score 0.416667 +2016-08-24 15:36:13,195 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 15:36:13,572 DEBUG: Done: Statistic Results +2016-08-24 15:36:13,572 DEBUG: Start: Plot Result +2016-08-24 15:36:13,826 DEBUG: Done: Plot Result +2016-08-24 15:36:14,979 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 15:36:14,979 DEBUG: ### Classification - Database:MultiOmic Feature:Clinic train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : DecisionTree +2016-08-24 15:36:14,979 DEBUG: Start: Determine Train/Test split +2016-08-24 15:36:15,063 DEBUG: Info: Shape X_train:(312, 73599), Length of y_train:312 +2016-08-24 15:36:15,063 DEBUG: Info: Shape X_test:(35, 73599), Length of y_test:35 +2016-08-24 15:36:15,063 DEBUG: Done: Determine Train/Test split +2016-08-24 15:36:15,063 DEBUG: Start: Classification +2016-08-24 15:36:36,485 DEBUG: Info: Time for Classification: 21.5033020973[s] +2016-08-24 15:36:36,485 DEBUG: Done: Classification +2016-08-24 15:36:36,489 DEBUG: Start: Statistic Results +2016-08-24 15:36:36,489 DEBUG: Info: Classification report: +2016-08-24 15:36:36,490 DEBUG: + precision recall f1-score support + + Non 0.66 1.00 0.79 23 + Oui 0.00 0.00 0.00 12 + +avg / total 0.43 0.66 0.52 35 + +2016-08-24 15:36:36,492 DEBUG: Info: Statistics: +2016-08-24 15:36:36,499 DEBUG: + Statistic Values +0 Accuracy score on test 0.657142857143 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0.5 +4 Mean of F1-Score of top 10 classes by F1-Score 0.396552 +5 Mean of F1-Score of top 20 classes by F1-Score 0.396552 +6 Mean of F1-Score of top 30 classes by F1-Score 0.396552 +2016-08-24 15:36:36,500 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 15:36:36,817 DEBUG: Done: Statistic Results +2016-08-24 15:36:36,818 DEBUG: Start: Plot Result +2016-08-24 15:36:37,036 DEBUG: Done: Plot Result +2016-08-24 15:36:38,028 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 15:36:38,028 DEBUG: ### Classification - Database:MultiOmic Feature:Clinic train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : KNN +2016-08-24 15:36:38,028 DEBUG: Start: Determine Train/Test split +2016-08-24 15:36:38,080 DEBUG: Info: Shape X_train:(312, 73599), Length of y_train:312 +2016-08-24 15:36:38,080 DEBUG: Info: Shape X_test:(35, 73599), Length of y_test:35 +2016-08-24 15:36:38,080 DEBUG: Done: Determine Train/Test split +2016-08-24 15:36:38,080 DEBUG: Start: Classification +2016-08-24 15:37:07,285 DEBUG: Info: Time for Classification: 28.5032260418[s] +2016-08-24 15:37:07,285 DEBUG: Done: Classification +2016-08-24 15:37:08,833 DEBUG: Start: Statistic Results +2016-08-24 15:37:08,834 DEBUG: Info: Classification report: +2016-08-24 15:37:08,920 DEBUG: + precision recall f1-score support + + Non 0.74 0.96 0.83 26 + Oui 0.00 0.00 0.00 9 + +avg / total 0.55 0.71 0.62 35 + +2016-08-24 15:37:08,954 DEBUG: Info: Statistics: +2016-08-24 15:37:09,007 DEBUG: + Statistic Values +0 Accuracy score on test 0.714285714286 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0.5 +4 Mean of F1-Score of top 10 classes by F1-Score 0.416667 +5 Mean of F1-Score of top 20 classes by F1-Score 0.416667 +6 Mean of F1-Score of top 30 classes by F1-Score 0.416667 +2016-08-24 15:37:09,007 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 15:37:12,867 DEBUG: Done: Statistic Results +2016-08-24 15:37:12,867 DEBUG: Start: Plot Result +2016-08-24 15:37:14,530 DEBUG: Done: Plot Result diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-165838-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-165838-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..b4b31aa895c5e3a10bab4af9755f3b73a41b39db --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Results/20160824-165838-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log @@ -0,0 +1 @@ +2016-08-24 16:58:38,944 INFO: Begginging diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-170101-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-170101-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..ab433508bd0d420b7d299e3cbc03dfa74afe0703 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Results/20160824-170101-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log @@ -0,0 +1 @@ +2016-08-24 17:01:01,205 INFO: Begginging diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-170131-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-170131-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..132c798c184f22e6ce1c5ecd293090c2bbae525f --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Results/20160824-170131-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log @@ -0,0 +1 @@ +2016-08-24 17:01:31,670 INFO: Begginging diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-170148-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-170148-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..aa4df084e6c3db2a516aff2d1668b3dda351b1b2 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Results/20160824-170148-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log @@ -0,0 +1,24 @@ +2016-08-24 17:01:48,282 INFO: Begginging +2016-08-24 17:01:48,285 INFO: ### Main Programm for Multiview Classification +2016-08-24 17:01:48,285 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Mumbo ; Cores : 1 +2016-08-24 17:01:48,285 INFO: Info: Shape of Methyl :(347, 25978) +2016-08-24 17:01:48,285 INFO: Info: Shape of MiRNA_ :(347, 1046) +2016-08-24 17:01:48,286 INFO: Info: Shape of RANSeq :(347, 73599) +2016-08-24 17:01:48,286 INFO: Info: Shape of Clinic :(347, 127) +2016-08-24 17:01:48,286 INFO: Done: Read Database Files +2016-08-24 17:01:48,287 INFO: Start: Determine validation split for ratio 0.9 +2016-08-24 17:01:48,309 INFO: Done: Determine validation split +2016-08-24 17:01:48,310 INFO: Start: Determine 2 folds +2016-08-24 17:01:48,328 INFO: Info: Length of Learning Sets: 157 +2016-08-24 17:01:48,328 INFO: Info: Length of Testing Sets: 156 +2016-08-24 17:01:48,328 INFO: Info: Length of Validation Set: 34 +2016-08-24 17:01:48,328 INFO: Done: Determine folds +2016-08-24 17:01:48,328 INFO: Start: Learning with Mumbo and 2 folds +2016-08-24 17:01:48,328 INFO: Start: Gridsearching best settings for monoview classifiers +2016-08-24 17:01:48,329 DEBUG: Start: Gridsearch for DecisionTree on Methyl +2016-08-24 17:01:56,163 DEBUG: Info: Best Reslut : 0.542708933718 +2016-08-24 17:01:56,163 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 17:01:56,164 DEBUG: Start: Gridsearch for DecisionTree on MiRNA_ +2016-08-24 17:01:58,267 DEBUG: Info: Best Reslut : 0.553948126801 +2016-08-24 17:01:58,267 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 17:01:58,267 DEBUG: Start: Gridsearch for DecisionTree on RANSeq diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-170204-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-170204-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..3ad1a6bd81d6127939b2305b2508421cd46b89bf --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Results/20160824-170204-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log @@ -0,0 +1,31 @@ +2016-08-24 17:02:04,433 INFO: Begginging +2016-08-24 17:02:04,435 INFO: ### Main Programm for Multiview Classification +2016-08-24 17:02:04,435 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Mumbo ; Cores : 1 +2016-08-24 17:02:04,435 INFO: Info: Shape of Methyl :(347, 25978) +2016-08-24 17:02:04,436 INFO: Info: Shape of MiRNA_ :(347, 1046) +2016-08-24 17:02:04,436 INFO: Info: Shape of RANSeq :(347, 73599) +2016-08-24 17:02:04,437 INFO: Info: Shape of Clinic :(347, 127) +2016-08-24 17:02:04,437 INFO: Done: Read Database Files +2016-08-24 17:02:04,437 INFO: Start: Determine validation split for ratio 0.9 +2016-08-24 17:02:04,440 INFO: Done: Determine validation split +2016-08-24 17:02:04,440 INFO: Start: Determine 2 folds +2016-08-24 17:02:04,452 INFO: Info: Length of Learning Sets: 157 +2016-08-24 17:02:04,452 INFO: Info: Length of Testing Sets: 156 +2016-08-24 17:02:04,452 INFO: Info: Length of Validation Set: 34 +2016-08-24 17:02:04,452 INFO: Done: Determine folds +2016-08-24 17:02:04,452 INFO: Start: Learning with Mumbo and 2 folds +2016-08-24 17:02:04,452 INFO: Start: Gridsearching best settings for monoview classifiers +2016-08-24 17:02:04,453 DEBUG: Start: Gridsearch for DecisionTree on Methyl +2016-08-24 17:02:11,934 DEBUG: Info: Best Reslut : 0.550489913545 +2016-08-24 17:02:11,934 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 17:02:11,935 DEBUG: Start: Gridsearch for DecisionTree on MiRNA_ +2016-08-24 17:02:13,994 DEBUG: Info: Best Reslut : 0.560345821326 +2016-08-24 17:02:13,994 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 17:02:13,994 DEBUG: Start: Gridsearch for DecisionTree on RANSeq +2016-08-24 17:02:30,869 DEBUG: Info: Best Reslut : 0.512507204611 +2016-08-24 17:02:30,869 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 17:02:30,870 DEBUG: Start: Gridsearch for DecisionTree on Clinic +2016-08-24 17:02:32,818 DEBUG: Info: Best Reslut : 0.506109510086 +2016-08-24 17:02:32,819 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 17:02:32,819 INFO: Done: Gridsearching best settings for monoview classifiers +2016-08-24 17:02:32,819 INFO: Start: Fold number 1 diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-170346-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-170346-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..e95f7dd37b0173564895d137b8480cc96a582e33 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Results/20160824-170346-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log @@ -0,0 +1,150 @@ +2016-08-24 17:03:46,119 INFO: Begginging +2016-08-24 17:03:46,120 INFO: ### Main Programm for Multiview Classification +2016-08-24 17:03:46,121 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Mumbo ; Cores : 1 +2016-08-24 17:03:46,121 INFO: Info: Shape of Methyl :(347, 25978) +2016-08-24 17:03:46,121 INFO: Info: Shape of MiRNA_ :(347, 1046) +2016-08-24 17:03:46,122 INFO: Info: Shape of RANSeq :(347, 73599) +2016-08-24 17:03:46,122 INFO: Info: Shape of Clinic :(347, 127) +2016-08-24 17:03:46,122 INFO: Done: Read Database Files +2016-08-24 17:03:46,122 INFO: Start: Determine validation split for ratio 0.9 +2016-08-24 17:03:46,125 INFO: Done: Determine validation split +2016-08-24 17:03:46,125 INFO: Start: Determine 2 folds +2016-08-24 17:03:46,142 INFO: Info: Length of Learning Sets: 157 +2016-08-24 17:03:46,142 INFO: Info: Length of Testing Sets: 156 +2016-08-24 17:03:46,142 INFO: Info: Length of Validation Set: 34 +2016-08-24 17:03:46,142 INFO: Done: Determine folds +2016-08-24 17:03:46,142 INFO: Start: Learning with Mumbo and 2 folds +2016-08-24 17:03:46,142 INFO: Start: Gridsearching best settings for monoview classifiers +2016-08-24 17:03:46,143 DEBUG: Start: Gridsearch for DecisionTree on Methyl +2016-08-24 17:03:53,600 DEBUG: Info: Best Reslut : 0.531123919308 +2016-08-24 17:03:53,600 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 17:03:53,601 DEBUG: Start: Gridsearch for DecisionTree on MiRNA_ +2016-08-24 17:03:55,659 DEBUG: Info: Best Reslut : 0.501613832853 +2016-08-24 17:03:55,659 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 17:03:55,660 DEBUG: Start: Gridsearch for DecisionTree on RANSeq +2016-08-24 17:04:13,538 DEBUG: Info: Best Reslut : 0.502363112392 +2016-08-24 17:04:13,538 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 17:04:13,539 DEBUG: Start: Gridsearch for DecisionTree on Clinic +2016-08-24 17:04:15,465 DEBUG: Info: Best Reslut : 0.58144092219 +2016-08-24 17:04:15,465 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 17:04:15,465 INFO: Done: Gridsearching best settings for monoview classifiers +2016-08-24 17:04:15,466 INFO: Start: Fold number 1 +2016-08-24 17:04:17,304 DEBUG: Start: Iteration 1 +2016-08-24 17:04:17,324 DEBUG: View 0 : 0.563953488372 +2016-08-24 17:04:17,333 DEBUG: View 1 : 0.703488372093 +2016-08-24 17:04:17,372 DEBUG: View 2 : 0.68023255814 +2016-08-24 17:04:17,381 DEBUG: View 3 : 0.546511627907 +2016-08-24 17:04:17,428 DEBUG: Best view : Methyl +2016-08-24 17:04:17,511 DEBUG: Start: Iteration 2 +2016-08-24 17:04:17,529 DEBUG: View 0 : 0.546511627907 +2016-08-24 17:04:17,539 DEBUG: View 1 : 0.703488372093 +2016-08-24 17:04:17,578 DEBUG: View 2 : 0.46511627907 +2016-08-24 17:04:17,587 DEBUG: View 3 : 0.308139534884 +2016-08-24 17:04:17,645 DEBUG: Best view : MiRNA_ +2016-08-24 17:04:17,802 DEBUG: Start: Iteration 3 +2016-08-24 17:04:17,820 DEBUG: View 0 : 0.529069767442 +2016-08-24 17:04:17,829 DEBUG: View 1 : 0.43023255814 +2016-08-24 17:04:17,869 DEBUG: View 2 : 0.377906976744 +2016-08-24 17:04:17,878 DEBUG: View 3 : 0.389534883721 +2016-08-24 17:04:17,937 DEBUG: Best view : Methyl +2016-08-24 17:04:18,161 DEBUG: Start: Iteration 4 +2016-08-24 17:04:18,180 DEBUG: View 0 : 0.697674418605 +2016-08-24 17:04:18,189 DEBUG: View 1 : 0.337209302326 +2016-08-24 17:04:18,228 DEBUG: View 2 : 0.604651162791 +2016-08-24 17:04:18,237 DEBUG: View 3 : 0.604651162791 +2016-08-24 17:04:18,300 DEBUG: Best view : Methyl +2016-08-24 17:04:18,594 DEBUG: Start: Iteration 5 +2016-08-24 17:04:18,612 DEBUG: View 0 : 0.656976744186 +2016-08-24 17:04:18,621 DEBUG: View 1 : 0.424418604651 +2016-08-24 17:04:18,660 DEBUG: View 2 : 0.43023255814 +2016-08-24 17:04:18,669 DEBUG: View 3 : 0.674418604651 +2016-08-24 17:04:18,734 DEBUG: Best view : Methyl +2016-08-24 17:04:19,088 DEBUG: Start: Iteration 6 +2016-08-24 17:04:19,106 DEBUG: View 0 : 0.593023255814 +2016-08-24 17:04:19,114 DEBUG: View 1 : 0.610465116279 +2016-08-24 17:04:19,153 DEBUG: View 2 : 0.360465116279 +2016-08-24 17:04:19,162 DEBUG: View 3 : 0.372093023256 +2016-08-24 17:04:19,231 DEBUG: Best view : MiRNA_ +2016-08-24 17:04:19,648 DEBUG: Start: Iteration 7 +2016-08-24 17:04:19,666 DEBUG: View 0 : 0.523255813953 +2016-08-24 17:04:19,675 DEBUG: View 1 : 0.709302325581 +2016-08-24 17:04:19,714 DEBUG: View 2 : 0.418604651163 +2016-08-24 17:04:19,723 DEBUG: View 3 : 0.406976744186 +2016-08-24 17:04:19,795 DEBUG: Best view : MiRNA_ +2016-08-24 17:04:20,275 DEBUG: Start: Iteration 8 +2016-08-24 17:04:20,293 DEBUG: View 0 : 0.78488372093 +2016-08-24 17:04:20,302 DEBUG: View 1 : 0.593023255814 +2016-08-24 17:04:20,342 DEBUG: View 2 : 0.540697674419 +2016-08-24 17:04:20,350 DEBUG: View 3 : 0.639534883721 +2016-08-24 17:04:20,425 DEBUG: Best view : Methyl +2016-08-24 17:04:20,980 DEBUG: Start: Iteration 9 +2016-08-24 17:04:20,998 DEBUG: View 0 : 0.31976744186 +2016-08-24 17:04:21,007 DEBUG: View 1 : 0.796511627907 +2016-08-24 17:04:21,046 DEBUG: View 2 : 0.610465116279 +2016-08-24 17:04:21,055 DEBUG: View 3 : 0.656976744186 +2016-08-24 17:04:21,131 DEBUG: Best view : MiRNA_ +2016-08-24 17:04:21,741 DEBUG: Start: Iteration 10 +2016-08-24 17:04:21,758 DEBUG: View 0 : 0.476744186047 +2016-08-24 17:04:21,767 DEBUG: View 1 : 0.354651162791 +2016-08-24 17:04:21,807 DEBUG: View 2 : 0.505813953488 +2016-08-24 17:04:21,816 DEBUG: View 3 : 0.5 +2016-08-24 17:04:21,894 DEBUG: Best view : Methyl +2016-08-24 17:04:22,579 DEBUG: Start: Iteration 11 +2016-08-24 17:04:22,597 DEBUG: View 0 : 0.575581395349 +2016-08-24 17:04:22,606 DEBUG: View 1 : 0.354651162791 +2016-08-24 17:04:22,645 DEBUG: View 2 : 0.552325581395 +2016-08-24 17:04:22,653 DEBUG: View 3 : 0.418604651163 +2016-08-24 17:04:22,736 DEBUG: Best view : Methyl +2016-08-24 17:04:23,491 DEBUG: Start: Iteration 12 +2016-08-24 17:04:23,509 DEBUG: View 0 : 0.488372093023 +2016-08-24 17:04:23,518 DEBUG: View 1 : 0.633720930233 +2016-08-24 17:04:23,556 DEBUG: View 2 : 0.616279069767 +2016-08-24 17:04:23,565 DEBUG: View 3 : 0.395348837209 +2016-08-24 17:04:23,650 DEBUG: Best view : MiRNA_ +2016-08-24 17:04:24,460 DEBUG: Start: Iteration 13 +2016-08-24 17:04:24,478 DEBUG: View 0 : 0.436046511628 +2016-08-24 17:04:24,487 DEBUG: View 1 : 0.627906976744 +2016-08-24 17:04:24,525 DEBUG: View 2 : 0.581395348837 +2016-08-24 17:04:24,534 DEBUG: View 3 : 0.488372093023 +2016-08-24 17:04:24,621 DEBUG: Best view : MiRNA_ +2016-08-24 17:04:25,498 DEBUG: Start: Iteration 14 +2016-08-24 17:04:25,516 DEBUG: View 0 : 0.738372093023 +2016-08-24 17:04:25,525 DEBUG: View 1 : 0.662790697674 +2016-08-24 17:04:25,564 DEBUG: View 2 : 0.46511627907 +2016-08-24 17:04:25,572 DEBUG: View 3 : 0.412790697674 +2016-08-24 17:04:25,662 DEBUG: Best view : Methyl +2016-08-24 17:04:26,603 DEBUG: Start: Iteration 15 +2016-08-24 17:04:26,621 DEBUG: View 0 : 0.56976744186 +2016-08-24 17:04:26,629 DEBUG: View 1 : 0.308139534884 +2016-08-24 17:04:26,668 DEBUG: View 2 : 0.453488372093 +2016-08-24 17:04:26,676 DEBUG: View 3 : 0.418604651163 +2016-08-24 17:04:26,769 DEBUG: Best view : Methyl +2016-08-24 17:04:27,796 DEBUG: Start: Iteration 16 +2016-08-24 17:04:27,816 DEBUG: View 0 : 0.436046511628 +2016-08-24 17:04:27,826 DEBUG: View 1 : 0.761627906977 +2016-08-24 17:04:27,866 DEBUG: View 2 : 0.668604651163 +2016-08-24 17:04:27,875 DEBUG: View 3 : 0.505813953488 +2016-08-24 17:04:27,978 DEBUG: Best view : MiRNA_ +2016-08-24 17:04:29,101 DEBUG: Start: Iteration 17 +2016-08-24 17:04:29,120 DEBUG: View 0 : 0.31976744186 +2016-08-24 17:04:29,130 DEBUG: View 1 : 0.31976744186 +2016-08-24 17:04:29,173 DEBUG: View 2 : 0.517441860465 +2016-08-24 17:04:29,183 DEBUG: View 3 : 0.505813953488 +2016-08-24 17:04:29,333 DEBUG: Best view : RANSeq +2016-08-24 17:04:30,588 DEBUG: Start: Iteration 18 +2016-08-24 17:04:30,607 DEBUG: View 0 : 0.616279069767 +2016-08-24 17:04:30,616 DEBUG: View 1 : 0.366279069767 +2016-08-24 17:04:30,656 DEBUG: View 2 : 0.372093023256 +2016-08-24 17:04:30,666 DEBUG: View 3 : 0.651162790698 +2016-08-24 17:04:30,786 DEBUG: Best view : Clinic +2016-08-24 17:04:32,048 DEBUG: Start: Iteration 19 +2016-08-24 17:04:32,066 DEBUG: View 0 : 0.523255813953 +2016-08-24 17:04:32,075 DEBUG: View 1 : 0.441860465116 +2016-08-24 17:04:32,114 DEBUG: View 2 : 0.436046511628 +2016-08-24 17:04:32,123 DEBUG: View 3 : 0.470930232558 +2016-08-24 17:04:32,233 DEBUG: Best view : Methyl +2016-08-24 17:04:33,641 DEBUG: Start: Iteration 20 +2016-08-24 17:04:33,666 DEBUG: View 0 : 0.406976744186 +2016-08-24 17:04:33,676 DEBUG: View 1 : 0.563953488372 +2016-08-24 17:04:33,723 DEBUG: View 2 : 0.46511627907 +2016-08-24 17:04:33,733 DEBUG: View 3 : 0.43023255814 diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-170435-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-170435-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..4766a8dfc8c6d9f7ef8e4b329f6c1cb0ff3dbad5 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Results/20160824-170435-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log @@ -0,0 +1,18 @@ +2016-08-24 17:04:35,603 INFO: Begginging +2016-08-24 17:04:35,606 INFO: ### Main Programm for Multiview Classification +2016-08-24 17:04:35,606 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Mumbo ; Cores : 1 +2016-08-24 17:04:35,607 INFO: Info: Shape of Methyl :(347, 25978) +2016-08-24 17:04:35,607 INFO: Info: Shape of MiRNA_ :(347, 1046) +2016-08-24 17:04:35,607 INFO: Info: Shape of RANSeq :(347, 73599) +2016-08-24 17:04:35,608 INFO: Info: Shape of Clinic :(347, 127) +2016-08-24 17:04:35,608 INFO: Done: Read Database Files +2016-08-24 17:04:35,608 INFO: Start: Determine validation split for ratio 0.9 +2016-08-24 17:04:35,611 INFO: Done: Determine validation split +2016-08-24 17:04:35,611 INFO: Start: Determine 2 folds +2016-08-24 17:04:35,627 INFO: Info: Length of Learning Sets: 157 +2016-08-24 17:04:35,627 INFO: Info: Length of Testing Sets: 156 +2016-08-24 17:04:35,627 INFO: Info: Length of Validation Set: 34 +2016-08-24 17:04:35,627 INFO: Done: Determine folds +2016-08-24 17:04:35,627 INFO: Start: Learning with Mumbo and 2 folds +2016-08-24 17:04:35,627 INFO: Start: Gridsearching best settings for monoview classifiers +2016-08-24 17:04:35,627 DEBUG: Start: Gridsearch for DecisionTree on Methyl diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-170504-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-170504-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..f2e8de61dd36dab70d9c6499109aa4b04e29a7f4 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Results/20160824-170504-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log @@ -0,0 +1 @@ +2016-08-24 17:05:04,538 INFO: Begginging diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-170547-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-170547-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..ed318790f510ea26b86a25cc01bf930c309d88d1 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Results/20160824-170547-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log @@ -0,0 +1 @@ +2016-08-24 17:05:47,733 INFO: Begginging diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-170609-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-170609-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..2fd16d8239ccf91ea127fa59c977ccf9079b49bf --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Results/20160824-170609-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log @@ -0,0 +1,8 @@ +2016-08-24 17:06:09,716 INFO: Begginging +2016-08-24 17:06:09,729 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 17:06:09,729 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : Adaboost +2016-08-24 17:06:09,729 DEBUG: Start: Determine Train/Test split +2016-08-24 17:06:09,742 DEBUG: Info: Shape X_train:(312, 25978), Length of y_train:312 +2016-08-24 17:06:09,743 DEBUG: Info: Shape X_test:(35, 25978), Length of y_test:35 +2016-08-24 17:06:09,743 DEBUG: Done: Determine Train/Test split +2016-08-24 17:06:09,743 DEBUG: Start: Classification diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-170651-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-170651-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..921f51754fb249d0dfc7ac96c2c599a5250e1d44 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Results/20160824-170651-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log @@ -0,0 +1,8 @@ +2016-08-24 17:06:51,976 INFO: Begginging +2016-08-24 17:06:51,987 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 17:06:51,988 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : Adaboost +2016-08-24 17:06:51,988 DEBUG: Start: Determine Train/Test split +2016-08-24 17:06:52,001 DEBUG: Info: Shape X_train:(312, 25978), Length of y_train:312 +2016-08-24 17:06:52,001 DEBUG: Info: Shape X_test:(35, 25978), Length of y_test:35 +2016-08-24 17:06:52,002 DEBUG: Done: Determine Train/Test split +2016-08-24 17:06:52,002 DEBUG: Start: Classification diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-170714-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-170714-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..7659913c847106f6cd87c44b69a9af90736b5fec --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Results/20160824-170714-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log @@ -0,0 +1,8 @@ +2016-08-24 17:07:14,669 INFO: Begginging +2016-08-24 17:07:14,681 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 17:07:14,682 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : Adaboost +2016-08-24 17:07:14,682 DEBUG: Start: Determine Train/Test split +2016-08-24 17:07:14,695 DEBUG: Info: Shape X_train:(312, 25978), Length of y_train:312 +2016-08-24 17:07:14,695 DEBUG: Info: Shape X_test:(35, 25978), Length of y_test:35 +2016-08-24 17:07:14,696 DEBUG: Done: Determine Train/Test split +2016-08-24 17:07:14,696 DEBUG: Start: Classification diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-170830-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-170830-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..c8f73426559662169f1096b253c9b99c5120ec3c --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Results/20160824-170830-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log @@ -0,0 +1,8 @@ +2016-08-24 17:08:30,663 INFO: Begginging +2016-08-24 17:08:30,675 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 17:08:30,675 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : Adaboost +2016-08-24 17:08:30,675 DEBUG: Start: Determine Train/Test split +2016-08-24 17:08:30,689 DEBUG: Info: Shape X_train:(312, 25978), Length of y_train:312 +2016-08-24 17:08:30,690 DEBUG: Info: Shape X_test:(35, 25978), Length of y_test:35 +2016-08-24 17:08:30,690 DEBUG: Done: Determine Train/Test split +2016-08-24 17:08:30,690 DEBUG: Start: Classification diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-171109-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-171109-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..796f2ca889acd7ca90f642b8a3bb78e9f8969cd0 --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Results/20160824-171109-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log @@ -0,0 +1,8 @@ +2016-08-24 17:11:09,644 INFO: Begginging +2016-08-24 17:11:09,657 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 17:11:09,657 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : Adaboost +2016-08-24 17:11:09,657 DEBUG: Start: Determine Train/Test split +2016-08-24 17:11:09,674 DEBUG: Info: Shape X_train:(312, 25978), Length of y_train:312 +2016-08-24 17:11:09,674 DEBUG: Info: Shape X_test:(35, 25978), Length of y_test:35 +2016-08-24 17:11:09,674 DEBUG: Done: Determine Train/Test split +2016-08-24 17:11:09,674 DEBUG: Start: Classification diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-171228-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-171228-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..d1279bafe2afbb9f65af8ff8f00dd70f6880140d --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Results/20160824-171228-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log @@ -0,0 +1,8 @@ +2016-08-24 17:12:28,726 INFO: Begginging +2016-08-24 17:12:28,738 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 17:12:28,738 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : Adaboost +2016-08-24 17:12:28,739 DEBUG: Start: Determine Train/Test split +2016-08-24 17:12:28,752 DEBUG: Info: Shape X_train:(312, 25978), Length of y_train:312 +2016-08-24 17:12:28,752 DEBUG: Info: Shape X_test:(35, 25978), Length of y_test:35 +2016-08-24 17:12:28,752 DEBUG: Done: Determine Train/Test split +2016-08-24 17:12:28,752 DEBUG: Start: Classification diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-171252-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-171252-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..f3d65d39040a83b2c1a7364b86e08066b3331b6c --- /dev/null +++ b/Code/MonoMutliViewClassifiers/Results/20160824-171252-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log @@ -0,0 +1,1526 @@ +2016-08-24 17:12:52,347 INFO: Begginging +2016-08-24 17:12:52,365 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 17:12:52,365 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : Adaboost +2016-08-24 17:12:52,365 DEBUG: Start: Determine Train/Test split +2016-08-24 17:12:52,379 DEBUG: Info: Shape X_train:(312, 25978), Length of y_train:312 +2016-08-24 17:12:52,379 DEBUG: Info: Shape X_test:(35, 25978), Length of y_test:35 +2016-08-24 17:12:52,379 DEBUG: Done: Determine Train/Test split +2016-08-24 17:12:52,379 DEBUG: Start: Classification +2016-08-24 17:13:02,249 DEBUG: Info: Time for Classification: 9.84349799156[s] +2016-08-24 17:13:02,249 DEBUG: Done: Classification +2016-08-24 17:13:02,283 DEBUG: Start: Statistic Results +2016-08-24 17:13:02,284 DEBUG: Info: Classification report: +2016-08-24 17:13:02,285 DEBUG: + precision recall f1-score support + + Non 0.97 0.93 0.95 30 + Oui 0.67 0.80 0.73 5 + +avg / total 0.92 0.91 0.92 35 + +2016-08-24 17:13:02,322 DEBUG: Info: Statistics: +2016-08-24 17:13:02,330 DEBUG: + Statistic Values +0 Accuracy score on test 0.914285714286 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.838213 +5 Mean of F1-Score of top 20 classes by F1-Score 0.838213 +6 Mean of F1-Score of top 30 classes by F1-Score 0.838213 +2016-08-24 17:13:02,330 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 17:13:04,158 DEBUG: Done: Statistic Results +2016-08-24 17:13:04,158 DEBUG: Start: Plot Result +2016-08-24 17:13:04,385 DEBUG: Done: Plot Result +2016-08-24 17:13:04,396 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 17:13:04,396 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : DecisionTree +2016-08-24 17:13:04,397 DEBUG: Start: Determine Train/Test split +2016-08-24 17:13:04,409 DEBUG: Info: Shape X_train:(312, 25978), Length of y_train:312 +2016-08-24 17:13:04,409 DEBUG: Info: Shape X_test:(35, 25978), Length of y_test:35 +2016-08-24 17:13:04,409 DEBUG: Done: Determine Train/Test split +2016-08-24 17:13:04,409 DEBUG: Start: Classification +2016-08-24 17:13:11,488 DEBUG: Info: Time for Classification: 7.08845591545[s] +2016-08-24 17:13:11,488 DEBUG: Done: Classification +2016-08-24 17:13:11,490 DEBUG: Start: Statistic Results +2016-08-24 17:13:11,490 DEBUG: Info: Classification report: +2016-08-24 17:13:11,491 DEBUG: + precision recall f1-score support + + Non 1.00 0.82 0.90 28 + Oui 0.58 1.00 0.74 7 + +avg / total 0.92 0.86 0.87 35 + +2016-08-24 17:13:11,498 DEBUG: Info: Statistics: +2016-08-24 17:13:11,505 DEBUG: + Statistic Values +0 Accuracy score on test 0.857142857143 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.819401 +5 Mean of F1-Score of top 20 classes by F1-Score 0.819401 +6 Mean of F1-Score of top 30 classes by F1-Score 0.819401 +2016-08-24 17:13:11,505 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 17:13:11,798 DEBUG: Done: Statistic Results +2016-08-24 17:13:11,798 DEBUG: Start: Plot Result +2016-08-24 17:13:12,021 DEBUG: Done: Plot Result +2016-08-24 17:13:12,033 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 17:13:12,033 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : KNN +2016-08-24 17:13:12,033 DEBUG: Start: Determine Train/Test split +2016-08-24 17:13:12,046 DEBUG: Info: Shape X_train:(312, 25978), Length of y_train:312 +2016-08-24 17:13:12,046 DEBUG: Info: Shape X_test:(35, 25978), Length of y_test:35 +2016-08-24 17:13:12,046 DEBUG: Done: Determine Train/Test split +2016-08-24 17:13:12,046 DEBUG: Start: Classification +2016-08-24 17:13:21,419 DEBUG: Info: Time for Classification: 9.38218188286[s] +2016-08-24 17:13:21,419 DEBUG: Done: Classification +2016-08-24 17:13:21,905 DEBUG: Start: Statistic Results +2016-08-24 17:13:21,905 DEBUG: Info: Classification report: +2016-08-24 17:13:21,906 DEBUG: + precision recall f1-score support + + Non 0.92 0.86 0.89 28 + Oui 0.56 0.71 0.63 7 + +avg / total 0.85 0.83 0.84 35 + +2016-08-24 17:13:21,908 DEBUG: Info: Statistics: +2016-08-24 17:13:21,915 DEBUG: + Statistic Values +0 Accuracy score on test 0.828571428571 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.756944 +5 Mean of F1-Score of top 20 classes by F1-Score 0.756944 +6 Mean of F1-Score of top 30 classes by F1-Score 0.756944 +2016-08-24 17:13:21,915 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 17:13:22,195 DEBUG: Done: Statistic Results +2016-08-24 17:13:22,195 DEBUG: Start: Plot Result +2016-08-24 17:13:22,884 DEBUG: Done: Plot Result +2016-08-24 17:13:22,892 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 17:13:22,892 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : RandomForest +2016-08-24 17:13:22,892 DEBUG: Start: Determine Train/Test split +2016-08-24 17:13:22,905 DEBUG: Info: Shape X_train:(312, 25978), Length of y_train:312 +2016-08-24 17:13:22,905 DEBUG: Info: Shape X_test:(35, 25978), Length of y_test:35 +2016-08-24 17:13:22,905 DEBUG: Done: Determine Train/Test split +2016-08-24 17:13:22,905 DEBUG: Start: Classification +2016-08-24 17:13:30,919 DEBUG: Info: Time for Classification: 8.02398109436[s] +2016-08-24 17:13:30,920 DEBUG: Done: Classification +2016-08-24 17:13:30,937 DEBUG: Start: Statistic Results +2016-08-24 17:13:30,937 DEBUG: Info: Classification report: +2016-08-24 17:13:30,938 DEBUG: + precision recall f1-score support + + Non 0.91 0.80 0.85 25 + Oui 0.62 0.80 0.70 10 + +avg / total 0.83 0.80 0.81 35 + +2016-08-24 17:13:30,940 DEBUG: Info: Statistics: +2016-08-24 17:13:30,947 DEBUG: + Statistic Values +0 Accuracy score on test 0.8 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.773358 +5 Mean of F1-Score of top 20 classes by F1-Score 0.773358 +6 Mean of F1-Score of top 30 classes by F1-Score 0.773358 +2016-08-24 17:13:30,947 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 17:13:31,246 DEBUG: Done: Statistic Results +2016-08-24 17:13:31,246 DEBUG: Start: Plot Result +2016-08-24 17:13:31,467 DEBUG: Done: Plot Result +2016-08-24 17:13:31,475 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 17:13:31,475 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SGD +2016-08-24 17:13:31,475 DEBUG: Start: Determine Train/Test split +2016-08-24 17:13:31,488 DEBUG: Info: Shape X_train:(312, 25978), Length of y_train:312 +2016-08-24 17:13:31,488 DEBUG: Info: Shape X_test:(35, 25978), Length of y_test:35 +2016-08-24 17:13:31,488 DEBUG: Done: Determine Train/Test split +2016-08-24 17:13:31,488 DEBUG: Start: Classification +2016-08-24 17:13:32,881 DEBUG: Info: Time for Classification: 1.40213799477[s] +2016-08-24 17:13:32,881 DEBUG: Done: Classification +2016-08-24 17:13:32,898 DEBUG: Start: Statistic Results +2016-08-24 17:13:32,899 DEBUG: Info: Classification report: +2016-08-24 17:13:32,900 DEBUG: + precision recall f1-score support + + Non 1.00 0.67 0.80 27 + Oui 0.47 1.00 0.64 8 + +avg / total 0.88 0.74 0.76 35 + +2016-08-24 17:13:32,902 DEBUG: Info: Statistics: +2016-08-24 17:13:32,911 DEBUG: + Statistic Values +0 Accuracy score on test 0.742857142857 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.72 +5 Mean of F1-Score of top 20 classes by F1-Score 0.72 +6 Mean of F1-Score of top 30 classes by F1-Score 0.72 +2016-08-24 17:13:32,912 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 17:13:33,221 DEBUG: Done: Statistic Results +2016-08-24 17:13:33,221 DEBUG: Start: Plot Result +2016-08-24 17:13:33,508 DEBUG: Done: Plot Result +2016-08-24 17:13:33,518 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 17:13:33,518 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMLinear +2016-08-24 17:13:33,518 DEBUG: Start: Determine Train/Test split +2016-08-24 17:13:33,532 DEBUG: Info: Shape X_train:(312, 25978), Length of y_train:312 +2016-08-24 17:13:33,532 DEBUG: Info: Shape X_test:(35, 25978), Length of y_test:35 +2016-08-24 17:13:33,532 DEBUG: Done: Determine Train/Test split +2016-08-24 17:13:33,533 DEBUG: Start: Classification +2016-08-24 17:13:40,859 DEBUG: Info: Time for Classification: 7.33764505386[s] +2016-08-24 17:13:40,859 DEBUG: Done: Classification +2016-08-24 17:13:40,998 DEBUG: Start: Statistic Results +2016-08-24 17:13:40,998 DEBUG: Info: Classification report: +2016-08-24 17:13:40,999 DEBUG: + precision recall f1-score support + + Non 0.80 1.00 0.89 24 + Oui 1.00 0.45 0.62 11 + +avg / total 0.86 0.83 0.81 35 + +2016-08-24 17:13:41,001 DEBUG: Info: Statistics: +2016-08-24 17:13:41,008 DEBUG: + Statistic Values +0 Accuracy score on test 0.828571428571 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.756944 +5 Mean of F1-Score of top 20 classes by F1-Score 0.756944 +6 Mean of F1-Score of top 30 classes by F1-Score 0.756944 +2016-08-24 17:13:41,008 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 17:13:41,289 DEBUG: Done: Statistic Results +2016-08-24 17:13:41,289 DEBUG: Start: Plot Result +2016-08-24 17:13:41,642 DEBUG: Done: Plot Result +2016-08-24 17:13:41,650 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 17:13:41,650 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMPoly +2016-08-24 17:13:41,650 DEBUG: Start: Determine Train/Test split +2016-08-24 17:13:41,663 DEBUG: Info: Shape X_train:(312, 25978), Length of y_train:312 +2016-08-24 17:13:41,663 DEBUG: Info: Shape X_test:(35, 25978), Length of y_test:35 +2016-08-24 17:13:41,663 DEBUG: Done: Determine Train/Test split +2016-08-24 17:13:41,663 DEBUG: Start: Classification +2016-08-24 17:14:06,809 DEBUG: Info: Time for Classification: 25.1557309628[s] +2016-08-24 17:14:06,809 DEBUG: Done: Classification +2016-08-24 17:14:06,949 DEBUG: Start: Statistic Results +2016-08-24 17:14:06,949 DEBUG: Info: Classification report: +2016-08-24 17:14:06,950 DEBUG: + precision recall f1-score support + + Non 0.88 0.92 0.90 25 + Oui 0.78 0.70 0.74 10 + +avg / total 0.85 0.86 0.85 35 + +2016-08-24 17:14:06,952 DEBUG: Info: Statistics: +2016-08-24 17:14:06,959 DEBUG: + Statistic Values +0 Accuracy score on test 0.857142857143 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.819401 +5 Mean of F1-Score of top 20 classes by F1-Score 0.819401 +6 Mean of F1-Score of top 30 classes by F1-Score 0.819401 +2016-08-24 17:14:06,959 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 17:14:07,241 DEBUG: Done: Statistic Results +2016-08-24 17:14:07,241 DEBUG: Start: Plot Result +2016-08-24 17:14:07,583 DEBUG: Done: Plot Result +2016-08-24 17:14:07,591 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 17:14:07,592 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMRBF +2016-08-24 17:14:07,592 DEBUG: Start: Determine Train/Test split +2016-08-24 17:14:07,605 DEBUG: Info: Shape X_train:(312, 25978), Length of y_train:312 +2016-08-24 17:14:07,605 DEBUG: Info: Shape X_test:(35, 25978), Length of y_test:35 +2016-08-24 17:14:07,605 DEBUG: Done: Determine Train/Test split +2016-08-24 17:14:07,605 DEBUG: Start: Classification +2016-08-24 17:14:15,024 DEBUG: Info: Time for Classification: 7.42890310287[s] +2016-08-24 17:14:15,024 DEBUG: Done: Classification +2016-08-24 17:14:15,163 DEBUG: Start: Statistic Results +2016-08-24 17:14:15,163 DEBUG: Info: Classification report: +2016-08-24 17:14:15,164 DEBUG: + precision recall f1-score support + + Non 1.00 0.97 0.98 29 + Oui 0.86 1.00 0.92 6 + +avg / total 0.98 0.97 0.97 35 + +2016-08-24 17:14:15,165 DEBUG: Info: Statistics: +2016-08-24 17:14:15,172 DEBUG: + Statistic Values +0 Accuracy score on test 0.971428571429 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.952767 +5 Mean of F1-Score of top 20 classes by F1-Score 0.952767 +6 Mean of F1-Score of top 30 classes by F1-Score 0.952767 +2016-08-24 17:14:15,172 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 17:14:15,325 DEBUG: Done: Statistic Results +2016-08-24 17:14:15,325 DEBUG: Start: Plot Result +2016-08-24 17:14:15,573 DEBUG: Done: Plot Result +2016-08-24 17:14:15,575 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 17:14:15,575 DEBUG: ### Classification - Database:MultiOmic Feature:RNASeq train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : Adaboost +2016-08-24 17:14:15,575 DEBUG: Start: Determine Train/Test split +2016-08-24 17:14:15,576 DEBUG: Info: Shape X_train:(312, 1046), Length of y_train:312 +2016-08-24 17:14:15,576 DEBUG: Info: Shape X_test:(35, 1046), Length of y_test:35 +2016-08-24 17:14:15,576 DEBUG: Done: Determine Train/Test split +2016-08-24 17:14:15,576 DEBUG: Start: Classification +2016-08-24 17:14:15,863 DEBUG: Info: Time for Classification: 0.284190177917[s] +2016-08-24 17:14:15,863 DEBUG: Done: Classification +2016-08-24 17:14:15,864 DEBUG: Start: Statistic Results +2016-08-24 17:14:15,865 DEBUG: Info: Classification report: +2016-08-24 17:14:15,865 DEBUG: + precision recall f1-score support + + Non 0.84 0.88 0.86 24 + Oui 0.70 0.64 0.67 11 + +avg / total 0.80 0.80 0.80 35 + +2016-08-24 17:14:15,876 DEBUG: Info: Statistics: +2016-08-24 17:14:15,883 DEBUG: + Statistic Values +0 Accuracy score on test 0.8 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.761905 +5 Mean of F1-Score of top 20 classes by F1-Score 0.761905 +6 Mean of F1-Score of top 30 classes by F1-Score 0.761905 +2016-08-24 17:14:15,883 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 17:14:16,173 DEBUG: Done: Statistic Results +2016-08-24 17:14:16,173 DEBUG: Start: Plot Result +2016-08-24 17:14:16,378 DEBUG: Done: Plot Result +2016-08-24 17:14:16,379 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 17:14:16,379 DEBUG: ### Classification - Database:MultiOmic Feature:RNASeq train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : DecisionTree +2016-08-24 17:14:16,379 DEBUG: Start: Determine Train/Test split +2016-08-24 17:14:16,380 DEBUG: Info: Shape X_train:(312, 1046), Length of y_train:312 +2016-08-24 17:14:16,380 DEBUG: Info: Shape X_test:(35, 1046), Length of y_test:35 +2016-08-24 17:14:16,380 DEBUG: Done: Determine Train/Test split +2016-08-24 17:14:16,380 DEBUG: Start: Classification +2016-08-24 17:14:16,590 DEBUG: Info: Time for Classification: 0.207895994186[s] +2016-08-24 17:14:16,590 DEBUG: Done: Classification +2016-08-24 17:14:16,592 DEBUG: Start: Statistic Results +2016-08-24 17:14:16,592 DEBUG: Info: Classification report: +2016-08-24 17:14:16,593 DEBUG: + precision recall f1-score support + + Non 0.85 0.92 0.88 25 + Oui 0.75 0.60 0.67 10 + +avg / total 0.82 0.83 0.82 35 + +2016-08-24 17:14:16,594 DEBUG: Info: Statistics: +2016-08-24 17:14:16,601 DEBUG: + Statistic Values +0 Accuracy score on test 0.828571428571 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.775641 +5 Mean of F1-Score of top 20 classes by F1-Score 0.775641 +6 Mean of F1-Score of top 30 classes by F1-Score 0.775641 +2016-08-24 17:14:16,602 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 17:14:16,883 DEBUG: Done: Statistic Results +2016-08-24 17:14:16,884 DEBUG: Start: Plot Result +2016-08-24 17:14:17,095 DEBUG: Done: Plot Result +2016-08-24 17:14:17,097 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 17:14:17,097 DEBUG: ### Classification - Database:MultiOmic Feature:RNASeq train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : KNN +2016-08-24 17:14:17,097 DEBUG: Start: Determine Train/Test split +2016-08-24 17:14:17,097 DEBUG: Info: Shape X_train:(312, 1046), Length of y_train:312 +2016-08-24 17:14:17,097 DEBUG: Info: Shape X_test:(35, 1046), Length of y_test:35 +2016-08-24 17:14:17,098 DEBUG: Done: Determine Train/Test split +2016-08-24 17:14:17,098 DEBUG: Start: Classification +2016-08-24 17:14:17,430 DEBUG: Info: Time for Classification: 0.33030295372[s] +2016-08-24 17:14:17,430 DEBUG: Done: Classification +2016-08-24 17:14:17,447 DEBUG: Start: Statistic Results +2016-08-24 17:14:17,447 DEBUG: Info: Classification report: +2016-08-24 17:14:17,448 DEBUG: + precision recall f1-score support + + Non 0.83 0.93 0.88 27 + Oui 0.60 0.38 0.46 8 + +avg / total 0.78 0.80 0.78 35 + +2016-08-24 17:14:17,450 DEBUG: Info: Statistics: +2016-08-24 17:14:17,457 DEBUG: + Statistic Values +0 Accuracy score on test 0.8 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.669366 +5 Mean of F1-Score of top 20 classes by F1-Score 0.669366 +6 Mean of F1-Score of top 30 classes by F1-Score 0.669366 +2016-08-24 17:14:17,457 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 17:14:17,736 DEBUG: Done: Statistic Results +2016-08-24 17:14:17,736 DEBUG: Start: Plot Result +2016-08-24 17:14:17,957 DEBUG: Done: Plot Result +2016-08-24 17:14:17,958 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 17:14:17,958 DEBUG: ### Classification - Database:MultiOmic Feature:RNASeq train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : RandomForest +2016-08-24 17:14:17,958 DEBUG: Start: Determine Train/Test split +2016-08-24 17:14:17,959 DEBUG: Info: Shape X_train:(312, 1046), Length of y_train:312 +2016-08-24 17:14:17,959 DEBUG: Info: Shape X_test:(35, 1046), Length of y_test:35 +2016-08-24 17:14:17,959 DEBUG: Done: Determine Train/Test split +2016-08-24 17:14:17,959 DEBUG: Start: Classification +2016-08-24 17:14:20,605 DEBUG: Info: Time for Classification: 2.64367699623[s] +2016-08-24 17:14:20,605 DEBUG: Done: Classification +2016-08-24 17:14:20,613 DEBUG: Start: Statistic Results +2016-08-24 17:14:20,613 DEBUG: Info: Classification report: +2016-08-24 17:14:20,614 DEBUG: + precision recall f1-score support + + Non 0.93 0.96 0.94 26 + Oui 0.88 0.78 0.82 9 + +avg / total 0.91 0.91 0.91 35 + +2016-08-24 17:14:20,616 DEBUG: Info: Statistics: +2016-08-24 17:14:20,623 DEBUG: + Statistic Values +0 Accuracy score on test 0.914285714286 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.883463 +5 Mean of F1-Score of top 20 classes by F1-Score 0.883463 +6 Mean of F1-Score of top 30 classes by F1-Score 0.883463 +2016-08-24 17:14:20,623 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 17:14:20,917 DEBUG: Done: Statistic Results +2016-08-24 17:14:20,917 DEBUG: Start: Plot Result +2016-08-24 17:14:21,129 DEBUG: Done: Plot Result +2016-08-24 17:14:21,130 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 17:14:21,130 DEBUG: ### Classification - Database:MultiOmic Feature:RNASeq train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SGD +2016-08-24 17:14:21,131 DEBUG: Start: Determine Train/Test split +2016-08-24 17:14:21,131 DEBUG: Info: Shape X_train:(312, 1046), Length of y_train:312 +2016-08-24 17:14:21,131 DEBUG: Info: Shape X_test:(35, 1046), Length of y_test:35 +2016-08-24 17:14:21,131 DEBUG: Done: Determine Train/Test split +2016-08-24 17:14:21,131 DEBUG: Start: Classification +2016-08-24 17:14:21,217 DEBUG: Info: Time for Classification: 0.082671880722[s] +2016-08-24 17:14:21,217 DEBUG: Done: Classification +2016-08-24 17:14:21,218 DEBUG: Start: Statistic Results +2016-08-24 17:14:21,219 DEBUG: Info: Classification report: +2016-08-24 17:14:21,219 DEBUG: + precision recall f1-score support + + Non 0.73 0.90 0.81 21 + Oui 0.78 0.50 0.61 14 + +avg / total 0.75 0.74 0.73 35 + +2016-08-24 17:14:21,222 DEBUG: Info: Statistics: +2016-08-24 17:14:21,229 DEBUG: + Statistic Values +0 Accuracy score on test 0.742857142857 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.708603 +5 Mean of F1-Score of top 20 classes by F1-Score 0.708603 +6 Mean of F1-Score of top 30 classes by F1-Score 0.708603 +2016-08-24 17:14:21,229 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 17:14:21,554 DEBUG: Done: Statistic Results +2016-08-24 17:14:21,554 DEBUG: Start: Plot Result +2016-08-24 17:14:21,788 DEBUG: Done: Plot Result +2016-08-24 17:14:21,790 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 17:14:21,790 DEBUG: ### Classification - Database:MultiOmic Feature:RNASeq train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMLinear +2016-08-24 17:14:21,790 DEBUG: Start: Determine Train/Test split +2016-08-24 17:14:21,790 DEBUG: Info: Shape X_train:(312, 1046), Length of y_train:312 +2016-08-24 17:14:21,790 DEBUG: Info: Shape X_test:(35, 1046), Length of y_test:35 +2016-08-24 17:14:21,791 DEBUG: Done: Determine Train/Test split +2016-08-24 17:14:21,791 DEBUG: Start: Classification +2016-08-24 17:14:33,705 DEBUG: Info: Time for Classification: 11.9117758274[s] +2016-08-24 17:14:33,705 DEBUG: Done: Classification +2016-08-24 17:14:33,709 DEBUG: Start: Statistic Results +2016-08-24 17:14:33,709 DEBUG: Info: Classification report: +2016-08-24 17:14:33,710 DEBUG: + precision recall f1-score support + + Non 0.86 0.90 0.88 21 + Oui 0.85 0.79 0.81 14 + +avg / total 0.86 0.86 0.86 35 + +2016-08-24 17:14:33,712 DEBUG: Info: Statistics: +2016-08-24 17:14:33,719 DEBUG: + Statistic Values +0 Accuracy score on test 0.857142857143 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.849268 +5 Mean of F1-Score of top 20 classes by F1-Score 0.849268 +6 Mean of F1-Score of top 30 classes by F1-Score 0.849268 +2016-08-24 17:14:33,720 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 17:14:34,006 DEBUG: Done: Statistic Results +2016-08-24 17:14:34,006 DEBUG: Start: Plot Result +2016-08-24 17:14:34,214 DEBUG: Done: Plot Result +2016-08-24 17:14:34,215 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 17:14:34,215 DEBUG: ### Classification - Database:MultiOmic Feature:RNASeq train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMPoly +2016-08-24 17:14:34,216 DEBUG: Start: Determine Train/Test split +2016-08-24 17:14:34,216 DEBUG: Info: Shape X_train:(312, 1046), Length of y_train:312 +2016-08-24 17:14:34,216 DEBUG: Info: Shape X_test:(35, 1046), Length of y_test:35 +2016-08-24 17:14:34,216 DEBUG: Done: Determine Train/Test split +2016-08-24 17:14:34,216 DEBUG: Start: Classification +2016-08-24 17:14:50,392 DEBUG: Info: Time for Classification: 16.1731550694[s] +2016-08-24 17:14:50,392 DEBUG: Done: Classification +2016-08-24 17:14:50,396 DEBUG: Start: Statistic Results +2016-08-24 17:14:50,397 DEBUG: Info: Classification report: +2016-08-24 17:14:50,398 DEBUG: + precision recall f1-score support + + Non 0.92 0.83 0.87 29 + Oui 0.44 0.67 0.53 6 + +avg / total 0.84 0.80 0.81 35 + +2016-08-24 17:14:50,400 DEBUG: Info: Statistics: +2016-08-24 17:14:50,407 DEBUG: + Statistic Values +0 Accuracy score on test 0.8 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.70303 +5 Mean of F1-Score of top 20 classes by F1-Score 0.70303 +6 Mean of F1-Score of top 30 classes by F1-Score 0.70303 +2016-08-24 17:14:50,407 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 17:14:50,693 DEBUG: Done: Statistic Results +2016-08-24 17:14:50,694 DEBUG: Start: Plot Result +2016-08-24 17:14:50,901 DEBUG: Done: Plot Result +2016-08-24 17:14:50,902 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 17:14:50,902 DEBUG: ### Classification - Database:MultiOmic Feature:RNASeq train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMRBF +2016-08-24 17:14:50,902 DEBUG: Start: Determine Train/Test split +2016-08-24 17:14:50,903 DEBUG: Info: Shape X_train:(312, 1046), Length of y_train:312 +2016-08-24 17:14:50,903 DEBUG: Info: Shape X_test:(35, 1046), Length of y_test:35 +2016-08-24 17:14:50,903 DEBUG: Done: Determine Train/Test split +2016-08-24 17:14:50,903 DEBUG: Start: Classification +2016-08-24 17:14:51,458 DEBUG: Info: Time for Classification: 0.552815914154[s] +2016-08-24 17:14:51,458 DEBUG: Done: Classification +2016-08-24 17:14:51,471 DEBUG: Start: Statistic Results +2016-08-24 17:14:51,471 DEBUG: Info: Classification report: +2016-08-24 17:14:51,482 DEBUG: + precision recall f1-score support + + Non 0.80 1.00 0.89 28 + Oui 0.00 0.00 0.00 7 + +avg / total 0.64 0.80 0.71 35 + +2016-08-24 17:14:51,484 DEBUG: Info: Statistics: +2016-08-24 17:14:51,492 DEBUG: + Statistic Values +0 Accuracy score on test 0.8 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0.5 +4 Mean of F1-Score of top 10 classes by F1-Score 0.444444 +5 Mean of F1-Score of top 20 classes by F1-Score 0.444444 +6 Mean of F1-Score of top 30 classes by F1-Score 0.444444 +2016-08-24 17:14:51,492 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 17:14:51,798 DEBUG: Done: Statistic Results +2016-08-24 17:14:51,799 DEBUG: Start: Plot Result +2016-08-24 17:14:52,015 DEBUG: Done: Plot Result +2016-08-24 17:14:52,044 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 17:14:52,044 DEBUG: ### Classification - Database:MultiOmic Feature:Clinic train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : Adaboost +2016-08-24 17:14:52,044 DEBUG: Start: Determine Train/Test split +2016-08-24 17:14:52,105 DEBUG: Info: Shape X_train:(312, 73599), Length of y_train:312 +2016-08-24 17:14:52,105 DEBUG: Info: Shape X_test:(35, 73599), Length of y_test:35 +2016-08-24 17:14:52,105 DEBUG: Done: Determine Train/Test split +2016-08-24 17:14:52,105 DEBUG: Start: Classification +2016-08-24 17:15:33,379 DEBUG: Info: Time for Classification: 41.3318929672[s] +2016-08-24 17:15:33,379 DEBUG: Done: Classification +2016-08-24 17:15:33,384 DEBUG: Start: Statistic Results +2016-08-24 17:15:33,384 DEBUG: Info: Classification report: +2016-08-24 17:15:33,385 DEBUG: + precision recall f1-score support + + Non 0.67 0.64 0.65 25 + Oui 0.18 0.20 0.19 10 + +avg / total 0.53 0.51 0.52 35 + +2016-08-24 17:15:33,387 DEBUG: Info: Statistics: +2016-08-24 17:15:33,394 DEBUG: + Statistic Values +0 Accuracy score on test 0.514285714286 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.421769 +5 Mean of F1-Score of top 20 classes by F1-Score 0.421769 +6 Mean of F1-Score of top 30 classes by F1-Score 0.421769 +2016-08-24 17:15:33,394 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 17:15:33,680 DEBUG: Done: Statistic Results +2016-08-24 17:15:33,680 DEBUG: Start: Plot Result +2016-08-24 17:15:33,894 DEBUG: Done: Plot Result +2016-08-24 17:15:33,924 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 17:15:33,924 DEBUG: ### Classification - Database:MultiOmic Feature:Clinic train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : DecisionTree +2016-08-24 17:15:33,924 DEBUG: Start: Determine Train/Test split +2016-08-24 17:15:33,960 DEBUG: Info: Shape X_train:(312, 73599), Length of y_train:312 +2016-08-24 17:15:33,960 DEBUG: Info: Shape X_test:(35, 73599), Length of y_test:35 +2016-08-24 17:15:33,960 DEBUG: Done: Determine Train/Test split +2016-08-24 17:15:33,960 DEBUG: Start: Classification +2016-08-24 17:15:53,507 DEBUG: Info: Time for Classification: 19.5791618824[s] +2016-08-24 17:15:53,507 DEBUG: Done: Classification +2016-08-24 17:15:53,510 DEBUG: Start: Statistic Results +2016-08-24 17:15:53,510 DEBUG: Info: Classification report: +2016-08-24 17:15:53,511 DEBUG: + precision recall f1-score support + + Non 0.80 0.71 0.75 28 + Oui 0.20 0.29 0.24 7 + +avg / total 0.68 0.63 0.65 35 + +2016-08-24 17:15:53,513 DEBUG: Info: Statistics: +2016-08-24 17:15:53,535 DEBUG: + Statistic Values +0 Accuracy score on test 0.628571428571 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.495006 +5 Mean of F1-Score of top 20 classes by F1-Score 0.495006 +6 Mean of F1-Score of top 30 classes by F1-Score 0.495006 +2016-08-24 17:15:53,535 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 17:15:53,808 DEBUG: Done: Statistic Results +2016-08-24 17:15:53,809 DEBUG: Start: Plot Result +2016-08-24 17:15:54,018 DEBUG: Done: Plot Result +2016-08-24 17:15:54,047 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 17:15:54,047 DEBUG: ### Classification - Database:MultiOmic Feature:Clinic train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : KNN +2016-08-24 17:15:54,047 DEBUG: Start: Determine Train/Test split +2016-08-24 17:15:54,082 DEBUG: Info: Shape X_train:(312, 73599), Length of y_train:312 +2016-08-24 17:15:54,082 DEBUG: Info: Shape X_test:(35, 73599), Length of y_test:35 +2016-08-24 17:15:54,082 DEBUG: Done: Determine Train/Test split +2016-08-24 17:15:54,083 DEBUG: Start: Classification +2016-08-24 17:16:20,926 DEBUG: Info: Time for Classification: 26.8760640621[s] +2016-08-24 17:16:20,926 DEBUG: Done: Classification +2016-08-24 17:16:22,296 DEBUG: Start: Statistic Results +2016-08-24 17:16:22,296 DEBUG: Info: Classification report: +2016-08-24 17:16:22,297 DEBUG: + precision recall f1-score support + + Non 0.74 0.96 0.83 26 + Oui 0.00 0.00 0.00 9 + +avg / total 0.55 0.71 0.62 35 + +2016-08-24 17:16:22,299 DEBUG: Info: Statistics: +2016-08-24 17:16:22,306 DEBUG: + Statistic Values +0 Accuracy score on test 0.714285714286 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0.5 +4 Mean of F1-Score of top 10 classes by F1-Score 0.416667 +5 Mean of F1-Score of top 20 classes by F1-Score 0.416667 +6 Mean of F1-Score of top 30 classes by F1-Score 0.416667 +2016-08-24 17:16:22,306 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 17:16:22,613 DEBUG: Done: Statistic Results +2016-08-24 17:16:22,613 DEBUG: Start: Plot Result +2016-08-24 17:16:24,168 DEBUG: Done: Plot Result +2016-08-24 17:16:24,275 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 17:16:24,275 DEBUG: ### Classification - Database:MultiOmic Feature:Clinic train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : RandomForest +2016-08-24 17:16:24,275 DEBUG: Start: Determine Train/Test split +2016-08-24 17:16:24,311 DEBUG: Info: Shape X_train:(312, 73599), Length of y_train:312 +2016-08-24 17:16:24,311 DEBUG: Info: Shape X_test:(35, 73599), Length of y_test:35 +2016-08-24 17:16:24,311 DEBUG: Done: Determine Train/Test split +2016-08-24 17:16:24,311 DEBUG: Start: Classification +2016-08-24 17:16:35,981 DEBUG: Info: Time for Classification: 11.7026500702[s] +2016-08-24 17:16:35,981 DEBUG: Done: Classification +2016-08-24 17:16:35,991 DEBUG: Start: Statistic Results +2016-08-24 17:16:35,991 DEBUG: Info: Classification report: +2016-08-24 17:16:35,992 DEBUG: + precision recall f1-score support + + Non 0.71 1.00 0.83 24 + Oui 1.00 0.09 0.17 11 + +avg / total 0.80 0.71 0.62 35 + +2016-08-24 17:16:35,994 DEBUG: Info: Statistics: +2016-08-24 17:16:36,001 DEBUG: + Statistic Values +0 Accuracy score on test 0.714285714286 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.497126 +5 Mean of F1-Score of top 20 classes by F1-Score 0.497126 +6 Mean of F1-Score of top 30 classes by F1-Score 0.497126 +2016-08-24 17:16:36,001 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 17:16:36,287 DEBUG: Done: Statistic Results +2016-08-24 17:16:36,287 DEBUG: Start: Plot Result +2016-08-24 17:16:36,501 DEBUG: Done: Plot Result +2016-08-24 17:16:36,530 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 17:16:36,530 DEBUG: ### Classification - Database:MultiOmic Feature:Clinic train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SGD +2016-08-24 17:16:36,530 DEBUG: Start: Determine Train/Test split +2016-08-24 17:16:36,566 DEBUG: Info: Shape X_train:(312, 73599), Length of y_train:312 +2016-08-24 17:16:36,566 DEBUG: Info: Shape X_test:(35, 73599), Length of y_test:35 +2016-08-24 17:16:36,566 DEBUG: Done: Determine Train/Test split +2016-08-24 17:16:36,566 DEBUG: Start: Classification +2016-08-24 17:16:39,126 DEBUG: Info: Time for Classification: 2.59249281883[s] +2016-08-24 17:16:39,126 DEBUG: Done: Classification +2016-08-24 17:16:39,135 DEBUG: Start: Statistic Results +2016-08-24 17:16:39,135 DEBUG: Info: Classification report: +2016-08-24 17:16:39,136 DEBUG: + precision recall f1-score support + + Non 0.67 0.75 0.71 24 + Oui 0.25 0.18 0.21 11 + +avg / total 0.54 0.57 0.55 35 + +2016-08-24 17:16:39,138 DEBUG: Info: Statistics: +2016-08-24 17:16:39,146 DEBUG: + Statistic Values +0 Accuracy score on test 0.571428571429 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.458204 +5 Mean of F1-Score of top 20 classes by F1-Score 0.458204 +6 Mean of F1-Score of top 30 classes by F1-Score 0.458204 +2016-08-24 17:16:39,146 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 17:16:39,466 DEBUG: Done: Statistic Results +2016-08-24 17:16:39,466 DEBUG: Start: Plot Result +2016-08-24 17:16:39,708 DEBUG: Done: Plot Result +2016-08-24 17:16:39,740 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 17:16:39,740 DEBUG: ### Classification - Database:MultiOmic Feature:Clinic train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMLinear +2016-08-24 17:16:39,740 DEBUG: Start: Determine Train/Test split +2016-08-24 17:16:39,780 DEBUG: Info: Shape X_train:(312, 73599), Length of y_train:312 +2016-08-24 17:16:39,780 DEBUG: Info: Shape X_test:(35, 73599), Length of y_test:35 +2016-08-24 17:16:39,780 DEBUG: Done: Determine Train/Test split +2016-08-24 17:16:39,780 DEBUG: Start: Classification +2016-08-24 17:17:12,799 DEBUG: Info: Time for Classification: 33.0559568405[s] +2016-08-24 17:17:12,800 DEBUG: Done: Classification +2016-08-24 17:17:13,409 DEBUG: Start: Statistic Results +2016-08-24 17:17:13,409 DEBUG: Info: Classification report: +2016-08-24 17:17:13,410 DEBUG: + precision recall f1-score support + + Non 0.74 0.68 0.71 25 + Oui 0.33 0.40 0.36 10 + +avg / total 0.62 0.60 0.61 35 + +2016-08-24 17:17:13,412 DEBUG: Info: Statistics: +2016-08-24 17:17:13,419 DEBUG: + Statistic Values +0 Accuracy score on test 0.6 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.535985 +5 Mean of F1-Score of top 20 classes by F1-Score 0.535985 +6 Mean of F1-Score of top 30 classes by F1-Score 0.535985 +2016-08-24 17:17:13,419 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 17:17:13,707 DEBUG: Done: Statistic Results +2016-08-24 17:17:13,707 DEBUG: Start: Plot Result +2016-08-24 17:17:14,521 DEBUG: Done: Plot Result +2016-08-24 17:17:14,557 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 17:17:14,557 DEBUG: ### Classification - Database:MultiOmic Feature:Clinic train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMPoly +2016-08-24 17:17:14,557 DEBUG: Start: Determine Train/Test split +2016-08-24 17:17:14,593 DEBUG: Info: Shape X_train:(312, 73599), Length of y_train:312 +2016-08-24 17:17:14,593 DEBUG: Info: Shape X_test:(35, 73599), Length of y_test:35 +2016-08-24 17:17:14,594 DEBUG: Done: Determine Train/Test split +2016-08-24 17:17:14,594 DEBUG: Start: Classification +2016-08-24 17:19:04,671 DEBUG: Info: Time for Classification: 110.109973192[s] +2016-08-24 17:19:04,671 DEBUG: Done: Classification +2016-08-24 17:19:05,281 DEBUG: Start: Statistic Results +2016-08-24 17:19:05,281 DEBUG: Info: Classification report: +2016-08-24 17:19:05,282 DEBUG: + precision recall f1-score support + + Non 0.77 0.92 0.84 25 + Oui 0.60 0.30 0.40 10 + +avg / total 0.72 0.74 0.71 35 + +2016-08-24 17:19:05,284 DEBUG: Info: Statistics: +2016-08-24 17:19:05,291 DEBUG: + Statistic Values +0 Accuracy score on test 0.742857142857 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.618182 +5 Mean of F1-Score of top 20 classes by F1-Score 0.618182 +6 Mean of F1-Score of top 30 classes by F1-Score 0.618182 +2016-08-24 17:19:05,291 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 17:19:05,584 DEBUG: Done: Statistic Results +2016-08-24 17:19:05,584 DEBUG: Start: Plot Result +2016-08-24 17:19:06,399 DEBUG: Done: Plot Result +2016-08-24 17:19:06,435 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 17:19:06,435 DEBUG: ### Classification - Database:MultiOmic Feature:Clinic train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMRBF +2016-08-24 17:19:06,435 DEBUG: Start: Determine Train/Test split +2016-08-24 17:19:06,471 DEBUG: Info: Shape X_train:(312, 73599), Length of y_train:312 +2016-08-24 17:19:06,471 DEBUG: Info: Shape X_test:(35, 73599), Length of y_test:35 +2016-08-24 17:19:06,471 DEBUG: Done: Determine Train/Test split +2016-08-24 17:19:06,471 DEBUG: Start: Classification +2016-08-24 17:19:44,657 DEBUG: Info: Time for Classification: 38.2183771133[s] +2016-08-24 17:19:44,657 DEBUG: Done: Classification +2016-08-24 17:19:45,518 DEBUG: Start: Statistic Results +2016-08-24 17:19:45,518 DEBUG: Info: Classification report: +2016-08-24 17:19:45,519 DEBUG: + precision recall f1-score support + + Non 0.77 1.00 0.87 27 + Oui 0.00 0.00 0.00 8 + +avg / total 0.60 0.77 0.67 35 + +2016-08-24 17:19:45,521 DEBUG: Info: Statistics: +2016-08-24 17:19:45,528 DEBUG: + Statistic Values +0 Accuracy score on test 0.771428571429 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0.5 +4 Mean of F1-Score of top 10 classes by F1-Score 0.435484 +5 Mean of F1-Score of top 20 classes by F1-Score 0.435484 +6 Mean of F1-Score of top 30 classes by F1-Score 0.435484 +2016-08-24 17:19:45,528 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 17:19:45,835 DEBUG: Done: Statistic Results +2016-08-24 17:19:45,835 DEBUG: Start: Plot Result +2016-08-24 17:19:46,893 DEBUG: Done: Plot Result +2016-08-24 17:19:46,931 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 17:19:46,931 DEBUG: ### Classification - Database:MultiOmic Feature:Methyl train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : Adaboost +2016-08-24 17:19:46,931 DEBUG: Start: Determine Train/Test split +2016-08-24 17:19:46,931 DEBUG: Info: Shape X_train:(312, 127), Length of y_train:312 +2016-08-24 17:19:46,932 DEBUG: Info: Shape X_test:(35, 127), Length of y_test:35 +2016-08-24 17:19:46,932 DEBUG: Done: Determine Train/Test split +2016-08-24 17:19:46,932 DEBUG: Start: Classification +2016-08-24 17:19:47,048 DEBUG: Info: Time for Classification: 0.114088058472[s] +2016-08-24 17:19:47,048 DEBUG: Done: Classification +2016-08-24 17:19:47,050 DEBUG: Start: Statistic Results +2016-08-24 17:19:47,050 DEBUG: Info: Classification report: +2016-08-24 17:19:47,051 DEBUG: + precision recall f1-score support + + Non 0.91 1.00 0.95 21 + Oui 1.00 0.86 0.92 14 + +avg / total 0.95 0.94 0.94 35 + +2016-08-24 17:19:47,053 DEBUG: Info: Statistics: +2016-08-24 17:19:47,060 DEBUG: + Statistic Values +0 Accuracy score on test 0.942857142857 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.938811 +5 Mean of F1-Score of top 20 classes by F1-Score 0.938811 +6 Mean of F1-Score of top 30 classes by F1-Score 0.938811 +2016-08-24 17:19:47,060 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 17:19:47,348 DEBUG: Done: Statistic Results +2016-08-24 17:19:47,349 DEBUG: Start: Plot Result +2016-08-24 17:19:47,573 DEBUG: Done: Plot Result +2016-08-24 17:19:47,574 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 17:19:47,574 DEBUG: ### Classification - Database:MultiOmic Feature:Methyl train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : DecisionTree +2016-08-24 17:19:47,575 DEBUG: Start: Determine Train/Test split +2016-08-24 17:19:47,575 DEBUG: Info: Shape X_train:(312, 127), Length of y_train:312 +2016-08-24 17:19:47,575 DEBUG: Info: Shape X_test:(35, 127), Length of y_test:35 +2016-08-24 17:19:47,575 DEBUG: Done: Determine Train/Test split +2016-08-24 17:19:47,575 DEBUG: Start: Classification +2016-08-24 17:19:47,616 DEBUG: Info: Time for Classification: 0.038232088089[s] +2016-08-24 17:19:47,616 DEBUG: Done: Classification +2016-08-24 17:19:47,617 DEBUG: Start: Statistic Results +2016-08-24 17:19:47,618 DEBUG: Info: Classification report: +2016-08-24 17:19:47,618 DEBUG: + precision recall f1-score support + + Non 0.71 1.00 0.83 25 + Oui 0.00 0.00 0.00 10 + +avg / total 0.51 0.71 0.60 35 + +2016-08-24 17:19:47,620 DEBUG: Info: Statistics: +2016-08-24 17:19:47,637 DEBUG: + Statistic Values +0 Accuracy score on test 0.714285714286 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0.5 +4 Mean of F1-Score of top 10 classes by F1-Score 0.416667 +5 Mean of F1-Score of top 20 classes by F1-Score 0.416667 +6 Mean of F1-Score of top 30 classes by F1-Score 0.416667 +2016-08-24 17:19:47,637 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 17:19:47,922 DEBUG: Done: Statistic Results +2016-08-24 17:19:47,922 DEBUG: Start: Plot Result +2016-08-24 17:19:48,128 DEBUG: Done: Plot Result +2016-08-24 17:19:48,129 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 17:19:48,129 DEBUG: ### Classification - Database:MultiOmic Feature:Methyl train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : KNN +2016-08-24 17:19:48,129 DEBUG: Start: Determine Train/Test split +2016-08-24 17:19:48,129 DEBUG: Info: Shape X_train:(312, 127), Length of y_train:312 +2016-08-24 17:19:48,130 DEBUG: Info: Shape X_test:(35, 127), Length of y_test:35 +2016-08-24 17:19:48,130 DEBUG: Done: Determine Train/Test split +2016-08-24 17:19:48,130 DEBUG: Start: Classification +2016-08-24 17:19:48,211 DEBUG: Info: Time for Classification: 0.0789890289307[s] +2016-08-24 17:19:48,211 DEBUG: Done: Classification +2016-08-24 17:19:48,214 DEBUG: Start: Statistic Results +2016-08-24 17:19:48,215 DEBUG: Info: Classification report: +2016-08-24 17:19:48,215 DEBUG: + precision recall f1-score support + + Non 0.69 1.00 0.81 24 + Oui 0.00 0.00 0.00 11 + +avg / total 0.47 0.69 0.56 35 + +2016-08-24 17:19:48,217 DEBUG: Info: Statistics: +2016-08-24 17:19:48,224 DEBUG: + Statistic Values +0 Accuracy score on test 0.685714285714 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0.5 +4 Mean of F1-Score of top 10 classes by F1-Score 0.40678 +5 Mean of F1-Score of top 20 classes by F1-Score 0.40678 +6 Mean of F1-Score of top 30 classes by F1-Score 0.40678 +2016-08-24 17:19:48,225 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 17:19:48,505 DEBUG: Done: Statistic Results +2016-08-24 17:19:48,505 DEBUG: Start: Plot Result +2016-08-24 17:19:48,713 DEBUG: Done: Plot Result +2016-08-24 17:19:48,714 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 17:19:48,714 DEBUG: ### Classification - Database:MultiOmic Feature:Methyl train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : RandomForest +2016-08-24 17:19:48,714 DEBUG: Start: Determine Train/Test split +2016-08-24 17:19:48,714 DEBUG: Info: Shape X_train:(312, 127), Length of y_train:312 +2016-08-24 17:19:48,715 DEBUG: Info: Shape X_test:(35, 127), Length of y_test:35 +2016-08-24 17:19:48,715 DEBUG: Done: Determine Train/Test split +2016-08-24 17:19:48,715 DEBUG: Start: Classification +2016-08-24 17:19:51,055 DEBUG: Info: Time for Classification: 2.3381061554[s] +2016-08-24 17:19:51,055 DEBUG: Done: Classification +2016-08-24 17:19:51,067 DEBUG: Start: Statistic Results +2016-08-24 17:19:51,068 DEBUG: Info: Classification report: +2016-08-24 17:19:51,069 DEBUG: + precision recall f1-score support + + Non 0.88 1.00 0.93 28 + Oui 1.00 0.43 0.60 7 + +avg / total 0.90 0.89 0.87 35 + +2016-08-24 17:19:51,070 DEBUG: Info: Statistics: +2016-08-24 17:19:51,077 DEBUG: + Statistic Values +0 Accuracy score on test 0.885714285714 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.766667 +5 Mean of F1-Score of top 20 classes by F1-Score 0.766667 +6 Mean of F1-Score of top 30 classes by F1-Score 0.766667 +2016-08-24 17:19:51,077 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 17:19:51,369 DEBUG: Done: Statistic Results +2016-08-24 17:19:51,370 DEBUG: Start: Plot Result +2016-08-24 17:19:51,587 DEBUG: Done: Plot Result +2016-08-24 17:19:51,589 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 17:19:51,589 DEBUG: ### Classification - Database:MultiOmic Feature:Methyl train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SGD +2016-08-24 17:19:51,589 DEBUG: Start: Determine Train/Test split +2016-08-24 17:19:51,589 DEBUG: Info: Shape X_train:(312, 127), Length of y_train:312 +2016-08-24 17:19:51,589 DEBUG: Info: Shape X_test:(35, 127), Length of y_test:35 +2016-08-24 17:19:51,589 DEBUG: Done: Determine Train/Test split +2016-08-24 17:19:51,589 DEBUG: Start: Classification +2016-08-24 17:19:51,655 DEBUG: Info: Time for Classification: 0.0632700920105[s] +2016-08-24 17:19:51,656 DEBUG: Done: Classification +2016-08-24 17:19:51,657 DEBUG: Start: Statistic Results +2016-08-24 17:19:51,657 DEBUG: Info: Classification report: +2016-08-24 17:19:51,658 DEBUG: + precision recall f1-score support + + Non 1.00 0.14 0.25 28 + Oui 0.23 1.00 0.37 7 + +avg / total 0.85 0.31 0.27 35 + +2016-08-24 17:19:51,660 DEBUG: Info: Statistics: +2016-08-24 17:19:51,668 DEBUG: + Statistic Values +0 Accuracy score on test 0.314285714286 +1 Top 10 classes by F1-Score [Oui, Non] +2 Worst 10 classes by F1-Score [Non, Oui] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.309211 +5 Mean of F1-Score of top 20 classes by F1-Score 0.309211 +6 Mean of F1-Score of top 30 classes by F1-Score 0.309211 +2016-08-24 17:19:51,668 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 17:19:51,992 DEBUG: Done: Statistic Results +2016-08-24 17:19:51,993 DEBUG: Start: Plot Result +2016-08-24 17:19:52,241 DEBUG: Done: Plot Result +2016-08-24 17:19:52,242 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 17:19:52,242 DEBUG: ### Classification - Database:MultiOmic Feature:Methyl train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMLinear +2016-08-24 17:19:52,242 DEBUG: Start: Determine Train/Test split +2016-08-24 17:19:52,242 DEBUG: Info: Shape X_train:(312, 127), Length of y_train:312 +2016-08-24 17:19:52,242 DEBUG: Info: Shape X_test:(35, 127), Length of y_test:35 +2016-08-24 17:19:52,242 DEBUG: Done: Determine Train/Test split +2016-08-24 17:19:52,242 DEBUG: Start: Classification +2016-08-24 17:21:47,120 DEBUG: Info: Time for Classification: 114.874765158[s] +2016-08-24 17:21:47,120 DEBUG: Done: Classification +2016-08-24 17:21:47,122 DEBUG: Start: Statistic Results +2016-08-24 17:21:47,122 DEBUG: Info: Classification report: +2016-08-24 17:21:47,123 DEBUG: + precision recall f1-score support + + Non 0.93 0.87 0.90 30 + Oui 0.43 0.60 0.50 5 + +avg / total 0.86 0.83 0.84 35 + +2016-08-24 17:21:47,125 DEBUG: Info: Statistics: +2016-08-24 17:21:47,132 DEBUG: + Statistic Values +0 Accuracy score on test 0.828571428571 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.698276 +5 Mean of F1-Score of top 20 classes by F1-Score 0.698276 +6 Mean of F1-Score of top 30 classes by F1-Score 0.698276 +2016-08-24 17:21:47,132 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 17:21:47,411 DEBUG: Done: Statistic Results +2016-08-24 17:21:47,411 DEBUG: Start: Plot Result +2016-08-24 17:21:47,619 DEBUG: Done: Plot Result +2016-08-24 17:21:47,620 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 17:21:47,620 DEBUG: ### Classification - Database:MultiOmic Feature:Methyl train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMPoly +2016-08-24 17:21:47,620 DEBUG: Start: Determine Train/Test split +2016-08-24 17:21:47,620 DEBUG: Info: Shape X_train:(312, 127), Length of y_train:312 +2016-08-24 17:21:47,620 DEBUG: Info: Shape X_test:(35, 127), Length of y_test:35 +2016-08-24 17:21:47,620 DEBUG: Done: Determine Train/Test split +2016-08-24 17:21:47,621 DEBUG: Start: Classification +2016-08-24 17:26:12,253 DEBUG: Info: Time for Classification: 264.629760981[s] +2016-08-24 17:26:12,253 DEBUG: Done: Classification +2016-08-24 17:26:12,255 DEBUG: Start: Statistic Results +2016-08-24 17:26:12,255 DEBUG: Info: Classification report: +2016-08-24 17:26:12,256 DEBUG: + precision recall f1-score support + + Non 0.81 0.81 0.81 27 + Oui 0.38 0.38 0.38 8 + +avg / total 0.71 0.71 0.71 35 + +2016-08-24 17:26:12,258 DEBUG: Info: Statistics: +2016-08-24 17:26:12,265 DEBUG: + Statistic Values +0 Accuracy score on test 0.714285714286 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.594907 +5 Mean of F1-Score of top 20 classes by F1-Score 0.594907 +6 Mean of F1-Score of top 30 classes by F1-Score 0.594907 +2016-08-24 17:26:12,266 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 17:26:12,563 DEBUG: Done: Statistic Results +2016-08-24 17:26:12,564 DEBUG: Start: Plot Result +2016-08-24 17:26:12,784 DEBUG: Done: Plot Result +2016-08-24 17:26:12,785 DEBUG: ### Main Programm for Classification MonoView +2016-08-24 17:26:12,785 DEBUG: ### Classification - Database:MultiOmic Feature:Methyl train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMRBF +2016-08-24 17:26:12,785 DEBUG: Start: Determine Train/Test split +2016-08-24 17:26:12,786 DEBUG: Info: Shape X_train:(312, 127), Length of y_train:312 +2016-08-24 17:26:12,786 DEBUG: Info: Shape X_test:(35, 127), Length of y_test:35 +2016-08-24 17:26:12,786 DEBUG: Done: Determine Train/Test split +2016-08-24 17:26:12,786 DEBUG: Start: Classification +2016-08-24 17:26:12,940 DEBUG: Info: Time for Classification: 0.151942014694[s] +2016-08-24 17:26:12,941 DEBUG: Done: Classification +2016-08-24 17:26:12,944 DEBUG: Start: Statistic Results +2016-08-24 17:26:12,944 DEBUG: Info: Classification report: +2016-08-24 17:26:12,945 DEBUG: + precision recall f1-score support + + Non 0.66 1.00 0.79 23 + Oui 0.00 0.00 0.00 12 + +avg / total 0.43 0.66 0.52 35 + +2016-08-24 17:26:12,947 DEBUG: Info: Statistics: +2016-08-24 17:26:12,954 DEBUG: + Statistic Values +0 Accuracy score on test 0.657142857143 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0.5 +4 Mean of F1-Score of top 10 classes by F1-Score 0.396552 +5 Mean of F1-Score of top 20 classes by F1-Score 0.396552 +6 Mean of F1-Score of top 30 classes by F1-Score 0.396552 +2016-08-24 17:26:12,954 DEBUG: Info: Calculate Confusionmatrix +2016-08-24 17:26:13,253 DEBUG: Done: Statistic Results +2016-08-24 17:26:13,253 DEBUG: Start: Plot Result +2016-08-24 17:26:13,526 DEBUG: Done: Plot Result +2016-08-24 17:26:13,630 INFO: ### Main Programm for Multiview Classification +2016-08-24 17:26:13,630 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Mumbo ; Cores : 1 +2016-08-24 17:26:13,631 INFO: Info: Shape of Methyl :(347, 25978) +2016-08-24 17:26:13,631 INFO: Info: Shape of MiRNA_ :(347, 1046) +2016-08-24 17:26:13,632 INFO: Info: Shape of RANSeq :(347, 73599) +2016-08-24 17:26:13,632 INFO: Info: Shape of Clinic :(347, 127) +2016-08-24 17:26:13,632 INFO: Done: Read Database Files +2016-08-24 17:26:13,632 INFO: Start: Determine validation split for ratio 0.9 +2016-08-24 17:26:13,635 INFO: Done: Determine validation split +2016-08-24 17:26:13,635 INFO: Start: Determine 2 folds +2016-08-24 17:26:13,649 INFO: Info: Length of Learning Sets: 157 +2016-08-24 17:26:13,649 INFO: Info: Length of Testing Sets: 156 +2016-08-24 17:26:13,650 INFO: Info: Length of Validation Set: 34 +2016-08-24 17:26:13,650 INFO: Done: Determine folds +2016-08-24 17:26:13,650 INFO: Start: Learning with Mumbo and 2 folds +2016-08-24 17:26:13,650 INFO: Start: Gridsearching best settings for monoview classifiers +2016-08-24 17:26:13,650 DEBUG: Start: Gridsearch for DecisionTree on Methyl +2016-08-24 17:26:21,801 DEBUG: Info: Best Reslut : 0.516253602305 +2016-08-24 17:26:21,801 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 17:26:21,801 DEBUG: Start: Gridsearch for DecisionTree on MiRNA_ +2016-08-24 17:26:23,966 DEBUG: Info: Best Reslut : 0.565129682997 +2016-08-24 17:26:23,967 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 17:26:23,967 DEBUG: Start: Gridsearch for DecisionTree on RANSeq +2016-08-24 17:26:42,003 DEBUG: Info: Best Reslut : 0.51204610951 +2016-08-24 17:26:42,004 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 17:26:42,004 DEBUG: Start: Gridsearch for DecisionTree on Clinic +2016-08-24 17:26:43,930 DEBUG: Info: Best Reslut : 0.514236311239 +2016-08-24 17:26:43,931 DEBUG: Done: Gridsearch for DecisionTree +2016-08-24 17:26:43,931 INFO: Done: Gridsearching best settings for monoview classifiers +2016-08-24 17:26:43,931 INFO: Start: Fold number 1 +2016-08-24 17:26:45,766 DEBUG: Start: Iteration 1 +2016-08-24 17:26:45,796 DEBUG: View 0 : 0.706896551724 +2016-08-24 17:26:45,805 DEBUG: View 1 : 0.706896551724 +2016-08-24 17:26:45,836 DEBUG: View 2 : 0.706896551724 +2016-08-24 17:26:45,845 DEBUG: View 3 : 0.706896551724 +2016-08-24 17:26:45,892 DEBUG: Best view : Methyl +2016-08-24 17:26:45,977 DEBUG: Start: Iteration 2 +2016-08-24 17:26:45,995 DEBUG: View 0 : 0.551724137931 +2016-08-24 17:26:46,004 DEBUG: View 1 : 0.442528735632 +2016-08-24 17:26:46,043 DEBUG: View 2 : 0.683908045977 +2016-08-24 17:26:46,052 DEBUG: View 3 : 0.614942528736 +2016-08-24 17:26:46,105 DEBUG: Best view : RANSeq +2016-08-24 17:26:46,271 DEBUG: Start: Iteration 3 +2016-08-24 17:26:46,289 DEBUG: View 0 : 0.431034482759 +2016-08-24 17:26:46,297 DEBUG: View 1 : 0.310344827586 +2016-08-24 17:26:46,337 DEBUG: View 2 : 0.522988505747 +2016-08-24 17:26:46,345 DEBUG: View 3 : 0.695402298851 +2016-08-24 17:26:46,406 DEBUG: Best view : Clinic +2016-08-24 17:26:46,638 DEBUG: Start: Iteration 4 +2016-08-24 17:26:46,656 DEBUG: View 0 : 0.465517241379 +2016-08-24 17:26:46,666 DEBUG: View 1 : 0.729885057471 +2016-08-24 17:26:46,706 DEBUG: View 2 : 0.522988505747 +2016-08-24 17:26:46,715 DEBUG: View 3 : 0.471264367816 +2016-08-24 17:26:46,780 DEBUG: Best view : MiRNA_ +2016-08-24 17:26:47,078 DEBUG: Start: Iteration 5 +2016-08-24 17:26:47,099 DEBUG: View 0 : 0.557471264368 +2016-08-24 17:26:47,108 DEBUG: View 1 : 0.729885057471 +2016-08-24 17:26:47,148 DEBUG: View 2 : 0.465517241379 +2016-08-24 17:26:47,156 DEBUG: View 3 : 0.442528735632 +2016-08-24 17:26:47,222 DEBUG: Best view : MiRNA_ +2016-08-24 17:26:47,581 DEBUG: Start: Iteration 6 +2016-08-24 17:26:47,599 DEBUG: View 0 : 0.580459770115 +2016-08-24 17:26:47,607 DEBUG: View 1 : 0.718390804598 +2016-08-24 17:26:47,647 DEBUG: View 2 : 0.436781609195 +2016-08-24 17:26:47,655 DEBUG: View 3 : 0.350574712644 +2016-08-24 17:26:47,724 DEBUG: Best view : MiRNA_ +2016-08-24 17:26:48,163 DEBUG: Start: Iteration 7 +2016-08-24 17:26:48,181 DEBUG: View 0 : 0.367816091954 +2016-08-24 17:26:48,191 DEBUG: View 1 : 0.614942528736 +2016-08-24 17:26:48,230 DEBUG: View 2 : 0.66091954023 +2016-08-24 17:26:48,239 DEBUG: View 3 : 0.413793103448 +2016-08-24 17:26:48,310 DEBUG: Best view : RANSeq +2016-08-24 17:26:48,811 DEBUG: Start: Iteration 8 +2016-08-24 17:26:48,829 DEBUG: View 0 : 0.488505747126 +2016-08-24 17:26:48,838 DEBUG: View 1 : 0.706896551724 +2016-08-24 17:26:48,878 DEBUG: View 2 : 0.591954022989 +2016-08-24 17:26:48,887 DEBUG: View 3 : 0.522988505747 +2016-08-24 17:26:48,961 DEBUG: Best view : MiRNA_ +2016-08-24 17:26:49,526 DEBUG: Start: Iteration 9 +2016-08-24 17:26:49,545 DEBUG: View 0 : 0.413793103448 +2016-08-24 17:26:49,554 DEBUG: View 1 : 0.436781609195 +2016-08-24 17:26:49,593 DEBUG: View 2 : 0.522988505747 +2016-08-24 17:26:49,602 DEBUG: View 3 : 0.614942528736 +2016-08-24 17:26:49,681 DEBUG: Best view : Clinic +2016-08-24 17:26:50,309 DEBUG: Start: Iteration 10 +2016-08-24 17:26:50,327 DEBUG: View 0 : 0.637931034483 +2016-08-24 17:26:50,336 DEBUG: View 1 : 0.494252873563 +2016-08-24 17:26:50,376 DEBUG: View 2 : 0.488505747126 +2016-08-24 17:26:50,384 DEBUG: View 3 : 0.66091954023 +2016-08-24 17:26:50,465 DEBUG: Best view : Clinic +2016-08-24 17:26:51,156 DEBUG: Start: Iteration 11 +2016-08-24 17:26:51,174 DEBUG: View 0 : 0.689655172414 +2016-08-24 17:26:51,184 DEBUG: View 1 : 0.655172413793 +2016-08-24 17:26:51,223 DEBUG: View 2 : 0.701149425287 +2016-08-24 17:26:51,232 DEBUG: View 3 : 0.488505747126 +2016-08-24 17:26:51,316 DEBUG: Best view : Methyl +2016-08-24 17:26:52,083 DEBUG: Start: Iteration 12 +2016-08-24 17:26:52,101 DEBUG: View 0 : 0.540229885057 +2016-08-24 17:26:52,110 DEBUG: View 1 : 0.591954022989 +2016-08-24 17:26:52,149 DEBUG: View 2 : 0.367816091954 +2016-08-24 17:26:52,158 DEBUG: View 3 : 0.48275862069 +2016-08-24 17:26:52,244 DEBUG: Best view : MiRNA_ +2016-08-24 17:26:53,068 DEBUG: Start: Iteration 13 +2016-08-24 17:26:53,087 DEBUG: View 0 : 0.459770114943 +2016-08-24 17:26:53,095 DEBUG: View 1 : 0.591954022989 +2016-08-24 17:26:53,135 DEBUG: View 2 : 0.350574712644 +2016-08-24 17:26:53,144 DEBUG: View 3 : 0.350574712644 +2016-08-24 17:26:53,234 DEBUG: Best view : MiRNA_ +2016-08-24 17:26:54,133 DEBUG: Start: Iteration 14 +2016-08-24 17:26:54,152 DEBUG: View 0 : 0.362068965517 +2016-08-24 17:26:54,162 DEBUG: View 1 : 0.51724137931 +2016-08-24 17:26:54,202 DEBUG: View 2 : 0.695402298851 +2016-08-24 17:26:54,211 DEBUG: View 3 : 0.304597701149 +2016-08-24 17:26:54,305 DEBUG: Best view : RANSeq +2016-08-24 17:26:55,286 DEBUG: Start: Iteration 15 +2016-08-24 17:26:55,305 DEBUG: View 0 : 0.436781609195 +2016-08-24 17:26:55,314 DEBUG: View 1 : 0.494252873563 +2016-08-24 17:26:55,354 DEBUG: View 2 : 0.459770114943 +2016-08-24 17:26:55,362 DEBUG: View 3 : 0.367816091954 +2016-08-24 17:26:55,363 WARNING: WARNING: All bad for iteration 14 +2016-08-24 17:26:55,458 DEBUG: Best view : MiRNA_ +2016-08-24 17:26:56,490 DEBUG: Start: Iteration 16 +2016-08-24 17:26:56,509 DEBUG: View 0 : 0.396551724138 +2016-08-24 17:26:56,518 DEBUG: View 1 : 0.735632183908 +2016-08-24 17:26:56,562 DEBUG: View 2 : 0.706896551724 +2016-08-24 17:26:56,571 DEBUG: View 3 : 0.522988505747 +2016-08-24 17:26:56,670 DEBUG: Best view : MiRNA_ +2016-08-24 17:26:57,816 DEBUG: Start: Iteration 17 +2016-08-24 17:26:57,836 DEBUG: View 0 : 0.649425287356 +2016-08-24 17:26:57,846 DEBUG: View 1 : 0.465517241379 +2016-08-24 17:26:57,901 DEBUG: View 2 : 0.649425287356 +2016-08-24 17:26:57,915 DEBUG: View 3 : 0.672413793103 +2016-08-24 17:26:58,024 DEBUG: Best view : Methyl +2016-08-24 17:26:59,247 DEBUG: Start: Iteration 18 +2016-08-24 17:26:59,266 DEBUG: View 0 : 0.551724137931 +2016-08-24 17:26:59,275 DEBUG: View 1 : 0.712643678161 +2016-08-24 17:26:59,315 DEBUG: View 2 : 0.551724137931 +2016-08-24 17:26:59,324 DEBUG: View 3 : 0.620689655172 +2016-08-24 17:26:59,430 DEBUG: Best view : MiRNA_ +2016-08-24 17:27:00,676 DEBUG: Start: Iteration 19 +2016-08-24 17:27:00,696 DEBUG: View 0 : 0.689655172414 +2016-08-24 17:27:00,706 DEBUG: View 1 : 0.701149425287 +2016-08-24 17:27:00,748 DEBUG: View 2 : 0.655172413793 +2016-08-24 17:27:00,756 DEBUG: View 3 : 0.419540229885 +2016-08-24 17:27:00,869 DEBUG: Best view : MiRNA_ +2016-08-24 17:27:02,190 DEBUG: Start: Iteration 20 +2016-08-24 17:27:02,209 DEBUG: View 0 : 0.477011494253 +2016-08-24 17:27:02,219 DEBUG: View 1 : 0.67816091954 +2016-08-24 17:27:02,262 DEBUG: View 2 : 0.649425287356 +2016-08-24 17:27:02,271 DEBUG: View 3 : 0.333333333333 +2016-08-24 17:27:02,388 DEBUG: Best view : MiRNA_ +2016-08-24 17:27:03,782 DEBUG: Start: Iteration 21 +2016-08-24 17:27:03,800 DEBUG: View 0 : 0.67816091954 +2016-08-24 17:27:03,809 DEBUG: View 1 : 0.511494252874 +2016-08-24 17:27:03,848 DEBUG: View 2 : 0.48275862069 +2016-08-24 17:27:03,857 DEBUG: View 3 : 0.655172413793 +2016-08-24 17:27:03,969 DEBUG: Best view : Methyl +2016-08-24 17:27:05,395 DEBUG: Start: Iteration 22 +2016-08-24 17:27:05,414 DEBUG: View 0 : 0.672413793103 +2016-08-24 17:27:05,423 DEBUG: View 1 : 0.465517241379 +2016-08-24 17:27:05,463 DEBUG: View 2 : 0.327586206897 +2016-08-24 17:27:05,471 DEBUG: View 3 : 0.459770114943 +2016-08-24 17:27:05,588 DEBUG: Best view : Methyl +2016-08-24 17:27:07,113 DEBUG: Start: Iteration 23 +2016-08-24 17:27:07,131 DEBUG: View 0 : 0.344827586207 +2016-08-24 17:27:07,140 DEBUG: View 1 : 0.666666666667 +2016-08-24 17:27:07,179 DEBUG: View 2 : 0.655172413793 +2016-08-24 17:27:07,188 DEBUG: View 3 : 0.672413793103 +2016-08-24 17:27:07,305 DEBUG: Best view : MiRNA_ +2016-08-24 17:27:08,889 DEBUG: Start: Iteration 24 +2016-08-24 17:27:08,907 DEBUG: View 0 : 0.66091954023 +2016-08-24 17:27:08,916 DEBUG: View 1 : 0.275862068966 +2016-08-24 17:27:08,956 DEBUG: View 2 : 0.471264367816 +2016-08-24 17:27:08,965 DEBUG: View 3 : 0.465517241379 +2016-08-24 17:27:09,088 DEBUG: Best view : Methyl +2016-08-24 17:27:10,750 DEBUG: Start: Iteration 25 +2016-08-24 17:27:10,769 DEBUG: View 0 : 0.33908045977 +2016-08-24 17:27:10,778 DEBUG: View 1 : 0.545977011494 +2016-08-24 17:27:10,819 DEBUG: View 2 : 0.568965517241 +2016-08-24 17:27:10,827 DEBUG: View 3 : 0.33908045977 +2016-08-24 17:27:10,955 DEBUG: Best view : MiRNA_ +2016-08-24 17:27:12,704 DEBUG: Start: Iteration 26 +2016-08-24 17:27:12,724 DEBUG: View 0 : 0.540229885057 +2016-08-24 17:27:12,733 DEBUG: View 1 : 0.724137931034 +2016-08-24 17:27:12,775 DEBUG: View 2 : 0.557471264368 +2016-08-24 17:27:12,784 DEBUG: View 3 : 0.586206896552 +2016-08-24 17:27:12,910 DEBUG: Best view : MiRNA_ +2016-08-24 17:27:14,655 DEBUG: Start: Iteration 27 +2016-08-24 17:27:14,674 DEBUG: View 0 : 0.67816091954 +2016-08-24 17:27:14,683 DEBUG: View 1 : 0.626436781609 +2016-08-24 17:27:14,722 DEBUG: View 2 : 0.580459770115 +2016-08-24 17:27:14,730 DEBUG: View 3 : 0.408045977011 +2016-08-24 17:27:14,859 DEBUG: Best view : Methyl +2016-08-24 17:27:16,745 DEBUG: Start: Iteration 28 +2016-08-24 17:27:16,764 DEBUG: View 0 : 0.442528735632 +2016-08-24 17:27:16,773 DEBUG: View 1 : 0.494252873563 +2016-08-24 17:27:16,813 DEBUG: View 2 : 0.666666666667 +2016-08-24 17:27:16,822 DEBUG: View 3 : 0.534482758621 +2016-08-24 17:27:16,954 DEBUG: Best view : RANSeq +2016-08-24 17:27:18,894 DEBUG: Start: Iteration 29 +2016-08-24 17:27:18,912 DEBUG: View 0 : 0.465517241379 +2016-08-24 17:27:18,921 DEBUG: View 1 : 0.408045977011 +2016-08-24 17:27:18,961 DEBUG: View 2 : 0.586206896552 +2016-08-24 17:27:18,969 DEBUG: View 3 : 0.48275862069 +2016-08-24 17:27:19,109 DEBUG: Best view : RANSeq +2016-08-24 17:27:21,141 DEBUG: Start: Iteration 30 +2016-08-24 17:27:21,162 DEBUG: View 0 : 0.770114942529 +2016-08-24 17:27:21,172 DEBUG: View 1 : 0.522988505747 +2016-08-24 17:27:21,212 DEBUG: View 2 : 0.442528735632 +2016-08-24 17:27:21,221 DEBUG: View 3 : 0.67816091954 +2016-08-24 17:27:21,365 DEBUG: Best view : Methyl +2016-08-24 17:27:23,483 DEBUG: Start: Iteration 31 +2016-08-24 17:27:23,502 DEBUG: View 0 : 0.540229885057 +2016-08-24 17:27:23,512 DEBUG: View 1 : 0.522988505747 +2016-08-24 17:27:23,552 DEBUG: View 2 : 0.425287356322 +2016-08-24 17:27:23,561 DEBUG: View 3 : 0.5 +2016-08-24 17:27:23,700 DEBUG: Best view : MiRNA_ +2016-08-24 17:27:25,832 DEBUG: Start: Iteration 32 +2016-08-24 17:27:25,851 DEBUG: View 0 : 0.33908045977 +2016-08-24 17:27:25,859 DEBUG: View 1 : 0.695402298851 +2016-08-24 17:27:25,899 DEBUG: View 2 : 0.540229885057 +2016-08-24 17:27:25,907 DEBUG: View 3 : 0.557471264368 +2016-08-24 17:27:26,056 DEBUG: Best view : MiRNA_ +2016-08-24 17:27:28,321 DEBUG: Start: Iteration 33 +2016-08-24 17:27:28,339 DEBUG: View 0 : 0.390804597701 +2016-08-24 17:27:28,348 DEBUG: View 1 : 0.333333333333 +2016-08-24 17:27:28,388 DEBUG: View 2 : 0.672413793103 +2016-08-24 17:27:28,397 DEBUG: View 3 : 0.35632183908 +2016-08-24 17:27:28,544 DEBUG: Best view : RANSeq +2016-08-24 17:27:30,848 DEBUG: Start: Iteration 34 +2016-08-24 17:27:30,867 DEBUG: View 0 : 0.350574712644 +2016-08-24 17:27:30,876 DEBUG: View 1 : 0.545977011494 +2016-08-24 17:27:30,915 DEBUG: View 2 : 0.689655172414 +2016-08-24 17:27:30,924 DEBUG: View 3 : 0.614942528736 +2016-08-24 17:27:31,075 DEBUG: Best view : RANSeq +2016-08-24 17:27:33,490 DEBUG: Start: Iteration 35 +2016-08-24 17:27:33,509 DEBUG: View 0 : 0.597701149425 +2016-08-24 17:27:33,518 DEBUG: View 1 : 0.390804597701 +2016-08-24 17:27:33,559 DEBUG: View 2 : 0.413793103448 +2016-08-24 17:27:33,568 DEBUG: View 3 : 0.689655172414 +2016-08-24 17:27:33,727 DEBUG: Best view : Clinic +2016-08-24 17:27:36,221 DEBUG: Start: Iteration 36 +2016-08-24 17:27:36,240 DEBUG: View 0 : 0.67816091954 +2016-08-24 17:27:36,250 DEBUG: View 1 : 0.270114942529 +2016-08-24 17:27:36,290 DEBUG: View 2 : 0.408045977011 +2016-08-24 17:27:36,299 DEBUG: View 3 : 0.580459770115 +2016-08-24 17:27:36,460 DEBUG: Best view : Methyl +2016-08-24 17:27:39,010 DEBUG: Start: Iteration 37 +2016-08-24 17:27:39,029 DEBUG: View 0 : 0.390804597701 +2016-08-24 17:27:39,038 DEBUG: View 1 : 0.666666666667 +2016-08-24 17:27:39,077 DEBUG: View 2 : 0.385057471264 +2016-08-24 17:27:39,086 DEBUG: View 3 : 0.511494252874 +2016-08-24 17:27:39,243 DEBUG: Best view : MiRNA_ +2016-08-24 17:27:41,886 DEBUG: Start: Iteration 38 +2016-08-24 17:27:41,904 DEBUG: View 0 : 0.683908045977 +2016-08-24 17:27:41,914 DEBUG: View 1 : 0.67816091954 +2016-08-24 17:27:41,956 DEBUG: View 2 : 0.304597701149 +2016-08-24 17:27:41,965 DEBUG: View 3 : 0.557471264368 +2016-08-24 17:27:42,128 DEBUG: Best view : MiRNA_ +2016-08-24 17:27:44,780 DEBUG: Start: Iteration 39 +2016-08-24 17:27:44,800 DEBUG: View 0 : 0.488505747126 +2016-08-24 17:27:44,809 DEBUG: View 1 : 0.551724137931 +2016-08-24 17:27:44,849 DEBUG: View 2 : 0.563218390805 +2016-08-24 17:27:44,858 DEBUG: View 3 : 0.408045977011 +2016-08-24 17:27:45,028 DEBUG: Best view : MiRNA_ +2016-08-24 17:27:47,765 DEBUG: Start: Iteration 40 +2016-08-24 17:27:47,783 DEBUG: View 0 : 0.534482758621 +2016-08-24 17:27:47,792 DEBUG: View 1 : 0.729885057471 +2016-08-24 17:27:47,832 DEBUG: View 2 : 0.540229885057 +2016-08-24 17:27:47,840 DEBUG: View 3 : 0.540229885057 +2016-08-24 17:27:48,005 DEBUG: Best view : MiRNA_ +2016-08-24 17:27:50,795 DEBUG: Start: Iteration 41 +2016-08-24 17:27:50,813 DEBUG: View 0 : 0.551724137931 +2016-08-24 17:27:50,822 DEBUG: View 1 : 0.465517241379 +2016-08-24 17:27:50,862 DEBUG: View 2 : 0.695402298851 +2016-08-24 17:27:50,870 DEBUG: View 3 : 0.511494252874 +2016-08-24 17:27:51,044 DEBUG: Best view : RANSeq +2016-08-24 17:27:53,933 DEBUG: Start: Iteration 42 +2016-08-24 17:27:53,952 DEBUG: View 0 : 0.419540229885 +2016-08-24 17:27:53,961 DEBUG: View 1 : 0.287356321839 +2016-08-24 17:27:54,000 DEBUG: View 2 : 0.557471264368 +2016-08-24 17:27:54,008 DEBUG: View 3 : 0.51724137931 +2016-08-24 17:27:54,180 DEBUG: Best view : RANSeq +2016-08-24 17:27:57,122 DEBUG: Start: Iteration 43 +2016-08-24 17:27:57,140 DEBUG: View 0 : 0.494252873563 +2016-08-24 17:27:57,149 DEBUG: View 1 : 0.689655172414 +2016-08-24 17:27:57,189 DEBUG: View 2 : 0.672413793103 +2016-08-24 17:27:57,197 DEBUG: View 3 : 0.586206896552 +2016-08-24 17:27:57,372 DEBUG: Best view : MiRNA_ +2016-08-24 17:28:00,355 DEBUG: Start: Iteration 44 +2016-08-24 17:28:00,373 DEBUG: View 0 : 0.316091954023 +2016-08-24 17:28:00,382 DEBUG: View 1 : 0.66091954023 +2016-08-24 17:28:00,422 DEBUG: View 2 : 0.632183908046 +2016-08-24 17:28:00,431 DEBUG: View 3 : 0.522988505747 +2016-08-24 17:28:00,608 DEBUG: Best view : MiRNA_ +2016-08-24 17:28:03,684 DEBUG: Start: Iteration 45 +2016-08-24 17:28:03,702 DEBUG: View 0 : 0.362068965517 +2016-08-24 17:28:03,711 DEBUG: View 1 : 0.649425287356 +2016-08-24 17:28:03,751 DEBUG: View 2 : 0.293103448276 +2016-08-24 17:28:03,760 DEBUG: View 3 : 0.454022988506 +2016-08-24 17:28:03,939 DEBUG: Best view : MiRNA_ +2016-08-24 17:28:07,014 DEBUG: Start: Iteration 46 +2016-08-24 17:28:07,032 DEBUG: View 0 : 0.465517241379 +2016-08-24 17:28:07,041 DEBUG: View 1 : 0.385057471264 +2016-08-24 17:28:07,081 DEBUG: View 2 : 0.626436781609 +2016-08-24 17:28:07,089 DEBUG: View 3 : 0.67816091954 +2016-08-24 17:28:07,271 DEBUG: Best view : Clinic +2016-08-24 17:28:10,416 DEBUG: Start: Iteration 47 +2016-08-24 17:28:10,435 DEBUG: View 0 : 0.488505747126 +2016-08-24 17:28:10,444 DEBUG: View 1 : 0.557471264368 +2016-08-24 17:28:10,483 DEBUG: View 2 : 0.586206896552 +2016-08-24 17:28:10,491 DEBUG: View 3 : 0.390804597701 +2016-08-24 17:28:10,675 DEBUG: Best view : MiRNA_ +2016-08-24 17:28:13,877 DEBUG: Start: Iteration 48 +2016-08-24 17:28:13,896 DEBUG: View 0 : 0.551724137931 +2016-08-24 17:28:13,905 DEBUG: View 1 : 0.66091954023 +2016-08-24 17:28:13,944 DEBUG: View 2 : 0.689655172414 +2016-08-24 17:28:13,952 DEBUG: View 3 : 0.413793103448 +2016-08-24 17:28:14,140 DEBUG: Best view : MiRNA_ +2016-08-24 17:28:17,471 DEBUG: Start: Iteration 49 +2016-08-24 17:28:17,489 DEBUG: View 0 : 0.5 +2016-08-24 17:28:17,498 DEBUG: View 1 : 0.701149425287 +2016-08-24 17:28:17,537 DEBUG: View 2 : 0.379310344828 +2016-08-24 17:28:17,546 DEBUG: View 3 : 0.367816091954 +2016-08-24 17:28:17,737 DEBUG: Best view : MiRNA_ +2016-08-24 17:28:21,092 DEBUG: Start: Iteration 50 +2016-08-24 17:28:21,111 DEBUG: View 0 : 0.454022988506 +2016-08-24 17:28:21,120 DEBUG: View 1 : 0.706896551724 +2016-08-24 17:28:21,159 DEBUG: View 2 : 0.5 +2016-08-24 17:28:21,168 DEBUG: View 3 : 0.586206896552 +2016-08-24 17:28:21,365 DEBUG: Best view : MiRNA_ +2016-08-24 17:28:24,779 DEBUG: Start: Iteration 51 +2016-08-24 17:28:24,798 DEBUG: View 0 : 0.51724137931 +2016-08-24 17:28:24,808 DEBUG: View 1 : 0.724137931034 +2016-08-24 17:28:24,848 DEBUG: View 2 : 0.706896551724 +2016-08-24 17:28:24,857 DEBUG: View 3 : 0.712643678161 +2016-08-24 17:28:25,055 DEBUG: Best view : MiRNA_ +2016-08-24 17:28:28,594 DEBUG: Start: Iteration 52 +2016-08-24 17:28:28,613 DEBUG: View 0 : 0.563218390805 +2016-08-24 17:28:28,622 DEBUG: View 1 : 0.373563218391 +2016-08-24 17:28:28,661 DEBUG: View 2 : 0.568965517241 +2016-08-24 17:28:28,670 DEBUG: View 3 : 0.413793103448 +2016-08-24 17:28:28,872 DEBUG: Best view : RANSeq +2016-08-24 17:28:32,461 DEBUG: Start: Iteration 53 +2016-08-24 17:28:32,479 DEBUG: View 0 : 0.741379310345 +2016-08-24 17:28:32,488 DEBUG: View 1 : 0.327586206897 +2016-08-24 17:28:32,527 DEBUG: View 2 : 0.557471264368 +2016-08-24 17:28:32,536 DEBUG: View 3 : 0.436781609195 +2016-08-24 17:28:32,740 DEBUG: Best view : Methyl +2016-08-24 17:28:36,368 DEBUG: Start: Iteration 54 +2016-08-24 17:28:36,386 DEBUG: View 0 : 0.459770114943 +2016-08-24 17:28:36,395 DEBUG: View 1 : 0.373563218391 +2016-08-24 17:28:36,435 DEBUG: View 2 : 0.488505747126 +2016-08-24 17:28:36,444 DEBUG: View 3 : 0.586206896552 +2016-08-24 17:28:36,646 DEBUG: Best view : Clinic +2016-08-24 17:28:40,331 DEBUG: Start: Iteration 55 +2016-08-24 17:28:40,349 DEBUG: View 0 : 0.522988505747 +2016-08-24 17:28:40,358 DEBUG: View 1 : 0.287356321839 +2016-08-24 17:28:40,397 DEBUG: View 2 : 0.48275862069 +2016-08-24 17:28:40,406 DEBUG: View 3 : 0.304597701149 +2016-08-24 17:28:40,613 DEBUG: Best view : Methyl +2016-08-24 17:28:44,382 DEBUG: Start: Iteration 56 +2016-08-24 17:28:44,401 DEBUG: View 0 : 0.362068965517 +2016-08-24 17:28:44,410 DEBUG: View 1 : 0.747126436782 +2016-08-24 17:28:44,450 DEBUG: View 2 : 0.534482758621 +2016-08-24 17:28:44,459 DEBUG: View 3 : 0.540229885057 +2016-08-24 17:28:44,672 DEBUG: Best view : MiRNA_ +2016-08-24 17:28:48,498 DEBUG: Start: Iteration 57 +2016-08-24 17:28:48,517 DEBUG: View 0 : 0.695402298851 +2016-08-24 17:28:48,526 DEBUG: View 1 : 0.672413793103 +2016-08-24 17:28:48,564 DEBUG: View 2 : 0.362068965517 +2016-08-24 17:28:48,573 DEBUG: View 3 : 0.390804597701 +2016-08-24 17:28:48,787 DEBUG: Best view : Methyl +2016-08-24 17:28:52,684 DEBUG: Start: Iteration 58 +2016-08-24 17:28:52,702 DEBUG: View 0 : 0.293103448276 +2016-08-24 17:28:52,711 DEBUG: View 1 : 0.649425287356 +2016-08-24 17:28:52,750 DEBUG: View 2 : 0.390804597701 +2016-08-24 17:28:52,759 DEBUG: View 3 : 0.367816091954 +2016-08-24 17:28:52,975 DEBUG: Best view : MiRNA_ +2016-08-24 17:28:56,925 DEBUG: Start: Iteration 59 +2016-08-24 17:28:56,943 DEBUG: View 0 : 0.471264367816 +2016-08-24 17:28:56,952 DEBUG: View 1 : 0.5 +2016-08-24 17:28:56,992 DEBUG: View 2 : 0.51724137931 +2016-08-24 17:28:57,000 DEBUG: View 3 : 0.350574712644 +2016-08-24 17:28:57,219 DEBUG: Best view : RANSeq +2016-08-24 17:29:01,240 DEBUG: Start: Iteration 60 +2016-08-24 17:29:01,258 DEBUG: View 0 : 0.494252873563 +2016-08-24 17:29:01,267 DEBUG: View 1 : 0.402298850575 +2016-08-24 17:29:01,306 DEBUG: View 2 : 0.471264367816 +2016-08-24 17:29:01,315 DEBUG: View 3 : 0.614942528736 +2016-08-24 17:29:01,537 DEBUG: Best view : Clinic +2016-08-24 17:29:05,631 DEBUG: Start: Iteration 61 +2016-08-24 17:29:05,649 DEBUG: View 0 : 0.632183908046 +2016-08-24 17:29:05,658 DEBUG: View 1 : 0.580459770115 +2016-08-24 17:29:05,697 DEBUG: View 2 : 0.419540229885 +2016-08-24 17:29:05,705 DEBUG: View 3 : 0.591954022989 +2016-08-24 17:29:05,931 DEBUG: Best view : Methyl +2016-08-24 17:29:10,109 DEBUG: Start: Iteration 62 +2016-08-24 17:29:10,128 DEBUG: View 0 : 0.333333333333 +2016-08-24 17:29:10,137 DEBUG: View 1 : 0.591954022989 +2016-08-24 17:29:10,177 DEBUG: View 2 : 0.586206896552 +2016-08-24 17:29:10,186 DEBUG: View 3 : 0.706896551724 +2016-08-24 17:29:10,415 DEBUG: Best view : Clinic +2016-08-24 17:29:14,649 DEBUG: Start: Iteration 63 +2016-08-24 17:29:14,667 DEBUG: View 0 : 0.419540229885 +2016-08-24 17:29:14,677 DEBUG: View 1 : 0.287356321839 +2016-08-24 17:29:14,716 DEBUG: View 2 : 0.67816091954 +2016-08-24 17:29:14,726 DEBUG: View 3 : 0.586206896552 +2016-08-24 17:29:14,957 DEBUG: Best view : RANSeq +2016-08-24 17:29:19,251 DEBUG: Start: Iteration 64 +2016-08-24 17:29:19,270 DEBUG: View 0 : 0.408045977011 +2016-08-24 17:29:19,279 DEBUG: View 1 : 0.67816091954 +2016-08-24 17:29:19,318 DEBUG: View 2 : 0.505747126437 +2016-08-24 17:29:19,327 DEBUG: View 3 : 0.551724137931 +2016-08-24 17:29:19,560 DEBUG: Best view : MiRNA_ +2016-08-24 17:29:23,920 DEBUG: Start: Iteration 65 +2016-08-24 17:29:23,939 DEBUG: View 0 : 0.505747126437 +2016-08-24 17:29:23,948 DEBUG: View 1 : 0.557471264368 +2016-08-24 17:29:23,986 DEBUG: View 2 : 0.545977011494 +2016-08-24 17:29:23,995 DEBUG: View 3 : 0.477011494253 +2016-08-24 17:29:24,230 DEBUG: Best view : RANSeq +2016-08-24 17:29:28,683 DEBUG: Start: Iteration 66 +2016-08-24 17:29:28,702 DEBUG: View 0 : 0.534482758621 +2016-08-24 17:29:28,711 DEBUG: View 1 : 0.626436781609 +2016-08-24 17:29:28,750 DEBUG: View 2 : 0.454022988506 +2016-08-24 17:29:28,759 DEBUG: View 3 : 0.316091954023 +2016-08-24 17:29:29,004 DEBUG: Best view : MiRNA_ +2016-08-24 17:29:33,525 DEBUG: Start: Iteration 67 +2016-08-24 17:29:33,543 DEBUG: View 0 : 0.683908045977 +2016-08-24 17:29:33,552 DEBUG: View 1 : 0.32183908046 +2016-08-24 17:29:33,592 DEBUG: View 2 : 0.563218390805 +2016-08-24 17:29:33,601 DEBUG: View 3 : 0.344827586207 +2016-08-24 17:29:33,845 DEBUG: Best view : Methyl +2016-08-24 17:29:38,422 DEBUG: Start: Iteration 68 +2016-08-24 17:29:38,440 DEBUG: View 0 : 0.442528735632 +2016-08-24 17:29:38,449 DEBUG: View 1 : 0.419540229885 +2016-08-24 17:29:38,488 DEBUG: View 2 : 0.528735632184 +2016-08-24 17:29:38,497 DEBUG: View 3 : 0.67816091954 +2016-08-24 17:29:38,740 DEBUG: Best view : Clinic +2016-08-24 17:29:43,435 DEBUG: Start: Iteration 69 +2016-08-24 17:29:43,453 DEBUG: View 0 : 0.459770114943 +2016-08-24 17:29:43,462 DEBUG: View 1 : 0.67816091954 +2016-08-24 17:29:43,501 DEBUG: View 2 : 0.574712643678 +2016-08-24 17:29:43,510 DEBUG: View 3 : 0.655172413793 +2016-08-24 17:29:43,759 DEBUG: Best view : MiRNA_ +2016-08-24 17:29:48,463 DEBUG: Start: Iteration 70 +2016-08-24 17:29:48,481 DEBUG: View 0 : 0.333333333333 +2016-08-24 17:29:48,490 DEBUG: View 1 : 0.66091954023 +2016-08-24 17:29:48,529 DEBUG: View 2 : 0.545977011494 +2016-08-24 17:29:48,538 DEBUG: View 3 : 0.568965517241 +2016-08-24 17:29:48,789 DEBUG: Best view : MiRNA_ +2016-08-24 17:29:53,582 DEBUG: Start: Iteration 71 +2016-08-24 17:29:53,601 DEBUG: View 0 : 0.436781609195 +2016-08-24 17:29:53,610 DEBUG: View 1 : 0.603448275862 +2016-08-24 17:29:53,649 DEBUG: View 2 : 0.448275862069 +2016-08-24 17:29:53,658 DEBUG: View 3 : 0.66091954023 +2016-08-24 17:29:53,910 DEBUG: Best view : Clinic +2016-08-24 17:29:58,731 DEBUG: Start: Iteration 72 +2016-08-24 17:29:58,750 DEBUG: View 0 : 0.327586206897 +2016-08-24 17:29:58,759 DEBUG: View 1 : 0.706896551724 +2016-08-24 17:29:58,797 DEBUG: View 2 : 0.620689655172 +2016-08-24 17:29:58,806 DEBUG: View 3 : 0.568965517241 +2016-08-24 17:29:59,062 DEBUG: Best view : MiRNA_ +2016-08-24 17:30:03,975 DEBUG: Start: Iteration 73 +2016-08-24 17:30:03,993 DEBUG: View 0 : 0.494252873563 +2016-08-24 17:30:04,002 DEBUG: View 1 : 0.5 +2016-08-24 17:30:04,041 DEBUG: View 2 : 0.310344827586 +2016-08-24 17:30:04,050 DEBUG: View 3 : 0.477011494253 +2016-08-24 17:30:04,310 DEBUG: Best view : MiRNA_ diff --git a/Code/Versions.py b/Code/MonoMutliViewClassifiers/Versions.py similarity index 100% rename from Code/Versions.py rename to Code/MonoMutliViewClassifiers/Versions.py diff --git a/Code/MonoMutliViewClassifiers/__init__.py b/Code/MonoMutliViewClassifiers/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/Code/Multiview/Fusion/Methods/MonoviewClassifiers/DecisionTree.py b/Code/Multiview/Fusion/Methods/MonoviewClassifiers/DecisionTree.py deleted file mode 100644 index ce91729ff7b44ae7cf57c08ff4fae9134568685a..0000000000000000000000000000000000000000 --- a/Code/Multiview/Fusion/Methods/MonoviewClassifiers/DecisionTree.py +++ /dev/null @@ -1,11 +0,0 @@ -from sklearn.tree import DecisionTreeClassifier - - -def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs): - maxDepth = int(kwargs['0']) - classifier = DecisionTreeClassifier(max_depth=maxDepth) - classifier.fit(DATASET, CLASS_LABELS) - return classifier - -def getConfig(config): - return "\n\t\t- Decision Tree with max_depth : "+config[0] \ No newline at end of file diff --git a/Code/Multiview/Fusion/Methods/MonoviewClassifiers/KNN.py b/Code/Multiview/Fusion/Methods/MonoviewClassifiers/KNN.py deleted file mode 100644 index d8a59153cc66a6b85b6e7101c865880ff2661c85..0000000000000000000000000000000000000000 --- a/Code/Multiview/Fusion/Methods/MonoviewClassifiers/KNN.py +++ /dev/null @@ -1,11 +0,0 @@ -from sklearn.neighbors import KNeighborsClassifier - - -def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs): - nNeighbors = int(kwargs['0']) - classifier = KNeighborsClassifier(n_neighbors=nNeighbors) - classifier.fit(DATASET, CLASS_LABELS) - return classifier - -def getConfig(config): - return "\n\t\t- K nearest Neighbors with n_neighbors: "+config[0] \ No newline at end of file diff --git a/Code/Multiview/Fusion/Methods/MonoviewClassifiers/RandomForest.py b/Code/Multiview/Fusion/Methods/MonoviewClassifiers/RandomForest.py deleted file mode 100644 index 7ba9b06683d33228420d4eb98344d694603b074c..0000000000000000000000000000000000000000 --- a/Code/Multiview/Fusion/Methods/MonoviewClassifiers/RandomForest.py +++ /dev/null @@ -1,12 +0,0 @@ -from sklearn.ensemble import RandomForestClassifier - - -def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs): - num_estimators = int(kwargs['0']) - maxDepth = int(kwargs['1']) - classifier = RandomForestClassifier(n_estimators=num_estimators, max_depth=maxDepth, n_jobs=NB_CORES) - classifier.fit(DATASET, CLASS_LABELS) - return classifier - -def getConfig(config): - return "\n\t\t- Random Forest with num_esimators : "+config[0]+", max_depth : "+config[1] \ No newline at end of file diff --git a/Code/Multiview/Fusion/Methods/MonoviewClassifiers/SGD.py b/Code/Multiview/Fusion/Methods/MonoviewClassifiers/SGD.py deleted file mode 100644 index 072a7a32634fe15ca1d8550b89cea1f03830d089..0000000000000000000000000000000000000000 --- a/Code/Multiview/Fusion/Methods/MonoviewClassifiers/SGD.py +++ /dev/null @@ -1,16 +0,0 @@ -from sklearn.linear_model import SGDClassifier - - -def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs): - loss = kwargs['0'] - penalty = kwargs['1'] - try: - alpha = int(kwargs['2']) - except: - alpha = 0.15 - classifier = SGDClassifier(loss=loss, penalty=penalty, alpha=alpha) - classifier.fit(DATASET, CLASS_LABELS) - return classifier - -def getConfig(config): - return "\n\t\t- SGDClassifier with loss : "+config[0]+", penalty : "+config[1] \ No newline at end of file diff --git a/Code/Multiview/Fusion/Methods/MonoviewClassifiers/SVC.py b/Code/Multiview/Fusion/Methods/MonoviewClassifiers/SVC.py deleted file mode 100644 index 34c4679d7f5bb1a7b09a19f77ee77c8848dcbcb6..0000000000000000000000000000000000000000 --- a/Code/Multiview/Fusion/Methods/MonoviewClassifiers/SVC.py +++ /dev/null @@ -1,13 +0,0 @@ -from sklearn.svm import SVC - - -def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs): - C = int(kwargs['0']) - kernel = kwargs['1'] - classifier = SVC(C=C, kernel=kernel, probability=True) - classifier.fit(DATASET, CLASS_LABELS) - return classifier - - -def getConfig(config): - return "\n\t\t- SVM with C : "+config[0]+", kernel : "+config[1] \ No newline at end of file diff --git a/Code/__init__.py b/Code/__init__.py index b07b92a447c02ebc85003d45b395665e6f7f5399..7ccf8824aeffdbfda0483e30758ef7d6d81e4132 100644 --- a/Code/__init__.py +++ b/Code/__init__.py @@ -1 +1,2 @@ -__all__ = ['FeatExtraction', 'Monoview', 'Multiview'] \ No newline at end of file +__all__ = ['FeatExtraction', 'Monoview', 'Multiview', 'MonoviewClassifiers'] +from . import FeatExtraction, Monoview, Multiview, MonoviewClassifiers \ No newline at end of file