diff --git a/Code/ExecClassif.py b/Code/MonoMutliViewClassifiers/ExecClassif.py
similarity index 62%
rename from Code/ExecClassif.py
rename to Code/MonoMutliViewClassifiers/ExecClassif.py
index dab41d2a8884f06ad89ef53c16c7501cbdb145fa..2a02e7dd843b3ac8a000ce9012cb3cf91a0479b8 100644
--- a/Code/ExecClassif.py
+++ b/Code/MonoMutliViewClassifiers/ExecClassif.py
@@ -11,6 +11,8 @@ import logging
 from joblib import Parallel, delayed
 from ResultAnalysis import resultAnalysis
 import numpy as np
+import MonoviewClassifiers
+
 
 parser = argparse.ArgumentParser(
     description='This file is used to benchmark the accuracies fo multiple classification algorithm on multiview data.',
@@ -62,12 +64,26 @@ groupRF = parser.add_argument_group('Random Forest arguments')
 groupRF.add_argument('--CL_RF_trees', metavar='STRING', action='store', help='GridSearch: Determine the trees',
                      default='25 75 125 175')
 
-groupSVC = parser.add_argument_group('SVC arguments')
-groupSVC.add_argument('--CL_SVC_kernel', metavar='STRING', action='store', help='GridSearch : Kernels used',
-                      default='linear')
-groupSVC.add_argument('--CL_SVC_C', metavar='STRING', action='store', help='GridSearch : Penalty parameters used',
+groupSVMLinear = parser.add_argument_group('Linear SVM arguments')
+groupSVMLinear.add_argument('--CL_SVML_C', metavar='STRING', action='store', help='GridSearch : Penalty parameters used',
                       default='1:10:100:1000')
 
+groupSVMRBF = parser.add_argument_group('SVW-RBF arguments')
+groupSVMRBF.add_argument('--CL_SVMR_C', metavar='STRING', action='store', help='GridSearch : Penalty parameters used',
+                            default='1:10:100:1000')
+
+groupSVMPoly = parser.add_argument_group('Poly SVM arguments')
+groupSVMPoly.add_argument('--CL_SVMP_C', metavar='STRING', action='store', help='GridSearch : Penalty parameters used',
+                            default='1:10:100:1000')
+groupSVMPoly.add_argument('--CL_SVMP_deg', metavar='STRING', action='store', help='GridSearch : Degree parameters used',
+                          default='1:2:5:10')
+
+groupAdaboost = parser.add_argument_group('Adaboost arguments')
+groupAdaboost.add_argument('--CL_Ada_n_est', metavar='STRING', action='store', help='GridSearch : Penalty parameters used',
+                          default='1:10:100:1000')
+groupAdaboost.add_argument('--CL_Ada_b_est', metavar='STRING', action='store', help='GridSearch : Degree parameters used',
+                          default='DecisionTreeClassifier')
+
 groupRF = parser.add_argument_group('Decision Trees arguments')
 groupRF.add_argument('--CL_DT_depth', metavar='STRING', action='store',
                      help='GridSearch: Determine max depth for Decision Trees', default='1:3:5:7')
@@ -90,8 +106,9 @@ groupMumbo.add_argument('--MU_types', metavar='STRING', action='store',
 groupMumbo.add_argument('--MU_config', metavar='STRING', action='store', nargs='+',
                         help='Configuration for the monoview classifier in Mumbo',
                         default=['3:1.0', '3:1.0', '3:1.0','3:1.0'])
-groupMumbo.add_argument('--MU_iter', metavar='INT', action='store',
-                        help='Number of iterations in Mumbos learning process', type=int, default=5)
+groupMumbo.add_argument('--MU_iter', metavar='INT', action='store', nargs=3,
+                        help='Max number of iteration, min number of iteration, convergence threshold', type=float,
+                        default=[1000, 300, 0.0005])
 
 groupFusion = parser.add_argument_group('Fusion arguments')
 groupFusion.add_argument('--FU_types', metavar='STRING', action='store',
@@ -151,16 +168,17 @@ if args.CL_type.split(":")==["Benchmark"]:
                          for fusionModulesName, fusionModule in zip(fusionModulesNames, fusionModules)]
         fusionMethods = dict((fusionModulesName, [subclass.__name__ for subclass in fusionClasse.__subclasses__() ])
                             for fusionModulesName, fusionClasse in zip(fusionModulesNames, fusionClasses))
-        fusionMonoviewClassifiers = [name for _, name, isPackage in
-                                     pkgutil.iter_modules(['Multiview/Fusion/Methods/MonoviewClassifiers'])
-                                     if not isPackage ]
+        allMonoviewAlgos = [name for _, name, isPackage in
+                            pkgutil.iter_modules(['MonoviewClassifiers'])
+                            if not isPackage]
+        fusionMonoviewClassifiers = allMonoviewAlgos
         allFusionAlgos = {"Methods": fusionMethods, "Classifiers": fusionMonoviewClassifiers}
         allMumboAlgos = [name for _, name, isPackage in
                                    pkgutil.iter_modules(['Multiview/Mumbo/Classifiers'])
                                    if not isPackage and not name in ["SubSampling", "ModifiedMulticlass", "Kover"]]
         allMultiviewAlgos = {"Fusion": allFusionAlgos, "Mumbo": allMumboAlgos}
-        allMonoviewAlgos = [key[15:] for key in dir(Monoview.ClassifMonoView) if key[:15] == "MonoviewClassif"]
         benchmark = {"Monoview": allMonoviewAlgos, "Multiview" : allMultiviewAlgos}
+
 if "Multiview" in args.CL_type.strip(":"):
     benchmark["Multiview"] = {}
     if "Mumbo" in args.CL_algos_multiview.split(":"):
@@ -178,138 +196,98 @@ if "Multiview" in args.CL_type.strip(":"):
 if "Monoview" in args.CL_type.strip(":"):
     benchmark["Monoview"] = args.CL_algos_monoview.split(":")
 
+
 classifierTable = "a"
 fusionClassifierConfig = "a"
 fusionMethodConfig = "a"
 mumboNB_ITER = 2
 mumboClassifierConfig = "a"
 mumboclassifierNames = "a"
-RandomForestKWARGS = {"classifier__n_estimators":map(int, args.CL_RF_trees.split())}
-SVCKWARGS = {"classifier__kernel":args.CL_SVC_kernel.split(":"), "classifier__C":map(int,args.CL_SVC_C.split(":"))}
-DecisionTreeKWARGS = {"classifier__max_depth":map(int,args.CL_DT_depth.split(":"))}
-SGDKWARGS = {"classifier__alpha" : map(float,args.CL_SGD_alpha.split(":")), "classifier__loss":args.CL_SGD_loss.split(":"),
-             "classifier__penalty":args.CL_SGD_penalty.split(":")}
-KNNKWARGS = {"classifier__n_neighbors": map(float,args.CL_KNN_neigh.split(":"))}
-
-
-argumentDictionaries = {"Monoview":{}, "Multiview":[]}
-# if benchmark["Monoview"]:
-#     for view in args.views.split(":"):
-#         argumentDictionaries["Monoview"][str(view)] = []
-#         for classifier in benchmark["Monoview"]:
-#             arguments = {classifier+"KWARGS": globals()[classifier+"KWARGS"], "feat":view, "fileFeat": args.fileFeat,
-#                          "fileCL": args.fileCL, "fileCLD": args.fileCLD, "CL_type": classifier,
-#                          classifier+"KWARGS": globals()[classifier+"KWARGS"]}
-#             argumentDictionaries["Monoview"][str(view)].append(arguments)
-#
-# bestClassifiers = []
-# bestClassifiersConfigs = []
-# for viewIndex, viewArguments in enumerate(argumentDictionaries["Monoview"].values()):
-#     resultsMonoview = Parallel(n_jobs=nbCores)(
-#         delayed(ExecMonoview)(DATASET.get("View"+str(viewIndex)).value, DATASET.get("labels").value, args.name,
-#                               args.CL_split, args.CL_nbFolds, 1, args.type, args.pathF, gridSearch=True,
-#                               **arguments)
-#         for arguments in viewArguments)
-#     accuracies = [result[1] for result in resultsMonoview]
-#     classifiersNames = [result[0] for result in resultsMonoview]
-#     classifiersConfigs = [result[2] for result in resultsMonoview]
-#     bestClassifiers.append(classifiersNames[np.argmax(np.array(accuracies))])
-#     bestClassifiersConfigs.append(classifiersConfigs[np.argmax(np.array(accuracies))])
-bestClassifiers = ["DecisionTree", "DecisionTree", "DecisionTree", "DecisionTree"]
-bestClassifiersConfigs = [["1"],["1"],["1"],["1"]]
+
+RandomForestKWARGS = {"0":map(int, args.CL_RF_trees.split())}
+SVMLinearKWARGS = {"0":map(int, args.CL_SVML_C.split(":"))}
+SVMRBFKWARGS = {"0":map(int, args.CL_SVMR_C.split(":"))}
+SVMPolyKWARGS = {"0":map(int, args.CL_SVMP_C.split(":")), '1':map(int, args.CL_SVMP_deg.split(":"))}
+DecisionTreeKWARGS = {"0":map(int, args.CL_DT_depth.split(":"))}
+SGDKWARGS = {"0": map(float, args.CL_SGD_alpha.split(":")), "1":args.CL_SGD_loss.split(":"),
+             "2": args.CL_SGD_penalty.split(":")}
+KNNKWARGS = {"0": map(float, args.CL_KNN_neigh.split(":"))}
+AdaboostKWARGS = {"0": args.CL_Ada_n_est.split(":"), "1": args.CL_Ada_b_est.split(":")}
+
+
+argumentDictionaries = {"Monoview": {}, "Multiview": []}
+if benchmark["Monoview"]:
+    for view in args.views.split(":"):
+        argumentDictionaries["Monoview"][str(view)] = []
+        for classifier in benchmark["Monoview"]:
+
+            arguments = {classifier+"KWARGS": globals()[classifier+"KWARGS"], "feat":view, "fileFeat": args.fileFeat,
+                         "fileCL": args.fileCL, "fileCLD": args.fileCLD, "CL_type": classifier}
+
+            argumentDictionaries["Monoview"][str(view)].append(arguments)
+bestClassifiers = []
+bestClassifiersConfigs = []
+for viewIndex, viewArguments in enumerate(argumentDictionaries["Monoview"].values()):
+    resultsMonoview = Parallel(n_jobs=nbCores)(
+        delayed(ExecMonoview)(DATASET.get("View"+str(viewIndex)).value, DATASET.get("labels").value, args.name,
+                              args.CL_split, args.CL_nbFolds, 1, args.type, args.pathF, gridSearch=True,
+                              **arguments)
+        for arguments in viewArguments)
+
+    accuracies = [result[1] for result in resultsMonoview]
+    classifiersNames = [result[0] for result in resultsMonoview]
+    classifiersConfigs = [result[2] for result in resultsMonoview]
+    bestClassifiers.append(classifiersNames[np.argmax(np.array(accuracies))])
+    bestClassifiersConfigs.append(classifiersConfigs[np.argmax(np.array(accuracies))])
+# bestClassifiers = ["DecisionTree", "DecisionTree", "DecisionTree", "DecisionTree"]
+# bestClassifiersConfigs = [["1"],["1"],["1"],["1"]]
+
 if benchmark["Multiview"]:
+    if benchmark["Multiview"]["Mumbo"]:
+        for classifier in benchmark["Multiview"]["Mumbo"]:
+            arguments = {"CL_type": "Mumbo",
+                         "views": args.views.split(":"),
+                         "NB_VIEW": len(args.views.split(":")),
+                         "NB_CLASS": len(args.CL_classes.split(":")),
+                         "LABELS_NAMES": args.CL_classes.split(":"),
+                         "MumboKWARGS": {"classifiersNames": ["DecisionTree", "DecisionTree", "DecisionTree",
+                                                              "DecisionTree"],
+                                         "maxIter":int(args.MU_iter[0]), "minIter":int(args.MU_iter[1]),
+                                         "threshold":args.MU_iter[2]}}
+            argumentDictionaries["Multiview"].append(arguments)
     if benchmark["Multiview"]["Fusion"]:
         if benchmark["Multiview"]["Fusion"]["Methods"]["LateFusion"] and benchmark["Multiview"]["Fusion"]["Classifiers"]:
             for method in benchmark["Multiview"]["Fusion"]["Methods"]["LateFusion"]:
-                        arguments = {"CL_type": "Fusion",
-                                     "views": args.views.split(":"),
-                                     "NB_VIEW": len(args.views.split(":")),
-                                     "NB_CLASS": len(args.CL_classes.split(":")),
-                                     "LABELS_NAMES": args.CL_classes.split(":"),
-                                     "FusionKWARGS": {"fusionType":"LateFusion", "fusionMethod":method,
-                                                      "classifiersNames": bestClassifiers,
-                                                      "classifiersConfigs": bestClassifiersConfigs,
-                                                      'fusionMethodConfig': fusionMethodConfig},
-                                     "MumboKWARGS":""}
-                        argumentDictionaries["Multiview"].append(arguments)
+                arguments = {"CL_type": "Fusion",
+                             "views": args.views.split(":"),
+                             "NB_VIEW": len(args.views.split(":")),
+                             "NB_CLASS": len(args.CL_classes.split(":")),
+                             "LABELS_NAMES": args.CL_classes.split(":"),
+                             "FusionKWARGS": {"fusionType":"LateFusion", "fusionMethod":method,
+                                              "classifiersNames": bestClassifiers,
+                                              "classifiersConfigs": bestClassifiersConfigs,
+                                              'fusionMethodConfig': fusionMethodConfig}}
+                argumentDictionaries["Multiview"].append(arguments)
         if benchmark["Multiview"]["Fusion"]["Methods"]["EarlyFusion"] and benchmark["Multiview"]["Fusion"]["Classifiers"]:
             for method in benchmark["Multiview"]["Fusion"]["Methods"]["EarlyFusion"]:
                 for classifier in benchmark["Multiview"]["Fusion"]["Classifiers"]:
                     arguments = {"CL_type": "Fusion",
-                                     "views": args.views.split(":"),
-                                     "NB_VIEW": len(args.views.split(":")),
-                                     "NB_CLASS": len(args.CL_classes.split(":")),
-                                     "LABELS_NAMES": args.CL_classes.split(":"),
-                                     "FusionKWARGS": {"fusionType":"EarlyFusion", "fusionMethod":method,
-                                                      "classifiersNames": classifier,
-                                                      "classifiersConfigs": fusionClassifierConfig,
-                                                      'fusionMethodConfig': fusionMethodConfig},
-                                 "MumboKWARGS":""}
+                                 "views": args.views.split(":"),
+                                 "NB_VIEW": len(args.views.split(":")),
+                                 "NB_CLASS": len(args.CL_classes.split(":")),
+                                 "LABELS_NAMES": args.CL_classes.split(":"),
+                                 "FusionKWARGS": {"fusionType":"EarlyFusion", "fusionMethod":method,
+                                                  "classifiersNames": classifier,
+                                                  "classifiersConfigs": fusionClassifierConfig,
+                                                  'fusionMethodConfig': fusionMethodConfig}}
                     argumentDictionaries["Multiview"].append(arguments)
-    if benchmark["Multiview"]["Mumbo"]:
-        #for classifier in benchmark["Multiview"]["Mumbo"]:
-        for i in range(int(np.power(len(args.views.split(":")), len(benchmark["Multiview"]["Mumbo"])))):
-            arguments = {"CL_type": "Mumbo",
-                         "views": args.views.split(":"),
-                         "NB_VIEW": len(args.views.split(":")),
-                         "NB_CLASS": len(args.CL_classes.split(":")),
-                         "LABELS_NAMES": args.CL_classes.split(":"),
-                         "MumboKWARGS": {"classifiersConfigs": mumboClassifierConfig,"NB_ITER": mumboNB_ITER,
-                                         "classifiersNames": ["DecisionTree", "DecisionTree", "DecisionTree", "DecisionTree"]},
-                         "FusionKWARGS": ""}
-            argumentDictionaries["Multiview"].append(arguments)
 
 resultsMultiview = Parallel(n_jobs=nbCores)(
     delayed(ExecMultiview)(DATASET, args.name, args.CL_split, args.CL_nbFolds, 1, args.type, args.pathF,
                            LABELS_DICTIONARY, gridSearch=True, **arguments)
     for arguments in argumentDictionaries["Multiview"])
 
-# for classifierType, argumentsList in argumentDictionaries.iteritems():
-#     executionMethod = globals()["Exec"+classifierType]
-#     results[classifierType] = Parallel(n_jobs=args.CL_cores)(delayed(executionMethod)
-#                                                              (args.name, args.CL_split,args.CL_nbFolds, 1, args.type,
-#                                                               args.pathF, **arguments)
-#                                                              for arguments in argumentsList)
 resultAnalysis(benchmark, results)
 print len(argumentDictionaries["Multiview"]), len(argumentDictionaries["Monoview"])
 
 
-
-# views = args.views.split(":")
-# dataBaseType = args.type
-# NB_VIEW = len(views)
-# mumboClassifierConfig = [argument.split(':') for argument in args.MU_config]
-#
-# LEARNING_RATE = args.CL_split
-# nbFolds = args.CL_nbFolds
-# NB_CLASS = args.CL_nb_class
-# LABELS_NAMES = args.CL_classes.split(":")
-# mumboclassifierNames = args.MU_type.split(':')
-# mumboNB_ITER = args.MU_iter
-# NB_CORES = args.CL_cores
-# fusionClassifierNames = args.FU_cl_names.split(":")
-# fusionClassifierConfig = [argument.split(':') for argument in args.FU_cl_config]
-# fusionMethodConfig = [argument.split(':') for argument in args.FU_method_config]
-# FusionKWARGS = {"fusionType":args.FU_type, "fusionMethod":args.FU_method,
-#                 "monoviewClassifiersNames":fusionClassifierNames, "monoviewClassifiersConfigs":fusionClassifierConfig,
-#                 'fusionMethodConfig':fusionMethodConfig}
-# MumboKWARGS = {"classifiersConfigs":mumboClassifierConfig, "NB_ITER":mumboNB_ITER, "classifiersNames":mumboclassifierNames}
-# directory = os.path.dirname(os.path.abspath(__file__)) + "/Results/"
-# logFileName = time.strftime("%Y%m%d-%H%M%S") + "-CMultiV-" + args.CL_type + "-" + "_".join(views) + "-" + args.name + \
-#               "-LOG"
-# logFile = directory + logFileName
-# if os.path.isfile(logFile + ".log"):
-#     for i in range(1, 20):
-#         testFileName = logFileName + "-" + str(i) + ".log"
-#         if not (os.path.isfile(directory + testFileName)):
-#             logfile = directory + testFileName
-#             break
-# else:
-#     logFile += ".log"
-# logging.basicConfig(format='%(asctime)s %(levelname)s: %(message)s', filename=logFile, level=logging.DEBUG,
-#                     filemode='w')
-# if args.log:
-#     logging.getLogger().addHandler(logging.StreamHandler())
-#
-# ExecMultiview(views, dataBaseType, args, NB_VIEW, LEARNING_RATE, nbFolds, NB_CLASS, LABELS_NAMES, NB_CORES,
-#               MumboKWARGS, FusionKWARGS)
\ No newline at end of file
diff --git a/Code/FeatExtraction/DBCrawl.py b/Code/MonoMutliViewClassifiers/FeatExtraction/DBCrawl.py
similarity index 100%
rename from Code/FeatExtraction/DBCrawl.py
rename to Code/MonoMutliViewClassifiers/FeatExtraction/DBCrawl.py
diff --git a/Code/FeatExtraction/ExecFeatExtraction.py b/Code/MonoMutliViewClassifiers/FeatExtraction/ExecFeatExtraction.py
similarity index 100%
rename from Code/FeatExtraction/ExecFeatExtraction.py
rename to Code/MonoMutliViewClassifiers/FeatExtraction/ExecFeatExtraction.py
diff --git a/Code/FeatExtraction/ExecFeatParaOpt.py b/Code/MonoMutliViewClassifiers/FeatExtraction/ExecFeatParaOpt.py
similarity index 100%
rename from Code/FeatExtraction/ExecFeatParaOpt.py
rename to Code/MonoMutliViewClassifiers/FeatExtraction/ExecFeatParaOpt.py
diff --git a/Code/FeatExtraction/FeatExtraction.py b/Code/MonoMutliViewClassifiers/FeatExtraction/FeatExtraction.py
similarity index 100%
rename from Code/FeatExtraction/FeatExtraction.py
rename to Code/MonoMutliViewClassifiers/FeatExtraction/FeatExtraction.py
diff --git a/Code/FeatExtraction/FeatParaOpt.py b/Code/MonoMutliViewClassifiers/FeatExtraction/FeatParaOpt.py
similarity index 100%
rename from Code/FeatExtraction/FeatParaOpt.py
rename to Code/MonoMutliViewClassifiers/FeatExtraction/FeatParaOpt.py
diff --git a/Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-ClassLabels-Description.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-ClassLabels-Description.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-ClassLabels-Description.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-ClassLabels-Description.csv
diff --git a/Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-ClassLabels.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-ClassLabels.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-ClassLabels.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-ClassLabels.csv
diff --git a/Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-HOG-CellDimension_5-nbOrientaions_8-nbClusters_20-Maxiter_100.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-HOG-CellDimension_5-nbOrientaions_8-nbClusters_20-Maxiter_100.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-HOG-CellDimension_5-nbOrientaions_8-nbClusters_20-Maxiter_100.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-HOG-CellDimension_5-nbOrientaions_8-nbClusters_20-Maxiter_100.csv
diff --git a/Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-HSV-Bins_[16,16,16]-Norm_Distr.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-HSV-Bins_[16,16,16]-Norm_Distr.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-HSV-Bins_[16,16,16]-Norm_Distr.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-HSV-Bins_[16,16,16]-Norm_Distr.csv
diff --git a/Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-RGB-Bins_16-MaxCI_256-Norm_Distr.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-RGB-Bins_16-MaxCI_256-Norm_Distr.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-RGB-Bins_16-MaxCI_256-Norm_Distr.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-RGB-Bins_16-MaxCI_256-Norm_Distr.csv
diff --git a/Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-RGB_HSV_SIFT_SURF_HOG-LOG.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-RGB_HSV_SIFT_SURF_HOG-LOG.log
similarity index 100%
rename from Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-RGB_HSV_SIFT_SURF_HOG-LOG.log
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-RGB_HSV_SIFT_SURF_HOG-LOG.log
diff --git a/Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-SIFT-Cluster_35-Norm_Distr.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-SIFT-Cluster_35-Norm_Distr.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-SIFT-Cluster_35-Norm_Distr.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-SIFT-Cluster_35-Norm_Distr.csv
diff --git a/Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-SURF-Cluster_30-Norm_Distr.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-SURF-Cluster_30-Norm_Distr.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-SURF-Cluster_30-Norm_Distr.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatExtr/2016_03_24-FE-Caltech-SURF-Cluster_30-Norm_Distr.csv
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-FeatParaOpt-HOG.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-FeatParaOpt-HOG.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-FeatParaOpt-HOG.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-FeatParaOpt-HOG.csv
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-Feature_HOG-Parameter_HOG_Cluster-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-Feature_HOG-Parameter_HOG_Cluster-ClassTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-Feature_HOG-Parameter_HOG_Cluster-ClassTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-Feature_HOG-Parameter_HOG_Cluster-ClassTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-Feature_HOG-Parameter_HOG_Cluster-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-Feature_HOG-Parameter_HOG_Cluster-FeatExtTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-Feature_HOG-Parameter_HOG_Cluster-FeatExtTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-Feature_HOG-Parameter_HOG_Cluster-FeatExtTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-Feature_HOG-Parameter_HOG_Cluster-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-Feature_HOG-Parameter_HOG_Cluster-TotalTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-Feature_HOG-Parameter_HOG_Cluster-TotalTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-10-50-5/2016_03_19-Feature_HOG-Parameter_HOG_Cluster-TotalTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_22-FPO-Caltech-HOG-HOG_Cluster-LOG.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_22-FPO-Caltech-HOG-HOG_Cluster-LOG.log
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_22-FPO-Caltech-HOG-HOG_Cluster-LOG.log
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_22-FPO-Caltech-HOG-HOG_Cluster-LOG.log
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_22-FPO-Caltech-HOG-HOG_Cluster.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_22-FPO-Caltech-HOG-HOG_Cluster.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_22-FPO-Caltech-HOG-HOG_Cluster.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_22-FPO-Caltech-HOG-HOG_Cluster.csv
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-ClassTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-ClassTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-ClassTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-FeatExtTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-FeatExtTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-FeatExtTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-TotalTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-TotalTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-25-5/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-TotalTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-ClassTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-ClassTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-ClassTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-FeatExtTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-FeatExtTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-FeatExtTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-LOG.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-LOG.log
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-LOG.log
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-LOG.log
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-TotalTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-TotalTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster-TotalTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HOG-2-40-8/2016_03_23-FPO-Caltech-HOG-HOG_Cluster.csv
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-ClassTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-ClassTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-ClassTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-FeatExtTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-FeatExtTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-FeatExtTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-LOG.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-LOG.log
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-LOG.log
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-LOG.log
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-TotalTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-TotalTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-TotalTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins.csv
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-1.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-1.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-1.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-1.csv
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-ClassTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-ClassTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-ClassTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-FeatExtTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-FeatExtTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-FeatExtTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-LOG-1.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-LOG-1.log
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-LOG-1.log
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-LOG-1.log
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-TotalTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-TotalTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-H-2-40-8/2016_03_23-FPO-Caltech-HSV-HSV_H_Bins-TotalTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-1.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-1.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-1.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-1.csv
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-ClassTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-ClassTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-ClassTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-FeatExtTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-FeatExtTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-FeatExtTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-LOG-1.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-LOG-1.log
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-LOG-1.log
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-LOG-1.log
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-TotalTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-TotalTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-TotalTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-ClassTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-ClassTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-ClassTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-FeatExtTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-FeatExtTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-FeatExtTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-LOG.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-LOG.log
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-LOG.log
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-LOG.log
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-TotalTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-TotalTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins-TotalTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-S-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_S_Bins.csv
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-1.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-1.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-1.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-1.csv
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-ClassTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-ClassTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-ClassTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-FeatExtTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-FeatExtTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-FeatExtTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-LOG.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-LOG.log
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-LOG.log
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-LOG.log
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-TotalTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-TotalTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-14-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-TotalTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-ClassTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-ClassTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-ClassTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-FeatExtTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-FeatExtTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-FeatExtTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-LOG.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-LOG.log
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-LOG.log
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-LOG.log
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-TotalTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-TotalTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins-TotalTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/HSV-V-2-25-5/2016_03_23-FPO-Caltech-HSV-HSV_V_Bins.csv
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-ClassTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-ClassTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-ClassTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-FeatExtTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-FeatExtTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-FeatExtTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-LOG.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-LOG.log
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-LOG.log
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-LOG.log
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-TotalTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-TotalTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins-TotalTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-25-5/2016_03_23-FPO-Caltech-RGB-RGB_Bins.csv
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-1.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-1.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-1.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-1.csv
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-ClassTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-ClassTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-ClassTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-FeatExtTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-FeatExtTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-FeatExtTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-LOG-1.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-LOG-1.log
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-LOG-1.log
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-LOG-1.log
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-TotalTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-TotalTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-40-8/2016_03_23-FPO-Caltech-RGB-RGB_Bins-TotalTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_01_24-RGB-ClassificationTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_01_24-RGB-ClassificationTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_01_24-RGB-ClassificationTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_01_24-RGB-ClassificationTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_01_24-RGB-FeatExtractTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_01_24-RGB-FeatExtractTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_01_24-RGB-FeatExtractTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_01_24-RGB-FeatExtractTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_01_24-RGB-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_01_24-RGB-TotalTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_01_24-RGB-TotalTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_01_24-RGB-TotalTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_03_14-Results-RGB.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_03_14-Results-RGB.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_03_14-Results-RGB.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/2016_03_14-Results-RGB.csv
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/Console-Output.txt b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/Console-Output.txt
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/Console-Output.txt
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-2-64-12/Console-Output.txt
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_CI-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_CI-ClassTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_CI-ClassTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_CI-ClassTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_CI-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_CI-FeatExtTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_CI-FeatExtTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_CI-FeatExtTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_CI-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_CI-TotalTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_CI-TotalTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_CI-TotalTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_MaxCI-LOG.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_MaxCI-LOG.log
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_MaxCI-LOG.log
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_MaxCI-LOG.log
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_MaxCI.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_MaxCI.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_MaxCI.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/RGB-CI-2-512-10/2016_03_23-FPO-Caltech-RGB-RGB_MaxCI.csv
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-ClassTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-ClassTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-ClassTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-FeatExtTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-FeatExtTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-FeatExtTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-LOG.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-LOG.log
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-LOG.log
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-LOG.log
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-TotalTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-TotalTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-TotalTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-25-5/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster.csv
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-1.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-1.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-1.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-1.csv
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-ClassTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-ClassTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-ClassTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-FeatExtTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-FeatExtTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-FeatExtTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-LOG-1.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-LOG-1.log
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-LOG-1.log
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-LOG-1.log
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-TotalTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-TotalTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SIFT-2-40-8/2016_03_23-FPO-Caltech-SIFT-SIFT_Cluster-TotalTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-ClassTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-ClassTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-ClassTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-FeatExtTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-FeatExtTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-FeatExtTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-LOG.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-LOG.log
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-LOG.log
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-LOG.log
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-TotalTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-TotalTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-TotalTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-25-5/2016_03_23-FPO-Caltech-SURF-SURF_Cluster.csv
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-1.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-1.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-1.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-1.csv
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-ClassTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-ClassTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-ClassTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-ClassTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-FeatExtTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-FeatExtTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-FeatExtTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-FeatExtTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-LOG-1.log b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-LOG-1.log
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-LOG-1.log
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-LOG-1.log
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-TotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-TotalTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-TotalTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-2-40-8/2016_03_23-FPO-Caltech-SURF-SURF_Cluster-TotalTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/2016_01_28-Results-SURF.csv b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/2016_01_28-Results-SURF.csv
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/2016_01_28-Results-SURF.csv
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/2016_01_28-Results-SURF.csv
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/Console-Output.txt b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/Console-Output.txt
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/Console-Output.txt
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/Console-Output.txt
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/ScoreClassificationTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/ScoreClassificationTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/ScoreClassificationTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/ScoreClassificationTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/ScoreFeatExtractionTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/ScoreFeatExtractionTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/ScoreFeatExtractionTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/ScoreFeatExtractionTime.png
diff --git a/Code/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/ScoreTotalTime.png b/Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/ScoreTotalTime.png
similarity index 100%
rename from Code/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/ScoreTotalTime.png
rename to Code/MonoMutliViewClassifiers/FeatExtraction/Results-FeatParaOpt/SURF-50-200-4/ScoreTotalTime.png
diff --git a/Code/FeatExtraction/__init__.py b/Code/MonoMutliViewClassifiers/FeatExtraction/__init__.py
similarity index 100%
rename from Code/FeatExtraction/__init__.py
rename to Code/MonoMutliViewClassifiers/FeatExtraction/__init__.py
diff --git a/Code/FeatExtraction/hog_extraction.py b/Code/MonoMutliViewClassifiers/FeatExtraction/hog_extraction.py
similarity index 100%
rename from Code/FeatExtraction/hog_extraction.py
rename to Code/MonoMutliViewClassifiers/FeatExtraction/hog_extraction.py
diff --git a/Code/FeatExtraction/hog_extraction_parallelized.py b/Code/MonoMutliViewClassifiers/FeatExtraction/hog_extraction_parallelized.py
similarity index 100%
rename from Code/FeatExtraction/hog_extraction_parallelized.py
rename to Code/MonoMutliViewClassifiers/FeatExtraction/hog_extraction_parallelized.py
diff --git a/Code/Monoview/ClassifMonoView.py b/Code/MonoMutliViewClassifiers/Monoview/ClassifMonoView.py
similarity index 90%
rename from Code/Monoview/ClassifMonoView.py
rename to Code/MonoMutliViewClassifiers/Monoview/ClassifMonoView.py
index d5b246b16a546f69a97b160f32d75edd38bba8cd..ebbad0fcd72787b41e9f3a9ea5638b50ecc6b832 100644
--- a/Code/Monoview/ClassifMonoView.py
+++ b/Code/MonoMutliViewClassifiers/Monoview/ClassifMonoView.py
@@ -168,16 +168,27 @@ def MonoviewClassifRandomForest(X_train, y_train, nbFolds=4, nbCores=1, **kwargs
     return description, rf_detector
 
 
-def MonoviewClassifSVC(X_train, y_train, nbFolds=4, nbCores=1, **kwargs):
-    pipeline_SVC = Pipeline([('classifier', sklearn.svm.SVC())])
-    param_SVC = kwargs
+def MonoviewClassifSVMLinear(X_train, y_train, nbFolds=4, nbCores=1, **kwargs):
+    pipeline_SVMLinear = Pipeline([('classifier', sklearn.svm.SVC())])
+    param_SVMLinear = kwargs
 
-    grid_SVC = GridSearchCV(pipeline_SVC, param_grid=param_SVC, refit=True, n_jobs=nbCores, scoring='accuracy',
+    grid_SVMLinear = GridSearchCV(pipeline_SVMLinear, param_grid=param_SVMLinear, refit=True, n_jobs=nbCores, scoring='accuracy',
                             cv=nbFolds)
-    SVC_detector = grid_SVC.fit(X_train, y_train)
-    desc_params = [SVC_detector.best_params_["classifier__C"], SVC_detector.best_params_["classifier__kernel"]]
+    SVMLinear_detector = grid_SVMLinear.fit(X_train, y_train)
+    desc_params = [SVMLinear_detector.best_params_["classifier__C"]]
     description = "Classif_" + "SVC" + "-" + "CV_" + str(nbFolds) + "-" + "-".join(map(str,desc_params))
-    return description, SVC_detector
+    return description, SVMLinear_detector
+
+def MonoviewClassifSVMRBF(X_train, y_train, nbFolds=4, nbCores=1, **kwargs):
+    pipeline_SVMRBF = Pipeline([('classifier', sklearn.svm.SVC())])
+    param_SVMRBF = kwargs
+
+    grid_SVMRBF = GridSearchCV(pipeline_SVMRBF, param_grid=param_SVMRBF, refit=True, n_jobs=nbCores, scoring='accuracy',
+                                  cv=nbFolds)
+    SVMRBF_detector = grid_SVMRBF.fit(X_train, y_train)
+    desc_params = [SVMRBF_detector.best_params_["classifier__C"]]
+    description = "Classif_" + "SVC" + "-" + "CV_" + str(nbFolds) + "-" + "-".join(map(str,desc_params))
+    return description, SVMRBF_detector
 
 
 def MonoviewClassifDecisionTree(X_train, y_train, nbFolds=4, nbCores=1, **kwargs):
diff --git a/Code/Monoview/ExecClassifMonoView.py b/Code/MonoMutliViewClassifiers/Monoview/ExecClassifMonoView.py
similarity index 62%
rename from Code/Monoview/ExecClassifMonoView.py
rename to Code/MonoMutliViewClassifiers/Monoview/ExecClassifMonoView.py
index 04a271e7ea188ee11d08703307e8e5bc7a401f7c..55d4e86f2ecd52fb2e0e7d4e9ef304a09608d554 100644
--- a/Code/Monoview/ExecClassifMonoView.py
+++ b/Code/MonoMutliViewClassifiers/Monoview/ExecClassifMonoView.py
@@ -19,7 +19,7 @@ import h5py
 # Import own modules
 import ClassifMonoView	                # Functions for classification
 import ExportResults                    # Functions to render results
-
+import MonoviewClassifiers
 
 # Author-Info
 __author__ 	= "Nikolas Huelsmann, Baptiste BAUVIN"
@@ -58,10 +58,10 @@ def ExecMonoview(X, Y, name, learningRate, nbFolds, nbCores, databaseType, path,
     logging.debug("Start:\t Classification")
 
 
-    classifierFunction = getattr(ClassifMonoView, "MonoviewClassif"+CL_type)
+    classifierModule = getattr(MonoviewClassifiers, CL_type)
+    classifierFunction = getattr(classifierModule, "fit_gridsearch")
 
-    cl_desc, cl_res = classifierFunction(X_train, y_train, nbFolds=nbFolds, nbCores=nbCores,
-                                                         **classifierKWARGS)
+    cl_desc, cl_res = classifierFunction(X_train, y_train, nbFolds=nbFolds, nbCores=nbCores,**classifierKWARGS)
     t_end  = time.time() - t_start
 
     # Add result to Results DF
@@ -91,37 +91,38 @@ def ExecMonoview(X, Y, name, learningRate, nbFolds, nbCores, databaseType, path,
 
     #Accuracy classification score
     accuracy_score = ExportResults.accuracy_score(y_test, y_test_pred)
-
-    # Classification Report with Precision, Recall, F1 , Support
-    logging.debug("Info:\t Classification report:")
-    filename = datetime.datetime.now().strftime("%Y_%m_%d") + "-CMV-" + name + "-" + feat + "-Report"
-    logging.debug("\n" + str(metrics.classification_report(y_test, y_test_pred, labels = range(0,len(classLabelsDesc.name)), target_names=classLabelsNamesList)))
-    scores_df = ExportResults.classification_report_df(directory, filename, y_test, y_test_pred, range(0, len(classLabelsDesc.name)), classLabelsNamesList)
-
-    # Create some useful statistcs
-    logging.debug("Info:\t Statistics:")
-    filename = datetime.datetime.now().strftime("%Y_%m_%d") + "-CMV-" + name + "-" + feat + "-Stats"
-    stats_df = ExportResults.classification_stats(directory, filename, scores_df, accuracy_score)
-    logging.debug("\n" + stats_df.to_string())
-
-    # Confusion Matrix
-    logging.debug("Info:\t Calculate Confusionmatrix")
-    filename = datetime.datetime.now().strftime("%Y_%m_%d") + "-CMV-" + name + "-" + feat + "-ConfMatrix"
-    df_conf_norm = ExportResults.confusion_matrix_df(directory, filename, y_test, y_test_pred, classLabelsNamesList)
-    filename = datetime.datetime.now().strftime("%Y_%m_%d") + "-CMV-" + name + "-" + feat + "-ConfMatrixImg"
-    ExportResults.plot_confusion_matrix(directory, filename, df_conf_norm)
-
-    logging.debug("Done:\t Statistic Results")
-
-
-    # Plot Result
-    logging.debug("Start:\t Plot Result")
-    np_score = ExportResults.calcScorePerClass(y_test, cl_res.predict(X_test).astype(int))
-    ### directory and filename the same as CSV Export
-    filename = datetime.datetime.now().strftime("%Y_%m_%d") + "-CMV-" + name + "-" + feat + "-Score"
-    ExportResults.showResults(directory, filename, name, feat, np_score)
-    logging.debug("Done:\t Plot Result")
-    return [CL_type, accuracy_score, cl_desc]
+    logging.info("Accuracy :" +str(accuracy_score))
+
+    # # Classification Report with Precision, Recall, F1 , Support
+    # logging.debug("Info:\t Classification report:")
+    # filename = datetime.datetime.now().strftime("%Y_%m_%d") + "-CMV-" + name + "-" + feat + "-Report"
+    # logging.debug("\n" + str(metrics.classification_report(y_test, y_test_pred, labels = range(0,len(classLabelsDesc.name)), target_names=classLabelsNamesList)))
+    # scores_df = ExportResults.classification_report_df(directory, filename, y_test, y_test_pred, range(0, len(classLabelsDesc.name)), classLabelsNamesList)
+    #
+    # # Create some useful statistcs
+    # logging.debug("Info:\t Statistics:")
+    # filename = datetime.datetime.now().strftime("%Y_%m_%d") + "-CMV-" + name + "-" + feat + "-Stats"
+    # stats_df = ExportResults.classification_stats(directory, filename, scores_df, accuracy_score)
+    # logging.debug("\n" + stats_df.to_string())
+    #
+    # # Confusion Matrix
+    # logging.debug("Info:\t Calculate Confusionmatrix")
+    # filename = datetime.datetime.now().strftime("%Y_%m_%d") + "-CMV-" + name + "-" + feat + "-ConfMatrix"
+    # df_conf_norm = ExportResults.confusion_matrix_df(directory, filename, y_test, y_test_pred, classLabelsNamesList)
+    # filename = datetime.datetime.now().strftime("%Y_%m_%d") + "-CMV-" + name + "-" + feat + "-ConfMatrixImg"
+    # ExportResults.plot_confusion_matrix(directory, filename, df_conf_norm)
+    #
+    # logging.debug("Done:\t Statistic Results")
+    #
+    #
+    # # Plot Result
+    # logging.debug("Start:\t Plot Result")
+    # np_score = ExportResults.calcScorePerClass(y_test, cl_res.predict(X_test).astype(int))
+    # ### directory and filename the same as CSV Export
+    # filename = datetime.datetime.now().strftime("%Y_%m_%d") + "-CMV-" + name + "-" + feat + "-Score"
+    # ExportResults.showResults(directory, filename, name, feat, np_score)
+    # logging.debug("Done:\t Plot Result")
+    # return [CL_type, accuracy_score, cl_desc]
 
 
 if __name__=='__main__':
@@ -131,7 +132,7 @@ if __name__=='__main__':
 
     groupStandard = parser.add_argument_group('Standard arguments')
     groupStandard.add_argument('-log', action='store_true', help='Use option to activate Logging to Console')
-    groupStandard.add_argument('--type', metavar='STRING', action='store', help='Type of Dataset', default="hdf5")
+    groupStandard.add_argument('--type', metavar='STRING', action='store', help='Type of Dataset', default=".hdf5")
     groupStandard.add_argument('--name', metavar='STRING', action='store', help='Name of Database (default: %(default)s)', default='DB')
     groupStandard.add_argument('--feat', metavar='STRING', action='store', help='Name of Feature for Classification (default: %(default)s)', default='RGB')
     groupStandard.add_argument('--pathF', metavar='STRING', action='store', help='Path to the views (default: %(default)s)', default='Results-FeatExtr/')
@@ -147,34 +148,39 @@ if __name__=='__main__':
     groupClass.add_argument('--CL_split', metavar='FLOAT', action='store', help='Split ratio for train and test', type=float, default=0.9)
 
 
-    groupRF = parser.add_argument_group('Random Forest arguments')
-    groupRF.add_argument('--CL_RF_trees', metavar='STRING', action='store', help='GridSearch: Determine the trees', default='25 75 125 175')
-
-    groupSVC = parser.add_argument_group('SVC arguments')
-    groupSVC.add_argument('--CL_SVC_kernel', metavar='STRING', action='store', help='GridSearch : Kernels used', default='linear')
-    groupSVC.add_argument('--CL_SVC_C', metavar='STRING', action='store', help='GridSearch : Penalty parameters used', default='1:10:100:1000')
+    groupClassifier = parser.add_argument_group('Classifier Config')
+    groupClassifier.add_argument('--CL_config', metavar='STRING', nargs="+", action='store', help='GridSearch: Determine the trees', default=['25:75:125:175'])
 
-    groupRF = parser.add_argument_group('Decision Trees arguments')
-    groupRF.add_argument('--CL_DT_depth', metavar='STRING', action='store', help='GridSearch: Determine max depth for Decision Trees', default='1:3:5:7')
-
-    groupSGD = parser.add_argument_group('SGD arguments')
-    groupSGD.add_argument('--CL_SGD_alpha', metavar='STRING', action='store', help='GridSearch: Determine alpha for SGDClassifier', default='0.1:0.2:0.5:0.9')
-    groupSGD.add_argument('--CL_SGD_loss', metavar='STRING', action='store', help='GridSearch: Determine loss for SGDClassifier', default='log')
-    groupSGD.add_argument('--CL_SGD_penalty', metavar='STRING', action='store', help='GridSearch: Determine penalty for SGDClassifier', default='l2')
+    # groupSVMLinear = parser.add_argument_group('SVC arguments')
+    # groupSVMLinear.add_argument('--CL_SVML_C', metavar='STRING', action='store', help='GridSearch : Penalty parameters used', default='1:10:100:1000')
+    #
+    # groupSVMRBF = parser.add_argument_group('SVC arguments')
+    # groupSVMRBF.add_argument('--CL_SVMR_C', metavar='STRING', action='store', help='GridSearch : Penalty parameters used', default='1:10:100:1000')
+    #
+    # groupRF = parser.add_argument_group('Decision Trees arguments')
+    # groupRF.add_argument('--CL_DT_depth', metavar='STRING', action='store', help='GridSearch: Determine max depth for Decision Trees', default='1:3:5:7')
+    #
+    # groupSGD = parser.add_argument_group('SGD')
+    # groupSGD.add_argument('--CL_SGD_alpha', metavar='STRING', action='store', help='GridSearch: Determine alpha for SGDClassifier', default='0.1:0.2:0.5:0.9')
+    # groupSGD.add_argument('--CL_SGD_loss', metavar='STRING', action='store', help='GridSearch: Determine loss for SGDClassifier', default='log')
+    # groupSGD.add_argument('--CL_SGD_penalty', metavar='STRING', action='store', help='GridSearch: Determine penalty for SGDClassifier', default='l2')
 
 
     args = parser.parse_args()
-    RandomForestKWARGS = {"classifier__n_estimators":map(int, args.CL_RF_trees.split())}
-    SVCKWARGS = {"classifier__kernel":args.CL_SVC_kernel.split(":"), "classifier__C":map(int,args.CL_SVC_C.split(":"))}
-    DecisionTreeKWARGS = {"classifier__max_depth":map(int,args.CL_DT_depth.split(":"))}
-    SGDKWARGS = {"classifier__alpha" : map(float,args.CL_SGD_alpha.split(":")), "classifier__loss":args.CL_SGD_loss.split(":"),
-                 "classifier__penalty":args.CL_SGD_penalty.split(":")}
+
+    # RandomForestKWARGS = {"classifier__n_estimators":map(int, args.CL_RF_trees.split())}
+    # SVMLinearKWARGS = {"classifier__C":map(int,args.CL_SVML_C.split(":"))}
+    # SVMRBFKWARGS = {"classifier__C":map(int,args.CL_SVMR_C.split(":"))}
+    # DecisionTreeKWARGS = {"classifier__max_depth":map(int,args.CL_DT_depth.split(":"))}
+    # SGDKWARGS = {"classifier__alpha" : map(float,args.CL_SGD_alpha.split(":")), "classifier__loss":args.CL_SGD_loss.split(":"),
+    #              "classifier__penalty":args.CL_SGD_penalty.split(":")}
+    classifierKWARGS = dict((key, value) for key, value in enumerate([arg.split(":") for arg in args.CL_config]))
     ### Main Programm
 
 
     # Configure Logger
     directory = os.path.dirname(os.path.abspath(__file__)) + "/Results-ClassMonoView/"
-    logfilename= datetime.datetime.now().strftime("%Y_%m_%d") + "-CMV-" + args.name + "-" + args.feat + "-LOG"
+    logfilename = datetime.datetime.now().strftime("%Y_%m_%d") + "-CMV-" + args.name + "-" + args.feat + "-LOG"
     logfile = directory + logfilename
     if os.path.isfile(logfile + ".log"):
         for i in range(1,20):
@@ -194,7 +200,7 @@ if __name__=='__main__':
     # Read the features
     logging.debug("Start:\t Read " + args.type + " Files")
 
-    if args.databaseType == ".csv":
+    if args.type == ".csv":
         X = np.genfromtxt(args.pathF + args.fileFeat, delimiter=';')
         Y = np.genfromtxt(args.pathF + args.fileCL, delimiter=';')
     elif args.type == ".hdf5":
@@ -206,7 +212,6 @@ if __name__=='__main__':
     logging.debug("Info:\t Shape of Feature:" + str(X.shape) + ", Length of classLabels vector:" + str(Y.shape))
     logging.debug("Done:\t Read CSV Files")
 
-    arguments = {"RandomForestKWARGS": RandomForestKWARGS, "SVCKWARGS": SVCKWARGS,
-                 "DecisionTreeKWARGS": DecisionTreeKWARGS, "SGDKWARGS": SGDKWARGS, "feat":args.feat,
-                 "fileFeat": args.fileFeat, "fileCL": args.fileCL, "fileCLD": args.fileCLD, "CL_type": args.CL_type}
+    arguments = {args.CL_type+"KWARGS": classifierKWARGS, "feat":args.feat,"fileFeat": args.fileFeat,
+                 "fileCL": args.fileCL, "fileCLD": args.fileCLD, "CL_type": args.CL_type}
     ExecMonoview(X, Y, args.name, args.CL_split, args.CL_CV, args.CL_Cores, args.type, args.pathF, **arguments)
diff --git a/Code/Monoview/ExecPlot.py b/Code/MonoMutliViewClassifiers/Monoview/ExecPlot.py
similarity index 100%
rename from Code/Monoview/ExecPlot.py
rename to Code/MonoMutliViewClassifiers/Monoview/ExecPlot.py
diff --git a/Code/Monoview/ExportResults.py b/Code/MonoMutliViewClassifiers/Monoview/ExportResults.py
similarity index 100%
rename from Code/Monoview/ExportResults.py
rename to Code/MonoMutliViewClassifiers/Monoview/ExportResults.py
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-1.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-1.log
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-1.log
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-1.log
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-2.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-2.log
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-2.log
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-2.log
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-3.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-3.log
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-3.log
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-3.log
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-4.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-4.log
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-4.log
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-4.log
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-5.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-5.log
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-5.log
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-5.log
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-6.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-6.log
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-6.log
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-6.log
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-7.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-7.log
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-7.log
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG-7.log
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG.log
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG.log
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq-LOG.log
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_19-CMV-MultiOmicDataset-RNASeq.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-5.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-5.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-5.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-10.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-10.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-10.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-11.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-11.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-11.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-12.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-12.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-12.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-13.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-13.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-13.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-14.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-14.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-14.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-14.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-15.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-15.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-15.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-15.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-16.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-16.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-16.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-16.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-17.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-17.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-17.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-17.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-18.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-18.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-18.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-18.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-19.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-19.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-19.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-19.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-5.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-5.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-5.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-6.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-6.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-6.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-7.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-7.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-7.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-8.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-8.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-8.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-9.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-9.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix-9.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrix.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-1.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-1.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-1.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-10.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-10.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-10.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-10.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-11.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-11.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-11.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-11.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-12.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-12.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-12.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-12.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-13.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-13.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-13.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-13.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-14.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-14.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-14.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-14.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-15.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-15.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-15.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-15.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-16.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-16.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-16.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-16.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-17.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-17.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-17.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-17.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-18.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-18.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-18.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-18.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-19.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-19.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-19.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-19.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-2.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-2.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-2.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-3.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-3.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-3.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-4.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-4.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-4.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-5.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-5.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-5.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-6.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-6.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-6.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-7.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-7.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-7.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-8.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-8.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-8.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-8.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-9.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-9.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-9.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg-9.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-ConfMatrixImg.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-10.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-10.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-10.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-11.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-11.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-11.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-12.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-12.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-12.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-13.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-13.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-13.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-14.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-14.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-14.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-14.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-15.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-15.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-15.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-15.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-16.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-16.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-16.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-16.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-17.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-17.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-17.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-17.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-18.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-18.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-18.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-18.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-19.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-19.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-19.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-19.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-5.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-5.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-5.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-6.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-6.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-6.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-7.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-7.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-7.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-8.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-8.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-8.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-9.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-9.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report-9.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Report.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-1.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-1.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-1.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-10.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-10.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-10.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-10.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-11.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-11.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-11.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-11.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-12.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-12.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-12.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-12.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-13.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-13.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-13.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-13.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-14.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-14.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-14.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-14.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-15.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-15.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-15.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-15.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-16.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-16.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-16.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-16.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-17.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-17.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-17.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-17.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-18.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-18.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-18.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-18.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-19.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-19.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-19.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-19.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-2.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-2.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-2.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-3.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-3.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-3.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-4.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-4.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-4.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-5.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-5.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-5.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-6.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-6.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-6.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-7.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-7.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-7.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-8.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-8.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-8.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-8.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-9.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-9.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-9.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score-9.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Score.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-10.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-10.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-10.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-11.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-11.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-11.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-12.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-12.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-12.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-13.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-13.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-13.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-14.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-14.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-14.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-14.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-15.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-15.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-15.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-15.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-16.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-16.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-16.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-16.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-17.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-17.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-17.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-17.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-18.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-18.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-18.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-18.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-19.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-19.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-19.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-19.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-5.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-5.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-5.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-6.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-6.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-6.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-7.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-7.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-7.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-8.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-8.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-8.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-9.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-9.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats-9.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic-Stats.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Clinic.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-10.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-10.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-10.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-11.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-11.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-11.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-12.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-12.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-12.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-13.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-13.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-13.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-14.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-14.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-14.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-14.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-15.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-15.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-15.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-15.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-16.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-16.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-16.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-16.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-17.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-17.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-17.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-17.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-18.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-18.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-18.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-18.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-19.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-19.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-19.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-19.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-5.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-5.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-5.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-6.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-6.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-6.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-7.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-7.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-7.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-8.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-8.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-8.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-9.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-9.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix-9.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrix.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-1.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-1.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-1.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-10.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-10.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-10.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-10.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-11.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-11.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-11.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-11.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-12.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-12.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-12.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-12.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-13.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-13.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-13.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-13.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-14.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-14.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-14.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-14.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-15.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-15.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-15.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-15.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-16.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-16.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-16.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-16.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-17.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-17.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-17.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-17.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-18.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-18.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-18.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-18.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-19.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-19.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-19.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-19.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-2.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-2.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-2.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-3.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-3.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-3.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-4.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-4.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-4.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-5.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-5.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-5.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-6.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-6.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-6.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-7.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-7.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-7.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-8.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-8.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-8.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-8.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-9.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-9.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-9.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg-9.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-ConfMatrixImg.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-10.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-10.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-10.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-11.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-11.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-11.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-12.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-12.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-12.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-13.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-13.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-13.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-14.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-14.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-14.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-14.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-15.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-15.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-15.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-15.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-16.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-16.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-16.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-16.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-17.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-17.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-17.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-17.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-18.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-18.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-18.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-18.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-19.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-19.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-19.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-19.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-5.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-5.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-5.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-6.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-6.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-6.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-7.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-7.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-7.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-8.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-8.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-8.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-9.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-9.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report-9.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Report.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-1.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-1.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-1.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-10.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-10.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-10.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-10.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-11.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-11.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-11.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-11.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-12.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-12.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-12.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-12.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-13.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-13.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-13.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-13.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-14.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-14.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-14.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-14.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-15.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-15.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-15.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-15.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-16.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-16.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-16.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-16.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-17.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-17.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-17.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-17.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-18.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-18.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-18.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-18.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-19.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-19.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-19.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-19.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-2.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-2.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-2.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-3.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-3.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-3.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-4.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-4.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-4.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-5.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-5.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-5.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-6.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-6.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-6.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-7.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-7.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-7.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-8.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-8.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-8.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-8.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-9.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-9.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-9.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score-9.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Score.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-10.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-10.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-10.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-11.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-11.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-11.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-12.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-12.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-12.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-13.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-13.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-13.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-14.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-14.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-14.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-14.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-15.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-15.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-15.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-15.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-16.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-16.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-16.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-16.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-17.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-17.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-17.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-17.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-18.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-18.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-18.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-18.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-19.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-19.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-19.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-19.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-5.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-5.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-5.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-6.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-6.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-6.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-7.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-7.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-7.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-8.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-8.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-8.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-9.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-9.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats-9.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-Methyl-Stats.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-5.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-5.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-5.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-6.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-6.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-6.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-7.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-7.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-7.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-8.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-8.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-8.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-10.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-10.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-10.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-11.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-11.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-11.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-12.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-12.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-12.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-13.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-13.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-13.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-14.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-14.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-14.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-14.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-15.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-15.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-15.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-15.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-16.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-16.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-16.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-16.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-17.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-17.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-17.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-17.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-18.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-18.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-18.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-18.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-19.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-19.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-19.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-19.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-5.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-5.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-5.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-6.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-6.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-6.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-7.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-7.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-7.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-8.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-8.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-8.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-9.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-9.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix-9.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrix.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-1.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-1.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-1.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-10.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-10.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-10.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-10.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-11.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-11.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-11.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-11.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-12.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-12.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-12.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-12.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-13.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-13.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-13.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-13.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-14.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-14.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-14.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-14.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-15.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-15.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-15.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-15.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-16.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-16.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-16.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-16.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-17.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-17.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-17.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-17.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-18.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-18.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-18.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-18.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-19.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-19.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-19.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-19.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-2.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-2.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-2.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-3.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-3.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-3.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-4.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-4.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-4.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-5.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-5.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-5.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-6.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-6.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-6.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-7.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-7.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-7.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-8.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-8.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-8.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-8.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-9.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-9.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-9.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg-9.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-ConfMatrixImg.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-10.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-10.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-10.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-11.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-11.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-11.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-12.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-12.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-12.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-13.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-13.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-13.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-14.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-14.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-14.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-14.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-15.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-15.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-15.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-15.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-16.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-16.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-16.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-16.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-17.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-17.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-17.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-17.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-18.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-18.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-18.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-18.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-19.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-19.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-19.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-19.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-5.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-5.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-5.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-6.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-6.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-6.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-7.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-7.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-7.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-8.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-8.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-8.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-9.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-9.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report-9.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Report.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-1.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-1.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-1.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-10.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-10.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-10.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-10.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-11.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-11.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-11.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-11.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-12.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-12.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-12.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-12.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-13.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-13.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-13.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-13.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-14.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-14.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-14.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-14.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-15.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-15.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-15.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-15.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-16.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-16.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-16.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-16.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-17.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-17.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-17.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-17.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-18.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-18.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-18.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-18.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-19.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-19.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-19.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-19.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-2.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-2.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-2.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-3.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-3.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-3.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-4.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-4.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-4.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-5.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-5.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-5.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-6.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-6.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-6.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-7.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-7.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-7.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-8.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-8.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-8.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-8.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-9.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-9.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-9.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score-9.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Score.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-10.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-10.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-10.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-11.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-11.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-11.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-12.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-12.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-12.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-13.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-13.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-13.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-14.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-14.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-14.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-14.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-15.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-15.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-15.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-15.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-16.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-16.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-16.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-16.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-17.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-17.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-17.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-17.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-18.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-18.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-18.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-18.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-19.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-19.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-19.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-19.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-5.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-5.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-5.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-6.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-6.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-6.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-7.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-7.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-7.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-8.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-8.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-8.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-9.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-9.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats-9.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_-Stats.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-MiRNA_.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-5.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-5.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-5.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-6.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-6.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-6.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-7.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-7.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-7.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-10.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-10.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-10.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-11.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-11.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-11.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-12.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-12.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-12.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-13.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-13.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-13.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-14.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-14.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-14.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-14.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-15.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-15.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-15.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-15.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-16.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-16.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-16.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-16.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-17.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-17.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-17.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-17.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-18.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-18.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-18.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-18.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-19.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-19.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-19.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-19.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-5.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-5.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-5.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-6.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-6.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-6.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-7.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-7.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-7.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-8.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-8.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-8.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-9.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-9.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix-9.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrix.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-1.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-1.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-1.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-10.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-10.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-10.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-10.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-11.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-11.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-11.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-11.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-12.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-12.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-12.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-12.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-13.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-13.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-13.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-13.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-14.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-14.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-14.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-14.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-15.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-15.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-15.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-15.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-16.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-16.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-16.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-16.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-17.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-17.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-17.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-17.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-18.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-18.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-18.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-18.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-19.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-19.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-19.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-19.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-2.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-2.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-2.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-3.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-3.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-3.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-4.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-4.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-4.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-5.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-5.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-5.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-6.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-6.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-6.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-7.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-7.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-7.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-8.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-8.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-8.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-8.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-9.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-9.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-9.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg-9.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-ConfMatrixImg.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-10.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-10.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-10.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-11.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-11.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-11.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-12.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-12.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-12.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-13.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-13.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-13.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-14.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-14.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-14.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-14.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-15.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-15.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-15.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-15.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-16.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-16.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-16.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-16.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-17.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-17.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-17.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-17.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-18.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-18.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-18.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-18.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-19.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-19.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-19.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-19.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-5.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-5.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-5.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-6.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-6.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-6.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-7.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-7.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-7.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-8.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-8.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-8.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-9.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-9.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report-9.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Report.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-1.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-1.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-1.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-10.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-10.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-10.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-10.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-11.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-11.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-11.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-11.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-12.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-12.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-12.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-12.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-13.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-13.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-13.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-13.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-14.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-14.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-14.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-14.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-15.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-15.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-15.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-15.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-16.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-16.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-16.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-16.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-17.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-17.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-17.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-17.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-18.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-18.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-18.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-18.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-19.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-19.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-19.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-19.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-2.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-2.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-2.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-3.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-3.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-3.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-4.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-4.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-4.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-5.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-5.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-5.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-6.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-6.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-6.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-7.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-7.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-7.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-8.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-8.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-8.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-8.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-9.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-9.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-9.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score-9.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Score.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-10.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-10.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-10.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-11.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-11.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-11.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-12.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-12.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-12.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-13.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-13.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-13.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-14.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-14.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-14.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-14.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-15.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-15.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-15.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-15.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-16.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-16.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-16.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-16.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-17.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-17.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-17.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-17.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-18.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-18.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-18.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-18.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-19.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-19.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-19.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-19.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-5.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-5.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-5.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-6.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-6.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-6.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-7.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-7.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-7.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-8.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-8.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-8.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-9.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-9.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats-9.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq-Stats.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_22-CMV-MultiOmic-RNASeq.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-1.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-1.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-1.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-2.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-2.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-2.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-3.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-3.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-3.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-4.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-4.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-4.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-1.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-1.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-1.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-2.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-2.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-2.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-3.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-3.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-3.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-4.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-4.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-4.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-1.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-1.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-1.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-2.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-2.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-2.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-3.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-3.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-3.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-4.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-4.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-4.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-1.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-1.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-1.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-2.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-2.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-2.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-3.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-3.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-3.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-4.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-4.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-4.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-5.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-5.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-5.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-1.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-1.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-1.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-2.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-2.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-2.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-3.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-3.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-3.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-4.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-4.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-4.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-5.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-5.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-5.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-5.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-5.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-5.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-1.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-1.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-1.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-2.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-2.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-2.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-3.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-3.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-3.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-4.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-4.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-4.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-5.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-5.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-5.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-5.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-5.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-5.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-1.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-1.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-1.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-2.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-2.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-2.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-3.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-3.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-3.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-4.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-4.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-4.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-1.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-1.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-1.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-2.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-2.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-2.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-3.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-3.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-3.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-4.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-4.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-4.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score.png
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-1.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-1.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-1.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-2.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-2.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-2.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-3.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-3.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-3.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-4.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-4.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-4.csv
diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats.csv
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-DB-RGB-LOG-1.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-DB-RGB-LOG-1.log
new file mode 100644
index 0000000000000000000000000000000000000000..e0257febb4eea9d80de959b9f56d9ee37e3b0283
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-DB-RGB-LOG-1.log
@@ -0,0 +1 @@
+2016-08-24 15:07:02,885 DEBUG: Start:	 Read hdf5 Files
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-DB-RGB-LOG-2.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-DB-RGB-LOG-2.log
new file mode 100644
index 0000000000000000000000000000000000000000..16ce3c6ff27d49df2f13392ff31334c8f8be78de
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-DB-RGB-LOG-2.log
@@ -0,0 +1 @@
+2016-08-24 15:07:32,272 DEBUG: Start:	 Read hdf5 Files
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-DB-RGB-LOG-3.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-DB-RGB-LOG-3.log
new file mode 100644
index 0000000000000000000000000000000000000000..3f44f8ec4d6215d6cc98cdc63d2014c797b071ae
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-DB-RGB-LOG-3.log
@@ -0,0 +1 @@
+2016-08-24 15:07:49,531 DEBUG: Start:	 Read .hdf5 Files
diff --git a/Code/Multiview/Results/20160819-202408-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-DB-RGB-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160819-202408-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-DB-RGB-LOG.log
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-1.csv
new file mode 100644
index 0000000000000000000000000000000000000000..b49e4ceecad081b72c1104cdd30b0860a83f580f
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-1.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.480769230769;0.0555555555556;0.371428571429
+Oui;0.173076923077;0.0;0.128571428571
+All;0.653846153846;0.0555555555556;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-2.csv
new file mode 100644
index 0000000000000000000000000000000000000000..7811e2b37acc3f0c8517b8abd614471f4f6ec9b5
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-2.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.32;0.45;0.357142857143
+Oui;0.16;0.1;0.142857142857
+All;0.48;0.55;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-3.csv
new file mode 100644
index 0000000000000000000000000000000000000000..0a117a045dbc907db424d81684ded940b8e9f499
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-3.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.357142857143;0.571428571429;0.4
+Oui;0.0892857142857;0.142857142857;0.1
+All;0.446428571429;0.714285714286;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-4.csv
new file mode 100644
index 0000000000000000000000000000000000000000..b49e4ceecad081b72c1104cdd30b0860a83f580f
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-4.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.480769230769;0.0555555555556;0.371428571429
+Oui;0.173076923077;0.0;0.128571428571
+All;0.653846153846;0.0555555555556;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-5.csv
new file mode 100644
index 0000000000000000000000000000000000000000..f70390db443b7a85f3d416224918e7c79665ea94
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-5.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.5;0.0;0.342857142857
+Oui;0.208333333333;0.0454545454545;0.157142857143
+All;0.708333333333;0.0454545454545;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-6.csv
new file mode 100644
index 0000000000000000000000000000000000000000..97b4c4751689911396d377a1e1f0d8e7d257c97d
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-6.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.375;0.272727272727;0.342857142857
+Oui;0.1875;0.0909090909091;0.157142857143
+All;0.5625;0.363636363636;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-7.csv
new file mode 100644
index 0000000000000000000000000000000000000000..3f01737c60e8b0a36c27175553c8c0eb5abfc584
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-7.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.34;0.4;0.357142857143
+Oui;0.12;0.2;0.142857142857
+All;0.46;0.6;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-8.csv
new file mode 100644
index 0000000000000000000000000000000000000000..bec1991ecc62288962a7bb3584452393c48d16f6
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-8.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.46;0.1;0.357142857143
+Oui;0.14;0.15;0.142857142857
+All;0.6;0.25;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-9.csv
new file mode 100644
index 0000000000000000000000000000000000000000..a1ebf0595614fb1080995c8b426071a80d4817ce
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix-9.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.5;;0.385714285714
+Oui;0.148148148148;;0.114285714286
+All;0.648148148148;;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix.csv
new file mode 100644
index 0000000000000000000000000000000000000000..51fe732559e04a6e8b994257a29ccb58ddf7d953
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrix.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.5;;0.328571428571
+Oui;0.260869565217;;0.171428571429
+All;0.760869565217;;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-1.png
new file mode 100644
index 0000000000000000000000000000000000000000..95867d748c5f288493d1a13871d8d4936627f5fc
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-1.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-2.png
new file mode 100644
index 0000000000000000000000000000000000000000..4c6259ff70eef00631aafdaf30be4c1ad041d540
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-2.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-3.png
new file mode 100644
index 0000000000000000000000000000000000000000..362fa12b3dd593a77bc504bf9e5262568f1c8918
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-3.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-4.png
new file mode 100644
index 0000000000000000000000000000000000000000..95867d748c5f288493d1a13871d8d4936627f5fc
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-4.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-5.png
new file mode 100644
index 0000000000000000000000000000000000000000..e98fd01af94dbe1711ab4d6872568022657a3389
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-5.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-6.png
new file mode 100644
index 0000000000000000000000000000000000000000..734c7048130c5b40a144b4fe6f80a1f91813b400
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-6.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-7.png
new file mode 100644
index 0000000000000000000000000000000000000000..2df8fc953bd12faa85adddacf1715398ce3ae146
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-7.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-8.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-8.png
new file mode 100644
index 0000000000000000000000000000000000000000..16a85b62953c7e03e808cbf31b6d945c757e336f
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-8.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-9.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-9.png
new file mode 100644
index 0000000000000000000000000000000000000000..0cd8b91c5f3c636e468fcad9ad7dd6738ab90983
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg-9.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg.png
new file mode 100644
index 0000000000000000000000000000000000000000..7f34e09c5226e17590b72be6ab8d51dc4c423d86
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-ConfMatrixImg.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-1.csv
new file mode 100644
index 0000000000000000000000000000000000000000..503753c45787c680fbc1d7d161ba0d4092fc5de3
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-1.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.735294117647;0.961538461538;0.833333333333;26.0
+Oui;0.0;0.0;0.0;9.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-2.csv
new file mode 100644
index 0000000000000000000000000000000000000000..fdf64d7bd238f3cba2ef7baac9cd16d7fe6eb320
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-2.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.666666666667;0.64;0.65306122449;25.0
+Oui;0.181818181818;0.2;0.190476190476;10.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-3.csv
new file mode 100644
index 0000000000000000000000000000000000000000..c9f208436c33745baed8c7293dc719597b0c244a
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-3.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.8;0.714285714286;0.754716981132;28.0
+Oui;0.2;0.285714285714;0.235294117647;7.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-4.csv
new file mode 100644
index 0000000000000000000000000000000000000000..503753c45787c680fbc1d7d161ba0d4092fc5de3
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-4.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.735294117647;0.961538461538;0.833333333333;26.0
+Oui;0.0;0.0;0.0;9.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-5.csv
new file mode 100644
index 0000000000000000000000000000000000000000..0346c934bf6cae9a0648e5eebf800bc37cb85d1e
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-5.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.705882352941;1.0;0.827586206897;24.0
+Oui;1.0;0.0909090909091;0.166666666667;11.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-6.csv
new file mode 100644
index 0000000000000000000000000000000000000000..14eb2cf07864d0b6936848759c2628e47533e8fa
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-6.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.666666666667;0.75;0.705882352941;24.0
+Oui;0.25;0.181818181818;0.210526315789;11.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-7.csv
new file mode 100644
index 0000000000000000000000000000000000000000..10addb29da2e932eeea95cbfbd515e74e49375ea
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-7.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.739130434783;0.68;0.708333333333;25.0
+Oui;0.333333333333;0.4;0.363636363636;10.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-8.csv
new file mode 100644
index 0000000000000000000000000000000000000000..090b022a44d0f2b10b5f04f599b89f0e8a0ad269
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-8.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.766666666667;0.92;0.836363636364;25.0
+Oui;0.6;0.3;0.4;10.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-9.csv
new file mode 100644
index 0000000000000000000000000000000000000000..24b0ae770f55783c9f6a7077dcf9d9bf637f402b
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report-9.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.771428571429;1.0;0.870967741935;27.0
+Oui;0.0;0.0;0.0;8.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report.csv
new file mode 100644
index 0000000000000000000000000000000000000000..65942d65303e134789f2ef5e59e68acbbbb20e89
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Report.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.657142857143;1.0;0.793103448276;23.0
+Oui;0.0;0.0;0.0;12.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-1.png
new file mode 100644
index 0000000000000000000000000000000000000000..9b3d4ca8b53656d55202f602a41b0fdbba6c610e
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-1.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-2.png
new file mode 100644
index 0000000000000000000000000000000000000000..5fe905c6357ae0412cb4c780c85815e7a4bcdee6
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-2.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-3.png
new file mode 100644
index 0000000000000000000000000000000000000000..f505eef6b575bd177c2d3a7041c57b73fae632d7
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-3.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-4.png
new file mode 100644
index 0000000000000000000000000000000000000000..16d6a1ffcbf1b1033dc9c8ef8408c0fb3a1a4e22
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-4.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-5.png
new file mode 100644
index 0000000000000000000000000000000000000000..db1c2e58921296acbe6016eed3617991171842b8
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-5.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-6.png
new file mode 100644
index 0000000000000000000000000000000000000000..2303641bf0e1e927dcfa695a099bf424bd848549
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-6.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-7.png
new file mode 100644
index 0000000000000000000000000000000000000000..36e419858af0ea61e57cc030513464c02f6b8574
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-7.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-8.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-8.png
new file mode 100644
index 0000000000000000000000000000000000000000..abe53dcdd226db2769369e0a95b929ad2fbe5b8d
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-8.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-9.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-9.png
new file mode 100644
index 0000000000000000000000000000000000000000..61d5c7690d46b99f0bbeb4ab54a8faa6000576be
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score-9.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score.png
new file mode 100644
index 0000000000000000000000000000000000000000..23722959a153adee8c0f6e47059aaf1beca02f00
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Score.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-1.csv
new file mode 100644
index 0000000000000000000000000000000000000000..ed7e4d7689e5cdf56f0ccc7d1f8bb5718f236e5b
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-1.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.714285714286
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.5
+4;Mean of F1-Score of top 10 classes by F1-Score;0.41666666666666663
+5;Mean of F1-Score of top 20 classes by F1-Score;0.41666666666666663
+6;Mean of F1-Score of top 30 classes by F1-Score;0.41666666666666663
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-2.csv
new file mode 100644
index 0000000000000000000000000000000000000000..1c2dbd1ed3d5e7aa0ba1c89d2ba57f3e19bfd640
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-2.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.514285714286
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.42176870748299317
+5;Mean of F1-Score of top 20 classes by F1-Score;0.42176870748299317
+6;Mean of F1-Score of top 30 classes by F1-Score;0.42176870748299317
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-3.csv
new file mode 100644
index 0000000000000000000000000000000000000000..43b035de3d0a086c09a1629d5ac058af32eb9da5
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-3.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.628571428571
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.4950055493895672
+5;Mean of F1-Score of top 20 classes by F1-Score;0.4950055493895672
+6;Mean of F1-Score of top 30 classes by F1-Score;0.4950055493895672
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-4.csv
new file mode 100644
index 0000000000000000000000000000000000000000..ed7e4d7689e5cdf56f0ccc7d1f8bb5718f236e5b
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-4.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.714285714286
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.5
+4;Mean of F1-Score of top 10 classes by F1-Score;0.41666666666666663
+5;Mean of F1-Score of top 20 classes by F1-Score;0.41666666666666663
+6;Mean of F1-Score of top 30 classes by F1-Score;0.41666666666666663
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-5.csv
new file mode 100644
index 0000000000000000000000000000000000000000..bf6df6d6a7cb9b98a969c35f65c070ccd3412063
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-5.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.714285714286
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.49712643678160917
+5;Mean of F1-Score of top 20 classes by F1-Score;0.49712643678160917
+6;Mean of F1-Score of top 30 classes by F1-Score;0.49712643678160917
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-6.csv
new file mode 100644
index 0000000000000000000000000000000000000000..d62c8a0ec75abd7daf79968d389a15a0e536dd06
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-6.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.571428571429
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.4582043343653251
+5;Mean of F1-Score of top 20 classes by F1-Score;0.4582043343653251
+6;Mean of F1-Score of top 30 classes by F1-Score;0.4582043343653251
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-7.csv
new file mode 100644
index 0000000000000000000000000000000000000000..81997a605bbe046bca245ba499134b1116344c3b
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-7.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.6
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.5359848484848485
+5;Mean of F1-Score of top 20 classes by F1-Score;0.5359848484848485
+6;Mean of F1-Score of top 30 classes by F1-Score;0.5359848484848485
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-8.csv
new file mode 100644
index 0000000000000000000000000000000000000000..afae0799dcfdb3579306c4fc670f38b76ec3d91b
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-8.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.742857142857
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.6181818181818182
+5;Mean of F1-Score of top 20 classes by F1-Score;0.6181818181818182
+6;Mean of F1-Score of top 30 classes by F1-Score;0.6181818181818182
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-9.csv
new file mode 100644
index 0000000000000000000000000000000000000000..69922632bbd248d18b1b00a3ab99d7757879e62a
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats-9.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.771428571429
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.5
+4;Mean of F1-Score of top 10 classes by F1-Score;0.435483870967742
+5;Mean of F1-Score of top 20 classes by F1-Score;0.435483870967742
+6;Mean of F1-Score of top 30 classes by F1-Score;0.435483870967742
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats.csv
new file mode 100644
index 0000000000000000000000000000000000000000..cfd6be913a6c4de93236cf47f6d3a2b531615b5a
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Clinic-Stats.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.657142857143
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.5
+4;Mean of F1-Score of top 10 classes by F1-Score;0.39655172413793105
+5;Mean of F1-Score of top 20 classes by F1-Score;0.39655172413793105
+6;Mean of F1-Score of top 30 classes by F1-Score;0.39655172413793105
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-1.csv
new file mode 100644
index 0000000000000000000000000000000000000000..695d8c1ea27038b160edd191d34248fee6914547
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-1.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.5;;0.357142857143
+Oui;0.2;;0.142857142857
+All;0.7;;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-2.csv
new file mode 100644
index 0000000000000000000000000000000000000000..c37d7e485cc7ddf323cd5b821ca5723a81483d1a
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-2.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.5;;0.342857142857
+Oui;0.229166666667;;0.157142857143
+All;0.729166666667;;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-3.csv
new file mode 100644
index 0000000000000000000000000000000000000000..304fcfb669d7f78240f8a8c0d6fe583fd6fa1fb3
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-3.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.5;0.0;0.4
+Oui;0.0714285714286;0.214285714286;0.1
+All;0.571428571429;0.214285714286;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-4.csv
new file mode 100644
index 0000000000000000000000000000000000000000..ef2cbd67e6a98cce4e354b9bf69666eb440126b8
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-4.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.0714285714286;1.71428571429;0.4
+Oui;0.0;0.5;0.1
+All;0.0714285714286;2.21428571429;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-5.csv
new file mode 100644
index 0000000000000000000000000000000000000000..8a9c04e6f30d41ca6d393c29f0a6cf6cbd5c4725
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-5.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.433333333333;0.4;0.428571428571
+Oui;0.0333333333333;0.3;0.0714285714286
+All;0.466666666667;0.7;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-6.csv
new file mode 100644
index 0000000000000000000000000000000000000000..d7ed7a70e08e5256bfe653c244aade9ec2fc0985
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-6.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.407407407407;0.3125;0.385714285714
+Oui;0.0925925925926;0.1875;0.114285714286
+All;0.5;0.5;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-7.csv
new file mode 100644
index 0000000000000000000000000000000000000000..51fe732559e04a6e8b994257a29ccb58ddf7d953
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix-7.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.5;;0.328571428571
+Oui;0.260869565217;;0.171428571429
+All;0.760869565217;;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix.csv
new file mode 100644
index 0000000000000000000000000000000000000000..08010776bdba6fb15a25cfbe6c67aa0d9f544994
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrix.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.5;0.0;0.3
+Oui;0.047619047619;0.428571428571;0.2
+All;0.547619047619;0.428571428571;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-1.png
new file mode 100644
index 0000000000000000000000000000000000000000..dee01ca35e6efd2352e1df0540d6c19a1833a3d7
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-1.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-2.png
new file mode 100644
index 0000000000000000000000000000000000000000..67961b566905b77656562a4a9b3f8dbcda7de94e
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-2.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-3.png
new file mode 100644
index 0000000000000000000000000000000000000000..e838f4c158579748455665db9999df9df8a5d72d
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-3.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-4.png
new file mode 100644
index 0000000000000000000000000000000000000000..0e15f883fbb7cf274b087dcf88c816615c4fe7d0
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-4.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-5.png
new file mode 100644
index 0000000000000000000000000000000000000000..ccaa268b77d1d8a0396d4d948d37b21ca5a1f400
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-5.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-6.png
new file mode 100644
index 0000000000000000000000000000000000000000..5a9e32a2fbc2758f328f0224ebd57598d416d9bf
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-6.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-7.png
new file mode 100644
index 0000000000000000000000000000000000000000..7f34e09c5226e17590b72be6ab8d51dc4c423d86
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg-7.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg.png
new file mode 100644
index 0000000000000000000000000000000000000000..989bc0956f360233ffe01b8fa1621721e3695e9e
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-ConfMatrixImg.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-1.csv
new file mode 100644
index 0000000000000000000000000000000000000000..e4303ee3cde40960f928ba80668fd30ed42da210
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-1.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.714285714286;1.0;0.833333333333;25.0
+Oui;0.0;0.0;0.0;10.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-2.csv
new file mode 100644
index 0000000000000000000000000000000000000000..45417716354c392e85f7f1960ac02a701a0b7df6
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-2.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.685714285714;1.0;0.813559322034;24.0
+Oui;0.0;0.0;0.0;11.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-3.csv
new file mode 100644
index 0000000000000000000000000000000000000000..17ba1f5a9e4eb020d79ff2b3582b49b426c3f7ab
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-3.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.875;1.0;0.933333333333;28.0
+Oui;1.0;0.428571428571;0.6;7.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-4.csv
new file mode 100644
index 0000000000000000000000000000000000000000..28ebc0f98c943519125e52c31dc0c19290790694
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-4.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;1.0;0.142857142857;0.25;28.0
+Oui;0.225806451613;1.0;0.368421052632;7.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-5.csv
new file mode 100644
index 0000000000000000000000000000000000000000..e9f4be6ff854a6f29bfd88672a9a2c936cfea95e
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-5.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.928571428571;0.866666666667;0.896551724138;30.0
+Oui;0.428571428571;0.6;0.5;5.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-6.csv
new file mode 100644
index 0000000000000000000000000000000000000000..2b667c599d73da80fad654c55bdb117c450a0769
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-6.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.814814814815;0.814814814815;0.814814814815;27.0
+Oui;0.375;0.375;0.375;8.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-7.csv
new file mode 100644
index 0000000000000000000000000000000000000000..65942d65303e134789f2ef5e59e68acbbbb20e89
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report-7.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.657142857143;1.0;0.793103448276;23.0
+Oui;0.0;0.0;0.0;12.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report.csv
new file mode 100644
index 0000000000000000000000000000000000000000..ced61b510ad73b9d2effe5d8d8c20c33fb4361f3
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Report.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.913043478261;1.0;0.954545454545;21.0
+Oui;1.0;0.857142857143;0.923076923077;14.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-1.png
new file mode 100644
index 0000000000000000000000000000000000000000..be7eb045cacddd65fcc1c567f91467661beb1cfa
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-1.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-2.png
new file mode 100644
index 0000000000000000000000000000000000000000..be7eb045cacddd65fcc1c567f91467661beb1cfa
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-2.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-3.png
new file mode 100644
index 0000000000000000000000000000000000000000..7129a16a35918c60634896635c930857306e21b9
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-3.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-4.png
new file mode 100644
index 0000000000000000000000000000000000000000..eb40660a59145d3397b0199e5a0ae9668dc12d6d
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-4.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-5.png
new file mode 100644
index 0000000000000000000000000000000000000000..10abfd9f8a04e66f7a2b9cf1fefd20b85cf3f953
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-5.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-6.png
new file mode 100644
index 0000000000000000000000000000000000000000..28a5c3bbb83137d721bccef38f4fa8d8b8331b4c
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-6.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-7.png
new file mode 100644
index 0000000000000000000000000000000000000000..51bed9516aede380626b14b301f91d598d12e170
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score-7.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score.png
new file mode 100644
index 0000000000000000000000000000000000000000..d3f04355fac49b80720e195936602062c0389548
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Score.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-1.csv
new file mode 100644
index 0000000000000000000000000000000000000000..ed7e4d7689e5cdf56f0ccc7d1f8bb5718f236e5b
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-1.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.714285714286
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.5
+4;Mean of F1-Score of top 10 classes by F1-Score;0.41666666666666663
+5;Mean of F1-Score of top 20 classes by F1-Score;0.41666666666666663
+6;Mean of F1-Score of top 30 classes by F1-Score;0.41666666666666663
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-2.csv
new file mode 100644
index 0000000000000000000000000000000000000000..fb3b57b1ad14692b305fb2473f3d50e46bee21e3
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-2.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.685714285714
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.5
+4;Mean of F1-Score of top 10 classes by F1-Score;0.4067796610169492
+5;Mean of F1-Score of top 20 classes by F1-Score;0.4067796610169492
+6;Mean of F1-Score of top 30 classes by F1-Score;0.4067796610169492
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-3.csv
new file mode 100644
index 0000000000000000000000000000000000000000..12e7af6ddbed4b11d59b32f43d3a4c8865b4ff2f
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-3.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.885714285714
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.7666666666666666
+5;Mean of F1-Score of top 20 classes by F1-Score;0.7666666666666666
+6;Mean of F1-Score of top 30 classes by F1-Score;0.7666666666666666
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-4.csv
new file mode 100644
index 0000000000000000000000000000000000000000..27f52192acc9aa81a5cec395d640060199f8f626
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-4.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.314285714286
+1;Top 10 classes by F1-Score;['Oui', 'Non']
+2;Worst 10 classes by F1-Score;['Non', 'Oui']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.3092105263157895
+5;Mean of F1-Score of top 20 classes by F1-Score;0.3092105263157895
+6;Mean of F1-Score of top 30 classes by F1-Score;0.3092105263157895
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-5.csv
new file mode 100644
index 0000000000000000000000000000000000000000..410f8862a8cedf20702b4af831b1fdb58cde37a1
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-5.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.828571428571
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.6982758620689655
+5;Mean of F1-Score of top 20 classes by F1-Score;0.6982758620689655
+6;Mean of F1-Score of top 30 classes by F1-Score;0.6982758620689655
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-6.csv
new file mode 100644
index 0000000000000000000000000000000000000000..af2aaa26e7d17e7acda19b322818cacd99eccc7e
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-6.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.714285714286
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.5949074074074074
+5;Mean of F1-Score of top 20 classes by F1-Score;0.5949074074074074
+6;Mean of F1-Score of top 30 classes by F1-Score;0.5949074074074074
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-7.csv
new file mode 100644
index 0000000000000000000000000000000000000000..cfd6be913a6c4de93236cf47f6d3a2b531615b5a
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats-7.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.657142857143
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.5
+4;Mean of F1-Score of top 10 classes by F1-Score;0.39655172413793105
+5;Mean of F1-Score of top 20 classes by F1-Score;0.39655172413793105
+6;Mean of F1-Score of top 30 classes by F1-Score;0.39655172413793105
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats.csv
new file mode 100644
index 0000000000000000000000000000000000000000..272496167e1e24075fa66e2099291317698900cc
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-Methyl-Stats.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.942857142857
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.9388111888111887
+5;Mean of F1-Score of top 20 classes by F1-Score;0.9388111888111887
+6;Mean of F1-Score of top 30 classes by F1-Score;0.9388111888111887
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-1.csv
new file mode 100644
index 0000000000000000000000000000000000000000..a13e82013d4bc4028b34eaf4c851cbab423d25af
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-1.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.458333333333;0.0909090909091;0.342857142857
+Oui;0.0625;0.363636363636;0.157142857143
+All;0.520833333333;0.454545454545;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-10.csv
new file mode 100644
index 0000000000000000000000000000000000000000..23380cfc5073633692eb40f48025b685ae064317
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-10.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.431034482759;0.333333333333;0.414285714286
+Oui;0.0172413793103;0.416666666667;0.0857142857143
+All;0.448275862069;0.75;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-11.csv
new file mode 100644
index 0000000000000000000000000000000000000000..ec20de4efaf3f600e1cc1b3865c0fb858033fb75
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-11.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.451612903226;0.375;0.442857142857
+Oui;0.0161290322581;0.375;0.0571428571429
+All;0.467741935484;0.75;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-12.csv
new file mode 100644
index 0000000000000000000000000000000000000000..0d9e7845f15bf58b2de9d7e8a6d8a1e16d65f10a
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-12.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.454545454545;0.0769230769231;0.314285714286
+Oui;0.0681818181818;0.384615384615;0.185714285714
+All;0.522727272727;0.461538461538;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-13.csv
new file mode 100644
index 0000000000000000000000000000000000000000..29d473564b4ef2a4ef2ee25e78b7e03147c6c8d3
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-13.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.466666666667;0.2;0.428571428571
+Oui;0.0166666666667;0.4;0.0714285714286
+All;0.483333333333;0.6;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-14.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-14.csv
new file mode 100644
index 0000000000000000000000000000000000000000..edbbae5e38e30da3a62c280d7d534d476bf4ea83
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-14.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.410714285714;0.357142857143;0.4
+Oui;0.0;0.5;0.1
+All;0.410714285714;0.857142857143;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-15.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-15.csv
new file mode 100644
index 0000000000000000000000000000000000000000..9027b6bee8aa2cd827bd2a3cd0d8f7d2f2b938ea
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-15.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.428571428571;0.285714285714;0.4
+Oui;0.0357142857143;0.357142857143;0.1
+All;0.464285714286;0.642857142857;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-16.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-16.csv
new file mode 100644
index 0000000000000000000000000000000000000000..07d5e7884f01ffd0c0c18da8da2d7c8fd2ac7b11
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-16.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.4;0.25;0.357142857143
+Oui;0.04;0.4;0.142857142857
+All;0.44;0.65;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-17.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-17.csv
new file mode 100644
index 0000000000000000000000000000000000000000..404ee277f48024b4312829f833befc1bb67fe946
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-17.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.333333333333;0.5625;0.385714285714
+Oui;0.0;0.5;0.114285714286
+All;0.333333333333;1.0625;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-18.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-18.csv
new file mode 100644
index 0000000000000000000000000000000000000000..ee02a26ec68dc7cb641d9bed27750a3e9e395f92
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-18.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.5;0.0;0.342857142857
+Oui;0.125;0.227272727273;0.157142857143
+All;0.625;0.227272727273;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-19.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-19.csv
new file mode 100644
index 0000000000000000000000000000000000000000..c51a2c8d9a1d48bda2a8e738298e152b365d9776
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-19.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.46;0.1;0.357142857143
+Oui;0.06;0.35;0.142857142857
+All;0.52;0.45;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-2.csv
new file mode 100644
index 0000000000000000000000000000000000000000..9ed7a7043f93e58b5a7d9242ac10fbab8dee29e9
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-2.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.388888888889;0.375;0.385714285714
+Oui;0.0;0.5;0.114285714286
+All;0.388888888889;0.875;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-3.csv
new file mode 100644
index 0000000000000000000000000000000000000000..b4e876287ff165f5f2669843b066a5383a4222e3
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-3.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.42;0.2;0.357142857143
+Oui;0.06;0.35;0.142857142857
+All;0.48;0.55;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-4.csv
new file mode 100644
index 0000000000000000000000000000000000000000..36ebd26cd387fe75520739feb118a72180f46b3a
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-4.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.434782608696;0.125;0.328571428571
+Oui;0.0217391304348;0.458333333333;0.171428571429
+All;0.45652173913;0.583333333333;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-5.csv
new file mode 100644
index 0000000000000000000000000000000000000000..c9f17b950638543d6964e9c02569144154028ccb
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-5.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.48275862069;0.0833333333333;0.414285714286
+Oui;0.0172413793103;0.416666666667;0.0857142857143
+All;0.5;0.5;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-6.csv
new file mode 100644
index 0000000000000000000000000000000000000000..f8e2fee8dcc02e4bebd5d9351934b96f7e849da8
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-6.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.461538461538;0.111111111111;0.371428571429
+Oui;0.0192307692308;0.444444444444;0.128571428571
+All;0.480769230769;0.555555555556;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-7.csv
new file mode 100644
index 0000000000000000000000000000000000000000..4f94059629f45a0832a8a0b00a216b6027d9633b
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-7.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.392857142857;0.428571428571;0.4
+Oui;0.0357142857143;0.357142857143;0.1
+All;0.428571428571;0.785714285714;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-8.csv
new file mode 100644
index 0000000000000000000000000000000000000000..6318ac7da86366341906458791c56f2fdad5a163
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-8.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.395833333333;0.227272727273;0.342857142857
+Oui;0.0416666666667;0.409090909091;0.157142857143
+All;0.4375;0.636363636364;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-9.csv
new file mode 100644
index 0000000000000000000000000000000000000000..21de79aeb1138621c72d5dbef49383b512e7ae7b
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix-9.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.466666666667;0.2;0.428571428571
+Oui;0.0;0.5;0.0714285714286
+All;0.466666666667;0.7;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix.csv
new file mode 100644
index 0000000000000000000000000000000000000000..009955c92ba8f8ee6a8ad978c8caef9afb4e1374
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrix.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.434782608696;0.125;0.328571428571
+Oui;0.0434782608696;0.416666666667;0.171428571429
+All;0.478260869565;0.541666666667;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-1.png
new file mode 100644
index 0000000000000000000000000000000000000000..76f119810a7be29e5895a1e8794e320352709a27
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-1.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-10.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-10.png
new file mode 100644
index 0000000000000000000000000000000000000000..da7c336fc63e14a8444957f5be51610287fa9a95
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-10.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-11.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-11.png
new file mode 100644
index 0000000000000000000000000000000000000000..0ac43bae37c7e9b4fcaae775effdb751955c5a47
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-11.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-12.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-12.png
new file mode 100644
index 0000000000000000000000000000000000000000..5564a0fc986b1a1867edd8f2bf6858e629e508d7
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-12.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-13.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-13.png
new file mode 100644
index 0000000000000000000000000000000000000000..df463cef976349d8b9874eddf9ff35fb3527f2a6
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-13.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-14.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-14.png
new file mode 100644
index 0000000000000000000000000000000000000000..b35446f9fbef95f3bc02699e5792220ddc3b4e7e
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-14.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-15.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-15.png
new file mode 100644
index 0000000000000000000000000000000000000000..3148ac2fbb1227128d7e92f50c1220b8a2ca5fc5
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-15.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-16.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-16.png
new file mode 100644
index 0000000000000000000000000000000000000000..6aa0167942a86beee973547cfa5bb37b86514a4c
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-16.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-17.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-17.png
new file mode 100644
index 0000000000000000000000000000000000000000..29ac74b8b30bb35ff10b44ea8e57b40c634eddff
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-17.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-18.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-18.png
new file mode 100644
index 0000000000000000000000000000000000000000..2fc670e23d41fc70f454543e5b43cec06f508529
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-18.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-19.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-19.png
new file mode 100644
index 0000000000000000000000000000000000000000..75d3d637b6e91d17e5b7395967ccd0788c64514c
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-19.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-2.png
new file mode 100644
index 0000000000000000000000000000000000000000..2493f05f554528086372b24a76b59adade37934b
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-2.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-3.png
new file mode 100644
index 0000000000000000000000000000000000000000..115004bfaa4c758cd6c3873bface46e3fa820884
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-3.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-4.png
new file mode 100644
index 0000000000000000000000000000000000000000..74b18add63a30703eb4d5d10c6ae00aa502df597
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-4.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-5.png
new file mode 100644
index 0000000000000000000000000000000000000000..5c6475e588201412661962ab5257d14234be9c2c
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-5.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-6.png
new file mode 100644
index 0000000000000000000000000000000000000000..4e3b3e022a3c8a41e3c9ca5d741166b27631ae6c
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-6.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-7.png
new file mode 100644
index 0000000000000000000000000000000000000000..e4cce092e7451335f182580fe5a36d67e673f627
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-7.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-8.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-8.png
new file mode 100644
index 0000000000000000000000000000000000000000..73c45541410910a8b168428155ac5aaa0dca4c9e
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-8.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-9.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-9.png
new file mode 100644
index 0000000000000000000000000000000000000000..23e75750e53a107e8e4acda679a58bd060eabdab
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg-9.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg.png
new file mode 100644
index 0000000000000000000000000000000000000000..da0b3d6187fdf3e9a0085b4f77d14b3351704302
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-ConfMatrixImg.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-1.csv
new file mode 100644
index 0000000000000000000000000000000000000000..74f9c36665c8d1f3507f9b3ac7cae2a30a7ff6c5
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-1.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.88;0.916666666667;0.897959183673;24.0
+Oui;0.8;0.727272727273;0.761904761905;11.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-10.csv
new file mode 100644
index 0000000000000000000000000000000000000000..7631d9b2b2bb781d916e159d274c194156dcc6be
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-10.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.961538461538;0.862068965517;0.909090909091;29.0
+Oui;0.555555555556;0.833333333333;0.666666666667;6.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-11.csv
new file mode 100644
index 0000000000000000000000000000000000000000..7b48ff8a58cdc5029dda4ff0c7dfe3b620227a3b
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-11.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.965517241379;0.903225806452;0.933333333333;31.0
+Oui;0.5;0.75;0.6;4.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-12.csv
new file mode 100644
index 0000000000000000000000000000000000000000..be9df8428460c0a8559b1d554c87990628e03dae
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-12.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.869565217391;0.909090909091;0.888888888889;22.0
+Oui;0.833333333333;0.769230769231;0.8;13.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-13.csv
new file mode 100644
index 0000000000000000000000000000000000000000..c3f18cfb3c60f93abada7709861a6f06eaaf1db2
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-13.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.965517241379;0.933333333333;0.949152542373;30.0
+Oui;0.666666666667;0.8;0.727272727273;5.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-14.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-14.csv
new file mode 100644
index 0000000000000000000000000000000000000000..35e7487dd6b021685e02a6754296294747c017ca
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-14.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;1.0;0.821428571429;0.901960784314;28.0
+Oui;0.583333333333;1.0;0.736842105263;7.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-15.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-15.csv
new file mode 100644
index 0000000000000000000000000000000000000000..2df5c48211c8fcc17607f72a292050779d760565
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-15.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.923076923077;0.857142857143;0.888888888889;28.0
+Oui;0.555555555556;0.714285714286;0.625;7.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-16.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-16.csv
new file mode 100644
index 0000000000000000000000000000000000000000..5ef118cded6d14c8c669b8d1a799619c8b182e53
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-16.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.909090909091;0.8;0.851063829787;25.0
+Oui;0.615384615385;0.8;0.695652173913;10.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-17.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-17.csv
new file mode 100644
index 0000000000000000000000000000000000000000..beccc795d69dd5188c62eadd8a4d3621a89593b4
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-17.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;1.0;0.666666666667;0.8;27.0
+Oui;0.470588235294;1.0;0.64;8.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-18.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-18.csv
new file mode 100644
index 0000000000000000000000000000000000000000..0393ff01ca5e62eab216b51c49bd956de24d204b
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-18.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.8;1.0;0.888888888889;24.0
+Oui;1.0;0.454545454545;0.625;11.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-19.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-19.csv
new file mode 100644
index 0000000000000000000000000000000000000000..c69fbb723a838acc77db10c76adfef1753e647a7
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-19.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.884615384615;0.92;0.901960784314;25.0
+Oui;0.777777777778;0.7;0.736842105263;10.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-2.csv
new file mode 100644
index 0000000000000000000000000000000000000000..fd464cb942e6c43696d9697e278d8a998857a83e
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-2.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;1.0;0.777777777778;0.875;27.0
+Oui;0.571428571429;1.0;0.727272727273;8.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-3.csv
new file mode 100644
index 0000000000000000000000000000000000000000..cfd175bbbe327ca6c950e968b0f85a3703c6c970
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-3.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.875;0.84;0.857142857143;25.0
+Oui;0.636363636364;0.7;0.666666666667;10.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-4.csv
new file mode 100644
index 0000000000000000000000000000000000000000..522017d9d7a98c46b215094007861edbd399adad
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-4.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.952380952381;0.869565217391;0.909090909091;23.0
+Oui;0.785714285714;0.916666666667;0.846153846154;12.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-5.csv
new file mode 100644
index 0000000000000000000000000000000000000000..0f196e3ed4f315bdeb15c1731783999f3877e01d
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-5.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.965517241379;0.965517241379;0.965517241379;29.0
+Oui;0.833333333333;0.833333333333;0.833333333333;6.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-6.csv
new file mode 100644
index 0000000000000000000000000000000000000000..ef6721d13e6cf43f3d1ceae257ba3c91ad83432a
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-6.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.96;0.923076923077;0.941176470588;26.0
+Oui;0.8;0.888888888889;0.842105263158;9.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-7.csv
new file mode 100644
index 0000000000000000000000000000000000000000..dcc5229c8324f9fad965b29c1f485c6295fbaed7
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-7.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.916666666667;0.785714285714;0.846153846154;28.0
+Oui;0.454545454545;0.714285714286;0.555555555556;7.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-8.csv
new file mode 100644
index 0000000000000000000000000000000000000000..ca285c7857103dc919a70d369c25d6c1ef689cd7
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-8.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.904761904762;0.791666666667;0.844444444444;24.0
+Oui;0.642857142857;0.818181818182;0.72;11.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-9.csv
new file mode 100644
index 0000000000000000000000000000000000000000..0bcd130e8f5bb4e9e4b6698dd8e10d8e054cb8b6
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report-9.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;1.0;0.933333333333;0.965517241379;30.0
+Oui;0.714285714286;1.0;0.833333333333;5.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report.csv
new file mode 100644
index 0000000000000000000000000000000000000000..0142b0662c335665ec81afce87f0cb36cedb1b73
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Report.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.909090909091;0.869565217391;0.888888888889;23.0
+Oui;0.769230769231;0.833333333333;0.8;12.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-1.png
new file mode 100644
index 0000000000000000000000000000000000000000..5937a2720ad9db37ad93697890ad397f6980fb1e
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-1.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-10.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-10.png
new file mode 100644
index 0000000000000000000000000000000000000000..f733c0d8e70ef171f39af8a286abc48a721ce818
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-10.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-11.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-11.png
new file mode 100644
index 0000000000000000000000000000000000000000..48d59207e3e8ae9c31601897f1e65f56708d15d6
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-11.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-12.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-12.png
new file mode 100644
index 0000000000000000000000000000000000000000..2f3bf47936a562ea76a6c31d204b1d0fe37d1020
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-12.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-13.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-13.png
new file mode 100644
index 0000000000000000000000000000000000000000..687f2f1b5ec1395e05790b52d176ade976fd7b0a
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-13.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-14.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-14.png
new file mode 100644
index 0000000000000000000000000000000000000000..0c9e91b82ee8046bd3148130b71ce3b7c94f2077
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-14.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-15.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-15.png
new file mode 100644
index 0000000000000000000000000000000000000000..c86b30fdaf8ae4a73ea2d0af4d685ed498bdc978
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-15.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-16.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-16.png
new file mode 100644
index 0000000000000000000000000000000000000000..ce9614e2ca666c5ce282d6f8587298b46ef05fce
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-16.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-17.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-17.png
new file mode 100644
index 0000000000000000000000000000000000000000..c6ae1b7389a2f1a59d2f5e9dfbb99674a0db6bf5
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-17.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-18.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-18.png
new file mode 100644
index 0000000000000000000000000000000000000000..5dcb3f6c0cf1b82a6d8b48a40aaa5054eacbb32c
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-18.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-19.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-19.png
new file mode 100644
index 0000000000000000000000000000000000000000..24ce33c713d4f2fe7447c47f579ca42358424fcc
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-19.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-2.png
new file mode 100644
index 0000000000000000000000000000000000000000..52a027d3fe396f3376b1314834c2aeb9868884f2
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-2.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-3.png
new file mode 100644
index 0000000000000000000000000000000000000000..9c48ff3bb2c4c07e8b449a6e8eacdd7309f8d177
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-3.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-4.png
new file mode 100644
index 0000000000000000000000000000000000000000..5cc847011e10edb0181d88aa265359aa85d553ee
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-4.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-5.png
new file mode 100644
index 0000000000000000000000000000000000000000..9de5d2626d347abe8816be4a8847e15c9a3b18fb
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-5.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-6.png
new file mode 100644
index 0000000000000000000000000000000000000000..77e39f16e9f9c8f73b7d70b1a26c4d1bf0c091b6
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-6.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-7.png
new file mode 100644
index 0000000000000000000000000000000000000000..9eb502861399c60ece3a54aaf962e0a9b1cc2919
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-7.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-8.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-8.png
new file mode 100644
index 0000000000000000000000000000000000000000..c1cf5eb2c38444dddd5cf81e6159cbf9b2bbd741
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-8.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-9.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-9.png
new file mode 100644
index 0000000000000000000000000000000000000000..6dcac17745f4dd9b697547131937677ab3171be8
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score-9.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score.png
new file mode 100644
index 0000000000000000000000000000000000000000..e41995a331fc90eb3bf1a8cb12c32e71b5252537
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Score.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-1.csv
new file mode 100644
index 0000000000000000000000000000000000000000..81f0fd88b0e07eb1521dd38aaaed284428b69154
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-1.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.857142857143
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.8299319727891157
+5;Mean of F1-Score of top 20 classes by F1-Score;0.8299319727891157
+6;Mean of F1-Score of top 30 classes by F1-Score;0.8299319727891157
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-10.csv
new file mode 100644
index 0000000000000000000000000000000000000000..133d2853fe84235749540a3b5fd5fe79544ca6e3
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-10.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.857142857143
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.7878787878787878
+5;Mean of F1-Score of top 20 classes by F1-Score;0.7878787878787878
+6;Mean of F1-Score of top 30 classes by F1-Score;0.7878787878787878
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-11.csv
new file mode 100644
index 0000000000000000000000000000000000000000..12e7af6ddbed4b11d59b32f43d3a4c8865b4ff2f
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-11.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.885714285714
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.7666666666666666
+5;Mean of F1-Score of top 20 classes by F1-Score;0.7666666666666666
+6;Mean of F1-Score of top 30 classes by F1-Score;0.7666666666666666
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-12.csv
new file mode 100644
index 0000000000000000000000000000000000000000..bf63027079c9e6ed9c224c804ba841815a777019
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-12.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.857142857143
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.8444444444444446
+5;Mean of F1-Score of top 20 classes by F1-Score;0.8444444444444446
+6;Mean of F1-Score of top 30 classes by F1-Score;0.8444444444444446
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-13.csv
new file mode 100644
index 0000000000000000000000000000000000000000..b08246526eae3ac7b06dd90c9959eb8ceed4b2bd
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-13.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.914285714286
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.8382126348228043
+5;Mean of F1-Score of top 20 classes by F1-Score;0.8382126348228043
+6;Mean of F1-Score of top 30 classes by F1-Score;0.8382126348228043
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-14.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-14.csv
new file mode 100644
index 0000000000000000000000000000000000000000..9f142c0de6e22e6cd7864cd8143892a566415238
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-14.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.857142857143
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.8194014447884417
+5;Mean of F1-Score of top 20 classes by F1-Score;0.8194014447884417
+6;Mean of F1-Score of top 30 classes by F1-Score;0.8194014447884417
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-15.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-15.csv
new file mode 100644
index 0000000000000000000000000000000000000000..441e24d82bfd8fcbd7603222f4afffc074aae6a8
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-15.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.828571428571
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.7569444444444445
+5;Mean of F1-Score of top 20 classes by F1-Score;0.7569444444444445
+6;Mean of F1-Score of top 30 classes by F1-Score;0.7569444444444445
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-16.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-16.csv
new file mode 100644
index 0000000000000000000000000000000000000000..43c2dad0215d3aec1a753dace55ad721099a81f1
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-16.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.8
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.7733580018501388
+5;Mean of F1-Score of top 20 classes by F1-Score;0.7733580018501388
+6;Mean of F1-Score of top 30 classes by F1-Score;0.7733580018501388
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-17.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-17.csv
new file mode 100644
index 0000000000000000000000000000000000000000..211b411f9024e8944367f307ebfda63dffe72e87
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-17.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.742857142857
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.72
+5;Mean of F1-Score of top 20 classes by F1-Score;0.72
+6;Mean of F1-Score of top 30 classes by F1-Score;0.72
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-18.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-18.csv
new file mode 100644
index 0000000000000000000000000000000000000000..11c46e226a09844b0539edbac395bc8a69bb7678
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-18.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.828571428571
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.7569444444444444
+5;Mean of F1-Score of top 20 classes by F1-Score;0.7569444444444444
+6;Mean of F1-Score of top 30 classes by F1-Score;0.7569444444444444
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-19.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-19.csv
new file mode 100644
index 0000000000000000000000000000000000000000..9f142c0de6e22e6cd7864cd8143892a566415238
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-19.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.857142857143
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.8194014447884417
+5;Mean of F1-Score of top 20 classes by F1-Score;0.8194014447884417
+6;Mean of F1-Score of top 30 classes by F1-Score;0.8194014447884417
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-2.csv
new file mode 100644
index 0000000000000000000000000000000000000000..5dbd75e8eeae421b1288f1f9c9488f5bb6b7a8e7
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-2.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.828571428571
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.8011363636363638
+5;Mean of F1-Score of top 20 classes by F1-Score;0.8011363636363638
+6;Mean of F1-Score of top 30 classes by F1-Score;0.8011363636363638
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-3.csv
new file mode 100644
index 0000000000000000000000000000000000000000..4d47e5bf6e3be8f048844078df8e7edbae440e6c
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-3.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.8
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.7619047619047619
+5;Mean of F1-Score of top 20 classes by F1-Score;0.7619047619047619
+6;Mean of F1-Score of top 30 classes by F1-Score;0.7619047619047619
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-4.csv
new file mode 100644
index 0000000000000000000000000000000000000000..c557de1fde12557b9cee63b431a8e200e4b91c6d
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-4.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.885714285714
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.8776223776223775
+5;Mean of F1-Score of top 20 classes by F1-Score;0.8776223776223775
+6;Mean of F1-Score of top 30 classes by F1-Score;0.8776223776223775
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-5.csv
new file mode 100644
index 0000000000000000000000000000000000000000..2e90b7ca5db6776b5d1027cc769b3d2dbac165d4
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-5.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.942857142857
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.8994252873563219
+5;Mean of F1-Score of top 20 classes by F1-Score;0.8994252873563219
+6;Mean of F1-Score of top 30 classes by F1-Score;0.8994252873563219
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-6.csv
new file mode 100644
index 0000000000000000000000000000000000000000..9ac22152452ec94987ca805187a4c2f8f862781e
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-6.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.914285714286
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.8916408668730651
+5;Mean of F1-Score of top 20 classes by F1-Score;0.8916408668730651
+6;Mean of F1-Score of top 30 classes by F1-Score;0.8916408668730651
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-7.csv
new file mode 100644
index 0000000000000000000000000000000000000000..bb35623c7590a57be471437e7943a59d5e280cd3
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-7.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.771428571429
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.7008547008547008
+5;Mean of F1-Score of top 20 classes by F1-Score;0.7008547008547008
+6;Mean of F1-Score of top 30 classes by F1-Score;0.7008547008547008
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-8.csv
new file mode 100644
index 0000000000000000000000000000000000000000..2711eacadd16eb1e304d7fc3daf26ef296a3e358
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-8.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.8
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.7822222222222223
+5;Mean of F1-Score of top 20 classes by F1-Score;0.7822222222222223
+6;Mean of F1-Score of top 30 classes by F1-Score;0.7822222222222223
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-9.csv
new file mode 100644
index 0000000000000000000000000000000000000000..3cfd0b1093e29b9e5ed35159ff005fc201b27b54
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats-9.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.942857142857
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.8994252873563218
+5;Mean of F1-Score of top 20 classes by F1-Score;0.8994252873563218
+6;Mean of F1-Score of top 30 classes by F1-Score;0.8994252873563218
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats.csv
new file mode 100644
index 0000000000000000000000000000000000000000..bf63027079c9e6ed9c224c804ba841815a777019
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-MiRNA_-Stats.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.857142857143
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.8444444444444446
+5;Mean of F1-Score of top 20 classes by F1-Score;0.8444444444444446
+6;Mean of F1-Score of top 30 classes by F1-Score;0.8444444444444446
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-1.csv
new file mode 100644
index 0000000000000000000000000000000000000000..3ab1dc38f544b13d936afd8fe27f546a7033fe19
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-1.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.481481481481;0.0625;0.385714285714
+Oui;0.0185185185185;0.4375;0.114285714286
+All;0.5;0.5;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-10.csv
new file mode 100644
index 0000000000000000000000000000000000000000..8d80fe427ba3e44d247c20f236580e22586c59ee
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-10.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.452380952381;0.0714285714286;0.3
+Oui;0.166666666667;0.25;0.2
+All;0.619047619048;0.321428571429;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-11.csv
new file mode 100644
index 0000000000000000000000000000000000000000..509b1a446399752858d72adf6347857fb1fb4f1e
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-11.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.452380952381;0.0714285714286;0.3
+Oui;0.0714285714286;0.392857142857;0.2
+All;0.52380952381;0.464285714286;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-12.csv
new file mode 100644
index 0000000000000000000000000000000000000000..16efe97dfd003fd91da5b905a1a2707efc616cc6
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-12.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.413793103448;0.416666666667;0.414285714286
+Oui;0.0344827586207;0.333333333333;0.0857142857143
+All;0.448275862069;0.75;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-13.csv
new file mode 100644
index 0000000000000000000000000000000000000000..1505ccf21f297b87b821c1a15f5028e8a1ef52e5
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-13.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.5;;0.4
+Oui;0.125;;0.1
+All;0.625;;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-2.csv
new file mode 100644
index 0000000000000000000000000000000000000000..fdf750bb84309731544fce5b647c834daa7b1393
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-2.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.48275862069;0.0833333333333;0.414285714286
+Oui;0.0344827586207;0.333333333333;0.0857142857143
+All;0.51724137931;0.416666666667;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-3.csv
new file mode 100644
index 0000000000000000000000000000000000000000..67a20bf2ffb93e88aa2c6f6fd264da272f6f5f26
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-3.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.3;0.5;0.357142857143
+Oui;0.0;0.5;0.142857142857
+All;0.3;1.0;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-4.csv
new file mode 100644
index 0000000000000000000000000000000000000000..f344179c74f918b33587f0fa94b688f130c034e6
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-4.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.366666666667;0.8;0.428571428571
+Oui;0.0333333333333;0.3;0.0714285714286
+All;0.4;1.1;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-5.csv
new file mode 100644
index 0000000000000000000000000000000000000000..695d8c1ea27038b160edd191d34248fee6914547
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-5.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.5;;0.357142857143
+Oui;0.2;;0.142857142857
+All;0.7;;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-6.csv
new file mode 100644
index 0000000000000000000000000000000000000000..18266185abe75df98dfdb5e9f78f6b5d83b3b778
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-6.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.4375;0.136363636364;0.342857142857
+Oui;0.0833333333333;0.318181818182;0.157142857143
+All;0.520833333333;0.454545454545;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-7.csv
new file mode 100644
index 0000000000000000000000000000000000000000..509a2121879107caa846a71bdd59d1712166a711
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-7.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.46;0.1;0.357142857143
+Oui;0.08;0.3;0.142857142857
+All;0.54;0.4;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-8.csv
new file mode 100644
index 0000000000000000000000000000000000000000..e42443f515a5360406fa680c2c1e39294889a5da
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-8.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.462962962963;0.125;0.385714285714
+Oui;0.0925925925926;0.1875;0.114285714286
+All;0.555555555556;0.3125;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-9.csv
new file mode 100644
index 0000000000000000000000000000000000000000..853c41ef620431f636bb8dcc6cf38b8ae8cd0411
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix-9.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.480769230769;0.0555555555556;0.371428571429
+Oui;0.0384615384615;0.388888888889;0.128571428571
+All;0.519230769231;0.444444444444;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix.csv
new file mode 100644
index 0000000000000000000000000000000000000000..af24be5be866970246b0b81a5392d2226f19b355
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrix.csv
@@ -0,0 +1,4 @@
+;Non;Oui;All
+Non;0.458333333333;0.0909090909091;0.342857142857
+Oui;0.104166666667;0.272727272727;0.157142857143
+All;0.5625;0.363636363636;0.5
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-1.png
new file mode 100644
index 0000000000000000000000000000000000000000..5d94d7a9c8c9780958f5ab529a52853e0f2f3fc3
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-1.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-10.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-10.png
new file mode 100644
index 0000000000000000000000000000000000000000..199af8fa2fe160d7afb8f1b2a543de7a411dac31
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-10.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-11.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-11.png
new file mode 100644
index 0000000000000000000000000000000000000000..726881add70a8e83e8bcf6377732d5a1c25ae07f
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-11.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-12.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-12.png
new file mode 100644
index 0000000000000000000000000000000000000000..2c8f71aedc02712b6b877caa6a587da00148de6b
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-12.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-13.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-13.png
new file mode 100644
index 0000000000000000000000000000000000000000..ed86fe352af2b6c26a8cc50558c7845a51dc7587
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-13.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-2.png
new file mode 100644
index 0000000000000000000000000000000000000000..14f6c8fa91a0de3182720ba85d6a892a12cff2fb
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-2.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-3.png
new file mode 100644
index 0000000000000000000000000000000000000000..00214c78080d713a5b05264a9e09c2402af98693
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-3.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-4.png
new file mode 100644
index 0000000000000000000000000000000000000000..2e320c9a4ab949b4a293b859843b5baaf7251eb3
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-4.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-5.png
new file mode 100644
index 0000000000000000000000000000000000000000..dee01ca35e6efd2352e1df0540d6c19a1833a3d7
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-5.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-6.png
new file mode 100644
index 0000000000000000000000000000000000000000..417890386c43873fce0a4935b5bbc6300ce33011
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-6.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-7.png
new file mode 100644
index 0000000000000000000000000000000000000000..dfa65db25f95cafa4cf07b2abe74d3f1686cbbef
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-7.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-8.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-8.png
new file mode 100644
index 0000000000000000000000000000000000000000..c66ffa64dda34c1ffd1df5a8d2f320b5c8645c76
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-8.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-9.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-9.png
new file mode 100644
index 0000000000000000000000000000000000000000..890af83ce89d3ab091538bbcd44c5ce60c74dc9a
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg-9.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg.png
new file mode 100644
index 0000000000000000000000000000000000000000..e2f11e6e50cf2226de9232b1a107136d292e7fb7
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-ConfMatrixImg.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-1.csv
new file mode 100644
index 0000000000000000000000000000000000000000..008f483dc0d9ed963620139200d4b3dfe57af384
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-1.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.962962962963;0.962962962963;0.962962962963;27.0
+Oui;0.875;0.875;0.875;8.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-10.csv
new file mode 100644
index 0000000000000000000000000000000000000000..9aa800e23a11edefbd3370808519a9e2cf877ec4
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-10.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.730769230769;0.904761904762;0.808510638298;21.0
+Oui;0.777777777778;0.5;0.608695652174;14.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-11.csv
new file mode 100644
index 0000000000000000000000000000000000000000..32a7cebc47269c6fdf4f246c39fd8d864e0a3d6a
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-11.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.863636363636;0.904761904762;0.883720930233;21.0
+Oui;0.846153846154;0.785714285714;0.814814814815;14.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-12.csv
new file mode 100644
index 0000000000000000000000000000000000000000..4a541b09a2b603195a4e569c13303c0f4f71496d
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-12.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.923076923077;0.827586206897;0.872727272727;29.0
+Oui;0.444444444444;0.666666666667;0.533333333333;6.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-13.csv
new file mode 100644
index 0000000000000000000000000000000000000000..4862ada00e16640bc4d5e18abbd9a183dcdfcdaa
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-13.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.8;1.0;0.888888888889;28.0
+Oui;0.0;0.0;0.0;7.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-2.csv
new file mode 100644
index 0000000000000000000000000000000000000000..7c4aceed80e52013685bba10b28c5753411fc1f1
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-2.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.933333333333;0.965517241379;0.949152542373;29.0
+Oui;0.8;0.666666666667;0.727272727273;6.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-3.csv
new file mode 100644
index 0000000000000000000000000000000000000000..ab5467376f7391553f91ecbe60634350a9a5aece
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-3.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;1.0;0.6;0.75;25.0
+Oui;0.5;1.0;0.666666666667;10.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-4.csv
new file mode 100644
index 0000000000000000000000000000000000000000..bcf9e3bf58efe96a66f9a6a11892d848e998c397
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-4.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.916666666667;0.733333333333;0.814814814815;30.0
+Oui;0.272727272727;0.6;0.375;5.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-5.csv
new file mode 100644
index 0000000000000000000000000000000000000000..e4303ee3cde40960f928ba80668fd30ed42da210
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-5.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.714285714286;1.0;0.833333333333;25.0
+Oui;0.0;0.0;0.0;10.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-6.csv
new file mode 100644
index 0000000000000000000000000000000000000000..8f3d332ebe9f5b64c51f9e94a0fb53d9167c71c4
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-6.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.84;0.875;0.857142857143;24.0
+Oui;0.7;0.636363636364;0.666666666667;11.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-7.csv
new file mode 100644
index 0000000000000000000000000000000000000000..9f28f5f8f35b3f9d90dace8edb271de4da6d4871
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-7.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.851851851852;0.92;0.884615384615;25.0
+Oui;0.75;0.6;0.666666666667;10.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-8.csv
new file mode 100644
index 0000000000000000000000000000000000000000..a7efd348cdedf1d979077992e25a89543fc4c0f2
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-8.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.833333333333;0.925925925926;0.877192982456;27.0
+Oui;0.6;0.375;0.461538461538;8.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-9.csv
new file mode 100644
index 0000000000000000000000000000000000000000..24ffa0fc33d7218b929d84d5e09c3443ab6c0c99
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report-9.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.925925925926;0.961538461538;0.943396226415;26.0
+Oui;0.875;0.777777777778;0.823529411765;9.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report.csv
new file mode 100644
index 0000000000000000000000000000000000000000..d74decdbb6765f562440122a9a24892c69cfbcbf
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Report.csv
@@ -0,0 +1,3 @@
+;Precision;Recall;F1;Support
+Non;0.814814814815;0.916666666667;0.862745098039;24.0
+Oui;0.75;0.545454545455;0.631578947368;11.0
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-1.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-1.png
new file mode 100644
index 0000000000000000000000000000000000000000..9dc5c6aa0f992c5f153707bd83b494896e7e8c51
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-1.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-10.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-10.png
new file mode 100644
index 0000000000000000000000000000000000000000..949d2e0992e263537ab209749db7473c94d76891
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-10.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-11.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-11.png
new file mode 100644
index 0000000000000000000000000000000000000000..0e251d65a94bdb492f87901ade6b357315b58be3
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-11.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-12.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-12.png
new file mode 100644
index 0000000000000000000000000000000000000000..1718a959cd811209d1d438e5f418c65acf7afddc
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-12.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-13.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-13.png
new file mode 100644
index 0000000000000000000000000000000000000000..d98c1c9f4f8af9a85a3dfdb45b41e8e8293a671a
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-13.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-2.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-2.png
new file mode 100644
index 0000000000000000000000000000000000000000..24ced04f4f030932d44a41abd10997c9f8400321
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-2.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-3.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-3.png
new file mode 100644
index 0000000000000000000000000000000000000000..76124ecb8856974ea76f40aebdf0ccfb4445db61
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-3.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-4.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-4.png
new file mode 100644
index 0000000000000000000000000000000000000000..677c3c4c646948cae6f930a3e77b790164b055ce
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-4.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-5.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-5.png
new file mode 100644
index 0000000000000000000000000000000000000000..e2f98b96c1009bfb5cd8274a96632f8d13fa871b
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-5.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-6.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-6.png
new file mode 100644
index 0000000000000000000000000000000000000000..c90c24054ca37d3d097880ce776bbb9d0d7eada6
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-6.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-7.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-7.png
new file mode 100644
index 0000000000000000000000000000000000000000..a88d551eb0697f47f509cb302462f183f22aa12e
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-7.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-8.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-8.png
new file mode 100644
index 0000000000000000000000000000000000000000..f4bb3bcf3e35b8cb803f5480b233504ae341a251
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-8.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-9.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-9.png
new file mode 100644
index 0000000000000000000000000000000000000000..db43b7a9f4bb3d948e7bd9387edb497cfdfe3637
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score-9.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score.png
new file mode 100644
index 0000000000000000000000000000000000000000..8948c676dddf0cc8f598c4e5b877e20872c2e85c
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Score.png differ
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-1.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-1.csv
new file mode 100644
index 0000000000000000000000000000000000000000..8ac6cb3bdebd6c7ac8697bd10799ee2a54cd21b3
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-1.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.942857142857
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.9189814814814814
+5;Mean of F1-Score of top 20 classes by F1-Score;0.9189814814814814
+6;Mean of F1-Score of top 30 classes by F1-Score;0.9189814814814814
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-10.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-10.csv
new file mode 100644
index 0000000000000000000000000000000000000000..a3cebc6081af51288a719fb22e2559fc25e901fe
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-10.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.742857142857
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.7086031452358927
+5;Mean of F1-Score of top 20 classes by F1-Score;0.7086031452358927
+6;Mean of F1-Score of top 30 classes by F1-Score;0.7086031452358927
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-11.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-11.csv
new file mode 100644
index 0000000000000000000000000000000000000000..cd13999012acd2ec54283845347f06e74ab1a735
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-11.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.857142857143
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.8492678725236864
+5;Mean of F1-Score of top 20 classes by F1-Score;0.8492678725236864
+6;Mean of F1-Score of top 30 classes by F1-Score;0.8492678725236864
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-12.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-12.csv
new file mode 100644
index 0000000000000000000000000000000000000000..cadf36d58e74289ab5f1487f493680ed50dda497
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-12.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.8
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.703030303030303
+5;Mean of F1-Score of top 20 classes by F1-Score;0.703030303030303
+6;Mean of F1-Score of top 30 classes by F1-Score;0.703030303030303
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-13.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-13.csv
new file mode 100644
index 0000000000000000000000000000000000000000..32d51bf0a55837676b1e74f5f640d863e1b08895
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-13.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.8
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.5
+4;Mean of F1-Score of top 10 classes by F1-Score;0.4444444444444445
+5;Mean of F1-Score of top 20 classes by F1-Score;0.4444444444444445
+6;Mean of F1-Score of top 30 classes by F1-Score;0.4444444444444445
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-2.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-2.csv
new file mode 100644
index 0000000000000000000000000000000000000000..b08246526eae3ac7b06dd90c9959eb8ceed4b2bd
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-2.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.914285714286
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.8382126348228043
+5;Mean of F1-Score of top 20 classes by F1-Score;0.8382126348228043
+6;Mean of F1-Score of top 30 classes by F1-Score;0.8382126348228043
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-3.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-3.csv
new file mode 100644
index 0000000000000000000000000000000000000000..6084f669bac7ad1259e74ef61a4cf8593ea8cb3c
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-3.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.714285714286
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.7083333333333333
+5;Mean of F1-Score of top 20 classes by F1-Score;0.7083333333333333
+6;Mean of F1-Score of top 30 classes by F1-Score;0.7083333333333333
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-4.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-4.csv
new file mode 100644
index 0000000000000000000000000000000000000000..e0b61f246c06bd747366654c1261701d562f5484
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-4.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.714285714286
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.5949074074074073
+5;Mean of F1-Score of top 20 classes by F1-Score;0.5949074074074073
+6;Mean of F1-Score of top 30 classes by F1-Score;0.5949074074074073
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-5.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-5.csv
new file mode 100644
index 0000000000000000000000000000000000000000..ed7e4d7689e5cdf56f0ccc7d1f8bb5718f236e5b
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-5.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.714285714286
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.5
+4;Mean of F1-Score of top 10 classes by F1-Score;0.41666666666666663
+5;Mean of F1-Score of top 20 classes by F1-Score;0.41666666666666663
+6;Mean of F1-Score of top 30 classes by F1-Score;0.41666666666666663
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-6.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-6.csv
new file mode 100644
index 0000000000000000000000000000000000000000..4d47e5bf6e3be8f048844078df8e7edbae440e6c
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-6.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.8
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.7619047619047619
+5;Mean of F1-Score of top 20 classes by F1-Score;0.7619047619047619
+6;Mean of F1-Score of top 30 classes by F1-Score;0.7619047619047619
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-7.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-7.csv
new file mode 100644
index 0000000000000000000000000000000000000000..e0555824ca01d3107bb9fe860c222a925c504c54
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-7.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.828571428571
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.7756410256410255
+5;Mean of F1-Score of top 20 classes by F1-Score;0.7756410256410255
+6;Mean of F1-Score of top 30 classes by F1-Score;0.7756410256410255
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-8.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-8.csv
new file mode 100644
index 0000000000000000000000000000000000000000..b5d750fca3497c96dadd4f4e68f72cb00cc1abe7
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-8.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.8
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.6693657219973009
+5;Mean of F1-Score of top 20 classes by F1-Score;0.6693657219973009
+6;Mean of F1-Score of top 30 classes by F1-Score;0.6693657219973009
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-9.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-9.csv
new file mode 100644
index 0000000000000000000000000000000000000000..b80ac1fdbface94e7feb55290ab3eda20a70a7be
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats-9.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.914285714286
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.8834628190899001
+5;Mean of F1-Score of top 20 classes by F1-Score;0.8834628190899001
+6;Mean of F1-Score of top 30 classes by F1-Score;0.8834628190899001
diff --git a/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats.csv
new file mode 100644
index 0000000000000000000000000000000000000000..aaf58c084a76e2e4543327f1f0c84a39e253a6d6
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/2016_08_24-CMV-MultiOmic-RNASeq-Stats.csv
@@ -0,0 +1,8 @@
+;Statistic;Values
+0;Accuracy score on test;0.8
+1;Top 10 classes by F1-Score;['Non', 'Oui']
+2;Worst 10 classes by F1-Score;['Oui', 'Non']
+3;Ratio of classes with F1-Score==0 of all classes;0.0
+4;Mean of F1-Score of top 10 classes by F1-Score;0.7471620227038183
+5;Mean of F1-Score of top 20 classes by F1-Score;0.7471620227038183
+6;Mean of F1-Score of top 30 classes by F1-Score;0.7471620227038183
diff --git a/Code/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-ConfMatrix.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-ConfMatrix.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-ConfMatrix.csv
diff --git a/Code/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-ConfMatrixImg.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-ConfMatrixImg.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-ConfMatrixImg.png
diff --git a/Code/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-LOG.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-LOG.log
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-LOG.log
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-LOG.log
diff --git a/Code/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-Report.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-Report.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-Report.csv
diff --git a/Code/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-Score.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-Score.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-Score.png
diff --git a/Code/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-Stats.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-Stats.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG-Stats.csv
diff --git a/Code/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HOG-Cluster_20/2016_03_24-CMV-Caltech-HOG.csv
diff --git a/Code/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-ConfMatrix.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-ConfMatrix.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-ConfMatrix.csv
diff --git a/Code/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-ConfMatrixImg.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-ConfMatrixImg.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-ConfMatrixImg.png
diff --git a/Code/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-LOG.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-LOG.log
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-LOG.log
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-LOG.log
diff --git a/Code/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-Report.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-Report.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-Report.csv
diff --git a/Code/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-Score.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-Score.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-Score.png
diff --git a/Code/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-Stats.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-Stats.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV-Stats.csv
diff --git a/Code/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/HSV-Bins_[16,16,16]/2016_03_24-CMV-Caltech-HSV.csv
diff --git a/Code/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrix.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrix.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrix.csv
diff --git a/Code/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrixImg.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrixImg.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrixImg.png
diff --git a/Code/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-LOG.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-LOG.log
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-LOG.log
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-LOG.log
diff --git a/Code/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Report.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Report.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Report.csv
diff --git a/Code/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Score.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Score.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Score.png
diff --git a/Code/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Stats.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Stats.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Stats.csv
diff --git a/Code/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-3classes-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB.csv
diff --git a/Code/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrix.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrix.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrix.csv
diff --git a/Code/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrixImg.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrixImg.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-ConfMatrixImg.png
diff --git a/Code/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-LOG.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-LOG.log
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-LOG.log
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-LOG.log
diff --git a/Code/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Report.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Report.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Report.csv
diff --git a/Code/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Score.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Score.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Score.png
diff --git a/Code/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Stats.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Stats.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB-Stats.csv
diff --git a/Code/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/RGB-Bins_16-CI_256/2016_03_24-CMV-Caltech-RGB.csv
diff --git a/Code/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-ConfMatrix.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-ConfMatrix.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-ConfMatrix.csv
diff --git a/Code/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-ConfMatrixImg.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-ConfMatrixImg.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-ConfMatrixImg.png
diff --git a/Code/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-LOG.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-LOG.log
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-LOG.log
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-LOG.log
diff --git a/Code/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-Report.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-Report.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-Report.csv
diff --git a/Code/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-Score.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-Score.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-Score.png
diff --git a/Code/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-Stats.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-Stats.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT-Stats.csv
diff --git a/Code/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SIFT-Cluster_35/2016_03_24-CMV-Caltech-SIFT.csv
diff --git a/Code/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-ConfMatrix.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-ConfMatrix.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-ConfMatrix.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-ConfMatrix.csv
diff --git a/Code/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-ConfMatrixImg.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-ConfMatrixImg.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-ConfMatrixImg.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-ConfMatrixImg.png
diff --git a/Code/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-LOG.log b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-LOG.log
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-LOG.log
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-LOG.log
diff --git a/Code/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-Report.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-Report.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-Report.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-Report.csv
diff --git a/Code/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-Score.png b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-Score.png
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-Score.png
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-Score.png
diff --git a/Code/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-Stats.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-Stats.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-Stats.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF-Stats.csv
diff --git a/Code/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF.csv b/Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF.csv
similarity index 100%
rename from Code/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF.csv
rename to Code/MonoMutliViewClassifiers/Monoview/Results-ClassMonoView/SURF-Cluster_30/2016_03_24-CMV-Caltech-SURF.csv
diff --git a/Code/Monoview/__init__.py b/Code/MonoMutliViewClassifiers/Monoview/__init__.py
similarity index 100%
rename from Code/Monoview/__init__.py
rename to Code/MonoMutliViewClassifiers/Monoview/__init__.py
diff --git a/Code/Monoview/run.py b/Code/MonoMutliViewClassifiers/Monoview/run.py
similarity index 100%
rename from Code/Monoview/run.py
rename to Code/MonoMutliViewClassifiers/Monoview/run.py
diff --git a/Code/MonoMutliViewClassifiers/MonoviewClassifiers/Adaboost.py b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/Adaboost.py
new file mode 100644
index 0000000000000000000000000000000000000000..d1c45281a2105e7c5b16d1d8d91cda5d84c000a8
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/Adaboost.py
@@ -0,0 +1,28 @@
+from sklearn.ensemble import AdaBoostClassifier
+from sklearn.pipeline import Pipeline
+from sklearn.grid_search import GridSearchCV
+from sklearn.tree import DecisionTreeClassifier
+
+
+def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs):
+    num_estimators = int(kwargs['0'])
+    base_estimators = int(kwargs['1'])
+    classifier = AdaBoostClassifier(n_estimators=num_estimators, base_estimator=base_estimators)
+    classifier.fit(DATASET, CLASS_LABELS)
+    return classifier
+
+
+def fit_gridsearch(X_train, y_train, nbFolds=4, nbCores=1, **kwargs):
+
+    pipeline = Pipeline([('classifier', AdaBoostClassifier())])
+    param= {"classifier__n_estimators": map(int, kwargs['0']),
+                "classifier__base_estimator": [DecisionTreeClassifier() for arg in kwargs["1"]]}
+    grid = GridSearchCV(pipeline,param_grid=param,refit=True,n_jobs=nbCores,scoring='accuracy',cv=nbFolds)
+    detector = grid.fit(X_train, y_train)
+    desc_estimators = [detector.best_params_["classifier__n_estimators"]]
+    description = "Classif_" + "RF" + "-" + "CV_" +  str(nbFolds) + "-" + "Trees_" + str(map(str,desc_estimators))
+    return description, detector
+
+
+def getConfig(config):
+    return "\n\t\t- Adaboost with num_esimators : "+config[0]+", base_estimators : "+config[1]
\ No newline at end of file
diff --git a/Code/MonoMutliViewClassifiers/MonoviewClassifiers/DecisionTree.py b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/DecisionTree.py
new file mode 100644
index 0000000000000000000000000000000000000000..8fe4de8daf27ffa9bcf7e4f4c33fd5d665ee03b7
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/DecisionTree.py
@@ -0,0 +1,26 @@
+from sklearn.tree import DecisionTreeClassifier
+from sklearn.pipeline import Pipeline                   # Pipelining in classification
+from sklearn.grid_search import GridSearchCV
+
+
+def fit(DATASET, CLASS_LABELS, NB_CORES=1, **kwargs):
+    maxDepth = int(kwargs['0'])
+    classifier = DecisionTreeClassifier(max_depth=maxDepth)
+    classifier.fit(DATASET, CLASS_LABELS)
+    return classifier
+
+
+def fit_gridsearch(X_train, y_train, nbFolds=4, nbCores=1, **kwargs):
+    pipeline_DT = Pipeline([('classifier', DecisionTreeClassifier())])
+    param_DT = {"classifier__max_depth":map(int, kwargs['0'])}
+
+    grid_DT = GridSearchCV(pipeline_DT, param_grid=param_DT, refit=True, n_jobs=nbCores, scoring='accuracy',
+                           cv=nbFolds)
+    DT_detector = grid_DT.fit(X_train, y_train)
+    desc_params = [DT_detector.best_params_["classifier__max_depth"]]
+    description = "Classif_" + "DT" + "-" + "CV_" + str(nbFolds) + "-" + "-".join(map(str,desc_params))
+    return description, DT_detector
+
+
+def getConfig(config):
+    return "\n\t\t- Decision Tree with max_depth : "+config[0]
\ No newline at end of file
diff --git a/Code/MonoMutliViewClassifiers/MonoviewClassifiers/KNN.py b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/KNN.py
new file mode 100644
index 0000000000000000000000000000000000000000..ae03c3555610b793ef54c94baa157ba3df1df32e
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/KNN.py
@@ -0,0 +1,26 @@
+from sklearn.neighbors import KNeighborsClassifier
+from sklearn.pipeline import Pipeline                   # Pipelining in classification
+from sklearn.grid_search import GridSearchCV
+
+
+def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs):
+    nNeighbors = int(kwargs['0'])
+    classifier = KNeighborsClassifier(n_neighbors=nNeighbors)
+    classifier.fit(DATASET, CLASS_LABELS)
+    return classifier
+
+
+def fit_gridsearch(X_train, y_train, nbFolds=4, nbCores=1, **kwargs):
+    pipeline_KNN = Pipeline([('classifier', KNeighborsClassifier())])
+    param_KNN = {"classifier__n_neighbors": map(int, kwargs['0'])}
+    grid_KNN = GridSearchCV(pipeline_KNN, param_grid=param_KNN, refit=True, n_jobs=nbCores, scoring='accuracy',
+                            cv=nbFolds)
+    KNN_detector = grid_KNN.fit(X_train, y_train)
+    desc_params = [KNN_detector.best_params_["classifier__n_neighbors"]]
+    description = "Classif_" + "Lasso" + "-" + "CV_" + str(nbFolds) + "-" + "-".join(map(str,desc_params))
+    return description, KNN_detector
+
+
+
+def getConfig(config):
+    return "\n\t\t- K nearest Neighbors with  n_neighbors: "+config[0]
\ No newline at end of file
diff --git a/Code/MonoMutliViewClassifiers/MonoviewClassifiers/RandomForest.py b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/RandomForest.py
new file mode 100644
index 0000000000000000000000000000000000000000..968d83d2f66abec190c9dcf0510b36e148d1cd0e
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/RandomForest.py
@@ -0,0 +1,46 @@
+from sklearn.ensemble import RandomForestClassifier
+from sklearn.pipeline import Pipeline
+from sklearn.grid_search import GridSearchCV
+
+
+def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs):
+    num_estimators = int(kwargs['0'])
+    maxDepth = int(kwargs['1'])
+    classifier = RandomForestClassifier(n_estimators=num_estimators, max_depth=maxDepth, n_jobs=NB_CORES)
+    classifier.fit(DATASET, CLASS_LABELS)
+    return classifier
+
+
+def fit_gridsearch(X_train, y_train, nbFolds=4, nbCores=1, **kwargs):
+
+    # PipeLine with RandomForest classifier
+    pipeline_rf = Pipeline([('classifier', RandomForestClassifier())])
+
+    # Parameters for GridSearch: Number of Trees
+    # can be extended with: oob_score, min_samples_leaf, max_features
+    param_rf = {"classifier__n_estimators": map(int, kwargs['0'])}
+
+    # pipeline: Gridsearch avec le pipeline comme estimator
+    # param: pour obtenir le meilleur model il va essayer tous les possiblites
+    # refit: pour utiliser le meilleur model apres girdsearch
+    # n_jobs: Nombre de CPU (Mon ordi a des problemes avec -1 (Bug Python 2.7 sur Windows))
+    # scoring: scoring...
+    # cv: Nombre de K-Folds pour CV
+    grid_rf = GridSearchCV(
+        pipeline_rf,
+        param_grid=param_rf,
+        refit=True,
+        n_jobs=nbCores,
+        scoring='accuracy',
+        cv=nbFolds,
+    )
+
+    rf_detector = grid_rf.fit(X_train, y_train)
+
+    desc_estimators = [rf_detector.best_params_["classifier__n_estimators"]]
+    description = "Classif_" + "RF" + "-" + "CV_" +  str(nbFolds) + "-" + "Trees_" + str(map(str,desc_estimators))
+    return description, rf_detector
+
+
+def getConfig(config):
+    return "\n\t\t- Random Forest with num_esimators : "+config[0]+", max_depth : "+config[1]
\ No newline at end of file
diff --git a/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SGD.py b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SGD.py
new file mode 100644
index 0000000000000000000000000000000000000000..3a2bc27f097a3503fa09a4ac4ad34255dcd2da11
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SGD.py
@@ -0,0 +1,32 @@
+from sklearn.linear_model import SGDClassifier
+from sklearn.pipeline import Pipeline                   # Pipelining in classification
+from sklearn.grid_search import GridSearchCV
+
+
+def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs):
+    loss = kwargs['0']
+    penalty = kwargs['1']
+    try:
+        alpha = int(kwargs['2'])
+    except:
+        alpha = 0.15
+    classifier = SGDClassifier(loss=loss, penalty=penalty, alpha=alpha)
+    classifier.fit(DATASET, CLASS_LABELS)
+    return classifier
+
+
+def fit_gridsearch(X_train, y_train, nbFolds=4, nbCores=1, **kwargs):
+    pipeline_SGD = Pipeline([('classifier', SGDClassifier())])
+    param_SGD = {"classifier__loss": kwargs['1'], "classifier__penalty": kwargs['2'],
+                 "classifier__alpha": map(float, kwargs['0'])}
+    grid_SGD = GridSearchCV(pipeline_SGD, param_grid=param_SGD, refit=True, n_jobs=nbCores, scoring='accuracy',
+                            cv=nbFolds)
+    SGD_detector = grid_SGD.fit(X_train, y_train)
+    desc_params = [SGD_detector.best_params_["classifier__loss"], SGD_detector.best_params_["classifier__penalty"],
+                   SGD_detector.best_params_["classifier__alpha"]]
+    description = "Classif_" + "Lasso" + "-" + "CV_" + str(nbFolds) + "-" + "-".join(map(str,desc_params))
+    return description, SGD_detector
+
+
+def getConfig(config):
+    return "\n\t\t- SGDClassifier with loss : "+config[0]+", penalty : "+config[1]
\ No newline at end of file
diff --git a/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SVMLinear.py b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SVMLinear.py
new file mode 100644
index 0000000000000000000000000000000000000000..568badb41da2130e116459ba4123d47b3430befa
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SVMLinear.py
@@ -0,0 +1,25 @@
+from sklearn.svm import SVC
+from sklearn.pipeline import Pipeline                   # Pipelining in classification
+from sklearn.grid_search import GridSearchCV
+
+
+def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs):
+    C = int(kwargs['0'])
+    classifier = SVC(C=C, kernel='linear', probability=True)
+    classifier.fit(DATASET, CLASS_LABELS)
+    return classifier
+
+
+def fit_gridsearch(X_train, y_train, nbFolds=4, nbCores=1, **kwargs):
+    pipeline_SVMLinear = Pipeline([('classifier', SVC(kernel="linear"))])
+    param_SVMLinear = {"classifier__C": map(int, kwargs['0'])}
+    grid_SVMLinear = GridSearchCV(pipeline_SVMLinear, param_grid=param_SVMLinear, refit=True, n_jobs=nbCores, scoring='accuracy',
+                                  cv=nbFolds)
+    SVMLinear_detector = grid_SVMLinear.fit(X_train, y_train)
+    desc_params = [SVMLinear_detector.best_params_["classifier__C"]]
+    description = "Classif_" + "SVC" + "-" + "CV_" + str(nbFolds) + "-" + "-".join(map(str,desc_params))
+    return description, SVMLinear_detector
+
+
+def getConfig(config):
+    return "\n\t\t- SVM with C : "+config[0]+", kernel : "+config[1]
\ No newline at end of file
diff --git a/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SVMPoly.py b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SVMPoly.py
new file mode 100644
index 0000000000000000000000000000000000000000..9f43f0b9417e7defb873a384b25d4a676f15b50f
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SVMPoly.py
@@ -0,0 +1,26 @@
+from sklearn.svm import SVC
+from sklearn.pipeline import Pipeline                   # Pipelining in classification
+from sklearn.grid_search import GridSearchCV
+
+
+def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs):
+    C = int(kwargs['0'])
+    degree = int(kwargs['1'])
+    classifier = SVC(C=C, kernel='poly', degree=degree, probability=True)
+    classifier.fit(DATASET, CLASS_LABELS)
+    return classifier
+
+
+def fit_gridsearch(X_train, y_train, nbFolds=4, nbCores=1, **kwargs):
+    pipeline_SVMLinear = Pipeline([('classifier', SVC(kernel="linear"))])
+    param_SVMLinear = {"classifier__C": map(int, kwargs['0']), "classifier__degree": map(int, kwargs["1"])}
+    grid_SVMLinear = GridSearchCV(pipeline_SVMLinear, param_grid=param_SVMLinear, refit=True, n_jobs=nbCores, scoring='accuracy',
+                                  cv=nbFolds)
+    SVMLinear_detector = grid_SVMLinear.fit(X_train, y_train)
+    desc_params = [SVMLinear_detector.best_params_["classifier__C"], SVMLinear_detector.best_params_["classifier__degree"]]
+    description = "Classif_" + "SVC" + "-" + "CV_" + str(nbFolds) + "-" + "-".join(map(str,desc_params))
+    return description, SVMLinear_detector
+
+
+def getConfig(config):
+    return "\n\t\t- SVM with C : "+config[0]+", kernel : "+config[1]
\ No newline at end of file
diff --git a/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SVMRBF.py b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SVMRBF.py
new file mode 100644
index 0000000000000000000000000000000000000000..202cc076a9a92223b92626334d38f2ae67515c64
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/SVMRBF.py
@@ -0,0 +1,25 @@
+from sklearn.svm import SVC
+from sklearn.pipeline import Pipeline                   # Pipelining in classification
+from sklearn.grid_search import GridSearchCV
+
+
+def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs):
+    C = int(kwargs['0'])
+    classifier = SVC(C=C, kernel='rbf', probability=True)
+    classifier.fit(DATASET, CLASS_LABELS)
+    return classifier
+
+
+def fit_gridsearch(X_train, y_train, nbFolds=4, nbCores=1, **kwargs):
+    pipeline_SVMRBF = Pipeline([('classifier', SVC(kernel="rbf"))])
+    param_SVMRBF = {"classifier__C": map(int, kwargs['0'])}
+    grid_SVMRBF = GridSearchCV(pipeline_SVMRBF, param_grid=param_SVMRBF, refit=True, n_jobs=nbCores, scoring='accuracy',
+                               cv=nbFolds)
+    SVMRBF_detector = grid_SVMRBF.fit(X_train, y_train)
+    desc_params = [SVMRBF_detector.best_params_["classifier__C"]]
+    description = "Classif_" + "SVC" + "-" + "CV_" + str(nbFolds) + "-" + "-".join(map(str,desc_params))
+    return description, SVMRBF_detector
+
+
+def getConfig(config):
+    return "\n\t\t- SVM with C : "+config[0]+", kernel : "+config[1]
\ No newline at end of file
diff --git a/Code/Multiview/Fusion/Methods/MonoviewClassifiers/__init__.py b/Code/MonoMutliViewClassifiers/MonoviewClassifiers/__init__.py
similarity index 100%
rename from Code/Multiview/Fusion/Methods/MonoviewClassifiers/__init__.py
rename to Code/MonoMutliViewClassifiers/MonoviewClassifiers/__init__.py
diff --git a/Code/Multiview/ExecMultiview.py b/Code/MonoMutliViewClassifiers/Multiview/ExecMultiview.py
similarity index 93%
rename from Code/Multiview/ExecMultiview.py
rename to Code/MonoMutliViewClassifiers/Multiview/ExecMultiview.py
index ebc61a5bf3b3ddb37c202cc2eff975ccd8aa8310..cffd6f0199454f50c0e589ba7b48216a020aba20 100644
--- a/Code/Multiview/ExecMultiview.py
+++ b/Code/MonoMutliViewClassifiers/Multiview/ExecMultiview.py
@@ -15,6 +15,7 @@ import logging
 import time
 
 
+
 def ExecMultiview(DATASET, name, learningRate, nbFolds, nbCores, databaseType, path, LABELS_DICTIONARY, gridSearch=False, **kwargs):
 
     datasetLength = DATASET.get("Metadata").attrs["datasetLength"]
@@ -26,8 +27,7 @@ def ExecMultiview(DATASET, name, learningRate, nbFolds, nbCores, databaseType, p
     views = kwargs["views"]
     NB_VIEW = kwargs["NB_VIEW"]
     LABELS_NAMES = kwargs["LABELS_NAMES"]
-    MumboKWARGS = kwargs["MumboKWARGS"]
-    FusionKWARGS = kwargs["FusionKWARGS"]
+    classificationKWARGS = kwargs[CL_type+"KWARGS"]
 
     t_start = time.time()
     logging.info("### Main Programm for Multiview Classification")
@@ -78,8 +78,8 @@ def ExecMultiview(DATASET, name, learningRate, nbFolds, nbCores, databaseType, p
 
     if gridSearch:
         logging.info("Start:\t Gridsearching best settings for monoview classifiers")
-        bestSettings = classifierGridSearch(DATASET, initKWARGS["classifiersNames"])
-        initKWARGS["classifiersConfigs"] = bestSettings
+        bestSettings = classifierGridSearch(DATASET, classificationKWARGS["classifiersNames"])
+        classificationKWARGS["classifiersConfigs"] = bestSettings
         logging.info("Done:\t Gridsearching best settings for monoview classifiers")
 
     # Begin Classification
@@ -89,7 +89,7 @@ def ExecMultiview(DATASET, name, learningRate, nbFolds, nbCores, databaseType, p
             logging.info("\tStart:\t Fold number " + str(foldIdx + 1))
             trainIndices = [index for index in range(datasetLength) if index not in fold]
             DATASET_LENGTH = len(trainIndices)
-            classifier = classifierClass(NB_VIEW, DATASET_LENGTH, DATASET.get("labels").value, NB_CORES=nbCores, **initKWARGS)
+            classifier = classifierClass(NB_VIEW, DATASET_LENGTH, DATASET.get("labels").value, NB_CORES=nbCores, **classificationKWARGS)
 
             classifier.fit_hdf5(DATASET, trainIndices=trainIndices)
             kFoldClassifier.append(classifier)
@@ -149,6 +149,9 @@ if __name__=='__main__':
     parser = argparse.ArgumentParser(
         description='This file is used to classifiy multiview data thanks to three methods : Fusion (early & late), Multiview Machines, Mumbo.',
         formatter_class=argparse.ArgumentDefaultsHelpFormatter)
+    # create the top-level parser
+
+
 
     groupStandard = parser.add_argument_group('Standard arguments')
     groupStandard.add_argument('-log', action='store_true', help='Use option to activate Logging to Console')
@@ -183,12 +186,14 @@ if __name__=='__main__':
                             help='Determine which monoview classifier to use with Mumbo',
                             default='DecisionTree:DecisionTree:DecisionTree:DecisionTree')
     groupMumbo.add_argument('--MU_config', metavar='STRING', action='store', nargs='+',
-                            help='Configuration for the monoview classifier in Mumbo', default=['1:0.02', '1:0.018', '1:0.1',
+                            help='Configuration for the monoview classifier in Mumbo', default=['1:0.02', '1:0.018',
+                                                                                                '1:0.1',
                                                                                                 '2:0.09'])
-    groupMumbo.add_argument('--MU_iter', metavar='INT', action='store',
-                            help='Number of iterations in Mumbos learning process', type=int, default=5)
+    groupMumbo.add_argument('--MU_iter', metavar='INT', action='store', nargs=3,
+                            help='Max number of iteration, min number of iteration, convergeance threshold', type=float,
+                            default=[1000,300,0.0005])
 
-    groupFusion = parser.add_argument_group('Fusion arguments')
+    groupFusion = parser.add_argument_group('Fusion', "poulet")
     groupFusion.add_argument('--FU_type', metavar='STRING', action='store',
                              help='Determine which type of fusion to use', default='LateFusion')
     groupFusion.add_argument('--FU_method', metavar='STRING', action='store',
@@ -201,8 +206,9 @@ if __name__=='__main__':
     groupFusion.add_argument('--FU_cl_config', metavar='STRING', action='store', nargs='+',
                              help='Configuration for the monoview classifiers used', default=['3:4', 'log:l2', '10:linear',
                                                                                               '4'])
-
+    print parser
     args = parser.parse_args()
+    print args
     views = args.views.split(":")
     dataBaseType = args.type
     NB_VIEW = len(views)
@@ -213,7 +219,6 @@ if __name__=='__main__':
     NB_CLASS = args.CL_nb_class
     LABELS_NAMES = args.CL_classes.split(":")
     mumboclassifierNames = args.MU_type.split(':')
-    mumboNB_ITER = args.MU_iter
     NB_CORES = args.CL_cores
     fusionClassifierNames = args.FU_cl_names.split(":")
     fusionClassifierConfig = [argument.split(':') for argument in args.FU_cl_config]
@@ -221,7 +226,9 @@ if __name__=='__main__':
     FusionKWARGS = {"fusionType":args.FU_type, "fusionMethod":args.FU_method,
                     "classifiersNames":fusionClassifierNames, "classifiersConfigs":fusionClassifierConfig,
                     'fusionMethodConfig':fusionMethodConfig}
-    MumboKWARGS = {"classifiersConfigs":mumboClassifierConfig, "NB_ITER":mumboNB_ITER, "classifiersNames":mumboclassifierNames}
+    MumboKWARGS = {"classifiersConfigs":mumboClassifierConfig,
+                   "classifiersNames":mumboclassifierNames, "maxIter":int(args.MU_iter[0]),
+                   "minIter":int(args.MU_iter[1]), "threshold":args.MU_iter[2]}
     dir = os.path.dirname(os.path.abspath(__file__)) + "/Results/"
     logFileName = time.strftime("%Y%m%d-%H%M%S") + "-CMultiV-" + args.CL_type + "-" + "_".join(views) + "-" + args.name + \
                   "-LOG"
@@ -252,10 +259,10 @@ if __name__=='__main__':
     DATASET, LABELS_DICTIONARY = getDatabase(views, args.pathF, args.name, NB_CLASS, LABELS_NAMES)
 
     logging.info("Info:\t Labels used: " + ", ".join(LABELS_DICTIONARY.values()))
-    logging.info("Info:\t Length of dataset:" + str(DATASET.get("Metadata").attrs["datasetlength"]))
+    logging.info("Info:\t Length of dataset:" + str(DATASET.get("Metadata").attrs["datasetLength"]))
 
     ExecMultiview(DATASET, args.name, args.CL_split, args.CL_nbFolds, args.CL_cores, args.type, args.pathF,
-                  LABELS_DICTIONARY, gridSearch=True, **arguments)
+                  LABELS_DICTIONARY, gridSearch=False, **arguments)
 
 
 
diff --git a/Code/Multiview/Fusion/Fusion.py b/Code/MonoMutliViewClassifiers/Multiview/Fusion/Fusion.py
similarity index 100%
rename from Code/Multiview/Fusion/Fusion.py
rename to Code/MonoMutliViewClassifiers/Multiview/Fusion/Fusion.py
diff --git a/Code/Multiview/Fusion/Methods/EarlyFusion.py b/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/EarlyFusion.py
similarity index 97%
rename from Code/Multiview/Fusion/Methods/EarlyFusion.py
rename to Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/EarlyFusion.py
index 761d1b4ce61953577e68ba4b48a0289cc33eaa97..dd86041d22dc90f66908ac26afe2805b2154812d 100644
--- a/Code/Multiview/Fusion/Methods/EarlyFusion.py
+++ b/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/EarlyFusion.py
@@ -1,10 +1,10 @@
 #!/usr/bin/env python
 # -*- encoding: utf-8
 
-import MonoviewClassifiers
-
 import numpy as np
 
+import MonoviewClassifiers
+
 
 class EarlyFusionClassifier(object):
     def __init__(self, monoviewClassifiersNames, monoviewClassifiersConfigs, NB_CORES=1):
@@ -56,7 +56,7 @@ class WeightedLinear(EarlyFusionClassifier):
     def getConfig(self, fusionMethodConfig ,monoviewClassifiersNames, monoviewClassifiersConfigs):
         configString = "with weighted concatenation, using weights : "+", ".join(map(str, self.weights))+\
                        " with monoview classifier : "
-        monoviewClassifierModule = getattr(MonoviewClassifiers, monoviewClassifiersNames[0])
+        monoviewClassifierModule = getattr(poulet, monoviewClassifiersNames[0])
         configString += monoviewClassifierModule.getConfig(monoviewClassifiersConfigs[0])
         return configString
 
diff --git a/Code/Multiview/Fusion/Methods/LateFusion.py b/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/LateFusion.py
similarity index 99%
rename from Code/Multiview/Fusion/Methods/LateFusion.py
rename to Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/LateFusion.py
index 962f51b07e8af4c32b6ec5e5f4ffc95908456238..9222d7339935418485a66e4c55ad1dbd04042474 100644
--- a/Code/Multiview/Fusion/Methods/LateFusion.py
+++ b/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/LateFusion.py
@@ -2,11 +2,11 @@
 # -*- encoding: utf-8
 
 import numpy as np
-import sys
-from sklearn.svm import SVC
+from joblib import Parallel, delayed
 from sklearn.multiclass import OneVsOneClassifier
+from sklearn.svm import SVC
+
 import MonoviewClassifiers
-from joblib import Parallel, delayed
 
 
 # Our method in multiclass classification will be One-vs-One or One-vs-All
diff --git a/Code/Multiview/Fusion/Methods/__init__.py b/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/__init__.py
similarity index 100%
rename from Code/Multiview/Fusion/Methods/__init__.py
rename to Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/__init__.py
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/poulet/__init__.py b/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/poulet/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..9bbd76fbbcd47eb690b8c69a78695d7ef7ab1660
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Fusion/Methods/poulet/__init__.py
@@ -0,0 +1,7 @@
+import os
+for module in os.listdir(os.path.dirname(os.path.realpath(__file__))):
+    if module == '__init__.py' or module[-3:] != '.py':
+        continue
+    __import__(module[:-3], locals(), globals())
+del module
+del os
\ No newline at end of file
diff --git a/Code/Multiview/Fusion/__init__.py b/Code/MonoMutliViewClassifiers/Multiview/Fusion/__init__.py
similarity index 100%
rename from Code/Multiview/Fusion/__init__.py
rename to Code/MonoMutliViewClassifiers/Multiview/Fusion/__init__.py
diff --git a/Code/Multiview/Fusion/analyzeResults.py b/Code/MonoMutliViewClassifiers/Multiview/Fusion/analyzeResults.py
similarity index 100%
rename from Code/Multiview/Fusion/analyzeResults.py
rename to Code/MonoMutliViewClassifiers/Multiview/Fusion/analyzeResults.py
diff --git a/Code/Multiview/GetMultiviewDb.py b/Code/MonoMutliViewClassifiers/Multiview/GetMultiviewDb.py
similarity index 99%
rename from Code/Multiview/GetMultiviewDb.py
rename to Code/MonoMutliViewClassifiers/Multiview/GetMultiviewDb.py
index 8a9dfa82e61ea17cdd3152f2068f277d19fbe749..b839496fd441750d60f60d2eb9550905973acf8c 100644
--- a/Code/Multiview/GetMultiviewDb.py
+++ b/Code/MonoMutliViewClassifiers/Multiview/GetMultiviewDb.py
@@ -145,7 +145,6 @@ def getKFoldIndices(nbFolds, CLASS_LABELS, NB_CLASS, learningIndices):
     for foldIndex, fold in enumerate(nbTrainingExamples):
         trainingExamplesIndices.append([])
         while fold != [0 for i in range(NB_CLASS)]:
-            print fold
             index = random.randint(0, len(learningIndices)-1)
             if learningIndices[index] not in usedIndices:
                 isUseFull, fold = isUseful(fold, learningIndices[index], CLASS_LABELS, labelDict)
@@ -327,7 +326,7 @@ def getMultiOmicDBcsv(features, path, name, NB_CLASS, LABELS_NAMES):
     rnaseqData = np.genfromtxt(path+"matching_rnaseq.csv", delimiter=',')
     rnaseqDset = datasetFile.create_dataset("View2", rnaseqData.shape)
     rnaseqDset[...] = rnaseqData
-    rnaseqDset.attrs["name"]="RANSeq"
+    rnaseqDset.attrs["name"]="RNASeq"
     logging.debug("Done:\t Getting RNASeq Data")
 
     logging.debug("Start:\t Getting Clinical Data")
@@ -376,7 +375,7 @@ def getModifiedMultiOmicDBcsv(features, path, name, NB_CLASS, LABELS_NAMES):
     rnaseqData = np.genfromtxt(path+"matching_rnaseq.csv", delimiter=',')
     rnaseqDset = datasetFile.create_dataset("View2", rnaseqData.shape)
     rnaseqDset[...] = rnaseqData
-    rnaseqDset.attrs["name"]="RANSeq_"
+    rnaseqDset.attrs["name"]="RNASeq_"
     logging.debug("Done:\t Getting RNASeq Data")
 
     logging.debug("Start:\t Getting Clinical Data")
diff --git a/Code/Multiview/Mumbo/Classifiers/DecisionTree.py b/Code/MonoMutliViewClassifiers/Multiview/Mumbo/Classifiers/DecisionTree.py
similarity index 95%
rename from Code/Multiview/Mumbo/Classifiers/DecisionTree.py
rename to Code/MonoMutliViewClassifiers/Multiview/Mumbo/Classifiers/DecisionTree.py
index 8a087b766d0604627a265367799ff0a6cb69b5cf..2981081de25a515c7055d3f12155f37c3eea0df9 100644
--- a/Code/Multiview/Mumbo/Classifiers/DecisionTree.py
+++ b/Code/MonoMutliViewClassifiers/Multiview/Mumbo/Classifiers/DecisionTree.py
@@ -3,6 +3,7 @@ from sklearn.metrics import precision_recall_fscore_support, accuracy_score
 import numpy as np
 from ModifiedMulticlass import OneVsRestClassifier
 from SubSampling import subSample
+import logging
 # Add weights 
 
 def DecisionTree(data, labels, arg, weights):
@@ -105,8 +106,11 @@ def getBestSetting(bestSettings, bestResults):
     diffTo52 = 100.0
     bestSettingsIndex = 0
     for resultIndex, result in enumerate(bestResults):
-        if abs(52.5-result)<diffTo52:
+        if abs(0.55-result) < diffTo52:
+            diffTo52 = abs(0.55-result)
+            bestResult = result
             bestSettingsIndex = resultIndex
+    logging.debug("\t\tInfo:\t Best Reslut : "+str(result))
 
     return map(lambda p: round(p, 4), bestSettings[bestSettingsIndex])
-#    return map(round(,4), bestSettings[bestSettingsIndex])
\ No newline at end of file
+    #    return map(round(,4), bestSettings[bestSettingsIndex])
\ No newline at end of file
diff --git a/Code/Multiview/Mumbo/Classifiers/Kover.py b/Code/MonoMutliViewClassifiers/Multiview/Mumbo/Classifiers/Kover.py
similarity index 100%
rename from Code/Multiview/Mumbo/Classifiers/Kover.py
rename to Code/MonoMutliViewClassifiers/Multiview/Mumbo/Classifiers/Kover.py
diff --git a/Code/Multiview/Mumbo/Classifiers/ModifiedMulticlass.py b/Code/MonoMutliViewClassifiers/Multiview/Mumbo/Classifiers/ModifiedMulticlass.py
similarity index 100%
rename from Code/Multiview/Mumbo/Classifiers/ModifiedMulticlass.py
rename to Code/MonoMutliViewClassifiers/Multiview/Mumbo/Classifiers/ModifiedMulticlass.py
diff --git a/Code/Multiview/Mumbo/Classifiers/SubSampling.py b/Code/MonoMutliViewClassifiers/Multiview/Mumbo/Classifiers/SubSampling.py
similarity index 100%
rename from Code/Multiview/Mumbo/Classifiers/SubSampling.py
rename to Code/MonoMutliViewClassifiers/Multiview/Mumbo/Classifiers/SubSampling.py
diff --git a/Code/Multiview/Mumbo/Classifiers/__init__.py b/Code/MonoMutliViewClassifiers/Multiview/Mumbo/Classifiers/__init__.py
similarity index 100%
rename from Code/Multiview/Mumbo/Classifiers/__init__.py
rename to Code/MonoMutliViewClassifiers/Multiview/Mumbo/Classifiers/__init__.py
diff --git a/Code/Multiview/Mumbo/Mumbo.py b/Code/MonoMutliViewClassifiers/Multiview/Mumbo/Mumbo.py
similarity index 84%
rename from Code/Multiview/Mumbo/Mumbo.py
rename to Code/MonoMutliViewClassifiers/Multiview/Mumbo/Mumbo.py
index 912d6ebab17eb2160e0c69ec9d179bdbe808d900..20e1e9613077937c0a8a463ad91213812156a843 100644
--- a/Code/Multiview/Mumbo/Mumbo.py
+++ b/Code/MonoMutliViewClassifiers/Multiview/Mumbo/Mumbo.py
@@ -2,7 +2,10 @@ import numpy as np
 import math
 from joblib import Parallel, delayed
 from Classifiers import *
+import time
 import logging
+import matplotlib.pyplot as plt
+from sklearn.metrics import accuracy_score
 
 
 # Data shape : ((Views, Examples, Corrdinates))
@@ -23,8 +26,7 @@ def trainWeakClassifier(classifierName, monoviewDataset, CLASS_LABELS,
     weights = computeWeights(DATASET_LENGTH, iterIndex, viewIndice, CLASS_LABELS, costMatrices)
     classifierModule = globals()[classifierName]  # Permet d'appeler une fonction avec une string
     classifierMethod = getattr(classifierModule, classifierName)
-    classifier, classes, isBad, pTr = classifierMethod(monoviewDataset, CLASS_LABELS, classifier_config, weights)
-    averageAccuracy = np.mean(pTr)
+    classifier, classes, isBad, averageAccuracy = classifierMethod(monoviewDataset, CLASS_LABELS, classifier_config, weights)
     logging.debug("\t\t\tView " + str(viewIndice) + " : " + str(averageAccuracy))
     return classifier, classes, isBad, averageAccuracy
 
@@ -33,18 +35,19 @@ def trainWeakClassifier_hdf5(classifierName, monoviewDataset, CLASS_LABELS, DATA
     weights = computeWeights(DATASET_LENGTH, iterIndex, viewIndice, CLASS_LABELS, costMatrices)
     classifierModule = globals()[classifierName]  # Permet d'appeler une fonction avec une string
     classifierMethod = getattr(classifierModule, classifierName)
-    classifier, classes, isBad, pTr = classifierMethod(monoviewDataset, CLASS_LABELS, classifier_config, weights)
-    averageAccuracy = np.mean(pTr)
+    classifier, classes, isBad, averageAccuracy = classifierMethod(monoviewDataset, CLASS_LABELS, classifier_config, weights)
     logging.debug("\t\t\tView " + str(viewIndice) + " : " + str(averageAccuracy))
     return classifier, classes, isBad, averageAccuracy
 
 def gridSearch_hdf5(DATASET, classifiersNames):
     bestSettings = []
     for classifierIndex, classifierName in enumerate(classifiersNames):
+        logging.debug("\tStart:\t Gridsearch for "+classifierName+" on "+DATASET.get("View"+str(classifierIndex)).attrs["name"])
         classifierModule = globals()[classifierName]  # Permet d'appeler une fonction avec une string
         classifierMethod = getattr(classifierModule, "gridSearch")
         bestSettings.append(classifierMethod(DATASET.get("View"+str(classifierIndex))[...],
                                              DATASET.get("labels")[...]))
+        logging.debug("\tDone:\t Gridsearch for "+classifierName)
     return bestSettings
 
 
@@ -54,43 +57,45 @@ def gridSearch_hdf5(DATASET, classifiersNames):
 class Mumbo:
 
     def __init__(self, NB_VIEW, DATASET_LENGTH, CLASS_LABELS, NB_CORES=1,**kwargs):
-        self.nbIter = kwargs["NB_ITER"]
+        self.maxIter = kwargs["maxIter"]
+        self.minIter = kwargs["minIter"]
+        self.threshold = kwargs["threshold"]
         self.classifiersNames = kwargs["classifiersNames"]
         self.classifiersConfigs = kwargs["classifiersConfigs"]
         nbClass = len(set(CLASS_LABELS))
-        self.nbIter = kwargs["NB_ITER"]
         self.costMatrices = np.array([
-                                        np.array([
-                                                     np.array([
-                                                                  np.array([1 if CLASS_LABELS[exampleIndice] != classe
-                                                                            else -(nbClass - 1)
-                                                                            for classe in range(nbClass)
-                                                                            ]) for exampleIndice in range(DATASET_LENGTH)
-                                                                  ]) for viewIndice in range(NB_VIEW)])
-                                        if iteration == 0
-                                        else np.zeros((NB_VIEW, DATASET_LENGTH, nbClass))
-                                        for iteration in range(self.nbIter + 1)
-                                        ])
+                                         np.array([
+                                                      np.array([
+                                                                   np.array([1 if CLASS_LABELS[exampleIndice] != classe
+                                                                             else -(nbClass - 1)
+                                                                             for classe in range(nbClass)
+                                                                             ]) for exampleIndice in range(DATASET_LENGTH)
+                                                                   ]) for viewIndice in range(NB_VIEW)])
+                                         if iteration == 0
+                                         else np.zeros((NB_VIEW, DATASET_LENGTH, nbClass))
+                                         for iteration in range(self.maxIter + 1)
+                                         ])
         self.generalCostMatrix = np.array([
                                               np.array([
                                                            np.array([1 if CLASS_LABELS[exampleIndice] != classe
                                                                      else -(nbClass - 1)
                                                                      for classe in range(nbClass)
                                                                      ]) for exampleIndice in range(DATASET_LENGTH)
-                                                           ]) for iteration in range(self.nbIter)
+                                                           ]) for iteration in range(self.maxIter)
                                               ])
-        self.fs = np.zeros((self.nbIter, NB_VIEW, DATASET_LENGTH, nbClass))
-        self.ds = np.zeros((self.nbIter, NB_VIEW, DATASET_LENGTH))
-        self.edges = np.zeros((self.nbIter, NB_VIEW))
-        self.alphas = np.zeros((self.nbIter, NB_VIEW))
-        self.predictions = np.zeros((self.nbIter, NB_VIEW, DATASET_LENGTH))
-        self.generalAlphas = np.zeros(self.nbIter)
-        self.generalFs = np.zeros((self.nbIter, DATASET_LENGTH, nbClass))
+        self.fs = np.zeros((self.maxIter, NB_VIEW, DATASET_LENGTH, nbClass))
+        self.ds = np.zeros((self.maxIter, NB_VIEW, DATASET_LENGTH))
+        self.edges = np.zeros((self.maxIter, NB_VIEW))
+        self.alphas = np.zeros((self.maxIter, NB_VIEW))
+        self.predictions = np.zeros((self.maxIter, NB_VIEW, DATASET_LENGTH))
+        self.generalAlphas = np.zeros(self.maxIter)
+        self.generalFs = np.zeros((self.maxIter, DATASET_LENGTH, nbClass))
         self.nbCores = NB_CORES
         self.iterIndex = 0
         self.bestClassifiers = []
-        self.bestViews = np.zeros(self.nbIter, dtype=int)
-        self.averageAccuracies = np.zeros((self.nbIter, NB_VIEW))
+        self.bestViews = np.zeros(self.maxIter, dtype=int)
+        self.averageAccuracies = np.zeros((self.maxIter, NB_VIEW))
+        self.iterAccuracies = np.zeros(self.maxIter)
         # costMatrices = np.array([
         #                             np.array([
         #                                          np.array([
@@ -134,17 +139,23 @@ class Mumbo:
         # predictions, generalAlphas, generalFs = initialize(NB_CLASS, NB_VIEW,
         #                                                    NB_ITER, DATASET_LENGTH,
         #                                                    LABELS[trainIndices])
-        bestViews = np.zeros(self.nbIter)
+        bestViews = np.zeros(self.maxIter)
         bestClassifiers = []
 
         # Learning
+        isStabilized=False
         self.iterIndex = 0
-        for i in range(self.nbIter):
+        while not isStabilized or self.iterIndex >= self.maxIter:
+            if self.iterIndex > self.minIter:
+                coeffs = np.polyfit(np.log(np.arange(self.iterIndex)+0.00001), self.iterAccuracies[:self.iterIndex], 1)
+                if coeffs[0]/self.iterIndex < self.threshold:
+                    isStabilized = True
+
             logging.debug('\t\tStart:\t Iteration ' + str(self.iterIndex + 1))
             classifiers, predictedLabels, areBad = self.trainWeakClassifiers_hdf5(DATASET, trainIndices, NB_CLASS,
                                                                                   DATASET_LENGTH, NB_VIEW)
             if areBad.all():
-                logging.warning("All bad for iteration " + str(self.iterIndex))
+                logging.warning("WARNING:\tAll bad for iteration " + str(self.iterIndex))
 
             self.predictions[self.iterIndex] = predictedLabels
 
@@ -169,6 +180,10 @@ class Mumbo:
             self.bestClassifiers.append(classifiers[bestView])
             self.updateGeneralFs(DATASET_LENGTH, NB_CLASS, bestView)
             self.updateGeneralCostMatrix(DATASET_LENGTH, NB_CLASS,LABELS)
+            predictedLabels = self.predict_hdf5(DATASET, usedIndices=trainIndices)
+            accuracy = accuracy_score(DATASET.get("labels")[trainIndices], predictedLabels)
+            self.iterAccuracies[self.iterIndex] = accuracy
+
             self.iterIndex += 1
 
             # finalFs = computeFinalFs(DATASET_LENGTH, NB_CLASS, generalAlphas, predictions, bestViews, LABELS, NB_ITER)
@@ -184,7 +199,7 @@ class Mumbo:
             for labelIndex, exampleIndex in enumerate(usedIndices):
                 votes = np.zeros(NB_CLASS)
                 for classifier, alpha, view in zip(self.bestClassifiers, self.alphas, self.bestViews):
-                    data = DATASET["/View"+str(int(view))+"/matrix"][exampleIndex, :]
+                    data = DATASET["/View"+str(int(view))][exampleIndex, :]
                     votes[int(classifier.predict(np.array([data])))] += alpha[view]
                 predictedLabels[labelIndex] = np.argmax(votes)
         else:
@@ -204,10 +219,10 @@ class Mumbo:
         classifiersNames = self.classifiersNames
         iterIndex = self.iterIndex
         trainedClassifiersAndLabels = Parallel(n_jobs=NB_JOBS)(
-                delayed(trainWeakClassifier)(classifiersNames[viewIndice], DATASET[viewIndice], CLASS_LABELS,
-                                             DATASET_LENGTH, viewIndice, classifiersConfigs[viewIndice], iterIndex,
-                                             costMatrices)
-                for viewIndice in range(NB_VIEW))
+            delayed(trainWeakClassifier)(classifiersNames[viewIndice], DATASET[viewIndice], CLASS_LABELS,
+                                         DATASET_LENGTH, viewIndice, classifiersConfigs[viewIndice], iterIndex,
+                                         costMatrices)
+            for viewIndice in range(NB_VIEW))
 
         for viewIndex, (classifier, labelsArray, isBad, averageAccuracy) in enumerate(trainedClassifiersAndLabels):
             self.averageAccuracies[self.iterIndex, viewIndex] = averageAccuracy
@@ -217,7 +232,7 @@ class Mumbo:
         return np.array(trainedClassifiers), np.array(labelsMatrix), np.array(areBad)
 
     def trainWeakClassifiers_hdf5(self, DATASET, trainIndices, NB_CLASS,
-                                 DATASET_LENGTH, NB_VIEW):
+                                  DATASET_LENGTH, NB_VIEW):
         trainedClassifiers = []
         labelsMatrix = []
         areBad = []
@@ -230,13 +245,13 @@ class Mumbo:
         classifiersNames = self.classifiersNames
         iterIndex = self.iterIndex
         trainedClassifiersAndLabels = Parallel(n_jobs=NB_JOBS)(
-                delayed(trainWeakClassifier_hdf5)(classifiersNames[viewIndex],
-                                             DATASET.get("View"+str(viewIndex))[trainIndices, :],
-                                             DATASET.get("labels")[trainIndices],
-                                             DATASET_LENGTH,
-                                             viewIndex, classifiersConfigs[viewIndex],
-                                             DATASET.get("View"+str(viewIndex)).attrs["name"], iterIndex, costMatrices)
-                for viewIndex in range(NB_VIEW))
+            delayed(trainWeakClassifier_hdf5)(classifiersNames[viewIndex],
+                                              DATASET.get("View"+str(viewIndex))[trainIndices, :],
+                                              DATASET.get("labels")[trainIndices],
+                                              DATASET_LENGTH,
+                                              viewIndex, classifiersConfigs[viewIndex],
+                                              DATASET.get("View"+str(viewIndex)).attrs["name"], iterIndex, costMatrices)
+            for viewIndex in range(NB_VIEW))
 
         for viewIndex, (classifier, labelsArray, isBad, averageAccuracy) in enumerate(trainedClassifiersAndLabels):
             self.averageAccuracies[self.iterIndex, viewIndex] = averageAccuracy
@@ -250,11 +265,11 @@ class Mumbo:
         costMatrix = self.costMatrices[self.iterIndex, viewIndex]
         # return np.sum(np.array([np.sum(predictionMatrix*costMatrix[:,classIndice]) for classIndice in range(NB_CLASS)]))
         cCost = float(np.sum(np.array(
-                [costMatrix[exampleIndice, int(predictionMatrix[exampleIndice])] for exampleIndice in
-                 range(DATASET_LENGTH)])))
+            [costMatrix[exampleIndice, int(predictionMatrix[exampleIndice])] for exampleIndice in
+             range(DATASET_LENGTH)])))
         tCost = float(np.sum(
-                np.array([-costMatrix[exampleIndice, CLASS_LABELS[exampleIndice]] for exampleIndice in
-                          range(DATASET_LENGTH)])))
+            np.array([-costMatrix[exampleIndice, CLASS_LABELS[exampleIndice]] for exampleIndice in
+                      range(DATASET_LENGTH)])))
         if tCost == 0.:
             self.edges[self.iterIndex, viewIndex] = -cCost
         else:
@@ -283,13 +298,13 @@ class Mumbo:
                             == \
                             CLASS_LABELS[exampleIndice] \
                             or self.allViewsClassifyWell(self.predictions, pastIterIndice,
-                                                    NB_VIEW, CLASS_LABELS[exampleIndice],
-                                                    exampleIndice):
+                                                         NB_VIEW, CLASS_LABELS[exampleIndice],
+                                                         exampleIndice):
 
                         self.ds[pastIterIndice, viewIndice, exampleIndice] = 1
                     else:
                         self.ds[pastIterIndice, viewIndice, exampleIndice] = 0
-        #return ds
+                        #return ds
 
     def updateFs(self, NB_VIEW, DATASET_LENGTH, NB_CLASS):
         for viewIndice in range(NB_VIEW):
@@ -299,14 +314,14 @@ class Mumbo:
                         = np.sum(np.array([self.alphas[pastIterIndice, viewIndice]
                                            * self.ds[pastIterIndice, viewIndice, exampleIndice]
                                            if self.predictions[pastIterIndice, viewIndice,
-                                                          exampleIndice]
+                                                               exampleIndice]
                                               ==
                                               classe
                                            else 0
                                            for pastIterIndice in range(self.iterIndex)]))
         if np.amax(np.absolute(self.fs)) != 0:
             self.fs /= np.amax(np.absolute(self.fs))
-        #return fs
+            #return fs
 
     def updateCostmatrices(self, NB_VIEW, DATASET_LENGTH, NB_CLASS, CLASS_LABELS):
         for viewIndice in range(NB_VIEW):
@@ -336,8 +351,8 @@ class Mumbo:
                 self.generalFs[self.iterIndex, exampleIndice, classe] \
                     = np.sum(np.array([self.generalAlphas[pastIterIndice]
                                        if self.predictions[pastIterIndice,
-                                                      bestView,
-                                                      exampleIndice]
+                                                           bestView,
+                                                           exampleIndice]
                                           ==
                                           classe
                                        else 0
@@ -346,7 +361,7 @@ class Mumbo:
                              )
         if np.amax(np.absolute(self.generalFs)) != 0:
             self.generalFs /= np.amax(np.absolute(self.generalFs))
-        #return generalFs
+            #return generalFs
 
     def updateGeneralCostMatrix(self, DATASET_LENGTH, NB_CLASS, CLASS_LABELS):
         for exampleIndice in range(DATASET_LENGTH):
@@ -359,8 +374,8 @@ class Mumbo:
                     self.generalCostMatrix[self.iterIndex, exampleIndice, classe] \
                         = -1 * np.sum(np.exp(self.generalFs[self.iterIndex, exampleIndice] -
                                              self.generalFs[self.iterIndex, exampleIndice, classe]))
-        # if np.amax(np.absolute(generalCostMatrix)) != 0:
-        #     generalCostMatrix = generalCostMatrix/np.amax(np.absolute(generalCostMatrix))
+                    # if np.amax(np.absolute(generalCostMatrix)) != 0:
+                    #     generalCostMatrix = generalCostMatrix/np.amax(np.absolute(generalCostMatrix))
 
     def fit(self, DATASET, CLASS_LABELS, **kwargs):
         # Initialization
@@ -372,11 +387,11 @@ class Mumbo:
         # predictions, generalAlphas, generalFs = initialize(NB_CLASS, NB_VIEW,
         #                                                    NB_ITER, DATASET_LENGTH,
         #                                                    CLASS_LABELS)
-        bestViews = np.zeros(self.nbIter)
+        bestViews = np.zeros(self.maxIter)
         bestClassifiers = []
 
         # Learning
-        for i in range(self.nbIter):
+        for i in range(self.maxIter):
             logging.debug('\t\tStart:\t Iteration ' + str(self.iterIndex + 1))
             classifiers, predictedLabels, areBad = self.trainWeakClassifiers(DATASET, CLASS_LABELS, NB_CLASS,
                                                                              DATASET_LENGTH, NB_VIEW)
@@ -391,7 +406,7 @@ class Mumbo:
                     self.alphas[self.iterIndex, viewIndice] = 0.
                 else:
                     self.alphas[self.iterIndex, viewIndice] = self.computeAlpha(self.edges[self.iterIndex,
-                                                                        viewIndice])
+                                                                                           viewIndice])
             self.updateDs(CLASS_LABELS, NB_VIEW, DATASET_LENGTH)
             self.updateFs(NB_VIEW, DATASET_LENGTH, NB_CLASS)
 
@@ -406,7 +421,7 @@ class Mumbo:
             self.updateGeneralFs(DATASET_LENGTH, NB_CLASS, bestView)
             self.updateGeneralCostMatrix(DATASET_LENGTH, NB_CLASS, CLASS_LABELS)
 
-        # finalFs = computeFinalFs(DATASET_LENGTH, NB_CLASS, generalAlphas, predictions, bestViews, LABELS, NB_ITER)
+            # finalFs = computeFinalFs(DATASET_LENGTH, NB_CLASS, generalAlphas, predictions, bestViews, LABELS, NB_ITER)
 
     def predict(self, DATASET, NB_CLASS=2):
         DATASET_LENGTH = len(DATASET[0])
@@ -442,7 +457,7 @@ class Mumbo:
             usedIndices = range(DATASET.get("Metadata").attrs["datasetLength"])
         if usedIndices:
             DATASET_LENGTH = len(usedIndices)
-            predictedLabels = np.zeros((DATASET_LENGTH, self.nbIter))
+            predictedLabels = np.zeros((DATASET_LENGTH, self.maxIter))
             votes = np.zeros((DATASET_LENGTH, NB_CLASS))
 
             for iterIndex, (classifier, alpha, view) in enumerate(zip(self.bestClassifiers, self.alphas, self.bestViews)):
@@ -455,7 +470,7 @@ class Mumbo:
                     predictedLabels[usedExampleIndex, iterIndex] = np.argmax(votes[usedExampleIndex])
         else:
             predictedLabels = []
-            for i in range(self.nbIter):
+            for i in range(self.maxIter):
                 predictedLabels.append([])
 
         return np.transpose(predictedLabels)
diff --git a/Code/Multiview/Mumbo/__init__.py b/Code/MonoMutliViewClassifiers/Multiview/Mumbo/__init__.py
similarity index 100%
rename from Code/Multiview/Mumbo/__init__.py
rename to Code/MonoMutliViewClassifiers/Multiview/Mumbo/__init__.py
diff --git a/Code/Multiview/Mumbo/analyzeResults.py b/Code/MonoMutliViewClassifiers/Multiview/Mumbo/analyzeResults.py
similarity index 99%
rename from Code/Multiview/Mumbo/analyzeResults.py
rename to Code/MonoMutliViewClassifiers/Multiview/Mumbo/analyzeResults.py
index 8d32066b5acc42666c21c70f4295eed8b6af4d4a..ebca53330f61e9c1e83cf350a72bdfed946b9972 100644
--- a/Code/Multiview/Mumbo/analyzeResults.py
+++ b/Code/MonoMutliViewClassifiers/Multiview/Mumbo/analyzeResults.py
@@ -21,7 +21,7 @@ def plotAccuracyByIter(trainAccuracy, testAccuracy, validationAccuracy, NB_ITER,
     figure = plt.figure()
     ax1 = figure.add_subplot(111)
     axes = figure.gca()
-    axes.set_ylim([0,100])
+    axes.set_ylim([40,100])
     titleString = ""
     for view, classifierConfig in zip(features, classifierAnalysis):
         titleString += "\n" + view + " : " + classifierConfig
diff --git a/Code/Multiview/Results/20160805-051412Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160805-051412Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake.txt
similarity index 100%
rename from Code/Multiview/Results/20160805-051412Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160805-051412Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake.txt
diff --git a/Code/Multiview/Results/20160805-051504Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160805-051504Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160805-051504Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160805-051504Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160805-051504Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160805-051504Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake.txt
similarity index 100%
rename from Code/Multiview/Results/20160805-051504Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160805-051504Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake.txt
diff --git a/Code/Multiview/Results/20160805-053948Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160805-053948Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160805-053948Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160805-053948Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160805-053948Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160805-053948Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160805-053948Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160805-053948Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160805-060450Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160805-060450Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160805-060450Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160805-060450Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160805-060450Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160805-060450Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160805-060450Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160805-060450Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160805-062754Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160805-062754Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160805-062754Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160805-062754Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160805-062754Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160805-062754Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160805-062754Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160805-062754Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160805-065239Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160805-065239Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160805-065239Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160805-065239Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160805-065239Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160805-065239Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160805-065239Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160805-065239Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160810-151543Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151543Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160810-151543Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151543Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160810-151543Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151543Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160810-151543Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151543Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160810-151701Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151701Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160810-151701Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151701Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160810-151701Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151701Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160810-151701Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151701Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160810-151848Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151848Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160810-151848Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151848Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160810-151848Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151848Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160810-151848Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151848Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160810-151935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160810-151935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160810-151935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160810-151935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-151935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160810-152152Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-152152Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160810-152152Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-152152Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160810-152152Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-152152Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160810-152152Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-152152Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter2-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160810-154441Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-154441Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160810-154441Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-154441Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160810-154441Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-154441Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter100-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160810-154441Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter100-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-154441Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate5.0-nbIter100-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160810-164849Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.9-nbIter1-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-164849Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.9-nbIter1-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160810-164849Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.9-nbIter1-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-164849Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.9-nbIter1-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160810-164849Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.9-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-164849Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.9-nbIter1-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160810-164849Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.9-nbIter1-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-164849Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.9-nbIter1-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160810-170941Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.0-nbIter1-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-170941Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.0-nbIter1-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160810-170941Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.0-nbIter1-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-170941Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.0-nbIter1-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160810-170941Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.0-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-170941Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.0-nbIter1-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160810-170941Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.0-nbIter1-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-170941Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.0-nbIter1-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160810-171142Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter1-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-171142Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter1-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160810-171142Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter1-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-171142Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter1-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160810-171142Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-171142Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter1-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160810-171142Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter1-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-171142Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter1-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160810-171605Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-171605Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160810-171605Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-171605Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160810-171605Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-171605Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160810-171605Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-171605Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160810-172819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-172819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160810-172819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-172819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160810-172819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-172819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160810-172819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-172819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160810-174108Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174108Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160810-174108Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174108Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160810-174108Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174108Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160810-174108Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174108Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160810-174407Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174407Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160810-174407Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174407Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160810-174407Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174407Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160810-174407Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174407Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160810-174756Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174756Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160810-174756Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174756Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160810-174756Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174756Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160810-174756Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174756Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160810-174819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160810-174819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160810-174819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160810-174819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-174819Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter2-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160810-180049Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter100-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-180049Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter100-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160810-180049Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter100-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-180049Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter100-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160810-180049Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-180049Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter100-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160810-180049Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter100-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-180049Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter100-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160810-180916Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter4-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-180916Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter4-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160810-180916Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter4-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-180916Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter4-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160810-180916Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter4-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-180916Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter4-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160810-180916Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter4-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-180916Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter4-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160810-191528Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-191528Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter400-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160810-191528Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter400-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-191528Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter400-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160810-191528Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160810-191528Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter400-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160810-191528Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter400-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160810-191528Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.1-nbIter400-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160811-102529Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160811-102529Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160811-102529Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160811-102529Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160811-102529Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160811-102529Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160811-102529Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160811-102529Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160811-104307Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160811-104307Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160811-104307Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160811-104307Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160811-104307Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160811-104307Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160811-104307Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160811-104307Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160811-110404Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160811-110404Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160811-110404Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160811-110404Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160811-110404Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160811-110404Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160811-110404Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160811-110404Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160811-115935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160811-115935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160811-115935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160811-115935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160811-115935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160811-115935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160811-115935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160811-115935Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160811-135735Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160811-135735Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160811-135735Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160811-135735Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160811-135735Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160811-135735Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160811-135735Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160811-135735Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160812-113004Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113004Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160812-113004Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113004Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160812-113004Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113004Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160812-113004Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113004Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160812-113045Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113045Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160812-113045Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113045Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160812-113045Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113045Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160812-113045Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113045Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160812-113624Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113624Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160812-113624Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113624Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160812-113624Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113624Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160812-113624Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113624Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160812-113951Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113951Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160812-113951Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113951Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160812-113951Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113951Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160812-113951Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-113951Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160812-114041Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114041Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160812-114041Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114041Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160812-114041Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114041Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160812-114041Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114041Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160812-114131Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114131Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160812-114131Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114131Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160812-114131Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114131Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160812-114131Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114131Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160812-114158Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114158Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160812-114158Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114158Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160812-114158Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114158Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160812-114158Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114158Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160812-114227Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114227Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160812-114227Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114227Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160812-114227Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114227Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160812-114227Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-114227Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160812-115346Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-115346Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160812-115346Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-115346Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160812-115346Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-115346Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160812-115346Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-115346Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160812-125212Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-125212Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160812-125212Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-125212Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160812-125212Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-125212Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160812-125212Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-125212Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160812-130530Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-130530Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160812-130530Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-130530Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160812-130530Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-130530Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160812-130530Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-130530Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160812-130656Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-130656Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160812-130656Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-130656Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160812-130656Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-130656Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160812-130656Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-130656Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160812-130943Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-130943Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160812-130943Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-130943Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160812-130943Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-130943Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160812-130943Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-130943Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160812-131149Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-131149Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160812-131149Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-131149Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160812-131149Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-131149Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160812-131149Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-131149Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160812-131326Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-131326Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160812-131326Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-131326Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160812-131326Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-131326Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160812-131326Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-131326Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160812-131416Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-131416Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160812-131416Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-131416Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160812-131416Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-131416Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160812-131416Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-131416Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter2-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160812-141531Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-141531Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160812-141531Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-141531Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160812-141531Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-141531Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160812-141531Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-141531Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160812-151147Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-151147Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160812-151147Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-151147Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160812-151147Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-151147Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160812-151147Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-151147Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160812-160744Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-160744Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160812-160744Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-160744Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160812-160744Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-160744Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160812-160744Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-160744Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160812-170236Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-170236Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160812-170236Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-170236Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160812-170236Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160812-170236Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160812-170236Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160812-170236Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160815-171926Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-171926Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160815-171926Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-171926Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160815-171926Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-171926Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160815-171926Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-171926Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160815-172630Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-172630Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160815-172630Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-172630Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160815-172630Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-172630Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160815-172630Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-172630Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160815-172657Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-172657Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160815-172657Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-172657Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160815-172657Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-172657Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160815-172657Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-172657Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160815-172723Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-172723Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160815-172723Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-172723Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160815-172723Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-172723Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160815-172723Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-172723Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter1-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160815-182427Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-182427Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160815-182427Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-182427Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160815-182427Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-182427Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160815-182427Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-182427Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160815-191554Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-191554Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160815-191554Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-191554Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160815-191554Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-191554Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160815-191554Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-191554Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160815-200833Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-200833Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160815-200833Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-200833Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160815-200833Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-200833Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160815-200833Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-200833Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160815-205957Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-205957Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160815-205957Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-205957Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160815-205957Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-205957Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160815-205957Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-205957Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160815-215245Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-215245Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160815-215245Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-215245Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160815-215245Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-215245Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160815-215245Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-215245Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160815-224527Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-224527Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160815-224527Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-224527Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160815-224527Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-224527Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160815-224527Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-224527Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160815-233644Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-233644Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160815-233644Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-233644Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160815-233644Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160815-233644Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160815-233644Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160815-233644Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160816-002920Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160816-002920Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160816-002920Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160816-002920Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160816-002920Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160816-002920Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160816-002920Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160816-002920Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160816-012052Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160816-012052Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160816-012052Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160816-012052Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160816-012052Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160816-012052Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160816-012052Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160816-012052Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160816-021305Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160816-021305Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160816-021305Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160816-021305Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160816-021305Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160816-021305Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160816-021305Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160816-021305Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160816-030405Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160816-030405Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160816-030405Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160816-030405Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160816-030405Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160816-030405Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160816-030405Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160816-030405Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160816-035600Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160816-035600Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160816-035600Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160816-035600Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160816-035600Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160816-035600Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160816-035600Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160816-035600Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160816-044836Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160816-044836Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160816-044836Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160816-044836Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160816-044836Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160816-044836Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160816-044836Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160816-044836Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160816-054024Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160816-054024Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160816-054024Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160816-054024Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160816-054024Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160816-054024Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160816-054024Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160816-054024Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter400-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160817-100628Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter3-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160817-100628Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter3-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160817-100628Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter3-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160817-100628Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter3-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160817-100628Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter3-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160817-100628Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter3-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160817-100628Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter3-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160817-100628Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter3-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160817-110027Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160817-110027Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160817-110027Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160817-110027Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter100-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160817-110027Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160817-110027Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160817-110027Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160817-110027Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter100-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160817-173232Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160817-173232Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160817-173232Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160817-173232Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160817-173308Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160817-173308Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160817-173308Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160817-173308Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160817-173402Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160817-173402Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160817-173402Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160817-173402Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160817-173429Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160817-173429Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160817-173429Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160817-173429Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160817-173452Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160817-173452Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160817-173452Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160817-173452Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160817-173829Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160817-173829Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160817-173829Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160817-173829Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160817-181320Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160817-181320Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160817-181320Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160817-181320Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160818-094003Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160818-094003Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160818-094003Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160818-094003Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160818-100400Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160818-100400Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160818-100400Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160818-100400Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160818-102335Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160818-102335Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160818-102335Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160818-102335Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160818-111628Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160818-111628Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160818-111628Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160818-111628Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160818-115729Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160818-115729Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160818-115729Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160818-115729Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160818-144139Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160818-144139Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160818-144139Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160818-144139Results-Fusion-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.3-nbIter5-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160819-090138Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-090138Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160819-090138Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-090138Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160819-090138Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-090138Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt
similarity index 100%
rename from Code/Multiview/Results/20160819-090138Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-090138Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt
diff --git a/Code/Multiview/Results/20160819-090956Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-090956Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160819-090956Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-090956Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160819-090956Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-090956Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt
similarity index 100%
rename from Code/Multiview/Results/20160819-090956Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-090956Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt
diff --git a/Code/Multiview/Results/20160819-094229Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-094229Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160819-094229Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-094229Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160819-094229Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-094229Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified.txt
similarity index 100%
rename from Code/Multiview/Results/20160819-094229Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-094229Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified.txt
diff --git a/Code/Multiview/Results/20160819-094257Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-094257Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160819-094257Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-094257Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160819-094257Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-094257Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified.txt
similarity index 100%
rename from Code/Multiview/Results/20160819-094257Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-094257Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified.txt
diff --git a/Code/Multiview/Results/20160819-094609Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-094609Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160819-094609Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-094609Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160819-094609Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-094609Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt
similarity index 100%
rename from Code/Multiview/Results/20160819-094609Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-094609Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt
diff --git a/Code/Multiview/Results/20160819-095436Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-095436Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160819-095436Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-095436Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160819-095436Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-095436Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt
similarity index 100%
rename from Code/Multiview/Results/20160819-095436Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-095436Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt
diff --git a/Code/Multiview/Results/20160819-100249Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-100249Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160819-100249Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-100249Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160819-100249Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-100249Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt
similarity index 100%
rename from Code/Multiview/Results/20160819-100249Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-100249Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter100-MultiOmicModified.txt
diff --git a/Code/Multiview/Results/20160819-100936Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-100936Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160819-100936Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-100936Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160819-100936Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-100936Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified.txt
similarity index 100%
rename from Code/Multiview/Results/20160819-100936Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-100936Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-nbIter2-MultiOmicModified.txt
diff --git a/Code/Multiview/Results/20160819-103243-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-103243-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160819-103243-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-103243-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
diff --git a/Code/Multiview/Results/20160819-103707Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-MultiOmicModified-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-103707Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-MultiOmicModified-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160819-103707Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-MultiOmicModified-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-103707Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-MultiOmicModified-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160819-103707Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-MultiOmicModified.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-103707Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-MultiOmicModified.txt
similarity index 100%
rename from Code/Multiview/Results/20160819-103707Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-MultiOmicModified.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-103707Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.3-MultiOmicModified.txt
diff --git a/Code/Multiview/Results/20160819-104311-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-104311-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160819-104311-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-104311-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
diff --git a/Code/Multiview/Results/20160819-104325-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-104325-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160819-104325-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-104325-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
diff --git a/Code/Multiview/Results/20160819-104346-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-104346-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160819-104346-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-104346-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
diff --git a/Code/Multiview/Results/20160819-143036Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.7-MultiOmicModified-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-143036Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.7-MultiOmicModified-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/20160819-143036Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.7-MultiOmicModified-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-143036Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.7-MultiOmicModified-accuracyByIteration.png
diff --git a/Code/Multiview/Results/20160819-143036Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.7-MultiOmicModified.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-143036Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.7-MultiOmicModified.txt
similarity index 100%
rename from Code/Multiview/Results/20160819-143036Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.7-MultiOmicModified.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-143036Results-Mumbo-Methyl_-MiRNA__-RNASeq_-Clinic_-MRNASeq-Yes-No-learnRate0.7-MultiOmicModified.txt
diff --git a/Code/Multiview/Results/20160819-202419-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202408-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160819-202419-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202408-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
diff --git a/Code/Multiview/Results/20160819-202450-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202419-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160819-202450-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202419-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
diff --git a/Code/Results/20160822-132214-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202450-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
similarity index 100%
rename from Code/Results/20160822-132214-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202450-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
diff --git a/Code/Multiview/Results/20160819-202523-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202523-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160819-202523-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202523-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
diff --git a/Code/Multiview/Results/20160819-202618-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202618-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160819-202618-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202618-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160819-202652-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202652-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160819-202652-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202652-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160819-202755-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202755-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160819-202755-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202755-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160819-202955-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202955-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160819-202955-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-202955-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160819-203000Results-Fusion-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.7-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-203000Results-Fusion-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.7-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/20160819-203000Results-Fusion-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.7-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-203000Results-Fusion-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.7-MultiOmic.txt
diff --git a/Code/Multiview/Results/20160819-203122-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-203122-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160819-203122-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-203122-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160819-203514-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160819-203514-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160819-203514-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160819-203514-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-102447-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102447-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-102447-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102447-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-102524-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102524-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-102524-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102524-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-102616-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102616-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-102616-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102616-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-102718-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102718-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-102718-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102718-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-102807-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102807-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-102807-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102807-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-102829-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102829-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-102829-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102829-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-102840-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102840-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-102840-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102840-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-102856-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102856-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-102856-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102856-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-102917-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102917-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-102917-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-102917-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-103049-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103049-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-103049-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103049-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-103149-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103149-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-103149-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103149-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-103350-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103350-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-103350-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103350-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-103432-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103432-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-103432-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103432-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-103642-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103642-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-103642-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103642-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-103749-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103749-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-103749-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103749-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-103811-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103811-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-103811-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103811-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-103829-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103829-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-103829-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103829-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-103840-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103840-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-103840-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103840-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-103855-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103855-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-103855-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103855-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-103937-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103937-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-103937-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103937-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-103959-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103959-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-103959-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-103959-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-104041-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-104041-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-104041-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-104041-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-104137-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-104137-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-104137-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-104137-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-104551-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-104551-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-104551-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-104551-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-104728-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-104728-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-104728-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-104728-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-104849-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-104849-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-104849-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-104849-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-105015-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-105015-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-105015-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-105015-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-105319-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-105319-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-105319-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-105319-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-105520-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-105520-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-105520-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-105520-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-105657-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-105657-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-105657-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-105657-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-110013-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-110013-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-110013-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-110013-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-110101-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-110101-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-110101-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-110101-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-110150-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-110150-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-110150-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-110150-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-110504-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-110504-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-110504-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-110504-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-110700-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-110700-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-110700-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-110700-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-110714-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-110714-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-110714-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-110714-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-110807-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-110807-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-110807-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-110807-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-111002-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-111002-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-111002-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-111002-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-111628-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-111628-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-111628-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-111628-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-111942-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-111942-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-111942-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-111942-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-112058-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-112058-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-112058-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-112058-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-112326-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-112326-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-112326-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-112326-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-112357-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-112357-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-112357-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-112357-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-123139-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123139-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-123139-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123139-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-123209-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123209-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-123209-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123209-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-123226-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123226-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-123226-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123226-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-123315-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123315-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-123315-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123315-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-123357-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123357-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-123357-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123357-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-123433-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123433-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-123433-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123433-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-123458-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123458-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-123458-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123458-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-123507-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123507-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-123507-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123507-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-123555-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123555-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-123555-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123555-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-123825-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123825-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-123825-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123825-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-123844-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123844-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-123844-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123844-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-123900-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123900-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-123900-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-123900-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-124352-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-124352-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-124352-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-124352-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-124744-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-124744-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-124744-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-124744-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-125346-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-125346-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-125346-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-125346-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-130127-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-130127-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-130127-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-130127-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-152017-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-152017-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-152017-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-152017-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-152034-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-152034-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-152034-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-152034-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160822-152113-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160822-152113-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160822-152113-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160822-152113-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160823-095233-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160823-095233-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160823-095233-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160823-095233-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160823-095734-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160823-095734-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160823-095734-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160823-095734-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160823-100003-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160823-100003-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160823-100003-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160823-100003-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160823-100209-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160823-100209-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160823-100209-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160823-100209-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160823-100355-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160823-100355-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160823-100355-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160823-100355-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160823-100549-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160823-100549-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160823-100549-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160823-100549-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160823-100728-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160823-100728-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160823-100728-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160823-100728-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160823-101021-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160823-101021-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160823-101021-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160823-101021-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160823-101135-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160823-101135-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160823-101135-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160823-101135-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160823-101459-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160823-101459-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160823-101459-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160823-101459-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/20160823-101527-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160823-101527-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/20160823-101527-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/20160823-101527-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-083255-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-083255-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..442b823485ce2b64760c16e107ac9bb22a7044be
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-083255-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,2 @@
+2016-08-24 08:32:55,450 INFO: Start:	 Read CSV Database Files for ModifiedMultiOmic
+2016-08-24 08:32:55,471 DEBUG: Start:	 Getting Methylation Data
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-083315-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-083315-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..0db771fc49da7eefd99a12fb35eed89bee226fbe
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-083315-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,2 @@
+2016-08-24 08:33:15,026 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 08:33:15,027 INFO: Info:	 Labels used: No, Yes
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-083427-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-083427-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..ade5b1d09f18dffbc2de3ad96f12e5aefd03533c
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-083427-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log
@@ -0,0 +1,10 @@
+2016-08-24 08:34:27,721 INFO: Start:	 Read CSV Database Files for MultiOmic
+2016-08-24 08:34:27,744 DEBUG: Start:	 Getting Methylation Data
+2016-08-24 08:34:40,551 DEBUG: Done:	 Getting Methylation Data
+2016-08-24 08:34:40,551 DEBUG: Start:	 Getting MiRNA Data
+2016-08-24 08:34:41,071 DEBUG: Done:	 Getting MiRNA Data
+2016-08-24 08:34:41,071 DEBUG: Start:	 Getting RNASeq Data
+2016-08-24 08:36:25,941 DEBUG: Done:	 Getting RNASeq Data
+2016-08-24 08:36:26,035 DEBUG: Start:	 Getting Clinical Data
+2016-08-24 08:36:26,594 DEBUG: Done:	 Getting Clinical Data
+2016-08-24 08:36:28,223 INFO: Info:	 Labels used: No, Yes
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-084100-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-084100-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..a816c4d772836bb3d4525da72af41a52802716b8
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-084100-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,12 @@
+2016-08-24 08:41:00,873 INFO: Start:	 Read CSV Database Files for ModifiedMultiOmic
+2016-08-24 08:41:00,968 DEBUG: Start:	 Getting Methylation Data
+2016-08-24 08:41:13,912 DEBUG: Done:	 Getting Methylation Data
+2016-08-24 08:41:13,912 DEBUG: Start:	 Getting MiRNA Data
+2016-08-24 08:41:14,437 DEBUG: Done:	 Getting MiRNA Data
+2016-08-24 08:41:14,438 DEBUG: Start:	 Getting RNASeq Data
+2016-08-24 08:41:58,294 DEBUG: Done:	 Getting RNASeq Data
+2016-08-24 08:41:58,382 DEBUG: Start:	 Getting Clinical Data
+2016-08-24 08:41:58,478 DEBUG: Done:	 Getting Clinical Data
+2016-08-24 08:41:58,521 DEBUG: Start:	 Getting Modified RNASeq Data
+2016-08-24 08:42:49,046 DEBUG: Done:	 Getting Modified RNASeq Data
+2016-08-24 08:42:50,194 INFO: Info:	 Labels used: No, Yes
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-084717-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-084717-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..02a820c2cc336d69a134d9ff09531496cab240b4
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-084717-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,21 @@
+2016-08-24 08:47:17,766 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 08:47:17,767 INFO: Info:	 Labels used: No, Yes
+2016-08-24 08:47:17,767 INFO: Info:	 Length of dataset:347
+2016-08-24 08:47:17,769 INFO: ### Main Programm for Multiview Classification
+2016-08-24 08:47:17,769 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 08:47:17,769 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 08:47:17,769 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 08:47:17,770 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 08:47:17,770 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 08:47:17,771 INFO: Done:	 Read Database Files
+2016-08-24 08:47:17,771 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 08:47:17,774 INFO: Done:	 Determine validation split
+2016-08-24 08:47:17,774 INFO: Start:	 Determine 2 folds
+2016-08-24 08:47:17,783 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 08:47:17,783 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 08:47:17,783 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 08:47:17,783 INFO: Done:	 Determine folds
+2016-08-24 08:47:17,783 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 08:47:17,784 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 08:48:32,759 INFO: Done:	 Gridsearching best settings for monoview classifiers
+2016-08-24 08:48:32,759 INFO: 	Start:	 Fold number 1
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-084943-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-084943-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..a96b7a7ef59c7050952add93a0ca4cccbae871ab
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-084943-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,97 @@
+2016-08-24 08:49:43,519 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 08:49:43,519 INFO: Info:	 Labels used: No, Yes
+2016-08-24 08:49:43,520 INFO: Info:	 Length of dataset:347
+2016-08-24 08:49:43,521 INFO: ### Main Programm for Multiview Classification
+2016-08-24 08:49:43,521 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 08:49:43,522 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 08:49:43,522 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 08:49:43,523 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 08:49:43,523 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 08:49:43,523 INFO: Done:	 Read Database Files
+2016-08-24 08:49:43,523 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 08:49:43,527 INFO: Done:	 Determine validation split
+2016-08-24 08:49:43,527 INFO: Start:	 Determine 2 folds
+2016-08-24 08:49:43,537 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 08:49:43,537 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 08:49:43,537 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 08:49:43,537 INFO: Done:	 Determine folds
+2016-08-24 08:49:43,537 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 08:49:43,537 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 08:49:43,537 DEBUG: 	Start:	 Gridsearch for DecisionTree
+2016-08-24 08:49:51,018 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 08:49:51,018 DEBUG: 	Start:	 Gridsearch for DecisionTree
+2016-08-24 08:49:52,921 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 08:49:52,921 DEBUG: 	Start:	 Gridsearch for DecisionTree
+2016-08-24 08:50:09,522 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 08:50:09,522 DEBUG: 	Start:	 Gridsearch for DecisionTree
+2016-08-24 08:50:11,247 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 08:50:11,247 DEBUG: 	Start:	 Gridsearch for DecisionTree
+2016-08-24 08:50:51,870 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 08:50:51,871 INFO: Done:	 Gridsearching best settings for monoview classifiers
+2016-08-24 08:50:51,871 INFO: 	Start:	 Fold number 1
+2016-08-24 08:50:53,455 DEBUG: 		Start:	 Iteration 1
+2016-08-24 08:50:53,476 DEBUG: 			View 0 : 0.605263157895
+2016-08-24 08:50:53,484 DEBUG: 			View 1 : 0.605263157895
+2016-08-24 08:50:53,520 DEBUG: 			View 2 : 0.611842105263
+2016-08-24 08:50:53,528 DEBUG: 			View 3 : 0.493421052632
+2016-08-24 08:50:53,568 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 08:50:53,652 DEBUG: 		Start:	 Iteration 2
+2016-08-24 08:50:53,669 DEBUG: 			View 0 : 0.605263157895
+2016-08-24 08:50:53,677 DEBUG: 			View 1 : 0.605263157895
+2016-08-24 08:50:53,713 DEBUG: 			View 2 : 0.394736842105
+2016-08-24 08:50:53,720 DEBUG: 			View 3 : 0.532894736842
+2016-08-24 08:50:53,763 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 08:50:53,908 DEBUG: 		Start:	 Iteration 3
+2016-08-24 08:50:53,924 DEBUG: 			View 0 : 0.565789473684
+2016-08-24 08:50:53,931 DEBUG: 			View 1 : 0.710526315789
+2016-08-24 08:50:53,966 DEBUG: 			View 2 : 0.407894736842
+2016-08-24 08:50:53,974 DEBUG: 			View 3 : 0.460526315789
+2016-08-24 08:50:54,024 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 08:50:54,225 DEBUG: 		Start:	 Iteration 4
+2016-08-24 08:50:54,241 DEBUG: 			View 0 : 0.407894736842
+2016-08-24 08:50:54,249 DEBUG: 			View 1 : 0.427631578947
+2016-08-24 08:50:54,285 DEBUG: 			View 2 : 0.598684210526
+2016-08-24 08:50:54,292 DEBUG: 			View 3 : 0.519736842105
+2016-08-24 08:50:54,345 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 08:50:54,614 DEBUG: 		Start:	 Iteration 5
+2016-08-24 08:50:54,630 DEBUG: 			View 0 : 0.565789473684
+2016-08-24 08:50:54,638 DEBUG: 			View 1 : 0.552631578947
+2016-08-24 08:50:54,673 DEBUG: 			View 2 : 0.480263157895
+2016-08-24 08:50:54,681 DEBUG: 			View 3 : 0.526315789474
+2016-08-24 08:50:54,736 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 08:50:55,067 DEBUG: 		Start:	 Iteration 6
+2016-08-24 08:50:55,083 DEBUG: 			View 0 : 0.585526315789
+2016-08-24 08:50:55,090 DEBUG: 			View 1 : 0.381578947368
+2016-08-24 08:50:55,127 DEBUG: 			View 2 : 0.453947368421
+2016-08-24 08:50:55,134 DEBUG: 			View 3 : 0.467105263158
+2016-08-24 08:50:55,193 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 08:50:55,584 DEBUG: 		Start:	 Iteration 7
+2016-08-24 08:50:55,601 DEBUG: 			View 0 : 0.822368421053
+2016-08-24 08:50:55,609 DEBUG: 			View 1 : 0.651315789474
+2016-08-24 08:50:55,645 DEBUG: 			View 2 : 0.480263157895
+2016-08-24 08:50:55,653 DEBUG: 			View 3 : 0.375
+2016-08-24 08:50:55,712 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 08:50:56,161 DEBUG: 		Start:	 Iteration 8
+2016-08-24 08:50:56,178 DEBUG: 			View 0 : 0.638157894737
+2016-08-24 08:50:56,185 DEBUG: 			View 1 : 0.578947368421
+2016-08-24 08:50:56,221 DEBUG: 			View 2 : 0.631578947368
+2016-08-24 08:50:56,228 DEBUG: 			View 3 : 0.407894736842
+2016-08-24 08:50:56,290 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 08:50:56,793 DEBUG: 		Start:	 Iteration 9
+2016-08-24 08:50:56,809 DEBUG: 			View 0 : 0.532894736842
+2016-08-24 08:50:56,816 DEBUG: 			View 1 : 0.539473684211
+2016-08-24 08:50:56,852 DEBUG: 			View 2 : 0.532894736842
+2016-08-24 08:50:56,860 DEBUG: 			View 3 : 0.585526315789
+2016-08-24 08:50:56,923 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 08:50:57,481 DEBUG: 		Start:	 Iteration 10
+2016-08-24 08:50:57,497 DEBUG: 			View 0 : 0.618421052632
+2016-08-24 08:50:57,505 DEBUG: 			View 1 : 0.361842105263
+2016-08-24 08:50:57,541 DEBUG: 			View 2 : 0.394736842105
+2016-08-24 08:50:57,548 DEBUG: 			View 3 : 0.664473684211
+2016-08-24 08:50:57,614 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 08:50:58,229 DEBUG: 		Start:	 Iteration 11
+2016-08-24 08:50:58,244 DEBUG: 			View 0 : 0.565789473684
+2016-08-24 08:50:58,252 DEBUG: 			View 1 : 0.421052631579
+2016-08-24 08:50:58,287 DEBUG: 			View 2 : 0.539473684211
+2016-08-24 08:50:58,295 DEBUG: 			View 3 : 0.493421052632
+2016-08-24 08:50:58,363 DEBUG: 			 Best view : 		Methyl_
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-085300-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-085300-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..4b32381dc0c1d10aa5378d41a4fe63fa2b29129e
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-085300-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,24 @@
+2016-08-24 08:53:00,304 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 08:53:00,305 INFO: Info:	 Labels used: No, Yes
+2016-08-24 08:53:00,306 INFO: Info:	 Length of dataset:347
+2016-08-24 08:53:00,309 INFO: ### Main Programm for Multiview Classification
+2016-08-24 08:53:00,309 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 08:53:00,311 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 08:53:00,312 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 08:53:00,313 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 08:53:00,314 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 08:53:00,314 INFO: Done:	 Read Database Files
+2016-08-24 08:53:00,314 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 08:53:00,320 INFO: Done:	 Determine validation split
+2016-08-24 08:53:00,320 INFO: Start:	 Determine 2 folds
+2016-08-24 08:53:00,330 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 08:53:00,330 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 08:53:00,330 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 08:53:00,331 INFO: Done:	 Determine folds
+2016-08-24 08:53:00,331 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 08:53:00,331 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 08:53:00,331 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl_
+2016-08-24 08:53:07,603 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 08:53:07,604 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA__
+2016-08-24 08:53:09,500 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 08:53:09,500 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq_
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-085340-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-085340-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..38b211e35c099fc1b340a169cf5e3f9bb8bd9ed0
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-085340-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,97 @@
+2016-08-24 08:53:40,067 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 08:53:40,068 INFO: Info:	 Labels used: No, Yes
+2016-08-24 08:53:40,068 INFO: Info:	 Length of dataset:347
+2016-08-24 08:53:40,069 INFO: ### Main Programm for Multiview Classification
+2016-08-24 08:53:40,069 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 08:53:40,070 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 08:53:40,070 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 08:53:40,071 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 08:53:40,071 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 08:53:40,071 INFO: Done:	 Read Database Files
+2016-08-24 08:53:40,071 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 08:53:40,075 INFO: Done:	 Determine validation split
+2016-08-24 08:53:40,075 INFO: Start:	 Determine 2 folds
+2016-08-24 08:53:40,085 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 08:53:40,085 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 08:53:40,085 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 08:53:40,085 INFO: Done:	 Determine folds
+2016-08-24 08:53:40,085 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 08:53:40,085 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 08:53:40,086 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl_
+2016-08-24 08:53:47,504 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 08:53:47,504 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA__
+2016-08-24 08:53:49,404 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 08:53:49,405 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq_
+2016-08-24 08:54:06,005 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 08:54:06,006 DEBUG: 	Start:	 Gridsearch for DecisionTree on Clinic_
+2016-08-24 08:54:07,742 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 08:54:07,742 DEBUG: 	Start:	 Gridsearch for DecisionTree on MRNASeq
+2016-08-24 08:54:44,843 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 08:54:44,843 INFO: Done:	 Gridsearching best settings for monoview classifiers
+2016-08-24 08:54:44,844 INFO: 	Start:	 Fold number 1
+2016-08-24 08:54:46,449 DEBUG: 		Start:	 Iteration 1
+2016-08-24 08:54:46,465 DEBUG: 			View 0 : 0.631901840491
+2016-08-24 08:54:46,473 DEBUG: 			View 1 : 0.638036809816
+2016-08-24 08:54:46,510 DEBUG: 			View 2 : 0.441717791411
+2016-08-24 08:54:46,518 DEBUG: 			View 3 : 0.631901840491
+2016-08-24 08:54:46,561 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 08:54:46,662 DEBUG: 		Start:	 Iteration 2
+2016-08-24 08:54:46,680 DEBUG: 			View 0 : 0.503067484663
+2016-08-24 08:54:46,688 DEBUG: 			View 1 : 0.466257668712
+2016-08-24 08:54:46,726 DEBUG: 			View 2 : 0.478527607362
+2016-08-24 08:54:46,734 DEBUG: 			View 3 : 0.441717791411
+2016-08-24 08:54:46,781 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 08:54:46,945 DEBUG: 		Start:	 Iteration 3
+2016-08-24 08:54:46,962 DEBUG: 			View 0 : 0.361963190184
+2016-08-24 08:54:46,970 DEBUG: 			View 1 : 0.613496932515
+2016-08-24 08:54:47,008 DEBUG: 			View 2 : 0.411042944785
+2016-08-24 08:54:47,016 DEBUG: 			View 3 : 0.656441717791
+2016-08-24 08:54:47,071 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 08:54:47,297 DEBUG: 		Start:	 Iteration 4
+2016-08-24 08:54:47,314 DEBUG: 			View 0 : 0.435582822086
+2016-08-24 08:54:47,322 DEBUG: 			View 1 : 0.509202453988
+2016-08-24 08:54:47,360 DEBUG: 			View 2 : 0.38036809816
+2016-08-24 08:54:47,368 DEBUG: 			View 3 : 0.631901840491
+2016-08-24 08:54:47,426 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 08:54:47,709 DEBUG: 		Start:	 Iteration 5
+2016-08-24 08:54:47,726 DEBUG: 			View 0 : 0.638036809816
+2016-08-24 08:54:47,734 DEBUG: 			View 1 : 0.564417177914
+2016-08-24 08:54:47,772 DEBUG: 			View 2 : 0.39263803681
+2016-08-24 08:54:47,780 DEBUG: 			View 3 : 0.546012269939
+2016-08-24 08:54:47,841 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 08:54:48,187 DEBUG: 		Start:	 Iteration 6
+2016-08-24 08:54:48,204 DEBUG: 			View 0 : 0.509202453988
+2016-08-24 08:54:48,211 DEBUG: 			View 1 : 0.638036809816
+2016-08-24 08:54:48,250 DEBUG: 			View 2 : 0.564417177914
+2016-08-24 08:54:48,258 DEBUG: 			View 3 : 0.558282208589
+2016-08-24 08:54:48,320 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 08:54:48,727 DEBUG: 		Start:	 Iteration 7
+2016-08-24 08:54:48,744 DEBUG: 			View 0 : 0.564417177914
+2016-08-24 08:54:48,752 DEBUG: 			View 1 : 0.533742331288
+2016-08-24 08:54:48,791 DEBUG: 			View 2 : 0.509202453988
+2016-08-24 08:54:48,799 DEBUG: 			View 3 : 0.466257668712
+2016-08-24 08:54:48,863 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 08:54:49,333 DEBUG: 		Start:	 Iteration 8
+2016-08-24 08:54:49,350 DEBUG: 			View 0 : 0.423312883436
+2016-08-24 08:54:49,358 DEBUG: 			View 1 : 0.39263803681
+2016-08-24 08:54:49,396 DEBUG: 			View 2 : 0.40490797546
+2016-08-24 08:54:49,404 DEBUG: 			View 3 : 0.546012269939
+2016-08-24 08:54:49,471 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 08:54:50,001 DEBUG: 		Start:	 Iteration 9
+2016-08-24 08:54:50,018 DEBUG: 			View 0 : 0.478527607362
+2016-08-24 08:54:50,025 DEBUG: 			View 1 : 0.368098159509
+2016-08-24 08:54:50,063 DEBUG: 			View 2 : 0.631901840491
+2016-08-24 08:54:50,071 DEBUG: 			View 3 : 0.539877300613
+2016-08-24 08:54:50,141 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 08:54:50,745 DEBUG: 		Start:	 Iteration 10
+2016-08-24 08:54:50,762 DEBUG: 			View 0 : 0.576687116564
+2016-08-24 08:54:50,770 DEBUG: 			View 1 : 0.496932515337
+2016-08-24 08:54:50,808 DEBUG: 			View 2 : 0.613496932515
+2016-08-24 08:54:50,816 DEBUG: 			View 3 : 0.374233128834
+2016-08-24 08:54:50,888 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 08:54:51,566 DEBUG: 		Start:	 Iteration 11
+2016-08-24 08:54:51,583 DEBUG: 			View 0 : 0.472392638037
+2016-08-24 08:54:51,591 DEBUG: 			View 1 : 0.435582822086
+2016-08-24 08:54:51,629 DEBUG: 			View 2 : 0.478527607362
+2016-08-24 08:54:51,637 DEBUG: 			View 3 : 0.576687116564
+2016-08-24 08:54:51,711 DEBUG: 			 Best view : 		Clinic_
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-085528-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-085528-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..85f1830f76c6e72e0f194afef0d44aa915a055a9
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-085528-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,98 @@
+2016-08-24 08:55:28,014 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 08:55:28,015 INFO: Info:	 Labels used: No, Yes
+2016-08-24 08:55:28,015 INFO: Info:	 Length of dataset:347
+2016-08-24 08:55:28,016 INFO: ### Main Programm for Multiview Classification
+2016-08-24 08:55:28,017 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 08:55:28,017 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 08:55:28,017 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 08:55:28,018 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 08:55:28,019 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 08:55:28,019 INFO: Done:	 Read Database Files
+2016-08-24 08:55:28,019 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 08:55:28,025 INFO: Done:	 Determine validation split
+2016-08-24 08:55:28,025 INFO: Start:	 Determine 2 folds
+2016-08-24 08:55:28,039 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 08:55:28,040 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 08:55:28,040 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 08:55:28,040 INFO: Done:	 Determine folds
+2016-08-24 08:55:28,040 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 08:55:28,040 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 08:55:28,040 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl_
+2016-08-24 08:55:35,427 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 08:55:35,427 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA__
+2016-08-24 08:55:37,400 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 08:55:37,401 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq_
+2016-08-24 08:55:55,603 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 08:55:55,604 DEBUG: 	Start:	 Gridsearch for DecisionTree on Clinic_
+2016-08-24 08:55:57,380 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 08:55:57,381 DEBUG: 	Start:	 Gridsearch for DecisionTree on MRNASeq
+2016-08-24 08:56:35,467 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 08:56:35,467 INFO: Done:	 Gridsearching best settings for monoview classifiers
+2016-08-24 08:56:35,467 INFO: 	Start:	 Fold number 1
+2016-08-24 08:56:37,036 DEBUG: 		Start:	 Iteration 1
+2016-08-24 08:56:37,052 DEBUG: 			View 0 : 0.37037037037
+2016-08-24 08:56:37,060 DEBUG: 			View 1 : 0.62962962963
+2016-08-24 08:56:37,089 DEBUG: 			View 2 : 0.37037037037
+2016-08-24 08:56:37,096 DEBUG: 			View 3 : 0.530864197531
+2016-08-24 08:56:37,139 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 08:56:37,218 DEBUG: 		Start:	 Iteration 2
+2016-08-24 08:56:37,235 DEBUG: 			View 0 : 0.481481481481
+2016-08-24 08:56:37,242 DEBUG: 			View 1 : 0.41975308642
+2016-08-24 08:56:37,279 DEBUG: 			View 2 : 0.481481481481
+2016-08-24 08:56:37,287 DEBUG: 			View 3 : 0.530864197531
+2016-08-24 08:56:37,339 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 08:56:37,477 DEBUG: 		Start:	 Iteration 3
+2016-08-24 08:56:37,494 DEBUG: 			View 0 : 0.438271604938
+2016-08-24 08:56:37,502 DEBUG: 			View 1 : 0.407407407407
+2016-08-24 08:56:37,539 DEBUG: 			View 2 : 0.382716049383
+2016-08-24 08:56:37,547 DEBUG: 			View 3 : 0.376543209877
+2016-08-24 08:56:37,547 WARNING: All bad for iteration 2
+2016-08-24 08:56:37,602 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 08:56:37,803 DEBUG: 		Start:	 Iteration 4
+2016-08-24 08:56:37,819 DEBUG: 			View 0 : 0.604938271605
+2016-08-24 08:56:37,827 DEBUG: 			View 1 : 0.271604938272
+2016-08-24 08:56:37,864 DEBUG: 			View 2 : 0.469135802469
+2016-08-24 08:56:37,872 DEBUG: 			View 3 : 0.487654320988
+2016-08-24 08:56:37,929 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 08:56:38,194 DEBUG: 		Start:	 Iteration 5
+2016-08-24 08:56:38,211 DEBUG: 			View 0 : 0.395061728395
+2016-08-24 08:56:38,219 DEBUG: 			View 1 : 0.413580246914
+2016-08-24 08:56:38,256 DEBUG: 			View 2 : 0.481481481481
+2016-08-24 08:56:38,264 DEBUG: 			View 3 : 0.506172839506
+2016-08-24 08:56:38,323 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 08:56:38,648 DEBUG: 		Start:	 Iteration 6
+2016-08-24 08:56:38,665 DEBUG: 			View 0 : 0.543209876543
+2016-08-24 08:56:38,672 DEBUG: 			View 1 : 0.425925925926
+2016-08-24 08:56:38,709 DEBUG: 			View 2 : 0.376543209877
+2016-08-24 08:56:38,717 DEBUG: 			View 3 : 0.586419753086
+2016-08-24 08:56:38,780 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 08:56:39,164 DEBUG: 		Start:	 Iteration 7
+2016-08-24 08:56:39,180 DEBUG: 			View 0 : 0.561728395062
+2016-08-24 08:56:39,188 DEBUG: 			View 1 : 0.5
+2016-08-24 08:56:39,225 DEBUG: 			View 2 : 0.537037037037
+2016-08-24 08:56:39,233 DEBUG: 			View 3 : 0.567901234568
+2016-08-24 08:56:39,298 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 08:56:39,744 DEBUG: 		Start:	 Iteration 8
+2016-08-24 08:56:39,761 DEBUG: 			View 0 : 0.592592592593
+2016-08-24 08:56:39,769 DEBUG: 			View 1 : 0.438271604938
+2016-08-24 08:56:39,806 DEBUG: 			View 2 : 0.456790123457
+2016-08-24 08:56:39,813 DEBUG: 			View 3 : 0.530864197531
+2016-08-24 08:56:39,880 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 08:56:40,391 DEBUG: 		Start:	 Iteration 9
+2016-08-24 08:56:40,408 DEBUG: 			View 0 : 0.561728395062
+2016-08-24 08:56:40,416 DEBUG: 			View 1 : 0.413580246914
+2016-08-24 08:56:40,453 DEBUG: 			View 2 : 0.617283950617
+2016-08-24 08:56:40,461 DEBUG: 			View 3 : 0.512345679012
+2016-08-24 08:56:40,530 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 08:56:41,117 DEBUG: 		Start:	 Iteration 10
+2016-08-24 08:56:41,133 DEBUG: 			View 0 : 0.648148148148
+2016-08-24 08:56:41,141 DEBUG: 			View 1 : 0.456790123457
+2016-08-24 08:56:41,178 DEBUG: 			View 2 : 0.407407407407
+2016-08-24 08:56:41,186 DEBUG: 			View 3 : 0.66049382716
+2016-08-24 08:56:41,257 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 08:56:41,906 DEBUG: 		Start:	 Iteration 11
+2016-08-24 08:56:41,923 DEBUG: 			View 0 : 0.401234567901
+2016-08-24 08:56:41,931 DEBUG: 			View 1 : 0.586419753086
+2016-08-24 08:56:41,968 DEBUG: 			View 2 : 0.382716049383
+2016-08-24 08:56:41,975 DEBUG: 			View 3 : 0.493827160494
+2016-08-24 08:56:42,049 DEBUG: 			 Best view : 		MiRNA__
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-090120-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-090120-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..d966042b8c769ee3c568fa17c888a780b691af94
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-090120-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,97 @@
+2016-08-24 09:01:20,823 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 09:01:20,823 INFO: Info:	 Labels used: No, Yes
+2016-08-24 09:01:20,823 INFO: Info:	 Length of dataset:347
+2016-08-24 09:01:20,825 INFO: ### Main Programm for Multiview Classification
+2016-08-24 09:01:20,825 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 09:01:20,825 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 09:01:20,826 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 09:01:20,826 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 09:01:20,827 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 09:01:20,827 INFO: Done:	 Read Database Files
+2016-08-24 09:01:20,827 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 09:01:20,830 INFO: Done:	 Determine validation split
+2016-08-24 09:01:20,830 INFO: Start:	 Determine 2 folds
+2016-08-24 09:01:20,838 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 09:01:20,838 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 09:01:20,838 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 09:01:20,838 INFO: Done:	 Determine folds
+2016-08-24 09:01:20,839 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 09:01:20,839 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 09:01:20,839 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl_
+2016-08-24 09:01:28,173 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:01:28,173 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA__
+2016-08-24 09:01:30,085 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:01:30,086 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq_
+2016-08-24 09:01:46,691 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:01:46,691 DEBUG: 	Start:	 Gridsearch for DecisionTree on Clinic_
+2016-08-24 09:01:48,441 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:01:48,441 DEBUG: 	Start:	 Gridsearch for DecisionTree on MRNASeq
+2016-08-24 09:02:44,634 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:02:44,634 INFO: Done:	 Gridsearching best settings for monoview classifiers
+2016-08-24 09:02:44,634 INFO: 	Start:	 Fold number 1
+2016-08-24 09:02:46,206 DEBUG: 		Start:	 Iteration 1
+2016-08-24 09:02:46,269 DEBUG: 			View 0 : 0.37037037037
+2016-08-24 09:02:46,303 DEBUG: 			View 1 : 0.623456790123
+2016-08-24 09:02:46,497 DEBUG: 			View 2 : 0.648148148148
+2016-08-24 09:02:46,505 DEBUG: 			View 3 : 0.62962962963
+2016-08-24 09:02:46,552 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:02:46,634 DEBUG: 		Start:	 Iteration 2
+2016-08-24 09:02:46,652 DEBUG: 			View 0 : 0.438271604938
+2016-08-24 09:02:46,660 DEBUG: 			View 1 : 0.493827160494
+2016-08-24 09:02:46,699 DEBUG: 			View 2 : 0.549382716049
+2016-08-24 09:02:46,707 DEBUG: 			View 3 : 0.518518518519
+2016-08-24 09:02:46,760 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:02:46,915 DEBUG: 		Start:	 Iteration 3
+2016-08-24 09:02:46,932 DEBUG: 			View 0 : 0.543209876543
+2016-08-24 09:02:46,940 DEBUG: 			View 1 : 0.425925925926
+2016-08-24 09:02:46,978 DEBUG: 			View 2 : 0.518518518519
+2016-08-24 09:02:46,985 DEBUG: 			View 3 : 0.648148148148
+2016-08-24 09:02:47,040 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:02:47,253 DEBUG: 		Start:	 Iteration 4
+2016-08-24 09:02:47,270 DEBUG: 			View 0 : 0.432098765432
+2016-08-24 09:02:47,278 DEBUG: 			View 1 : 0.623456790123
+2016-08-24 09:02:47,316 DEBUG: 			View 2 : 0.456790123457
+2016-08-24 09:02:47,324 DEBUG: 			View 3 : 0.537037037037
+2016-08-24 09:02:47,381 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:02:47,652 DEBUG: 		Start:	 Iteration 5
+2016-08-24 09:02:47,669 DEBUG: 			View 0 : 0.395061728395
+2016-08-24 09:02:47,677 DEBUG: 			View 1 : 0.561728395062
+2016-08-24 09:02:47,715 DEBUG: 			View 2 : 0.524691358025
+2016-08-24 09:02:47,723 DEBUG: 			View 3 : 0.413580246914
+2016-08-24 09:02:47,781 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:02:48,113 DEBUG: 		Start:	 Iteration 6
+2016-08-24 09:02:48,130 DEBUG: 			View 0 : 0.716049382716
+2016-08-24 09:02:48,138 DEBUG: 			View 1 : 0.351851851852
+2016-08-24 09:02:48,176 DEBUG: 			View 2 : 0.549382716049
+2016-08-24 09:02:48,183 DEBUG: 			View 3 : 0.530864197531
+2016-08-24 09:02:48,245 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:02:48,639 DEBUG: 		Start:	 Iteration 7
+2016-08-24 09:02:48,656 DEBUG: 			View 0 : 0.598765432099
+2016-08-24 09:02:48,664 DEBUG: 			View 1 : 0.524691358025
+2016-08-24 09:02:48,701 DEBUG: 			View 2 : 0.524691358025
+2016-08-24 09:02:48,709 DEBUG: 			View 3 : 0.382716049383
+2016-08-24 09:02:48,773 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:02:49,242 DEBUG: 		Start:	 Iteration 8
+2016-08-24 09:02:49,262 DEBUG: 			View 0 : 0.33950617284
+2016-08-24 09:02:49,272 DEBUG: 			View 1 : 0.617283950617
+2016-08-24 09:02:49,315 DEBUG: 			View 2 : 0.5
+2016-08-24 09:02:49,325 DEBUG: 			View 3 : 0.574074074074
+2016-08-24 09:02:49,401 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:02:49,959 DEBUG: 		Start:	 Iteration 9
+2016-08-24 09:02:49,975 DEBUG: 			View 0 : 0.512345679012
+2016-08-24 09:02:49,984 DEBUG: 			View 1 : 0.537037037037
+2016-08-24 09:02:50,021 DEBUG: 			View 2 : 0.438271604938
+2016-08-24 09:02:50,029 DEBUG: 			View 3 : 0.604938271605
+2016-08-24 09:02:50,097 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:02:50,670 DEBUG: 		Start:	 Iteration 10
+2016-08-24 09:02:50,687 DEBUG: 			View 0 : 0.401234567901
+2016-08-24 09:02:50,695 DEBUG: 			View 1 : 0.635802469136
+2016-08-24 09:02:50,733 DEBUG: 			View 2 : 0.518518518519
+2016-08-24 09:02:50,740 DEBUG: 			View 3 : 0.543209876543
+2016-08-24 09:02:50,811 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:02:51,445 DEBUG: 		Start:	 Iteration 11
+2016-08-24 09:02:51,462 DEBUG: 			View 0 : 0.592592592593
+2016-08-24 09:02:51,470 DEBUG: 			View 1 : 0.537037037037
+2016-08-24 09:02:51,508 DEBUG: 			View 2 : 0.388888888889
+2016-08-24 09:02:51,516 DEBUG: 			View 3 : 0.450617283951
+2016-08-24 09:02:51,589 DEBUG: 			 Best view : 		Methyl_
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-090956-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-090956-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..ca2735947d563b15d49a2c78cc76f9886ddc8ced
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-090956-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,14246 @@
+2016-08-24 09:09:56,962 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 09:09:56,963 INFO: Info:	 Labels used: No, Yes
+2016-08-24 09:09:56,963 INFO: Info:	 Length of dataset:347
+2016-08-24 09:09:56,973 INFO: ### Main Programm for Multiview Classification
+2016-08-24 09:09:56,973 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 09:09:56,973 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 09:09:56,974 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 09:09:56,974 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 09:09:56,975 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 09:09:56,975 INFO: Done:	 Read Database Files
+2016-08-24 09:09:56,975 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 09:09:56,978 INFO: Done:	 Determine validation split
+2016-08-24 09:09:56,978 INFO: Start:	 Determine 2 folds
+2016-08-24 09:09:56,987 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 09:09:56,987 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 09:09:56,988 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 09:09:56,988 INFO: Done:	 Determine folds
+2016-08-24 09:09:56,988 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 09:09:56,988 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 09:09:56,988 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl_
+2016-08-24 09:10:04,379 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:10:04,380 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA__
+2016-08-24 09:10:06,314 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:10:06,315 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq_
+2016-08-24 09:10:23,238 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:10:23,238 DEBUG: 	Start:	 Gridsearch for DecisionTree on Clinic_
+2016-08-24 09:10:25,001 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:10:25,002 DEBUG: 	Start:	 Gridsearch for DecisionTree on MRNASeq
+2016-08-24 09:11:02,594 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:11:02,594 INFO: Done:	 Gridsearching best settings for monoview classifiers
+2016-08-24 09:11:02,594 INFO: 	Start:	 Fold number 1
+2016-08-24 09:11:04,137 DEBUG: 		Start:	 Iteration 1
+2016-08-24 09:11:04,153 DEBUG: 			View 0 : 0.622641509434
+2016-08-24 09:11:04,161 DEBUG: 			View 1 : 0.339622641509
+2016-08-24 09:11:04,189 DEBUG: 			View 2 : 0.622641509434
+2016-08-24 09:11:04,197 DEBUG: 			View 3 : 0.377358490566
+2016-08-24 09:11:04,239 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:11:04,311 DEBUG: 		Start:	 Iteration 2
+2016-08-24 09:11:04,328 DEBUG: 			View 0 : 0.534591194969
+2016-08-24 09:11:04,336 DEBUG: 			View 1 : 0.522012578616
+2016-08-24 09:11:04,373 DEBUG: 			View 2 : 0.540880503145
+2016-08-24 09:11:04,381 DEBUG: 			View 3 : 0.477987421384
+2016-08-24 09:11:04,426 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:11:04,573 DEBUG: 		Start:	 Iteration 3
+2016-08-24 09:11:04,590 DEBUG: 			View 0 : 0.603773584906
+2016-08-24 09:11:04,598 DEBUG: 			View 1 : 0.566037735849
+2016-08-24 09:11:04,636 DEBUG: 			View 2 : 0.553459119497
+2016-08-24 09:11:04,643 DEBUG: 			View 3 : 0.62893081761
+2016-08-24 09:11:04,696 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:11:04,902 DEBUG: 		Start:	 Iteration 4
+2016-08-24 09:11:04,918 DEBUG: 			View 0 : 0.496855345912
+2016-08-24 09:11:04,926 DEBUG: 			View 1 : 0.51572327044
+2016-08-24 09:11:04,963 DEBUG: 			View 2 : 0.62893081761
+2016-08-24 09:11:04,970 DEBUG: 			View 3 : 0.421383647799
+2016-08-24 09:11:05,025 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:11:05,308 DEBUG: 		Start:	 Iteration 5
+2016-08-24 09:11:05,324 DEBUG: 			View 0 : 0.477987421384
+2016-08-24 09:11:05,332 DEBUG: 			View 1 : 0.685534591195
+2016-08-24 09:11:05,369 DEBUG: 			View 2 : 0.452830188679
+2016-08-24 09:11:05,377 DEBUG: 			View 3 : 0.584905660377
+2016-08-24 09:11:05,434 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:11:05,769 DEBUG: 		Start:	 Iteration 6
+2016-08-24 09:11:05,786 DEBUG: 			View 0 : 0.433962264151
+2016-08-24 09:11:05,793 DEBUG: 			View 1 : 0.333333333333
+2016-08-24 09:11:05,830 DEBUG: 			View 2 : 0.396226415094
+2016-08-24 09:11:05,838 DEBUG: 			View 3 : 0.616352201258
+2016-08-24 09:11:05,899 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:11:06,295 DEBUG: 		Start:	 Iteration 7
+2016-08-24 09:11:06,311 DEBUG: 			View 0 : 0.509433962264
+2016-08-24 09:11:06,319 DEBUG: 			View 1 : 0.295597484277
+2016-08-24 09:11:06,356 DEBUG: 			View 2 : 0.471698113208
+2016-08-24 09:11:06,364 DEBUG: 			View 3 : 0.427672955975
+2016-08-24 09:11:06,426 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:11:06,881 DEBUG: 		Start:	 Iteration 8
+2016-08-24 09:11:06,897 DEBUG: 			View 0 : 0.452830188679
+2016-08-24 09:11:06,905 DEBUG: 			View 1 : 0.295597484277
+2016-08-24 09:11:06,942 DEBUG: 			View 2 : 0.440251572327
+2016-08-24 09:11:06,950 DEBUG: 			View 3 : 0.62893081761
+2016-08-24 09:11:07,016 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:11:07,528 DEBUG: 		Start:	 Iteration 9
+2016-08-24 09:11:07,544 DEBUG: 			View 0 : 0.522012578616
+2016-08-24 09:11:07,552 DEBUG: 			View 1 : 0.754716981132
+2016-08-24 09:11:07,589 DEBUG: 			View 2 : 0.534591194969
+2016-08-24 09:11:07,597 DEBUG: 			View 3 : 0.396226415094
+2016-08-24 09:11:07,664 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:11:08,239 DEBUG: 		Start:	 Iteration 10
+2016-08-24 09:11:08,256 DEBUG: 			View 0 : 0.48427672956
+2016-08-24 09:11:08,263 DEBUG: 			View 1 : 0.654088050314
+2016-08-24 09:11:08,301 DEBUG: 			View 2 : 0.610062893082
+2016-08-24 09:11:08,310 DEBUG: 			View 3 : 0.572327044025
+2016-08-24 09:11:08,380 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:11:09,007 DEBUG: 		Start:	 Iteration 11
+2016-08-24 09:11:09,024 DEBUG: 			View 0 : 0.51572327044
+2016-08-24 09:11:09,032 DEBUG: 			View 1 : 0.559748427673
+2016-08-24 09:11:09,069 DEBUG: 			View 2 : 0.534591194969
+2016-08-24 09:11:09,077 DEBUG: 			View 3 : 0.389937106918
+2016-08-24 09:11:09,148 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:11:09,842 DEBUG: 		Start:	 Iteration 12
+2016-08-24 09:11:09,873 DEBUG: 			View 0 : 0.503144654088
+2016-08-24 09:11:09,881 DEBUG: 			View 1 : 0.748427672956
+2016-08-24 09:11:09,918 DEBUG: 			View 2 : 0.540880503145
+2016-08-24 09:11:09,926 DEBUG: 			View 3 : 0.503144654088
+2016-08-24 09:11:09,999 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:11:10,742 INFO: 	Start: 	 Classification
+2016-08-24 09:11:12,499 INFO: 	Done: 	 Fold number 1
+2016-08-24 09:11:12,499 INFO: 	Start:	 Fold number 2
+2016-08-24 09:11:14,013 DEBUG: 		Start:	 Iteration 1
+2016-08-24 09:11:14,027 DEBUG: 			View 0 : 0.617834394904
+2016-08-24 09:11:14,035 DEBUG: 			View 1 : 0.382165605096
+2016-08-24 09:11:14,062 DEBUG: 			View 2 : 0.617834394904
+2016-08-24 09:11:14,070 DEBUG: 			View 3 : 0.528662420382
+2016-08-24 09:11:14,108 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:11:14,183 DEBUG: 		Start:	 Iteration 2
+2016-08-24 09:11:14,199 DEBUG: 			View 0 : 0.496815286624
+2016-08-24 09:11:14,207 DEBUG: 			View 1 : 0.420382165605
+2016-08-24 09:11:14,243 DEBUG: 			View 2 : 0.426751592357
+2016-08-24 09:11:14,250 DEBUG: 			View 3 : 0.426751592357
+2016-08-24 09:11:14,250 WARNING: All bad for iteration 1
+2016-08-24 09:11:14,299 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:11:14,436 DEBUG: 		Start:	 Iteration 3
+2016-08-24 09:11:14,452 DEBUG: 			View 0 : 0.662420382166
+2016-08-24 09:11:14,460 DEBUG: 			View 1 : 0.464968152866
+2016-08-24 09:11:14,495 DEBUG: 			View 2 : 0.503184713376
+2016-08-24 09:11:14,503 DEBUG: 			View 3 : 0.528662420382
+2016-08-24 09:11:14,554 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:11:14,751 DEBUG: 		Start:	 Iteration 4
+2016-08-24 09:11:14,767 DEBUG: 			View 0 : 0.433121019108
+2016-08-24 09:11:14,775 DEBUG: 			View 1 : 0.496815286624
+2016-08-24 09:11:14,811 DEBUG: 			View 2 : 0.43949044586
+2016-08-24 09:11:14,818 DEBUG: 			View 3 : 0.547770700637
+2016-08-24 09:11:14,872 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:11:15,126 DEBUG: 		Start:	 Iteration 5
+2016-08-24 09:11:15,143 DEBUG: 			View 0 : 0.503184713376
+2016-08-24 09:11:15,150 DEBUG: 			View 1 : 0.687898089172
+2016-08-24 09:11:15,187 DEBUG: 			View 2 : 0.420382165605
+2016-08-24 09:11:15,194 DEBUG: 			View 3 : 0.592356687898
+2016-08-24 09:11:15,250 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:11:15,562 DEBUG: 		Start:	 Iteration 6
+2016-08-24 09:11:15,578 DEBUG: 			View 0 : 0.554140127389
+2016-08-24 09:11:15,585 DEBUG: 			View 1 : 0.515923566879
+2016-08-24 09:11:15,621 DEBUG: 			View 2 : 0.452229299363
+2016-08-24 09:11:15,629 DEBUG: 			View 3 : 0.624203821656
+2016-08-24 09:11:15,687 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:11:16,055 DEBUG: 		Start:	 Iteration 7
+2016-08-24 09:11:16,071 DEBUG: 			View 0 : 0.471337579618
+2016-08-24 09:11:16,079 DEBUG: 			View 1 : 0.388535031847
+2016-08-24 09:11:16,114 DEBUG: 			View 2 : 0.420382165605
+2016-08-24 09:11:16,122 DEBUG: 			View 3 : 0.535031847134
+2016-08-24 09:11:16,182 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:11:16,608 DEBUG: 		Start:	 Iteration 8
+2016-08-24 09:11:16,624 DEBUG: 			View 0 : 0.43949044586
+2016-08-24 09:11:16,632 DEBUG: 			View 1 : 0.726114649682
+2016-08-24 09:11:16,668 DEBUG: 			View 2 : 0.605095541401
+2016-08-24 09:11:16,676 DEBUG: 			View 3 : 0.605095541401
+2016-08-24 09:11:16,739 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:11:17,220 DEBUG: 		Start:	 Iteration 9
+2016-08-24 09:11:17,236 DEBUG: 			View 0 : 0.579617834395
+2016-08-24 09:11:17,244 DEBUG: 			View 1 : 0.547770700637
+2016-08-24 09:11:17,280 DEBUG: 			View 2 : 0.388535031847
+2016-08-24 09:11:17,288 DEBUG: 			View 3 : 0.458598726115
+2016-08-24 09:11:17,352 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:11:17,896 DEBUG: 		Start:	 Iteration 10
+2016-08-24 09:11:17,913 DEBUG: 			View 0 : 0.464968152866
+2016-08-24 09:11:17,921 DEBUG: 			View 1 : 0.605095541401
+2016-08-24 09:11:17,958 DEBUG: 			View 2 : 0.528662420382
+2016-08-24 09:11:17,965 DEBUG: 			View 3 : 0.40127388535
+2016-08-24 09:11:18,034 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:11:18,635 DEBUG: 		Start:	 Iteration 11
+2016-08-24 09:11:18,651 DEBUG: 			View 0 : 0.363057324841
+2016-08-24 09:11:18,659 DEBUG: 			View 1 : 0.573248407643
+2016-08-24 09:11:18,695 DEBUG: 			View 2 : 0.363057324841
+2016-08-24 09:11:18,703 DEBUG: 			View 3 : 0.445859872611
+2016-08-24 09:11:18,773 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:11:19,431 DEBUG: 		Start:	 Iteration 12
+2016-08-24 09:11:19,447 DEBUG: 			View 0 : 0.43949044586
+2016-08-24 09:11:19,455 DEBUG: 			View 1 : 0.375796178344
+2016-08-24 09:11:19,491 DEBUG: 			View 2 : 0.515923566879
+2016-08-24 09:11:19,499 DEBUG: 			View 3 : 0.592356687898
+2016-08-24 09:11:19,571 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:11:20,286 INFO: 	Start: 	 Classification
+2016-08-24 09:11:21,987 INFO: 	Done: 	 Fold number 2
+2016-08-24 09:11:21,987 INFO: Done:	 Classification
+2016-08-24 09:11:21,988 INFO: Info:	 Time for Classification: 85[s]
+2016-08-24 09:11:21,988 INFO: Start:	 Result Analysis for Mumbo
+2016-08-24 09:11:28,399 INFO: 		Result for Multiview classification with Mumbo
+
+Average accuracy :
+	-On Train : 70.8648800224
+	-On Test : 77.0491803279
+	-On Validation : 81.067961165
+
+Dataset info :
+	-Database name : ModifiedMultiOmic
+	-Labels : No, Yes
+	-Views : Methyl, MiRNA, RNASEQ, Clinical
+	-2 folds
+	- Validation set length : 103 for learning rate : 0.7
+
+Classification configuration : 
+	-Algorithm used : Mumbo 
+	-Iterations : 1000
+	-Weak Classifiers : DecisionTree with depth 1.0,  sub-sampled at 0.006 on Methyl
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on MiRNA
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on RNASEQ
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on Clinical
+
+ Mean average accuracies and stats for each fold : 
+	- Fold 0
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.0061572327044
+			- Percentage of time chosen : 0.989
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.00627044025157
+			- Percentage of time chosen : 0.006
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.00632704402516
+			- Percentage of time chosen : 0.002
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.0060251572327
+			- Percentage of time chosen : 0.003
+	- Fold 1
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.00602547770701
+			- Percentage of time chosen : 0.992
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.0061847133758
+			- Percentage of time chosen : 0.004
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.00568152866242
+			- Percentage of time chosen : 0.0
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.00628662420382
+			- Percentage of time chosen : 0.004
+
+ For each iteration : 
+	- Iteration 1
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 2
+		 Fold 1
+			Accuracy on train : 54.0880503145
+			Accuracy on test : 65.5737704918
+			Accuracy on validation : 65.0485436893
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 57.9357449025
+			 Accuracy on test : 69.262295082
+	- Iteration 3
+		 Fold 1
+			Accuracy on train : 62.893081761
+			Accuracy on test : 59.8360655738
+			Accuracy on validation : 68.932038835
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 66.2420382166
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 64.5675599888
+			 Accuracy on test : 67.6229508197
+	- Iteration 4
+		 Fold 1
+			Accuracy on train : 59.1194968553
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 69.9029126214
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 66.2420382166
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 62.680767536
+			 Accuracy on test : 74.5901639344
+	- Iteration 5
+		 Fold 1
+			Accuracy on train : 66.6666666667
+			Accuracy on test : 68.8524590164
+			Accuracy on validation : 76.6990291262
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 68.152866242
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 67.4097664544
+			 Accuracy on test : 74.1803278689
+	- Iteration 6
+		 Fold 1
+			Accuracy on train : 63.5220125786
+			Accuracy on test : 72.131147541
+			Accuracy on validation : 72.8155339806
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 66.8789808917
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 65.2004967352
+			 Accuracy on test : 75.8196721311
+	- Iteration 7
+		 Fold 1
+			Accuracy on train : 67.9245283019
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 77.6699029126
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 68.152866242
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 68.038697272
+			 Accuracy on test : 75.4098360656
+	- Iteration 8
+		 Fold 1
+			Accuracy on train : 64.1509433962
+			Accuracy on test : 66.393442623
+			Accuracy on validation : 71.8446601942
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 71.974522293
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 68.0627328446
+			 Accuracy on test : 73.7704918033
+	- Iteration 9
+		 Fold 1
+			Accuracy on train : 71.6981132075
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 70.0636942675
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 70.8809037375
+			 Accuracy on test : 76.2295081967
+	- Iteration 10
+		 Fold 1
+			Accuracy on train : 69.1823899371
+			Accuracy on test : 71.3114754098
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 69.4267515924
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 69.3045707647
+			 Accuracy on test : 75.0
+	- Iteration 11
+		 Fold 1
+			Accuracy on train : 71.0691823899
+			Accuracy on test : 72.131147541
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 69.4267515924
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 70.2479669911
+			 Accuracy on test : 75.4098360656
+	- Iteration 12
+		 Fold 1
+			Accuracy on train : 74.213836478
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 67.5159235669
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 70.8648800224
+			 Accuracy on test : 77.0491803279
+	- Iteration 13
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 14
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 15
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 16
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 17
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 18
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 19
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 20
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 21
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 22
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 23
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 24
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 25
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 26
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 27
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 28
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 29
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 30
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 31
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 32
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 33
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 34
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 35
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 36
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 37
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 38
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 39
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 40
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 41
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 42
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 43
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 44
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 45
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 46
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 47
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 48
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 49
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 50
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 51
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 52
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 53
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 54
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 55
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 56
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 57
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 58
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 59
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 60
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 61
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 62
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 63
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 64
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 65
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 66
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 67
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 68
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 69
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 70
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 71
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 72
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 73
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 74
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 75
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 76
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 77
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 78
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 79
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 80
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 81
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 82
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 83
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 84
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 85
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 86
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 87
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 88
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 89
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 90
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 91
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 92
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 93
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 94
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 95
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 96
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 97
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 98
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 99
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 100
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 101
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 102
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 103
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 104
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 105
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 106
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 107
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 108
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 109
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 110
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 111
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 112
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 113
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 114
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 115
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 116
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 117
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 118
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 119
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 120
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 121
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 122
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 123
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 124
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 125
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 126
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 127
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 128
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 129
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 130
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 131
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 132
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 133
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 134
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 135
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 136
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 137
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 138
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 139
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 140
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 141
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 142
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 143
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 144
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 145
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 146
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 147
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 148
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 149
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 150
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 151
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 152
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 153
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 154
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 155
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 156
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 157
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 158
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 159
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 160
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 161
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 162
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 163
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 164
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 165
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 166
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 167
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 168
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 169
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 170
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 171
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 172
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 173
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 174
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 175
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 176
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 177
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 178
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 179
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 180
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 181
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 182
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 183
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 184
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 185
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 186
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 187
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 188
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 189
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 190
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 191
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 192
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 193
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 194
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 195
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 196
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 197
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 198
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 199
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 200
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 201
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 202
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 203
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 204
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 205
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 206
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 207
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 208
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 209
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 210
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 211
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 212
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 213
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 214
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 215
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 216
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 217
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 218
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 219
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 220
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 221
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 222
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 223
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 224
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 225
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 226
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 227
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 228
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 229
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 230
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 231
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 232
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 233
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 234
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 235
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 236
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 237
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 238
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 239
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 240
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 241
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 242
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 243
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 244
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 245
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 246
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 247
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 248
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 249
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 250
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 251
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 252
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 253
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 254
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 255
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 256
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 257
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 258
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 259
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 260
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 261
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 262
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 263
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 264
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 265
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 266
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 267
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 268
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 269
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 270
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 271
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 272
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 273
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 274
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 275
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 276
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 277
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 278
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 279
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 280
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 281
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 282
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 283
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 284
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 285
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 286
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 287
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 288
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 289
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 290
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 291
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 292
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 293
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 294
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 295
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 296
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 297
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 298
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 299
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 300
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 301
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 302
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 303
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 304
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 305
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 306
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 307
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 308
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 309
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 310
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 311
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 312
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 313
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 314
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 315
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 316
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 317
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 318
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 319
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 320
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 321
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 322
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 323
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 324
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 325
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 326
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 327
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 328
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 329
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 330
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 331
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 332
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 333
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 334
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 335
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 336
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 337
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 338
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 339
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 340
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 341
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 342
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 343
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 344
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 345
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 346
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 347
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 348
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 349
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 350
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 351
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 352
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 353
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 354
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 355
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 356
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 357
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 358
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 359
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 360
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 361
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 362
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 363
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 364
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 365
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 366
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 367
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 368
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 369
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 370
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 371
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 372
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 373
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 374
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 375
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 376
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 377
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 378
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 379
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 380
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 381
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 382
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 383
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 384
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 385
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 386
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 387
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 388
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 389
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 390
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 391
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 392
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 393
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 394
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 395
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 396
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 397
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 398
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 399
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 400
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 401
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 402
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 403
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 404
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 405
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 406
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 407
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 408
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 409
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 410
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 411
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 412
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 413
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 414
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 415
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 416
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 417
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 418
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 419
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 420
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 421
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 422
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 423
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 424
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 425
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 426
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 427
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 428
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 429
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 430
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 431
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 432
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 433
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 434
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 435
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 436
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 437
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 438
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 439
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 440
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 441
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 442
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 443
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 444
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 445
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 446
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 447
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 448
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 449
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 450
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 451
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 452
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 453
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 454
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 455
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 456
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 457
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 458
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 459
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 460
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 461
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 462
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 463
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 464
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 465
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 466
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 467
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 468
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 469
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 470
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 471
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 472
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 473
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 474
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 475
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 476
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 477
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 478
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 479
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 480
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 481
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 482
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 483
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 484
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 485
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 486
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 487
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 488
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 489
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 490
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 491
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 492
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 493
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 494
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 495
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 496
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 497
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 498
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 499
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 500
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 501
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 502
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 503
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 504
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 505
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 506
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 507
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 508
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 509
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 510
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 511
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 512
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 513
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 514
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 515
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 516
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 517
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 518
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 519
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 520
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 521
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 522
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 523
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 524
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 525
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 526
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 527
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 528
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 529
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 530
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 531
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 532
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 533
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 534
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 535
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 536
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 537
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 538
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 539
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 540
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 541
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 542
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 543
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 544
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 545
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 546
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 547
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 548
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 549
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 550
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 551
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 552
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 553
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 554
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 555
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 556
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 557
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 558
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 559
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 560
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 561
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 562
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 563
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 564
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 565
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 566
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 567
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 568
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 569
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 570
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 571
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 572
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 573
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 574
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 575
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 576
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 577
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 578
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 579
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 580
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 581
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 582
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 583
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 584
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 585
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 586
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 587
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 588
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 589
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 590
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 591
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 592
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 593
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 594
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 595
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 596
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 597
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 598
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 599
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 600
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 601
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 602
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 603
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 604
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 605
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 606
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 607
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 608
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 609
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 610
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 611
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 612
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 613
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 614
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 615
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 616
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 617
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 618
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 619
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 620
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 621
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 622
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 623
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 624
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 625
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 626
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 627
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 628
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 629
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 630
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 631
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 632
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 633
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 634
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 635
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 636
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 637
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 638
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 639
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 640
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 641
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 642
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 643
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 644
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 645
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 646
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 647
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 648
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 649
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 650
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 651
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 652
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 653
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 654
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 655
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 656
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 657
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 658
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 659
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 660
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 661
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 662
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 663
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 664
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 665
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 666
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 667
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 668
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 669
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 670
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 671
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 672
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 673
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 674
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 675
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 676
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 677
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 678
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 679
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 680
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 681
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 682
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 683
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 684
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 685
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 686
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 687
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 688
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 689
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 690
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 691
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 692
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 693
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 694
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 695
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 696
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 697
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 698
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 699
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 700
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 701
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 702
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 703
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 704
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 705
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 706
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 707
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 708
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 709
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 710
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 711
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 712
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 713
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 714
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 715
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 716
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 717
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 718
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 719
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 720
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 721
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 722
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 723
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 724
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 725
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 726
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 727
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 728
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 729
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 730
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 731
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 732
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 733
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 734
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 735
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 736
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 737
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 738
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 739
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 740
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 741
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 742
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 743
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 744
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 745
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 746
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 747
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 748
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 749
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 750
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 751
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 752
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 753
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 754
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 755
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 756
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 757
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 758
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 759
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 760
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 761
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 762
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 763
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 764
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 765
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 766
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 767
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 768
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 769
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 770
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 771
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 772
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 773
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 774
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 775
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 776
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 777
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 778
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 779
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 780
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 781
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 782
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 783
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 784
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 785
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 786
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 787
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 788
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 789
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 790
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 791
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 792
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 793
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 794
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 795
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 796
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 797
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 798
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 799
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 800
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 801
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 802
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 803
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 804
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 805
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 806
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 807
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 808
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 809
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 810
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 811
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 812
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 813
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 814
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 815
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 816
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 817
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 818
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 819
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 820
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 821
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 822
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 823
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 824
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 825
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 826
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 827
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 828
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 829
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 830
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 831
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 832
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 833
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 834
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 835
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 836
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 837
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 838
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 839
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 840
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 841
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 842
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 843
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 844
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 845
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 846
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 847
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 848
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 849
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 850
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 851
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 852
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 853
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 854
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 855
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 856
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 857
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 858
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 859
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 860
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 861
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 862
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 863
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 864
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 865
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 866
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 867
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 868
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 869
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 870
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 871
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 872
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 873
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 874
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 875
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 876
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 877
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 878
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 879
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 880
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 881
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 882
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 883
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 884
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 885
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 886
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 887
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 888
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 889
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 890
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 891
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 892
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 893
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 894
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 895
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 896
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 897
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 898
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 899
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 900
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 901
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 902
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 903
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 904
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 905
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 906
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 907
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 908
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 909
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 910
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 911
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 912
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 913
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 914
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 915
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 916
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 917
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 918
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 919
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 920
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 921
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 922
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 923
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 924
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 925
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 926
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 927
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 928
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 929
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 930
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 931
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 932
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 933
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 934
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 935
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 936
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 937
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 938
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 939
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 940
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 941
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 942
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 943
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 944
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 945
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 946
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 947
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 948
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 949
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 950
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 951
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 952
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 953
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 954
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 955
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 956
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 957
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 958
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 959
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 960
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 961
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 962
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 963
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 964
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 965
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 966
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 967
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 968
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 969
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 970
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 971
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 972
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 973
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 974
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 975
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 976
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 977
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 978
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 979
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 980
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 981
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 982
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 983
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 984
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 985
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 986
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 987
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 988
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 989
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 990
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 991
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 992
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 993
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 994
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 995
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 996
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 997
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 998
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 999
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 1000
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+
+Computation time on 1 cores : 
+	Database extraction time : 0:00:00
+	                         Learn     Prediction
+	         Fold 1        0:01:13        0:00:01
+	         Fold 2        0:01:23        0:00:01
+	          Total        0:02:37        0:00:03
+	So a total classification time of 0:01:25.
+
+
+2016-08-24 09:11:29,450 INFO: Done:	 Result Analysis
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091129Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091129Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png
new file mode 100644
index 0000000000000000000000000000000000000000..3715ab22b1a4f8a96fb587e9491c44044540442c
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091129Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png differ
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091129Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091129Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt
new file mode 100644
index 0000000000000000000000000000000000000000..6cb12d889750d35dde77ef06b3b569c2dcf0e149
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091129Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt
@@ -0,0 +1,14060 @@
+		Result for Multiview classification with Mumbo
+
+Average accuracy :
+	-On Train : 70.8648800224
+	-On Test : 77.0491803279
+	-On Validation : 81.067961165
+
+Dataset info :
+	-Database name : ModifiedMultiOmic
+	-Labels : No, Yes
+	-Views : Methyl, MiRNA, RNASEQ, Clinical
+	-2 folds
+	- Validation set length : 103 for learning rate : 0.7
+
+Classification configuration : 
+	-Algorithm used : Mumbo 
+	-Iterations : 1000
+	-Weak Classifiers : DecisionTree with depth 1.0,  sub-sampled at 0.006 on Methyl
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on MiRNA
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on RNASEQ
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on Clinical
+
+ Mean average accuracies and stats for each fold : 
+	- Fold 0
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.0061572327044
+			- Percentage of time chosen : 0.989
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.00627044025157
+			- Percentage of time chosen : 0.006
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.00632704402516
+			- Percentage of time chosen : 0.002
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.0060251572327
+			- Percentage of time chosen : 0.003
+	- Fold 1
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.00602547770701
+			- Percentage of time chosen : 0.992
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.0061847133758
+			- Percentage of time chosen : 0.004
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.00568152866242
+			- Percentage of time chosen : 0.0
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.00628662420382
+			- Percentage of time chosen : 0.004
+
+ For each iteration : 
+	- Iteration 1
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 2
+		 Fold 1
+			Accuracy on train : 54.0880503145
+			Accuracy on test : 65.5737704918
+			Accuracy on validation : 65.0485436893
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 57.9357449025
+			 Accuracy on test : 69.262295082
+	- Iteration 3
+		 Fold 1
+			Accuracy on train : 62.893081761
+			Accuracy on test : 59.8360655738
+			Accuracy on validation : 68.932038835
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 66.2420382166
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 64.5675599888
+			 Accuracy on test : 67.6229508197
+	- Iteration 4
+		 Fold 1
+			Accuracy on train : 59.1194968553
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 69.9029126214
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 66.2420382166
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 62.680767536
+			 Accuracy on test : 74.5901639344
+	- Iteration 5
+		 Fold 1
+			Accuracy on train : 66.6666666667
+			Accuracy on test : 68.8524590164
+			Accuracy on validation : 76.6990291262
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 68.152866242
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 67.4097664544
+			 Accuracy on test : 74.1803278689
+	- Iteration 6
+		 Fold 1
+			Accuracy on train : 63.5220125786
+			Accuracy on test : 72.131147541
+			Accuracy on validation : 72.8155339806
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 66.8789808917
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 65.2004967352
+			 Accuracy on test : 75.8196721311
+	- Iteration 7
+		 Fold 1
+			Accuracy on train : 67.9245283019
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 77.6699029126
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 68.152866242
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 68.038697272
+			 Accuracy on test : 75.4098360656
+	- Iteration 8
+		 Fold 1
+			Accuracy on train : 64.1509433962
+			Accuracy on test : 66.393442623
+			Accuracy on validation : 71.8446601942
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 71.974522293
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 68.0627328446
+			 Accuracy on test : 73.7704918033
+	- Iteration 9
+		 Fold 1
+			Accuracy on train : 71.6981132075
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 70.0636942675
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 70.8809037375
+			 Accuracy on test : 76.2295081967
+	- Iteration 10
+		 Fold 1
+			Accuracy on train : 69.1823899371
+			Accuracy on test : 71.3114754098
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 69.4267515924
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 69.3045707647
+			 Accuracy on test : 75.0
+	- Iteration 11
+		 Fold 1
+			Accuracy on train : 71.0691823899
+			Accuracy on test : 72.131147541
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 69.4267515924
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 70.2479669911
+			 Accuracy on test : 75.4098360656
+	- Iteration 12
+		 Fold 1
+			Accuracy on train : 74.213836478
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 67.5159235669
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 70.8648800224
+			 Accuracy on test : 77.0491803279
+	- Iteration 13
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 14
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 15
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 16
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 17
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 18
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 19
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 20
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 21
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 22
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 23
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 24
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 25
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 26
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 27
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 28
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 29
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 30
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 31
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 32
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 33
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 34
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 35
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 36
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 37
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 38
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 39
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 40
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 41
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 42
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 43
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 44
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 45
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 46
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 47
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 48
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 49
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 50
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 51
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 52
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 53
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 54
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 55
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 56
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 57
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 58
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 59
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 60
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 61
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 62
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 63
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 64
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 65
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 66
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 67
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 68
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 69
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 70
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 71
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 72
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 73
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 74
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 75
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 76
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 77
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 78
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 79
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 80
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 81
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 82
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 83
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 84
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 85
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 86
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 87
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 88
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 89
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 90
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 91
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 92
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 93
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 94
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 95
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 96
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 97
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 98
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 99
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 100
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 101
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 102
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 103
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 104
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 105
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 106
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 107
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 108
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 109
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 110
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 111
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 112
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 113
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 114
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 115
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 116
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 117
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 118
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 119
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 120
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 121
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 122
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 123
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 124
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 125
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 126
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 127
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 128
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 129
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 130
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 131
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 132
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 133
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 134
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 135
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 136
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 137
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 138
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 139
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 140
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 141
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 142
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 143
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 144
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 145
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 146
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 147
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 148
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 149
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 150
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 151
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 152
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 153
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 154
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 155
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 156
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 157
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 158
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 159
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 160
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 161
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 162
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 163
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 164
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 165
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 166
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 167
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 168
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 169
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 170
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 171
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 172
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 173
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 174
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 175
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 176
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 177
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 178
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 179
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 180
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 181
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 182
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 183
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 184
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 185
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 186
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 187
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 188
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 189
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 190
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 191
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 192
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 193
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 194
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 195
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 196
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 197
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 198
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 199
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 200
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 201
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 202
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 203
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 204
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 205
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 206
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 207
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 208
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 209
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 210
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 211
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 212
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 213
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 214
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 215
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 216
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 217
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 218
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 219
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 220
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 221
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 222
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 223
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 224
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 225
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 226
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 227
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 228
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 229
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 230
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 231
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 232
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 233
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 234
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 235
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 236
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 237
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 238
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 239
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 240
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 241
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 242
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 243
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 244
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 245
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 246
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 247
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 248
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 249
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 250
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 251
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 252
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 253
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 254
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 255
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 256
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 257
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 258
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 259
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 260
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 261
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 262
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 263
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 264
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 265
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 266
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 267
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 268
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 269
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 270
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 271
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 272
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 273
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 274
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 275
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 276
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 277
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 278
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 279
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 280
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 281
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 282
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 283
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 284
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 285
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 286
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 287
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 288
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 289
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 290
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 291
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 292
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 293
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 294
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 295
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 296
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 297
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 298
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 299
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 300
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 301
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 302
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 303
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 304
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 305
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 306
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 307
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 308
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 309
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 310
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 311
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 312
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 313
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 314
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 315
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 316
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 317
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 318
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 319
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 320
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 321
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 322
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 323
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 324
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 325
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 326
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 327
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 328
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 329
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 330
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 331
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 332
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 333
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 334
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 335
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 336
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 337
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 338
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 339
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 340
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 341
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 342
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 343
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 344
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 345
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 346
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 347
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 348
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 349
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 350
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 351
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 352
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 353
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 354
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 355
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 356
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 357
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 358
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 359
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 360
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 361
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 362
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 363
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 364
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 365
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 366
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 367
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 368
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 369
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 370
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 371
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 372
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 373
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 374
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 375
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 376
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 377
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 378
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 379
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 380
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 381
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 382
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 383
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 384
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 385
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 386
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 387
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 388
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 389
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 390
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 391
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 392
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 393
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 394
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 395
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 396
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 397
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 398
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 399
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 400
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 401
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 402
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 403
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 404
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 405
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 406
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 407
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 408
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 409
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 410
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 411
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 412
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 413
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 414
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 415
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 416
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 417
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 418
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 419
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 420
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 421
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 422
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 423
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 424
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 425
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 426
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 427
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 428
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 429
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 430
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 431
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 432
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 433
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 434
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 435
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 436
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 437
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 438
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 439
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 440
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 441
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 442
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 443
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 444
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 445
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 446
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 447
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 448
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 449
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 450
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 451
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 452
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 453
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 454
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 455
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 456
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 457
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 458
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 459
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 460
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 461
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 462
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 463
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 464
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 465
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 466
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 467
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 468
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 469
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 470
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 471
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 472
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 473
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 474
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 475
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 476
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 477
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 478
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 479
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 480
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 481
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 482
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 483
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 484
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 485
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 486
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 487
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 488
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 489
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 490
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 491
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 492
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 493
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 494
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 495
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 496
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 497
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 498
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 499
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 500
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 501
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 502
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 503
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 504
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 505
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 506
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 507
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 508
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 509
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 510
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 511
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 512
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 513
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 514
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 515
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 516
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 517
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 518
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 519
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 520
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 521
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 522
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 523
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 524
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 525
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 526
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 527
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 528
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 529
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 530
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 531
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 532
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 533
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 534
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 535
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 536
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 537
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 538
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 539
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 540
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 541
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 542
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 543
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 544
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 545
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 546
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 547
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 548
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 549
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 550
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 551
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 552
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 553
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 554
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 555
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 556
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 557
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 558
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 559
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 560
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 561
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 562
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 563
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 564
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 565
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 566
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 567
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 568
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 569
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 570
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 571
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 572
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 573
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 574
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 575
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 576
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 577
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 578
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 579
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 580
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 581
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 582
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 583
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 584
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 585
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 586
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 587
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 588
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 589
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 590
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 591
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 592
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 593
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 594
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 595
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 596
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 597
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 598
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 599
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 600
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 601
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 602
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 603
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 604
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 605
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 606
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 607
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 608
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 609
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 610
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 611
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 612
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 613
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 614
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 615
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 616
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 617
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 618
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 619
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 620
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 621
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 622
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 623
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 624
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 625
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 626
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 627
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 628
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 629
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 630
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 631
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 632
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 633
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 634
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 635
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 636
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 637
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 638
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 639
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 640
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 641
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 642
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 643
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 644
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 645
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 646
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 647
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 648
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 649
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 650
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 651
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 652
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 653
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 654
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 655
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 656
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 657
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 658
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 659
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 660
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 661
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 662
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 663
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 664
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 665
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 666
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 667
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 668
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 669
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 670
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 671
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 672
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 673
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 674
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 675
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 676
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 677
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 678
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 679
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 680
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 681
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 682
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 683
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 684
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 685
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 686
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 687
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 688
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 689
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 690
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 691
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 692
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 693
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 694
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 695
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 696
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 697
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 698
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 699
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 700
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 701
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 702
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 703
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 704
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 705
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 706
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 707
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 708
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 709
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 710
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 711
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 712
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 713
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 714
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 715
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 716
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 717
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 718
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 719
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 720
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 721
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 722
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 723
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 724
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 725
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 726
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 727
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 728
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 729
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 730
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 731
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 732
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 733
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 734
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 735
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 736
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 737
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 738
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 739
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 740
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 741
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 742
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 743
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 744
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 745
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 746
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 747
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 748
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 749
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 750
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 751
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 752
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 753
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 754
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 755
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 756
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 757
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 758
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 759
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 760
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 761
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 762
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 763
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 764
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 765
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 766
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 767
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 768
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 769
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 770
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 771
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 772
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 773
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 774
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 775
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 776
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 777
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 778
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 779
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 780
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 781
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 782
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 783
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 784
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 785
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 786
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 787
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 788
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 789
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 790
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 791
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 792
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 793
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 794
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 795
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 796
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 797
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 798
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 799
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 800
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 801
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 802
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 803
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 804
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 805
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 806
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 807
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 808
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 809
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 810
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 811
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 812
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 813
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 814
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 815
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 816
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 817
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 818
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 819
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 820
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 821
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 822
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 823
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 824
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 825
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 826
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 827
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 828
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 829
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 830
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 831
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 832
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 833
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 834
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 835
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 836
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 837
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 838
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 839
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 840
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 841
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 842
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 843
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 844
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 845
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 846
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 847
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 848
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 849
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 850
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 851
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 852
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 853
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 854
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 855
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 856
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 857
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 858
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 859
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 860
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 861
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 862
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 863
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 864
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 865
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 866
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 867
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 868
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 869
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 870
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 871
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 872
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 873
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 874
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 875
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 876
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 877
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 878
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 879
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 880
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 881
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 882
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 883
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 884
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 885
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 886
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 887
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 888
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 889
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 890
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 891
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 892
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 893
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 894
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 895
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 896
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 897
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 898
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 899
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 900
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 901
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 902
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 903
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 904
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 905
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 906
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 907
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 908
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 909
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 910
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 911
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 912
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 913
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 914
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 915
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 916
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 917
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 918
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 919
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 920
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 921
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 922
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 923
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 924
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 925
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 926
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 927
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 928
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 929
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 930
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 931
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 932
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 933
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 934
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 935
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 936
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 937
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 938
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 939
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 940
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 941
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 942
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 943
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 944
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 945
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 946
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 947
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 948
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 949
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 950
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 951
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 952
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 953
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 954
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 955
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 956
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 957
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 958
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 959
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 960
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 961
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 962
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 963
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 964
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 965
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 966
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 967
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 968
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 969
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 970
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 971
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 972
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 973
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 974
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 975
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 976
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 977
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 978
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 979
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 980
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 981
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 982
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 983
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 984
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 985
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 986
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 987
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 988
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 989
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 990
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 991
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 992
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 993
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 994
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 995
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 996
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 997
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 998
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 999
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+	- Iteration 1000
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.0237952169
+			 Accuracy on test : 72.9508196721
+
+Computation time on 1 cores : 
+	Database extraction time : 0:00:00
+	                         Learn     Prediction
+	         Fold 1        0:01:13        0:00:01
+	         Fold 2        0:01:23        0:00:01
+	          Total        0:02:37        0:00:03
+	So a total classification time of 0:01:25.
+
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091625-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091625-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..d062fb389ed665841574f4e497aef0c6316703f8
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091625-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,14246 @@
+2016-08-24 09:16:25,238 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 09:16:25,238 INFO: Info:	 Labels used: No, Yes
+2016-08-24 09:16:25,239 INFO: Info:	 Length of dataset:347
+2016-08-24 09:16:25,240 INFO: ### Main Programm for Multiview Classification
+2016-08-24 09:16:25,240 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 09:16:25,241 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 09:16:25,241 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 09:16:25,241 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 09:16:25,242 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 09:16:25,242 INFO: Done:	 Read Database Files
+2016-08-24 09:16:25,242 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 09:16:25,245 INFO: Done:	 Determine validation split
+2016-08-24 09:16:25,245 INFO: Start:	 Determine 2 folds
+2016-08-24 09:16:25,255 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 09:16:25,255 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 09:16:25,255 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 09:16:25,255 INFO: Done:	 Determine folds
+2016-08-24 09:16:25,255 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 09:16:25,256 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 09:16:25,256 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl_
+2016-08-24 09:16:32,562 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:16:32,563 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA__
+2016-08-24 09:16:34,472 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:16:34,473 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq_
+2016-08-24 09:16:51,458 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:16:51,458 DEBUG: 	Start:	 Gridsearch for DecisionTree on Clinic_
+2016-08-24 09:16:53,197 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:16:53,197 DEBUG: 	Start:	 Gridsearch for DecisionTree on MRNASeq
+2016-08-24 09:17:30,357 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:17:30,357 INFO: Done:	 Gridsearching best settings for monoview classifiers
+2016-08-24 09:17:30,357 INFO: 	Start:	 Fold number 1
+2016-08-24 09:17:32,053 DEBUG: 		Start:	 Iteration 1
+2016-08-24 09:17:32,069 DEBUG: 			View 0 : 0.377358490566
+2016-08-24 09:17:32,077 DEBUG: 			View 1 : 0.377358490566
+2016-08-24 09:17:32,106 DEBUG: 			View 2 : 0.622641509434
+2016-08-24 09:17:32,113 DEBUG: 			View 3 : 0.622641509434
+2016-08-24 09:17:32,155 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:17:32,230 DEBUG: 		Start:	 Iteration 2
+2016-08-24 09:17:32,247 DEBUG: 			View 0 : 0.547169811321
+2016-08-24 09:17:32,255 DEBUG: 			View 1 : 0.59748427673
+2016-08-24 09:17:32,292 DEBUG: 			View 2 : 0.547169811321
+2016-08-24 09:17:32,299 DEBUG: 			View 3 : 0.559748427673
+2016-08-24 09:17:32,344 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:17:32,475 DEBUG: 		Start:	 Iteration 3
+2016-08-24 09:17:32,492 DEBUG: 			View 0 : 0.641509433962
+2016-08-24 09:17:32,500 DEBUG: 			View 1 : 0.534591194969
+2016-08-24 09:17:32,536 DEBUG: 			View 2 : 0.389937106918
+2016-08-24 09:17:32,544 DEBUG: 			View 3 : 0.59748427673
+2016-08-24 09:17:32,597 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:17:32,792 DEBUG: 		Start:	 Iteration 4
+2016-08-24 09:17:32,808 DEBUG: 			View 0 : 0.389937106918
+2016-08-24 09:17:32,816 DEBUG: 			View 1 : 0.62893081761
+2016-08-24 09:17:32,852 DEBUG: 			View 2 : 0.389937106918
+2016-08-24 09:17:32,860 DEBUG: 			View 3 : 0.446540880503
+2016-08-24 09:17:32,915 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:17:33,165 DEBUG: 		Start:	 Iteration 5
+2016-08-24 09:17:33,182 DEBUG: 			View 0 : 0.509433962264
+2016-08-24 09:17:33,189 DEBUG: 			View 1 : 0.603773584906
+2016-08-24 09:17:33,226 DEBUG: 			View 2 : 0.62893081761
+2016-08-24 09:17:33,233 DEBUG: 			View 3 : 0.503144654088
+2016-08-24 09:17:33,291 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:17:33,599 DEBUG: 		Start:	 Iteration 6
+2016-08-24 09:17:33,615 DEBUG: 			View 0 : 0.421383647799
+2016-08-24 09:17:33,623 DEBUG: 			View 1 : 0.572327044025
+2016-08-24 09:17:33,660 DEBUG: 			View 2 : 0.553459119497
+2016-08-24 09:17:33,668 DEBUG: 			View 3 : 0.490566037736
+2016-08-24 09:17:33,727 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:17:34,092 DEBUG: 		Start:	 Iteration 7
+2016-08-24 09:17:34,109 DEBUG: 			View 0 : 0.553459119497
+2016-08-24 09:17:34,116 DEBUG: 			View 1 : 0.603773584906
+2016-08-24 09:17:34,153 DEBUG: 			View 2 : 0.610062893082
+2016-08-24 09:17:34,161 DEBUG: 			View 3 : 0.433962264151
+2016-08-24 09:17:34,223 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:17:34,661 DEBUG: 		Start:	 Iteration 8
+2016-08-24 09:17:34,677 DEBUG: 			View 0 : 0.522012578616
+2016-08-24 09:17:34,685 DEBUG: 			View 1 : 0.654088050314
+2016-08-24 09:17:34,721 DEBUG: 			View 2 : 0.48427672956
+2016-08-24 09:17:34,729 DEBUG: 			View 3 : 0.477987421384
+2016-08-24 09:17:34,793 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:17:35,289 DEBUG: 		Start:	 Iteration 9
+2016-08-24 09:17:35,305 DEBUG: 			View 0 : 0.358490566038
+2016-08-24 09:17:35,313 DEBUG: 			View 1 : 0.534591194969
+2016-08-24 09:17:35,350 DEBUG: 			View 2 : 0.522012578616
+2016-08-24 09:17:35,357 DEBUG: 			View 3 : 0.704402515723
+2016-08-24 09:17:35,424 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:17:35,976 DEBUG: 		Start:	 Iteration 10
+2016-08-24 09:17:35,992 DEBUG: 			View 0 : 0.666666666667
+2016-08-24 09:17:36,000 DEBUG: 			View 1 : 0.616352201258
+2016-08-24 09:17:36,037 DEBUG: 			View 2 : 0.415094339623
+2016-08-24 09:17:36,044 DEBUG: 			View 3 : 0.465408805031
+2016-08-24 09:17:36,112 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:17:36,725 DEBUG: 		Start:	 Iteration 11
+2016-08-24 09:17:36,742 DEBUG: 			View 0 : 0.427672955975
+2016-08-24 09:17:36,749 DEBUG: 			View 1 : 0.534591194969
+2016-08-24 09:17:36,786 DEBUG: 			View 2 : 0.446540880503
+2016-08-24 09:17:36,793 DEBUG: 			View 3 : 0.522012578616
+2016-08-24 09:17:36,864 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:17:37,731 DEBUG: 		Start:	 Iteration 12
+2016-08-24 09:17:37,748 DEBUG: 			View 0 : 0.440251572327
+2016-08-24 09:17:37,756 DEBUG: 			View 1 : 0.37106918239
+2016-08-24 09:17:37,793 DEBUG: 			View 2 : 0.553459119497
+2016-08-24 09:17:37,800 DEBUG: 			View 3 : 0.509433962264
+2016-08-24 09:17:37,874 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:17:38,629 INFO: 	Start: 	 Classification
+2016-08-24 09:17:40,368 INFO: 	Done: 	 Fold number 1
+2016-08-24 09:17:40,368 INFO: 	Start:	 Fold number 2
+2016-08-24 09:17:41,934 DEBUG: 		Start:	 Iteration 1
+2016-08-24 09:17:41,952 DEBUG: 			View 0 : 0.5
+2016-08-24 09:17:41,960 DEBUG: 			View 1 : 0.379746835443
+2016-08-24 09:17:41,988 DEBUG: 			View 2 : 0.620253164557
+2016-08-24 09:17:41,996 DEBUG: 			View 3 : 0.620253164557
+2016-08-24 09:17:42,041 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:17:42,117 DEBUG: 		Start:	 Iteration 2
+2016-08-24 09:17:42,133 DEBUG: 			View 0 : 0.436708860759
+2016-08-24 09:17:42,141 DEBUG: 			View 1 : 0.354430379747
+2016-08-24 09:17:42,178 DEBUG: 			View 2 : 0.430379746835
+2016-08-24 09:17:42,185 DEBUG: 			View 3 : 0.556962025316
+2016-08-24 09:17:42,230 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:17:42,361 DEBUG: 		Start:	 Iteration 3
+2016-08-24 09:17:42,377 DEBUG: 			View 0 : 0.481012658228
+2016-08-24 09:17:42,385 DEBUG: 			View 1 : 0.373417721519
+2016-08-24 09:17:42,421 DEBUG: 			View 2 : 0.386075949367
+2016-08-24 09:17:42,429 DEBUG: 			View 3 : 0.386075949367
+2016-08-24 09:17:42,429 WARNING: All bad for iteration 2
+2016-08-24 09:17:42,482 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:17:42,675 DEBUG: 		Start:	 Iteration 4
+2016-08-24 09:17:42,692 DEBUG: 			View 0 : 0.506329113924
+2016-08-24 09:17:42,699 DEBUG: 			View 1 : 0.544303797468
+2016-08-24 09:17:42,735 DEBUG: 			View 2 : 0.550632911392
+2016-08-24 09:17:42,743 DEBUG: 			View 3 : 0.626582278481
+2016-08-24 09:17:42,798 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:17:43,047 DEBUG: 		Start:	 Iteration 5
+2016-08-24 09:17:43,063 DEBUG: 			View 0 : 0.588607594937
+2016-08-24 09:17:43,071 DEBUG: 			View 1 : 0.601265822785
+2016-08-24 09:17:43,107 DEBUG: 			View 2 : 0.443037974684
+2016-08-24 09:17:43,114 DEBUG: 			View 3 : 0.544303797468
+2016-08-24 09:17:43,171 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:17:43,477 DEBUG: 		Start:	 Iteration 6
+2016-08-24 09:17:43,494 DEBUG: 			View 0 : 0.481012658228
+2016-08-24 09:17:43,501 DEBUG: 			View 1 : 0.601265822785
+2016-08-24 09:17:43,538 DEBUG: 			View 2 : 0.493670886076
+2016-08-24 09:17:43,545 DEBUG: 			View 3 : 0.493670886076
+2016-08-24 09:17:43,605 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:17:43,969 DEBUG: 		Start:	 Iteration 7
+2016-08-24 09:17:43,985 DEBUG: 			View 0 : 0.322784810127
+2016-08-24 09:17:43,993 DEBUG: 			View 1 : 0.474683544304
+2016-08-24 09:17:44,029 DEBUG: 			View 2 : 0.417721518987
+2016-08-24 09:17:44,036 DEBUG: 			View 3 : 0.601265822785
+2016-08-24 09:17:44,097 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:17:44,516 DEBUG: 		Start:	 Iteration 8
+2016-08-24 09:17:44,533 DEBUG: 			View 0 : 0.525316455696
+2016-08-24 09:17:44,540 DEBUG: 			View 1 : 0.632911392405
+2016-08-24 09:17:44,577 DEBUG: 			View 2 : 0.607594936709
+2016-08-24 09:17:44,584 DEBUG: 			View 3 : 0.411392405063
+2016-08-24 09:17:44,648 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:17:45,123 DEBUG: 		Start:	 Iteration 9
+2016-08-24 09:17:45,139 DEBUG: 			View 0 : 0.677215189873
+2016-08-24 09:17:45,147 DEBUG: 			View 1 : 0.398734177215
+2016-08-24 09:17:45,183 DEBUG: 			View 2 : 0.575949367089
+2016-08-24 09:17:45,191 DEBUG: 			View 3 : 0.462025316456
+2016-08-24 09:17:45,257 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:17:45,800 DEBUG: 		Start:	 Iteration 10
+2016-08-24 09:17:45,817 DEBUG: 			View 0 : 0.664556962025
+2016-08-24 09:17:45,825 DEBUG: 			View 1 : 0.632911392405
+2016-08-24 09:17:45,862 DEBUG: 			View 2 : 0.613924050633
+2016-08-24 09:17:45,869 DEBUG: 			View 3 : 0.601265822785
+2016-08-24 09:17:45,941 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:17:46,549 DEBUG: 		Start:	 Iteration 11
+2016-08-24 09:17:46,566 DEBUG: 			View 0 : 0.506329113924
+2016-08-24 09:17:46,573 DEBUG: 			View 1 : 0.373417721519
+2016-08-24 09:17:46,610 DEBUG: 			View 2 : 0.620253164557
+2016-08-24 09:17:46,617 DEBUG: 			View 3 : 0.563291139241
+2016-08-24 09:17:46,688 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:17:47,371 DEBUG: 		Start:	 Iteration 12
+2016-08-24 09:17:47,390 DEBUG: 			View 0 : 0.405063291139
+2016-08-24 09:17:47,399 DEBUG: 			View 1 : 0.658227848101
+2016-08-24 09:17:47,435 DEBUG: 			View 2 : 0.620253164557
+2016-08-24 09:17:47,443 DEBUG: 			View 3 : 0.626582278481
+2016-08-24 09:17:47,517 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:17:48,252 INFO: 	Start: 	 Classification
+2016-08-24 09:17:49,990 INFO: 	Done: 	 Fold number 2
+2016-08-24 09:17:49,990 INFO: Done:	 Classification
+2016-08-24 09:17:49,990 INFO: Info:	 Time for Classification: 84[s]
+2016-08-24 09:17:49,990 INFO: Start:	 Result Analysis for Mumbo
+2016-08-24 09:17:55,375 INFO: 		Result for Multiview classification with Mumbo
+
+Average accuracy :
+	-On Train : 68.4519544622
+	-On Test : 76.6393442623
+	-On Validation : 76.213592233
+
+Dataset info :
+	-Database name : ModifiedMultiOmic
+	-Labels : No, Yes
+	-Views : Methyl, MiRNA, RNASEQ, Clinical
+	-2 folds
+	- Validation set length : 103 for learning rate : 0.7
+
+Classification configuration : 
+	-Algorithm used : Mumbo 
+	-Iterations : 1000
+	-Weak Classifiers : DecisionTree with depth 1.0,  sub-sampled at 0.0075 on Methyl
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on MiRNA
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on RNASEQ
+		-DecisionTree with depth 1.0,  sub-sampled at 0.0065 on Clinical
+
+ Mean average accuracies and stats for each fold : 
+	- Fold 0
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.00585534591195
+			- Percentage of time chosen : 0.991
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.00662893081761
+			- Percentage of time chosen : 0.005
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.00616352201258
+			- Percentage of time chosen : 0.002
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.00633333333333
+			- Percentage of time chosen : 0.002
+	- Fold 1
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.00609493670886
+			- Percentage of time chosen : 0.992
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.0060253164557
+			- Percentage of time chosen : 0.004
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.00637974683544
+			- Percentage of time chosen : 0.001
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.00649367088608
+			- Percentage of time chosen : 0.003
+
+ For each iteration : 
+	- Iteration 1
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 2
+		 Fold 1
+			Accuracy on train : 59.748427673
+			Accuracy on test : 53.2786885246
+			Accuracy on validation : 67.9611650485
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 55.6962025316
+			Accuracy on test : 64.7540983607
+			Accuracy on validation : 63.1067961165
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 57.7223151023
+			 Accuracy on test : 59.0163934426
+	- Iteration 3
+		 Fold 1
+			Accuracy on train : 64.1509433962
+			Accuracy on test : 69.6721311475
+			Accuracy on validation : 75.7281553398
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 55.6962025316
+			Accuracy on test : 64.7540983607
+			Accuracy on validation : 63.1067961165
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 59.9235729639
+			 Accuracy on test : 67.2131147541
+	- Iteration 4
+		 Fold 1
+			Accuracy on train : 62.893081761
+			Accuracy on test : 71.3114754098
+			Accuracy on validation : 73.786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 62.6582278481
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 69.9029126214
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 62.7756548046
+			 Accuracy on test : 72.5409836066
+	- Iteration 5
+		 Fold 1
+			Accuracy on train : 63.5220125786
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 63.2911392405
+			Accuracy on test : 72.131147541
+			Accuracy on validation : 70.8737864078
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 63.4065759096
+			 Accuracy on test : 72.5409836066
+	- Iteration 6
+		 Fold 1
+			Accuracy on train : 62.893081761
+			Accuracy on test : 71.3114754098
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 69.9029126214
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 62.4591991084
+			 Accuracy on test : 72.5409836066
+	- Iteration 7
+		 Fold 1
+			Accuracy on train : 64.1509433962
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 74.7572815534
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 69.6721311475
+			Accuracy on validation : 70.8737864078
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 63.088129926
+			 Accuracy on test : 71.7213114754
+	- Iteration 8
+		 Fold 1
+			Accuracy on train : 62.893081761
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 65.1898734177
+			Accuracy on test : 72.131147541
+			Accuracy on validation : 73.786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 64.0414775894
+			 Accuracy on test : 73.3606557377
+	- Iteration 9
+		 Fold 1
+			Accuracy on train : 64.7798742138
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 67.7215189873
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 75.7281553398
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 66.2506966006
+			 Accuracy on test : 72.9508196721
+	- Iteration 10
+		 Fold 1
+			Accuracy on train : 66.0377358491
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 76.6990291262
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 70.8860759494
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 74.7572815534
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 68.4619058992
+			 Accuracy on test : 77.868852459
+	- Iteration 11
+		 Fold 1
+			Accuracy on train : 70.4402515723
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 72.7848101266
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 78.640776699
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 71.6125308495
+			 Accuracy on test : 75.8196721311
+	- Iteration 12
+		 Fold 1
+			Accuracy on train : 69.1823899371
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 78.640776699
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 67.7215189873
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 73.786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 68.4519544622
+			 Accuracy on test : 76.6393442623
+	- Iteration 13
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 14
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 15
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 16
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 17
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 18
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 19
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 20
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 21
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 22
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 23
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 24
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 25
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 26
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 27
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 28
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 29
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 30
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 31
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 32
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 33
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 34
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 35
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 36
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 37
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 38
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 39
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 40
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 41
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 42
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 43
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 44
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 45
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 46
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 47
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 48
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 49
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 50
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 51
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 52
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 53
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 54
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 55
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 56
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 57
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 58
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 59
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 60
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 61
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 62
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 63
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 64
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 65
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 66
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 67
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 68
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 69
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 70
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 71
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 72
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 73
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 74
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 75
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 76
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 77
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 78
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 79
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 80
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 81
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 82
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 83
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 84
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 85
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 86
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 87
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 88
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 89
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 90
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 91
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 92
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 93
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 94
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 95
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 96
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 97
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 98
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 99
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 100
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 101
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 102
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 103
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 104
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 105
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 106
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 107
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 108
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 109
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 110
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 111
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 112
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 113
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 114
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 115
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 116
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 117
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 118
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 119
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 120
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 121
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 122
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 123
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 124
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 125
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 126
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 127
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 128
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 129
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 130
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 131
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 132
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 133
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 134
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 135
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 136
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 137
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 138
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 139
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 140
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 141
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 142
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 143
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 144
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 145
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 146
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 147
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 148
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 149
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 150
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 151
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 152
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 153
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 154
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 155
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 156
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 157
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 158
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 159
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 160
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 161
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 162
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 163
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 164
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 165
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 166
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 167
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 168
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 169
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 170
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 171
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 172
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 173
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 174
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 175
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 176
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 177
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 178
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 179
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 180
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 181
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 182
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 183
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 184
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 185
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 186
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 187
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 188
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 189
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 190
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 191
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 192
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 193
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 194
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 195
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 196
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 197
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 198
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 199
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 200
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 201
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 202
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 203
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 204
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 205
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 206
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 207
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 208
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 209
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 210
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 211
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 212
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 213
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 214
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 215
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 216
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 217
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 218
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 219
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 220
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 221
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 222
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 223
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 224
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 225
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 226
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 227
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 228
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 229
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 230
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 231
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 232
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 233
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 234
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 235
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 236
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 237
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 238
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 239
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 240
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 241
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 242
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 243
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 244
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 245
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 246
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 247
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 248
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 249
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 250
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 251
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 252
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 253
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 254
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 255
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 256
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 257
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 258
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 259
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 260
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 261
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 262
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 263
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 264
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 265
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 266
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 267
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 268
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 269
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 270
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 271
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 272
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 273
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 274
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 275
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 276
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 277
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 278
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 279
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 280
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 281
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 282
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 283
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 284
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 285
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 286
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 287
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 288
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 289
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 290
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 291
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 292
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 293
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 294
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 295
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 296
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 297
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 298
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 299
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 300
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 301
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 302
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 303
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 304
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 305
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 306
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 307
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 308
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 309
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 310
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 311
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 312
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 313
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 314
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 315
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 316
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 317
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 318
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 319
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 320
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 321
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 322
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 323
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 324
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 325
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 326
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 327
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 328
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 329
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 330
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 331
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 332
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 333
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 334
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 335
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 336
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 337
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 338
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 339
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 340
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 341
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 342
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 343
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 344
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 345
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 346
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 347
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 348
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 349
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 350
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 351
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 352
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 353
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 354
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 355
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 356
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 357
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 358
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 359
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 360
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 361
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 362
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 363
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 364
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 365
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 366
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 367
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 368
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 369
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 370
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 371
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 372
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 373
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 374
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 375
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 376
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 377
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 378
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 379
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 380
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 381
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 382
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 383
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 384
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 385
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 386
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 387
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 388
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 389
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 390
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 391
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 392
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 393
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 394
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 395
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 396
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 397
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 398
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 399
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 400
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 401
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 402
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 403
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 404
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 405
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 406
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 407
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 408
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 409
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 410
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 411
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 412
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 413
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 414
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 415
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 416
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 417
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 418
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 419
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 420
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 421
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 422
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 423
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 424
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 425
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 426
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 427
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 428
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 429
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 430
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 431
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 432
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 433
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 434
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 435
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 436
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 437
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 438
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 439
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 440
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 441
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 442
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 443
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 444
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 445
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 446
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 447
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 448
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 449
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 450
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 451
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 452
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 453
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 454
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 455
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 456
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 457
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 458
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 459
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 460
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 461
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 462
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 463
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 464
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 465
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 466
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 467
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 468
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 469
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 470
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 471
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 472
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 473
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 474
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 475
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 476
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 477
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 478
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 479
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 480
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 481
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 482
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 483
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 484
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 485
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 486
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 487
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 488
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 489
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 490
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 491
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 492
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 493
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 494
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 495
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 496
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 497
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 498
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 499
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 500
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 501
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 502
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 503
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 504
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 505
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 506
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 507
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 508
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 509
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 510
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 511
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 512
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 513
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 514
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 515
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 516
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 517
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 518
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 519
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 520
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 521
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 522
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 523
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 524
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 525
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 526
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 527
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 528
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 529
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 530
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 531
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 532
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 533
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 534
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 535
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 536
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 537
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 538
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 539
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 540
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 541
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 542
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 543
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 544
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 545
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 546
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 547
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 548
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 549
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 550
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 551
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 552
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 553
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 554
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 555
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 556
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 557
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 558
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 559
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 560
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 561
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 562
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 563
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 564
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 565
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 566
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 567
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 568
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 569
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 570
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 571
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 572
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 573
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 574
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 575
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 576
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 577
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 578
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 579
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 580
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 581
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 582
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 583
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 584
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 585
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 586
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 587
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 588
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 589
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 590
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 591
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 592
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 593
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 594
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 595
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 596
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 597
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 598
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 599
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 600
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 601
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 602
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 603
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 604
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 605
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 606
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 607
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 608
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 609
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 610
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 611
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 612
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 613
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 614
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 615
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 616
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 617
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 618
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 619
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 620
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 621
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 622
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 623
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 624
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 625
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 626
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 627
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 628
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 629
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 630
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 631
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 632
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 633
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 634
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 635
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 636
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 637
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 638
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 639
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 640
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 641
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 642
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 643
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 644
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 645
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 646
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 647
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 648
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 649
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 650
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 651
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 652
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 653
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 654
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 655
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 656
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 657
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 658
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 659
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 660
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 661
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 662
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 663
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 664
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 665
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 666
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 667
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 668
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 669
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 670
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 671
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 672
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 673
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 674
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 675
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 676
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 677
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 678
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 679
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 680
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 681
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 682
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 683
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 684
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 685
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 686
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 687
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 688
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 689
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 690
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 691
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 692
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 693
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 694
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 695
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 696
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 697
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 698
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 699
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 700
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 701
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 702
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 703
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 704
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 705
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 706
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 707
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 708
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 709
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 710
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 711
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 712
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 713
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 714
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 715
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 716
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 717
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 718
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 719
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 720
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 721
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 722
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 723
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 724
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 725
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 726
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 727
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 728
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 729
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 730
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 731
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 732
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 733
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 734
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 735
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 736
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 737
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 738
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 739
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 740
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 741
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 742
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 743
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 744
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 745
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 746
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 747
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 748
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 749
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 750
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 751
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 752
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 753
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 754
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 755
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 756
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 757
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 758
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 759
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 760
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 761
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 762
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 763
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 764
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 765
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 766
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 767
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 768
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 769
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 770
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 771
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 772
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 773
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 774
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 775
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 776
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 777
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 778
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 779
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 780
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 781
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 782
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 783
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 784
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 785
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 786
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 787
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 788
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 789
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 790
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 791
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 792
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 793
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 794
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 795
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 796
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 797
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 798
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 799
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 800
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 801
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 802
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 803
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 804
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 805
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 806
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 807
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 808
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 809
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 810
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 811
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 812
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 813
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 814
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 815
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 816
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 817
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 818
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 819
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 820
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 821
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 822
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 823
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 824
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 825
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 826
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 827
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 828
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 829
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 830
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 831
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 832
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 833
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 834
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 835
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 836
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 837
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 838
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 839
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 840
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 841
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 842
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 843
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 844
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 845
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 846
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 847
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 848
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 849
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 850
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 851
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 852
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 853
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 854
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 855
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 856
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 857
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 858
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 859
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 860
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 861
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 862
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 863
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 864
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 865
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 866
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 867
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 868
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 869
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 870
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 871
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 872
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 873
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 874
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 875
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 876
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 877
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 878
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 879
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 880
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 881
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 882
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 883
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 884
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 885
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 886
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 887
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 888
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 889
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 890
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 891
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 892
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 893
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 894
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 895
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 896
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 897
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 898
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 899
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 900
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 901
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 902
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 903
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 904
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 905
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 906
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 907
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 908
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 909
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 910
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 911
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 912
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 913
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 914
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 915
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 916
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 917
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 918
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 919
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 920
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 921
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 922
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 923
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 924
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 925
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 926
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 927
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 928
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 929
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 930
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 931
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 932
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 933
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 934
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 935
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 936
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 937
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 938
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 939
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 940
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 941
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 942
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 943
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 944
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 945
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 946
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 947
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 948
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 949
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 950
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 951
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 952
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 953
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 954
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 955
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 956
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 957
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 958
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 959
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 960
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 961
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 962
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 963
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 964
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 965
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 966
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 967
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 968
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 969
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 970
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 971
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 972
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 973
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 974
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 975
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 976
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 977
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 978
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 979
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 980
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 981
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 982
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 983
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 984
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 985
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 986
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 987
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 988
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 989
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 990
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 991
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 992
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 993
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 994
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 995
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 996
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 997
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 998
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 999
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 1000
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+
+Computation time on 1 cores : 
+	Database extraction time : 0:00:00
+	                         Learn     Prediction
+	         Fold 1        0:01:13        0:00:01
+	         Fold 2        0:01:22        0:00:01
+	          Total        0:02:36        0:00:03
+	So a total classification time of 0:01:24.
+
+
+2016-08-24 09:17:56,318 INFO: Done:	 Result Analysis
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091756Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091756Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png
new file mode 100644
index 0000000000000000000000000000000000000000..f331f2fb198ab0807813fcc2584f9e9b11772d4b
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091756Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png differ
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091756Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091756Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt
new file mode 100644
index 0000000000000000000000000000000000000000..616b19abd831a756d5b4fba15edca36223933097
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-091756Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt
@@ -0,0 +1,14060 @@
+		Result for Multiview classification with Mumbo
+
+Average accuracy :
+	-On Train : 68.4519544622
+	-On Test : 76.6393442623
+	-On Validation : 76.213592233
+
+Dataset info :
+	-Database name : ModifiedMultiOmic
+	-Labels : No, Yes
+	-Views : Methyl, MiRNA, RNASEQ, Clinical
+	-2 folds
+	- Validation set length : 103 for learning rate : 0.7
+
+Classification configuration : 
+	-Algorithm used : Mumbo 
+	-Iterations : 1000
+	-Weak Classifiers : DecisionTree with depth 1.0,  sub-sampled at 0.0075 on Methyl
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on MiRNA
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on RNASEQ
+		-DecisionTree with depth 1.0,  sub-sampled at 0.0065 on Clinical
+
+ Mean average accuracies and stats for each fold : 
+	- Fold 0
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.00585534591195
+			- Percentage of time chosen : 0.991
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.00662893081761
+			- Percentage of time chosen : 0.005
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.00616352201258
+			- Percentage of time chosen : 0.002
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.00633333333333
+			- Percentage of time chosen : 0.002
+	- Fold 1
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.00609493670886
+			- Percentage of time chosen : 0.992
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.0060253164557
+			- Percentage of time chosen : 0.004
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.00637974683544
+			- Percentage of time chosen : 0.001
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.00649367088608
+			- Percentage of time chosen : 0.003
+
+ For each iteration : 
+	- Iteration 1
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 2
+		 Fold 1
+			Accuracy on train : 59.748427673
+			Accuracy on test : 53.2786885246
+			Accuracy on validation : 67.9611650485
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 55.6962025316
+			Accuracy on test : 64.7540983607
+			Accuracy on validation : 63.1067961165
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 57.7223151023
+			 Accuracy on test : 59.0163934426
+	- Iteration 3
+		 Fold 1
+			Accuracy on train : 64.1509433962
+			Accuracy on test : 69.6721311475
+			Accuracy on validation : 75.7281553398
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 55.6962025316
+			Accuracy on test : 64.7540983607
+			Accuracy on validation : 63.1067961165
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 59.9235729639
+			 Accuracy on test : 67.2131147541
+	- Iteration 4
+		 Fold 1
+			Accuracy on train : 62.893081761
+			Accuracy on test : 71.3114754098
+			Accuracy on validation : 73.786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 62.6582278481
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 69.9029126214
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 62.7756548046
+			 Accuracy on test : 72.5409836066
+	- Iteration 5
+		 Fold 1
+			Accuracy on train : 63.5220125786
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 63.2911392405
+			Accuracy on test : 72.131147541
+			Accuracy on validation : 70.8737864078
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 63.4065759096
+			 Accuracy on test : 72.5409836066
+	- Iteration 6
+		 Fold 1
+			Accuracy on train : 62.893081761
+			Accuracy on test : 71.3114754098
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 69.9029126214
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 62.4591991084
+			 Accuracy on test : 72.5409836066
+	- Iteration 7
+		 Fold 1
+			Accuracy on train : 64.1509433962
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 74.7572815534
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 69.6721311475
+			Accuracy on validation : 70.8737864078
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 63.088129926
+			 Accuracy on test : 71.7213114754
+	- Iteration 8
+		 Fold 1
+			Accuracy on train : 62.893081761
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 65.1898734177
+			Accuracy on test : 72.131147541
+			Accuracy on validation : 73.786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 64.0414775894
+			 Accuracy on test : 73.3606557377
+	- Iteration 9
+		 Fold 1
+			Accuracy on train : 64.7798742138
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 67.7215189873
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 75.7281553398
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 66.2506966006
+			 Accuracy on test : 72.9508196721
+	- Iteration 10
+		 Fold 1
+			Accuracy on train : 66.0377358491
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 76.6990291262
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 70.8860759494
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 74.7572815534
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 68.4619058992
+			 Accuracy on test : 77.868852459
+	- Iteration 11
+		 Fold 1
+			Accuracy on train : 70.4402515723
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 72.7848101266
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 78.640776699
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 71.6125308495
+			 Accuracy on test : 75.8196721311
+	- Iteration 12
+		 Fold 1
+			Accuracy on train : 69.1823899371
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 78.640776699
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 67.7215189873
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 73.786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 68.4519544622
+			 Accuracy on test : 76.6393442623
+	- Iteration 13
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 14
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 15
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 16
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 17
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 18
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 19
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 20
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 21
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 22
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 23
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 24
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 25
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 26
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 27
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 28
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 29
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 30
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 31
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 32
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 33
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 34
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 35
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 36
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 37
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 38
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 39
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 40
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 41
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 42
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 43
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 44
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 45
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 46
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 47
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 48
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 49
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 50
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 51
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 52
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 53
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 54
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 55
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 56
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 57
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 58
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 59
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 60
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 61
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 62
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 63
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 64
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 65
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 66
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 67
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 68
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 69
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 70
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 71
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 72
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 73
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 74
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 75
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 76
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 77
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 78
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 79
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 80
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 81
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 82
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 83
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 84
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 85
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 86
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 87
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 88
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 89
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 90
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 91
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 92
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 93
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 94
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 95
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 96
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 97
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 98
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 99
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 100
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 101
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 102
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 103
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 104
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 105
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 106
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 107
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 108
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 109
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 110
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 111
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 112
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 113
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 114
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 115
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 116
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 117
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 118
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 119
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 120
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 121
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 122
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 123
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 124
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 125
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 126
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 127
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 128
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 129
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 130
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 131
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 132
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 133
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 134
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 135
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 136
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 137
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 138
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 139
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 140
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 141
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 142
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 143
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 144
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 145
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 146
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 147
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 148
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 149
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 150
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 151
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 152
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 153
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 154
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 155
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 156
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 157
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 158
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 159
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 160
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 161
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 162
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 163
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 164
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 165
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 166
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 167
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 168
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 169
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 170
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 171
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 172
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 173
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 174
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 175
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 176
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 177
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 178
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 179
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 180
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 181
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 182
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 183
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 184
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 185
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 186
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 187
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 188
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 189
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 190
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 191
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 192
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 193
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 194
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 195
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 196
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 197
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 198
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 199
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 200
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 201
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 202
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 203
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 204
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 205
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 206
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 207
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 208
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 209
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 210
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 211
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 212
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 213
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 214
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 215
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 216
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 217
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 218
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 219
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 220
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 221
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 222
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 223
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 224
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 225
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 226
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 227
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 228
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 229
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 230
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 231
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 232
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 233
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 234
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 235
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 236
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 237
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 238
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 239
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 240
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 241
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 242
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 243
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 244
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 245
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 246
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 247
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 248
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 249
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 250
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 251
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 252
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 253
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 254
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 255
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 256
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 257
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 258
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 259
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 260
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 261
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 262
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 263
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 264
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 265
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 266
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 267
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 268
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 269
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 270
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 271
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 272
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 273
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 274
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 275
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 276
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 277
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 278
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 279
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 280
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 281
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 282
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 283
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 284
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 285
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 286
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 287
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 288
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 289
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 290
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 291
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 292
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 293
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 294
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 295
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 296
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 297
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 298
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 299
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 300
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 301
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 302
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 303
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 304
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 305
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 306
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 307
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 308
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 309
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 310
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 311
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 312
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 313
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 314
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 315
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 316
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 317
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 318
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 319
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 320
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 321
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 322
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 323
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 324
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 325
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 326
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 327
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 328
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 329
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 330
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 331
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 332
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 333
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 334
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 335
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 336
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 337
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 338
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 339
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 340
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 341
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 342
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 343
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 344
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 345
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 346
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 347
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 348
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 349
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 350
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 351
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 352
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 353
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 354
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 355
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 356
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 357
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 358
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 359
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 360
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 361
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 362
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 363
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 364
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 365
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 366
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 367
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 368
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 369
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 370
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 371
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 372
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 373
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 374
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 375
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 376
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 377
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 378
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 379
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 380
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 381
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 382
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 383
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 384
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 385
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 386
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 387
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 388
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 389
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 390
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 391
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 392
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 393
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 394
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 395
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 396
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 397
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 398
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 399
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 400
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 401
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 402
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 403
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 404
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 405
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 406
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 407
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 408
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 409
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 410
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 411
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 412
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 413
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 414
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 415
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 416
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 417
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 418
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 419
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 420
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 421
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 422
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 423
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 424
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 425
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 426
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 427
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 428
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 429
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 430
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 431
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 432
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 433
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 434
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 435
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 436
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 437
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 438
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 439
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 440
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 441
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 442
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 443
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 444
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 445
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 446
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 447
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 448
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 449
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 450
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 451
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 452
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 453
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 454
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 455
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 456
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 457
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 458
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 459
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 460
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 461
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 462
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 463
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 464
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 465
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 466
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 467
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 468
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 469
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 470
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 471
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 472
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 473
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 474
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 475
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 476
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 477
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 478
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 479
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 480
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 481
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 482
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 483
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 484
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 485
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 486
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 487
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 488
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 489
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 490
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 491
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 492
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 493
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 494
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 495
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 496
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 497
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 498
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 499
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 500
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 501
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 502
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 503
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 504
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 505
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 506
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 507
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 508
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 509
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 510
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 511
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 512
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 513
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 514
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 515
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 516
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 517
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 518
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 519
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 520
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 521
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 522
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 523
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 524
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 525
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 526
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 527
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 528
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 529
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 530
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 531
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 532
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 533
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 534
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 535
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 536
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 537
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 538
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 539
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 540
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 541
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 542
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 543
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 544
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 545
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 546
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 547
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 548
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 549
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 550
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 551
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 552
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 553
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 554
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 555
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 556
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 557
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 558
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 559
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 560
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 561
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 562
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 563
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 564
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 565
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 566
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 567
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 568
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 569
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 570
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 571
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 572
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 573
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 574
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 575
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 576
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 577
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 578
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 579
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 580
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 581
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 582
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 583
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 584
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 585
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 586
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 587
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 588
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 589
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 590
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 591
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 592
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 593
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 594
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 595
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 596
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 597
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 598
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 599
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 600
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 601
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 602
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 603
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 604
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 605
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 606
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 607
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 608
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 609
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 610
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 611
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 612
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 613
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 614
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 615
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 616
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 617
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 618
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 619
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 620
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 621
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 622
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 623
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 624
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 625
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 626
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 627
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 628
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 629
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 630
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 631
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 632
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 633
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 634
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 635
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 636
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 637
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 638
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 639
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 640
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 641
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 642
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 643
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 644
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 645
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 646
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 647
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 648
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 649
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 650
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 651
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 652
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 653
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 654
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 655
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 656
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 657
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 658
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 659
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 660
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 661
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 662
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 663
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 664
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 665
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 666
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 667
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 668
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 669
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 670
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 671
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 672
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 673
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 674
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 675
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 676
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 677
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 678
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 679
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 680
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 681
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 682
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 683
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 684
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 685
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 686
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 687
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 688
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 689
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 690
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 691
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 692
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 693
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 694
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 695
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 696
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 697
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 698
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 699
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 700
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 701
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 702
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 703
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 704
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 705
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 706
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 707
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 708
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 709
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 710
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 711
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 712
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 713
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 714
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 715
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 716
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 717
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 718
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 719
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 720
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 721
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 722
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 723
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 724
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 725
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 726
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 727
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 728
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 729
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 730
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 731
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 732
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 733
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 734
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 735
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 736
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 737
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 738
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 739
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 740
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 741
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 742
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 743
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 744
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 745
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 746
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 747
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 748
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 749
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 750
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 751
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 752
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 753
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 754
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 755
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 756
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 757
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 758
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 759
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 760
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 761
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 762
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 763
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 764
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 765
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 766
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 767
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 768
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 769
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 770
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 771
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 772
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 773
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 774
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 775
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 776
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 777
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 778
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 779
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 780
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 781
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 782
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 783
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 784
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 785
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 786
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 787
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 788
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 789
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 790
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 791
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 792
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 793
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 794
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 795
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 796
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 797
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 798
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 799
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 800
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 801
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 802
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 803
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 804
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 805
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 806
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 807
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 808
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 809
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 810
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 811
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 812
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 813
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 814
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 815
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 816
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 817
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 818
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 819
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 820
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 821
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 822
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 823
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 824
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 825
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 826
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 827
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 828
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 829
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 830
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 831
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 832
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 833
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 834
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 835
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 836
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 837
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 838
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 839
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 840
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 841
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 842
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 843
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 844
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 845
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 846
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 847
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 848
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 849
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 850
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 851
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 852
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 853
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 854
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 855
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 856
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 857
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 858
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 859
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 860
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 861
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 862
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 863
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 864
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 865
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 866
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 867
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 868
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 869
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 870
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 871
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 872
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 873
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 874
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 875
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 876
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 877
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 878
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 879
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 880
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 881
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 882
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 883
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 884
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 885
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 886
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 887
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 888
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 889
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 890
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 891
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 892
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 893
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 894
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 895
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 896
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 897
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 898
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 899
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 900
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 901
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 902
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 903
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 904
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 905
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 906
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 907
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 908
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 909
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 910
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 911
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 912
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 913
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 914
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 915
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 916
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 917
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 918
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 919
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 920
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 921
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 922
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 923
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 924
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 925
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 926
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 927
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 928
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 929
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 930
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 931
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 932
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 933
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 934
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 935
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 936
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 937
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 938
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 939
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 940
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 941
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 942
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 943
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 944
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 945
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 946
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 947
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 948
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 949
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 950
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 951
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 952
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 953
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 954
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 955
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 956
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 957
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 958
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 959
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 960
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 961
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 962
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 963
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 964
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 965
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 966
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 967
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 968
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 969
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 970
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 971
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 972
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 973
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 974
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 975
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 976
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 977
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 978
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 979
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 980
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 981
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 982
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 983
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 984
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 985
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 986
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 987
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 988
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 989
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 990
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 991
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 992
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 993
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 994
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 995
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 996
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 997
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 998
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 999
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+	- Iteration 1000
+		 Fold 1
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.0253164557
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1447336995
+			 Accuracy on test : 72.9508196721
+
+Computation time on 1 cores : 
+	Database extraction time : 0:00:00
+	                         Learn     Prediction
+	         Fold 1        0:01:13        0:00:01
+	         Fold 2        0:01:22        0:00:01
+	          Total        0:02:36        0:00:03
+	So a total classification time of 0:01:24.
+
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092030-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092030-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..3426f1a2d0c9e2d5664b919f9344c18a2051ad40
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092030-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,14248 @@
+2016-08-24 09:20:30,659 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 09:20:30,660 INFO: Info:	 Labels used: No, Yes
+2016-08-24 09:20:30,660 INFO: Info:	 Length of dataset:347
+2016-08-24 09:20:30,661 INFO: ### Main Programm for Multiview Classification
+2016-08-24 09:20:30,661 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 09:20:30,662 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 09:20:30,662 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 09:20:30,663 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 09:20:30,663 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 09:20:30,663 INFO: Done:	 Read Database Files
+2016-08-24 09:20:30,663 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 09:20:30,667 INFO: Done:	 Determine validation split
+2016-08-24 09:20:30,667 INFO: Start:	 Determine 2 folds
+2016-08-24 09:20:30,678 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 09:20:30,678 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 09:20:30,678 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 09:20:30,678 INFO: Done:	 Determine folds
+2016-08-24 09:20:30,678 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 09:20:30,678 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 09:20:30,679 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl_
+2016-08-24 09:20:37,995 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:20:37,995 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA__
+2016-08-24 09:20:39,915 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:20:39,916 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq_
+2016-08-24 09:20:56,530 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:20:56,530 DEBUG: 	Start:	 Gridsearch for DecisionTree on Clinic_
+2016-08-24 09:20:58,283 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:20:58,284 DEBUG: 	Start:	 Gridsearch for DecisionTree on MRNASeq
+2016-08-24 09:21:35,801 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:21:35,802 INFO: Done:	 Gridsearching best settings for monoview classifiers
+2016-08-24 09:21:35,802 INFO: 	Start:	 Fold number 1
+2016-08-24 09:21:37,555 DEBUG: 		Start:	 Iteration 1
+2016-08-24 09:21:37,575 DEBUG: 			View 0 : 0.375
+2016-08-24 09:21:37,583 DEBUG: 			View 1 : 0.625
+2016-08-24 09:21:37,620 DEBUG: 			View 2 : 0.375
+2016-08-24 09:21:37,628 DEBUG: 			View 3 : 0.625
+2016-08-24 09:21:37,670 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:21:37,743 DEBUG: 		Start:	 Iteration 2
+2016-08-24 09:21:37,760 DEBUG: 			View 0 : 0.4625
+2016-08-24 09:21:37,768 DEBUG: 			View 1 : 0.6875
+2016-08-24 09:21:37,805 DEBUG: 			View 2 : 0.5375
+2016-08-24 09:21:37,812 DEBUG: 			View 3 : 0.39375
+2016-08-24 09:21:37,858 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:21:37,989 DEBUG: 		Start:	 Iteration 3
+2016-08-24 09:21:38,006 DEBUG: 			View 0 : 0.43125
+2016-08-24 09:21:38,014 DEBUG: 			View 1 : 0.7
+2016-08-24 09:21:38,050 DEBUG: 			View 2 : 0.41875
+2016-08-24 09:21:38,058 DEBUG: 			View 3 : 0.38125
+2016-08-24 09:21:38,112 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:21:38,303 DEBUG: 		Start:	 Iteration 4
+2016-08-24 09:21:38,320 DEBUG: 			View 0 : 0.425
+2016-08-24 09:21:38,328 DEBUG: 			View 1 : 0.63125
+2016-08-24 09:21:38,365 DEBUG: 			View 2 : 0.525
+2016-08-24 09:21:38,372 DEBUG: 			View 3 : 0.44375
+2016-08-24 09:21:38,429 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:21:38,678 DEBUG: 		Start:	 Iteration 5
+2016-08-24 09:21:38,695 DEBUG: 			View 0 : 0.56875
+2016-08-24 09:21:38,703 DEBUG: 			View 1 : 0.45625
+2016-08-24 09:21:38,739 DEBUG: 			View 2 : 0.575
+2016-08-24 09:21:38,747 DEBUG: 			View 3 : 0.5125
+2016-08-24 09:21:38,806 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:21:39,130 DEBUG: 		Start:	 Iteration 6
+2016-08-24 09:21:39,147 DEBUG: 			View 0 : 0.4625
+2016-08-24 09:21:39,155 DEBUG: 			View 1 : 0.4375
+2016-08-24 09:21:39,192 DEBUG: 			View 2 : 0.54375
+2016-08-24 09:21:39,199 DEBUG: 			View 3 : 0.3875
+2016-08-24 09:21:39,260 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:21:39,657 DEBUG: 		Start:	 Iteration 7
+2016-08-24 09:21:39,673 DEBUG: 			View 0 : 0.60625
+2016-08-24 09:21:39,681 DEBUG: 			View 1 : 0.4
+2016-08-24 09:21:39,717 DEBUG: 			View 2 : 0.54375
+2016-08-24 09:21:39,725 DEBUG: 			View 3 : 0.6125
+2016-08-24 09:21:39,788 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:21:40,246 DEBUG: 		Start:	 Iteration 8
+2016-08-24 09:21:40,263 DEBUG: 			View 0 : 0.43125
+2016-08-24 09:21:40,271 DEBUG: 			View 1 : 0.7
+2016-08-24 09:21:40,307 DEBUG: 			View 2 : 0.44375
+2016-08-24 09:21:40,315 DEBUG: 			View 3 : 0.50625
+2016-08-24 09:21:40,381 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:21:40,897 DEBUG: 		Start:	 Iteration 9
+2016-08-24 09:21:40,914 DEBUG: 			View 0 : 0.41875
+2016-08-24 09:21:40,922 DEBUG: 			View 1 : 0.30625
+2016-08-24 09:21:40,961 DEBUG: 			View 2 : 0.35625
+2016-08-24 09:21:40,968 DEBUG: 			View 3 : 0.425
+2016-08-24 09:21:40,968 WARNING: All bad for iteration 8
+2016-08-24 09:21:41,036 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:21:41,611 DEBUG: 		Start:	 Iteration 10
+2016-08-24 09:21:41,628 DEBUG: 			View 0 : 0.70625
+2016-08-24 09:21:41,635 DEBUG: 			View 1 : 0.6375
+2016-08-24 09:21:41,672 DEBUG: 			View 2 : 0.55625
+2016-08-24 09:21:41,679 DEBUG: 			View 3 : 0.39375
+2016-08-24 09:21:41,750 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:21:42,388 DEBUG: 		Start:	 Iteration 11
+2016-08-24 09:21:42,404 DEBUG: 			View 0 : 0.40625
+2016-08-24 09:21:42,412 DEBUG: 			View 1 : 0.79375
+2016-08-24 09:21:42,449 DEBUG: 			View 2 : 0.425
+2016-08-24 09:21:42,456 DEBUG: 			View 3 : 0.525
+2016-08-24 09:21:42,530 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:21:43,407 DEBUG: 		Start:	 Iteration 12
+2016-08-24 09:21:43,424 DEBUG: 			View 0 : 0.4875
+2016-08-24 09:21:43,432 DEBUG: 			View 1 : 0.4625
+2016-08-24 09:21:43,468 DEBUG: 			View 2 : 0.43125
+2016-08-24 09:21:43,475 DEBUG: 			View 3 : 0.44375
+2016-08-24 09:21:43,476 WARNING: All bad for iteration 11
+2016-08-24 09:21:43,550 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:21:44,302 INFO: 	Start: 	 Classification
+2016-08-24 09:21:46,079 INFO: 	Done: 	 Fold number 1
+2016-08-24 09:21:46,079 INFO: 	Start:	 Fold number 2
+2016-08-24 09:21:47,689 DEBUG: 		Start:	 Iteration 1
+2016-08-24 09:21:47,704 DEBUG: 			View 0 : 0.37037037037
+2016-08-24 09:21:47,712 DEBUG: 			View 1 : 0.364197530864
+2016-08-24 09:21:47,741 DEBUG: 			View 2 : 0.62962962963
+2016-08-24 09:21:47,748 DEBUG: 			View 3 : 0.37037037037
+2016-08-24 09:21:47,790 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:21:47,866 DEBUG: 		Start:	 Iteration 2
+2016-08-24 09:21:47,883 DEBUG: 			View 0 : 0.475308641975
+2016-08-24 09:21:47,891 DEBUG: 			View 1 : 0.345679012346
+2016-08-24 09:21:47,928 DEBUG: 			View 2 : 0.518518518519
+2016-08-24 09:21:47,935 DEBUG: 			View 3 : 0.574074074074
+2016-08-24 09:21:47,981 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:21:48,116 DEBUG: 		Start:	 Iteration 3
+2016-08-24 09:21:48,133 DEBUG: 			View 0 : 0.530864197531
+2016-08-24 09:21:48,141 DEBUG: 			View 1 : 0.561728395062
+2016-08-24 09:21:48,177 DEBUG: 			View 2 : 0.506172839506
+2016-08-24 09:21:48,185 DEBUG: 			View 3 : 0.518518518519
+2016-08-24 09:21:48,239 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:21:48,435 DEBUG: 		Start:	 Iteration 4
+2016-08-24 09:21:48,452 DEBUG: 			View 0 : 0.450617283951
+2016-08-24 09:21:48,460 DEBUG: 			View 1 : 0.432098765432
+2016-08-24 09:21:48,497 DEBUG: 			View 2 : 0.481481481481
+2016-08-24 09:21:48,504 DEBUG: 			View 3 : 0.41975308642
+2016-08-24 09:21:48,504 WARNING: All bad for iteration 3
+2016-08-24 09:21:48,560 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:21:48,815 DEBUG: 		Start:	 Iteration 5
+2016-08-24 09:21:48,831 DEBUG: 			View 0 : 0.666666666667
+2016-08-24 09:21:48,839 DEBUG: 			View 1 : 0.487654320988
+2016-08-24 09:21:48,876 DEBUG: 			View 2 : 0.512345679012
+2016-08-24 09:21:48,884 DEBUG: 			View 3 : 0.41975308642
+2016-08-24 09:21:48,942 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:21:49,259 DEBUG: 		Start:	 Iteration 6
+2016-08-24 09:21:49,275 DEBUG: 			View 0 : 0.567901234568
+2016-08-24 09:21:49,283 DEBUG: 			View 1 : 0.703703703704
+2016-08-24 09:21:49,320 DEBUG: 			View 2 : 0.432098765432
+2016-08-24 09:21:49,328 DEBUG: 			View 3 : 0.604938271605
+2016-08-24 09:21:49,389 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:21:49,764 DEBUG: 		Start:	 Iteration 7
+2016-08-24 09:21:49,781 DEBUG: 			View 0 : 0.41975308642
+2016-08-24 09:21:49,789 DEBUG: 			View 1 : 0.617283950617
+2016-08-24 09:21:49,825 DEBUG: 			View 2 : 0.438271604938
+2016-08-24 09:21:49,833 DEBUG: 			View 3 : 0.382716049383
+2016-08-24 09:21:49,896 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:21:50,330 DEBUG: 		Start:	 Iteration 8
+2016-08-24 09:21:50,347 DEBUG: 			View 0 : 0.524691358025
+2016-08-24 09:21:50,355 DEBUG: 			View 1 : 0.574074074074
+2016-08-24 09:21:50,391 DEBUG: 			View 2 : 0.469135802469
+2016-08-24 09:21:50,398 DEBUG: 			View 3 : 0.432098765432
+2016-08-24 09:21:50,464 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:21:50,959 DEBUG: 		Start:	 Iteration 9
+2016-08-24 09:21:50,975 DEBUG: 			View 0 : 0.475308641975
+2016-08-24 09:21:50,983 DEBUG: 			View 1 : 0.432098765432
+2016-08-24 09:21:51,020 DEBUG: 			View 2 : 0.456790123457
+2016-08-24 09:21:51,028 DEBUG: 			View 3 : 0.524691358025
+2016-08-24 09:21:51,095 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:21:51,646 DEBUG: 		Start:	 Iteration 10
+2016-08-24 09:21:51,663 DEBUG: 			View 0 : 0.524691358025
+2016-08-24 09:21:51,670 DEBUG: 			View 1 : 0.395061728395
+2016-08-24 09:21:51,707 DEBUG: 			View 2 : 0.475308641975
+2016-08-24 09:21:51,714 DEBUG: 			View 3 : 0.537037037037
+2016-08-24 09:21:51,784 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:21:52,399 DEBUG: 		Start:	 Iteration 11
+2016-08-24 09:21:52,416 DEBUG: 			View 0 : 0.666666666667
+2016-08-24 09:21:52,424 DEBUG: 			View 1 : 0.574074074074
+2016-08-24 09:21:52,460 DEBUG: 			View 2 : 0.555555555556
+2016-08-24 09:21:52,467 DEBUG: 			View 3 : 0.5
+2016-08-24 09:21:52,539 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:21:53,381 DEBUG: 		Start:	 Iteration 12
+2016-08-24 09:21:53,398 DEBUG: 			View 0 : 0.512345679012
+2016-08-24 09:21:53,406 DEBUG: 			View 1 : 0.475308641975
+2016-08-24 09:21:53,442 DEBUG: 			View 2 : 0.586419753086
+2016-08-24 09:21:53,450 DEBUG: 			View 3 : 0.456790123457
+2016-08-24 09:21:53,524 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:21:54,276 INFO: 	Start: 	 Classification
+2016-08-24 09:21:56,037 INFO: 	Done: 	 Fold number 2
+2016-08-24 09:21:56,037 INFO: Done:	 Classification
+2016-08-24 09:21:56,037 INFO: Info:	 Time for Classification: 85[s]
+2016-08-24 09:21:56,037 INFO: Start:	 Result Analysis for Mumbo
+2016-08-24 09:22:01,520 INFO: 		Result for Multiview classification with Mumbo
+
+Average accuracy :
+	-On Train : 76.1072530864
+	-On Test : 79.0983606557
+	-On Validation : 83.0097087379
+
+Dataset info :
+	-Database name : ModifiedMultiOmic
+	-Labels : No, Yes
+	-Views : Methyl, MiRNA, RNASEQ, Clinical
+	-2 folds
+	- Validation set length : 103 for learning rate : 0.7
+
+Classification configuration : 
+	-Algorithm used : Mumbo 
+	-Iterations : 1000
+	-Weak Classifiers : DecisionTree with depth 1.0,  sub-sampled at 0.006 on Methyl
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on MiRNA
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on RNASEQ
+		-DecisionTree with depth 1.0,  sub-sampled at 0.008 on Clinical
+
+ Mean average accuracies and stats for each fold : 
+	- Fold 0
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.00578125
+			- Percentage of time chosen : 0.99
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.0068375
+			- Percentage of time chosen : 0.007
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.00573125
+			- Percentage of time chosen : 0.002
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.00565
+			- Percentage of time chosen : 0.001
+	- Fold 1
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.00618518518519
+			- Percentage of time chosen : 0.992
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.00596296296296
+			- Percentage of time chosen : 0.004
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.00606172839506
+			- Percentage of time chosen : 0.001
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.00574074074074
+			- Percentage of time chosen : 0.003
+
+ For each iteration : 
+	- Iteration 1
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 2
+		 Fold 1
+			Accuracy on train : 68.75
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 57.4074074074
+			Accuracy on test : 68.0327868852
+			Accuracy on validation : 70.8737864078
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 63.0787037037
+			 Accuracy on test : 72.5409836066
+	- Iteration 3
+		 Fold 1
+			Accuracy on train : 70.0
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 57.4074074074
+			Accuracy on test : 68.0327868852
+			Accuracy on validation : 70.8737864078
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 63.7037037037
+			 Accuracy on test : 72.9508196721
+	- Iteration 4
+		 Fold 1
+			Accuracy on train : 69.375
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 57.4074074074
+			Accuracy on test : 68.0327868852
+			Accuracy on validation : 70.8737864078
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 63.3912037037
+			 Accuracy on test : 74.5901639344
+	- Iteration 5
+		 Fold 1
+			Accuracy on train : 69.375
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 77.6699029126
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 60.4938271605
+			Accuracy on test : 70.4918032787
+			Accuracy on validation : 71.8446601942
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 64.9344135802
+			 Accuracy on test : 75.8196721311
+	- Iteration 6
+		 Fold 1
+			Accuracy on train : 68.75
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 76.6990291262
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 67.2839506173
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 68.0169753086
+			 Accuracy on test : 75.4098360656
+	- Iteration 7
+		 Fold 1
+			Accuracy on train : 70.0
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 66.049382716
+			Accuracy on test : 72.131147541
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 68.024691358
+			 Accuracy on test : 74.5901639344
+	- Iteration 8
+		 Fold 1
+			Accuracy on train : 75.625
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 67.2839506173
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 71.8446601942
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 71.4544753086
+			 Accuracy on test : 77.4590163934
+	- Iteration 9
+		 Fold 1
+			Accuracy on train : 75.625
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 66.049382716
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 73.786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 70.837191358
+			 Accuracy on test : 77.4590163934
+	- Iteration 10
+		 Fold 1
+			Accuracy on train : 73.75
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 70.987654321
+			Accuracy on test : 71.3114754098
+			Accuracy on validation : 74.7572815534
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 72.3688271605
+			 Accuracy on test : 76.6393442623
+	- Iteration 11
+		 Fold 1
+			Accuracy on train : 79.375
+			Accuracy on test : 85.2459016393
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 74.0740740741
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 77.6699029126
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 76.724537037
+			 Accuracy on test : 80.3278688525
+	- Iteration 12
+		 Fold 1
+			Accuracy on train : 79.375
+			Accuracy on test : 85.2459016393
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 72.8395061728
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 78.640776699
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 76.1072530864
+			 Accuracy on test : 79.0983606557
+	- Iteration 13
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 14
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 15
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 16
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 17
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 18
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 19
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 20
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 21
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 22
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 23
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 24
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 25
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 26
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 27
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 28
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 29
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 30
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 31
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 32
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 33
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 34
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 35
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 36
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 37
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 38
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 39
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 40
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 41
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 42
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 43
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 44
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 45
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 46
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 47
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 48
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 49
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 50
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 51
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 52
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 53
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 54
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 55
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 56
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 57
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 58
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 59
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 60
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 61
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 62
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 63
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 64
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 65
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 66
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 67
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 68
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 69
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 70
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 71
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 72
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 73
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 74
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 75
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 76
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 77
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 78
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 79
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 80
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 81
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 82
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 83
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 84
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 85
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 86
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 87
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 88
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 89
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 90
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 91
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 92
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 93
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 94
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 95
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 96
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 97
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 98
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 99
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 100
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 101
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 102
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 103
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 104
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 105
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 106
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 107
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 108
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 109
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 110
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 111
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 112
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 113
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 114
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 115
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 116
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 117
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 118
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 119
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 120
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 121
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 122
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 123
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 124
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 125
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 126
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 127
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 128
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 129
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 130
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 131
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 132
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 133
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 134
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 135
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 136
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 137
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 138
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 139
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 140
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 141
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 142
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 143
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 144
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 145
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 146
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 147
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 148
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 149
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 150
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 151
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 152
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 153
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 154
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 155
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 156
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 157
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 158
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 159
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 160
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 161
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 162
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 163
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 164
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 165
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 166
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 167
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 168
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 169
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 170
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 171
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 172
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 173
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 174
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 175
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 176
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 177
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 178
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 179
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 180
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 181
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 182
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 183
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 184
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 185
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 186
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 187
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 188
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 189
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 190
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 191
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 192
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 193
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 194
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 195
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 196
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 197
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 198
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 199
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 200
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 201
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 202
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 203
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 204
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 205
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 206
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 207
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 208
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 209
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 210
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 211
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 212
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 213
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 214
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 215
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 216
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 217
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 218
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 219
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 220
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 221
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 222
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 223
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 224
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 225
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 226
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 227
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 228
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 229
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 230
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 231
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 232
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 233
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 234
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 235
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 236
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 237
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 238
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 239
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 240
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 241
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 242
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 243
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 244
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 245
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 246
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 247
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 248
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 249
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 250
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 251
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 252
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 253
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 254
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 255
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 256
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 257
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 258
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 259
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 260
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 261
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 262
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 263
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 264
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 265
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 266
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 267
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 268
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 269
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 270
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 271
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 272
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 273
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 274
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 275
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 276
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 277
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 278
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 279
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 280
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 281
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 282
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 283
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 284
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 285
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 286
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 287
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 288
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 289
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 290
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 291
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 292
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 293
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 294
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 295
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 296
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 297
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 298
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 299
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 300
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 301
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 302
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 303
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 304
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 305
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 306
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 307
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 308
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 309
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 310
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 311
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 312
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 313
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 314
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 315
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 316
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 317
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 318
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 319
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 320
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 321
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 322
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 323
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 324
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 325
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 326
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 327
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 328
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 329
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 330
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 331
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 332
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 333
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 334
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 335
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 336
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 337
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 338
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 339
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 340
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 341
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 342
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 343
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 344
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 345
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 346
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 347
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 348
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 349
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 350
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 351
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 352
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 353
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 354
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 355
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 356
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 357
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 358
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 359
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 360
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 361
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 362
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 363
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 364
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 365
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 366
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 367
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 368
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 369
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 370
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 371
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 372
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 373
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 374
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 375
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 376
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 377
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 378
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 379
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 380
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 381
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 382
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 383
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 384
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 385
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 386
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 387
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 388
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 389
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 390
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 391
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 392
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 393
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 394
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 395
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 396
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 397
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 398
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 399
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 400
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 401
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 402
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 403
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 404
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 405
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 406
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 407
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 408
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 409
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 410
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 411
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 412
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 413
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 414
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 415
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 416
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 417
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 418
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 419
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 420
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 421
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 422
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 423
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 424
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 425
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 426
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 427
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 428
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 429
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 430
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 431
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 432
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 433
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 434
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 435
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 436
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 437
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 438
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 439
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 440
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 441
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 442
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 443
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 444
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 445
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 446
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 447
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 448
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 449
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 450
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 451
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 452
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 453
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 454
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 455
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 456
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 457
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 458
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 459
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 460
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 461
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 462
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 463
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 464
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 465
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 466
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 467
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 468
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 469
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 470
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 471
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 472
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 473
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 474
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 475
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 476
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 477
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 478
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 479
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 480
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 481
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 482
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 483
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 484
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 485
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 486
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 487
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 488
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 489
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 490
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 491
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 492
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 493
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 494
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 495
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 496
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 497
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 498
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 499
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 500
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 501
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 502
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 503
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 504
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 505
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 506
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 507
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 508
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 509
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 510
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 511
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 512
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 513
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 514
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 515
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 516
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 517
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 518
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 519
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 520
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 521
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 522
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 523
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 524
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 525
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 526
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 527
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 528
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 529
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 530
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 531
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 532
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 533
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 534
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 535
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 536
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 537
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 538
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 539
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 540
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 541
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 542
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 543
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 544
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 545
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 546
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 547
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 548
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 549
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 550
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 551
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 552
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 553
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 554
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 555
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 556
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 557
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 558
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 559
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 560
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 561
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 562
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 563
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 564
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 565
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 566
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 567
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 568
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 569
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 570
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 571
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 572
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 573
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 574
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 575
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 576
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 577
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 578
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 579
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 580
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 581
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 582
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 583
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 584
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 585
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 586
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 587
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 588
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 589
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 590
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 591
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 592
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 593
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 594
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 595
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 596
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 597
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 598
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 599
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 600
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 601
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 602
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 603
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 604
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 605
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 606
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 607
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 608
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 609
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 610
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 611
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 612
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 613
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 614
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 615
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 616
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 617
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 618
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 619
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 620
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 621
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 622
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 623
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 624
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 625
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 626
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 627
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 628
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 629
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 630
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 631
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 632
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 633
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 634
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 635
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 636
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 637
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 638
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 639
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 640
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 641
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 642
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 643
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 644
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 645
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 646
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 647
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 648
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 649
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 650
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 651
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 652
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 653
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 654
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 655
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 656
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 657
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 658
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 659
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 660
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 661
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 662
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 663
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 664
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 665
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 666
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 667
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 668
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 669
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 670
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 671
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 672
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 673
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 674
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 675
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 676
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 677
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 678
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 679
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 680
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 681
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 682
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 683
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 684
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 685
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 686
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 687
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 688
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 689
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 690
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 691
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 692
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 693
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 694
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 695
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 696
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 697
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 698
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 699
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 700
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 701
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 702
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 703
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 704
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 705
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 706
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 707
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 708
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 709
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 710
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 711
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 712
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 713
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 714
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 715
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 716
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 717
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 718
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 719
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 720
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 721
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 722
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 723
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 724
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 725
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 726
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 727
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 728
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 729
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 730
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 731
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 732
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 733
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 734
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 735
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 736
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 737
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 738
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 739
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 740
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 741
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 742
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 743
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 744
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 745
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 746
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 747
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 748
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 749
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 750
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 751
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 752
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 753
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 754
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 755
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 756
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 757
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 758
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 759
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 760
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 761
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 762
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 763
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 764
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 765
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 766
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 767
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 768
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 769
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 770
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 771
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 772
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 773
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 774
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 775
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 776
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 777
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 778
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 779
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 780
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 781
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 782
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 783
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 784
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 785
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 786
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 787
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 788
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 789
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 790
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 791
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 792
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 793
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 794
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 795
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 796
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 797
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 798
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 799
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 800
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 801
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 802
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 803
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 804
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 805
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 806
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 807
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 808
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 809
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 810
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 811
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 812
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 813
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 814
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 815
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 816
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 817
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 818
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 819
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 820
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 821
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 822
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 823
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 824
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 825
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 826
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 827
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 828
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 829
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 830
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 831
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 832
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 833
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 834
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 835
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 836
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 837
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 838
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 839
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 840
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 841
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 842
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 843
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 844
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 845
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 846
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 847
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 848
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 849
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 850
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 851
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 852
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 853
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 854
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 855
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 856
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 857
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 858
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 859
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 860
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 861
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 862
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 863
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 864
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 865
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 866
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 867
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 868
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 869
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 870
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 871
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 872
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 873
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 874
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 875
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 876
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 877
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 878
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 879
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 880
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 881
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 882
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 883
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 884
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 885
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 886
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 887
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 888
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 889
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 890
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 891
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 892
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 893
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 894
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 895
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 896
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 897
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 898
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 899
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 900
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 901
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 902
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 903
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 904
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 905
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 906
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 907
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 908
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 909
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 910
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 911
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 912
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 913
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 914
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 915
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 916
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 917
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 918
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 919
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 920
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 921
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 922
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 923
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 924
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 925
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 926
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 927
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 928
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 929
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 930
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 931
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 932
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 933
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 934
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 935
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 936
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 937
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 938
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 939
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 940
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 941
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 942
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 943
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 944
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 945
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 946
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 947
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 948
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 949
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 950
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 951
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 952
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 953
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 954
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 955
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 956
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 957
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 958
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 959
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 960
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 961
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 962
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 963
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 964
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 965
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 966
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 967
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 968
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 969
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 970
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 971
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 972
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 973
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 974
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 975
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 976
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 977
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 978
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 979
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 980
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 981
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 982
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 983
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 984
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 985
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 986
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 987
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 988
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 989
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 990
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 991
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 992
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 993
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 994
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 995
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 996
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 997
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 998
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 999
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 1000
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+
+Computation time on 1 cores : 
+	Database extraction time : 0:00:00
+	                         Learn     Prediction
+	         Fold 1        0:01:13        0:00:01
+	         Fold 2        0:01:23        0:00:01
+	          Total        0:02:37        0:00:03
+	So a total classification time of 0:01:25.
+
+
+2016-08-24 09:22:02,444 INFO: Done:	 Result Analysis
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092202Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092202Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png
new file mode 100644
index 0000000000000000000000000000000000000000..1e1c6469e67fa516d2b8346608b162c9c1559562
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092202Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png differ
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092202Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092202Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt
new file mode 100644
index 0000000000000000000000000000000000000000..42ada44b205287f7dbad67dc7101e17dc06f06be
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092202Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt
@@ -0,0 +1,14060 @@
+		Result for Multiview classification with Mumbo
+
+Average accuracy :
+	-On Train : 76.1072530864
+	-On Test : 79.0983606557
+	-On Validation : 83.0097087379
+
+Dataset info :
+	-Database name : ModifiedMultiOmic
+	-Labels : No, Yes
+	-Views : Methyl, MiRNA, RNASEQ, Clinical
+	-2 folds
+	- Validation set length : 103 for learning rate : 0.7
+
+Classification configuration : 
+	-Algorithm used : Mumbo 
+	-Iterations : 1000
+	-Weak Classifiers : DecisionTree with depth 1.0,  sub-sampled at 0.006 on Methyl
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on MiRNA
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on RNASEQ
+		-DecisionTree with depth 1.0,  sub-sampled at 0.008 on Clinical
+
+ Mean average accuracies and stats for each fold : 
+	- Fold 0
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.00578125
+			- Percentage of time chosen : 0.99
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.0068375
+			- Percentage of time chosen : 0.007
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.00573125
+			- Percentage of time chosen : 0.002
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.00565
+			- Percentage of time chosen : 0.001
+	- Fold 1
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.00618518518519
+			- Percentage of time chosen : 0.992
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.00596296296296
+			- Percentage of time chosen : 0.004
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.00606172839506
+			- Percentage of time chosen : 0.001
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.00574074074074
+			- Percentage of time chosen : 0.003
+
+ For each iteration : 
+	- Iteration 1
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 2
+		 Fold 1
+			Accuracy on train : 68.75
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 57.4074074074
+			Accuracy on test : 68.0327868852
+			Accuracy on validation : 70.8737864078
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 63.0787037037
+			 Accuracy on test : 72.5409836066
+	- Iteration 3
+		 Fold 1
+			Accuracy on train : 70.0
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 57.4074074074
+			Accuracy on test : 68.0327868852
+			Accuracy on validation : 70.8737864078
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 63.7037037037
+			 Accuracy on test : 72.9508196721
+	- Iteration 4
+		 Fold 1
+			Accuracy on train : 69.375
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 57.4074074074
+			Accuracy on test : 68.0327868852
+			Accuracy on validation : 70.8737864078
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 63.3912037037
+			 Accuracy on test : 74.5901639344
+	- Iteration 5
+		 Fold 1
+			Accuracy on train : 69.375
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 77.6699029126
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 60.4938271605
+			Accuracy on test : 70.4918032787
+			Accuracy on validation : 71.8446601942
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 64.9344135802
+			 Accuracy on test : 75.8196721311
+	- Iteration 6
+		 Fold 1
+			Accuracy on train : 68.75
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 76.6990291262
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 67.2839506173
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 68.0169753086
+			 Accuracy on test : 75.4098360656
+	- Iteration 7
+		 Fold 1
+			Accuracy on train : 70.0
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 66.049382716
+			Accuracy on test : 72.131147541
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 68.024691358
+			 Accuracy on test : 74.5901639344
+	- Iteration 8
+		 Fold 1
+			Accuracy on train : 75.625
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 67.2839506173
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 71.8446601942
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 71.4544753086
+			 Accuracy on test : 77.4590163934
+	- Iteration 9
+		 Fold 1
+			Accuracy on train : 75.625
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 66.049382716
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 73.786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 70.837191358
+			 Accuracy on test : 77.4590163934
+	- Iteration 10
+		 Fold 1
+			Accuracy on train : 73.75
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 70.987654321
+			Accuracy on test : 71.3114754098
+			Accuracy on validation : 74.7572815534
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 72.3688271605
+			 Accuracy on test : 76.6393442623
+	- Iteration 11
+		 Fold 1
+			Accuracy on train : 79.375
+			Accuracy on test : 85.2459016393
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 74.0740740741
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 77.6699029126
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 76.724537037
+			 Accuracy on test : 80.3278688525
+	- Iteration 12
+		 Fold 1
+			Accuracy on train : 79.375
+			Accuracy on test : 85.2459016393
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 72.8395061728
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 78.640776699
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 76.1072530864
+			 Accuracy on test : 79.0983606557
+	- Iteration 13
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 14
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 15
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 16
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 17
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 18
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 19
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 20
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 21
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 22
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 23
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 24
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 25
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 26
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 27
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 28
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 29
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 30
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 31
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 32
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 33
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 34
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 35
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 36
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 37
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 38
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 39
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 40
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 41
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 42
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 43
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 44
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 45
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 46
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 47
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 48
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 49
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 50
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 51
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 52
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 53
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 54
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 55
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 56
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 57
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 58
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 59
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 60
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 61
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 62
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 63
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 64
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 65
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 66
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 67
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 68
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 69
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 70
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 71
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 72
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 73
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 74
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 75
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 76
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 77
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 78
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 79
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 80
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 81
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 82
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 83
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 84
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 85
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 86
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 87
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 88
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 89
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 90
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 91
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 92
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 93
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 94
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 95
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 96
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 97
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 98
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 99
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 100
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 101
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 102
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 103
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 104
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 105
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 106
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 107
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 108
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 109
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 110
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 111
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 112
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 113
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 114
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 115
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 116
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 117
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 118
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 119
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 120
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 121
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 122
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 123
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 124
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 125
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 126
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 127
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 128
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 129
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 130
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 131
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 132
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 133
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 134
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 135
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 136
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 137
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 138
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 139
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 140
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 141
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 142
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 143
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 144
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 145
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 146
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 147
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 148
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 149
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 150
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 151
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 152
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 153
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 154
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 155
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 156
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 157
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 158
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 159
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 160
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 161
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 162
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 163
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 164
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 165
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 166
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 167
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 168
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 169
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 170
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 171
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 172
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 173
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 174
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 175
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 176
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 177
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 178
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 179
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 180
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 181
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 182
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 183
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 184
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 185
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 186
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 187
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 188
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 189
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 190
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 191
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 192
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 193
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 194
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 195
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 196
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 197
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 198
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 199
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 200
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 201
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 202
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 203
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 204
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 205
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 206
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 207
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 208
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 209
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 210
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 211
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 212
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 213
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 214
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 215
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 216
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 217
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 218
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 219
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 220
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 221
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 222
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 223
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 224
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 225
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 226
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 227
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 228
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 229
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 230
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 231
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 232
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 233
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 234
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 235
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 236
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 237
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 238
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 239
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 240
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 241
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 242
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 243
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 244
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 245
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 246
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 247
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 248
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 249
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 250
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 251
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 252
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 253
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 254
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 255
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 256
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 257
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 258
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 259
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 260
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 261
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 262
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 263
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 264
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 265
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 266
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 267
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 268
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 269
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 270
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 271
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 272
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 273
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 274
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 275
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 276
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 277
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 278
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 279
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 280
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 281
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 282
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 283
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 284
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 285
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 286
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 287
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 288
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 289
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 290
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 291
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 292
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 293
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 294
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 295
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 296
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 297
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 298
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 299
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 300
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 301
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 302
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 303
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 304
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 305
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 306
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 307
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 308
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 309
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 310
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 311
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 312
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 313
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 314
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 315
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 316
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 317
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 318
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 319
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 320
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 321
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 322
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 323
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 324
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 325
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 326
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 327
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 328
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 329
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 330
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 331
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 332
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 333
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 334
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 335
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 336
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 337
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 338
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 339
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 340
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 341
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 342
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 343
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 344
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 345
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 346
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 347
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 348
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 349
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 350
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 351
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 352
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 353
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 354
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 355
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 356
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 357
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 358
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 359
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 360
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 361
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 362
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 363
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 364
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 365
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 366
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 367
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 368
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 369
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 370
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 371
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 372
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 373
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 374
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 375
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 376
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 377
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 378
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 379
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 380
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 381
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 382
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 383
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 384
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 385
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 386
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 387
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 388
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 389
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 390
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 391
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 392
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 393
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 394
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 395
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 396
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 397
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 398
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 399
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 400
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 401
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 402
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 403
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 404
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 405
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 406
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 407
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 408
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 409
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 410
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 411
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 412
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 413
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 414
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 415
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 416
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 417
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 418
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 419
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 420
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 421
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 422
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 423
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 424
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 425
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 426
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 427
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 428
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 429
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 430
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 431
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 432
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 433
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 434
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 435
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 436
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 437
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 438
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 439
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 440
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 441
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 442
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 443
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 444
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 445
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 446
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 447
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 448
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 449
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 450
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 451
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 452
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 453
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 454
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 455
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 456
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 457
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 458
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 459
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 460
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 461
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 462
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 463
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 464
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 465
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 466
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 467
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 468
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 469
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 470
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 471
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 472
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 473
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 474
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 475
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 476
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 477
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 478
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 479
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 480
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 481
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 482
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 483
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 484
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 485
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 486
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 487
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 488
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 489
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 490
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 491
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 492
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 493
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 494
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 495
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 496
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 497
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 498
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 499
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 500
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 501
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 502
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 503
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 504
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 505
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 506
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 507
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 508
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 509
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 510
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 511
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 512
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 513
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 514
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 515
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 516
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 517
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 518
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 519
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 520
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 521
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 522
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 523
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 524
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 525
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 526
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 527
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 528
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 529
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 530
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 531
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 532
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 533
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 534
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 535
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 536
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 537
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 538
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 539
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 540
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 541
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 542
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 543
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 544
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 545
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 546
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 547
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 548
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 549
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 550
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 551
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 552
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 553
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 554
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 555
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 556
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 557
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 558
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 559
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 560
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 561
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 562
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 563
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 564
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 565
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 566
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 567
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 568
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 569
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 570
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 571
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 572
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 573
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 574
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 575
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 576
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 577
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 578
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 579
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 580
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 581
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 582
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 583
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 584
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 585
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 586
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 587
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 588
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 589
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 590
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 591
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 592
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 593
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 594
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 595
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 596
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 597
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 598
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 599
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 600
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 601
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 602
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 603
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 604
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 605
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 606
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 607
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 608
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 609
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 610
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 611
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 612
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 613
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 614
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 615
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 616
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 617
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 618
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 619
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 620
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 621
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 622
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 623
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 624
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 625
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 626
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 627
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 628
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 629
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 630
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 631
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 632
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 633
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 634
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 635
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 636
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 637
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 638
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 639
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 640
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 641
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 642
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 643
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 644
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 645
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 646
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 647
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 648
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 649
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 650
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 651
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 652
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 653
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 654
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 655
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 656
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 657
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 658
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 659
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 660
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 661
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 662
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 663
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 664
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 665
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 666
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 667
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 668
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 669
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 670
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 671
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 672
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 673
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 674
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 675
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 676
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 677
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 678
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 679
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 680
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 681
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 682
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 683
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 684
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 685
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 686
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 687
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 688
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 689
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 690
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 691
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 692
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 693
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 694
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 695
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 696
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 697
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 698
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 699
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 700
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 701
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 702
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 703
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 704
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 705
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 706
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 707
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 708
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 709
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 710
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 711
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 712
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 713
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 714
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 715
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 716
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 717
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 718
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 719
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 720
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 721
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 722
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 723
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 724
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 725
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 726
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 727
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 728
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 729
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 730
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 731
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 732
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 733
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 734
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 735
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 736
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 737
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 738
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 739
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 740
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 741
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 742
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 743
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 744
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 745
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 746
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 747
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 748
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 749
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 750
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 751
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 752
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 753
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 754
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 755
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 756
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 757
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 758
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 759
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 760
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 761
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 762
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 763
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 764
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 765
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 766
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 767
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 768
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 769
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 770
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 771
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 772
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 773
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 774
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 775
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 776
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 777
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 778
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 779
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 780
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 781
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 782
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 783
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 784
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 785
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 786
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 787
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 788
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 789
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 790
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 791
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 792
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 793
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 794
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 795
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 796
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 797
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 798
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 799
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 800
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 801
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 802
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 803
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 804
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 805
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 806
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 807
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 808
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 809
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 810
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 811
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 812
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 813
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 814
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 815
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 816
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 817
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 818
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 819
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 820
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 821
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 822
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 823
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 824
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 825
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 826
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 827
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 828
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 829
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 830
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 831
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 832
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 833
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 834
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 835
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 836
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 837
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 838
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 839
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 840
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 841
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 842
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 843
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 844
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 845
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 846
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 847
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 848
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 849
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 850
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 851
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 852
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 853
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 854
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 855
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 856
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 857
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 858
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 859
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 860
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 861
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 862
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 863
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 864
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 865
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 866
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 867
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 868
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 869
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 870
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 871
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 872
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 873
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 874
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 875
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 876
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 877
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 878
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 879
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 880
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 881
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 882
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 883
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 884
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 885
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 886
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 887
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 888
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 889
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 890
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 891
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 892
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 893
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 894
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 895
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 896
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 897
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 898
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 899
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 900
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 901
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 902
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 903
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 904
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 905
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 906
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 907
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 908
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 909
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 910
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 911
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 912
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 913
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 914
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 915
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 916
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 917
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 918
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 919
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 920
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 921
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 922
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 923
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 924
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 925
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 926
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 927
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 928
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 929
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 930
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 931
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 932
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 933
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 934
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 935
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 936
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 937
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 938
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 939
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 940
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 941
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 942
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 943
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 944
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 945
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 946
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 947
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 948
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 949
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 950
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 951
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 952
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 953
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 954
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 955
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 956
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 957
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 958
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 959
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 960
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 961
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 962
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 963
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 964
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 965
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 966
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 967
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 968
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 969
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 970
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 971
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 972
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 973
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 974
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 975
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 976
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 977
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 978
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 979
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 980
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 981
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 982
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 983
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 984
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 985
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 986
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 987
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 988
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 989
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 990
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 991
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 992
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 993
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 994
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 995
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 996
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 997
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 998
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 999
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+	- Iteration 1000
+		 Fold 1
+			Accuracy on train : 62.5
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.962962963
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.7314814815
+			 Accuracy on test : 72.9508196721
+
+Computation time on 1 cores : 
+	Database extraction time : 0:00:00
+	                         Learn     Prediction
+	         Fold 1        0:01:13        0:00:01
+	         Fold 2        0:01:23        0:00:01
+	          Total        0:02:37        0:00:03
+	So a total classification time of 0:01:25.
+
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092301-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092301-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..8ef0a66520ea0fc6696ae83bbfbad58b7353302f
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092301-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,557 @@
+2016-08-24 09:23:01,452 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 09:23:01,453 INFO: Info:	 Labels used: No, Yes
+2016-08-24 09:23:01,453 INFO: Info:	 Length of dataset:347
+2016-08-24 09:23:01,454 INFO: ### Main Programm for Multiview Classification
+2016-08-24 09:23:01,455 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 09:23:01,455 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 09:23:01,455 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 09:23:01,456 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 09:23:01,456 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 09:23:01,456 INFO: Done:	 Read Database Files
+2016-08-24 09:23:01,456 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 09:23:01,460 INFO: Done:	 Determine validation split
+2016-08-24 09:23:01,460 INFO: Start:	 Determine 2 folds
+2016-08-24 09:23:01,469 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 09:23:01,469 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 09:23:01,469 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 09:23:01,469 INFO: Done:	 Determine folds
+2016-08-24 09:23:01,469 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 09:23:01,469 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 09:23:01,469 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl_
+2016-08-24 09:23:08,825 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:23:08,826 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA__
+2016-08-24 09:23:10,814 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:23:10,814 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq_
+2016-08-24 09:23:27,482 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:23:27,482 DEBUG: 	Start:	 Gridsearch for DecisionTree on Clinic_
+2016-08-24 09:23:29,240 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:23:29,241 DEBUG: 	Start:	 Gridsearch for DecisionTree on MRNASeq
+2016-08-24 09:24:07,505 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:24:07,505 INFO: Done:	 Gridsearching best settings for monoview classifiers
+2016-08-24 09:24:07,505 INFO: 	Start:	 Fold number 1
+2016-08-24 09:24:09,143 DEBUG: 		Start:	 Iteration 1
+2016-08-24 09:24:09,163 DEBUG: 			View 0 : 0.596153846154
+2016-08-24 09:24:09,171 DEBUG: 			View 1 : 0.384615384615
+2016-08-24 09:24:09,198 DEBUG: 			View 2 : 0.615384615385
+2016-08-24 09:24:09,206 DEBUG: 			View 3 : 0.615384615385
+2016-08-24 09:24:09,247 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:24:09,317 DEBUG: 		Start:	 Iteration 2
+2016-08-24 09:24:09,335 DEBUG: 			View 0 : 0.5
+2016-08-24 09:24:09,342 DEBUG: 			View 1 : 0.288461538462
+2016-08-24 09:24:09,379 DEBUG: 			View 2 : 0.5
+2016-08-24 09:24:09,386 DEBUG: 			View 3 : 0.410256410256
+2016-08-24 09:24:09,432 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:24:09,567 DEBUG: 		Start:	 Iteration 3
+2016-08-24 09:24:09,584 DEBUG: 			View 0 : 0.461538461538
+2016-08-24 09:24:09,592 DEBUG: 			View 1 : 0.621794871795
+2016-08-24 09:24:09,628 DEBUG: 			View 2 : 0.532051282051
+2016-08-24 09:24:09,636 DEBUG: 			View 3 : 0.621794871795
+2016-08-24 09:24:09,689 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:24:09,884 DEBUG: 		Start:	 Iteration 4
+2016-08-24 09:24:09,900 DEBUG: 			View 0 : 0.544871794872
+2016-08-24 09:24:09,908 DEBUG: 			View 1 : 0.474358974359
+2016-08-24 09:24:09,944 DEBUG: 			View 2 : 0.442307692308
+2016-08-24 09:24:09,952 DEBUG: 			View 3 : 0.423076923077
+2016-08-24 09:24:10,007 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:24:10,258 DEBUG: 		Start:	 Iteration 5
+2016-08-24 09:24:10,275 DEBUG: 			View 0 : 0.49358974359
+2016-08-24 09:24:10,282 DEBUG: 			View 1 : 0.557692307692
+2016-08-24 09:24:10,319 DEBUG: 			View 2 : 0.596153846154
+2016-08-24 09:24:10,327 DEBUG: 			View 3 : 0.429487179487
+2016-08-24 09:24:10,384 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:24:10,714 DEBUG: 		Start:	 Iteration 6
+2016-08-24 09:24:10,731 DEBUG: 			View 0 : 0.544871794872
+2016-08-24 09:24:10,739 DEBUG: 			View 1 : 0.429487179487
+2016-08-24 09:24:10,775 DEBUG: 			View 2 : 0.608974358974
+2016-08-24 09:24:10,783 DEBUG: 			View 3 : 0.608974358974
+2016-08-24 09:24:10,843 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:24:11,237 DEBUG: 		Start:	 Iteration 7
+2016-08-24 09:24:11,253 DEBUG: 			View 0 : 0.467948717949
+2016-08-24 09:24:11,261 DEBUG: 			View 1 : 0.570512820513
+2016-08-24 09:24:11,297 DEBUG: 			View 2 : 0.403846153846
+2016-08-24 09:24:11,305 DEBUG: 			View 3 : 0.487179487179
+2016-08-24 09:24:11,367 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:24:11,817 DEBUG: 		Start:	 Iteration 8
+2016-08-24 09:24:11,834 DEBUG: 			View 0 : 0.410256410256
+2016-08-24 09:24:11,841 DEBUG: 			View 1 : 0.435897435897
+2016-08-24 09:24:11,877 DEBUG: 			View 2 : 0.615384615385
+2016-08-24 09:24:11,885 DEBUG: 			View 3 : 0.570512820513
+2016-08-24 09:24:11,949 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:24:12,494 DEBUG: 		Start:	 Iteration 9
+2016-08-24 09:24:12,510 DEBUG: 			View 0 : 0.583333333333
+2016-08-24 09:24:12,518 DEBUG: 			View 1 : 0.602564102564
+2016-08-24 09:24:12,556 DEBUG: 			View 2 : 0.391025641026
+2016-08-24 09:24:12,563 DEBUG: 			View 3 : 0.461538461538
+2016-08-24 09:24:12,633 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:24:13,242 DEBUG: 		Start:	 Iteration 10
+2016-08-24 09:24:13,269 DEBUG: 			View 0 : 0.551282051282
+2016-08-24 09:24:13,278 DEBUG: 			View 1 : 0.647435897436
+2016-08-24 09:24:13,322 DEBUG: 			View 2 : 0.551282051282
+2016-08-24 09:24:13,331 DEBUG: 			View 3 : 0.602564102564
+2016-08-24 09:24:13,410 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:24:14,046 DEBUG: 		Start:	 Iteration 11
+2016-08-24 09:24:14,063 DEBUG: 			View 0 : 0.435897435897
+2016-08-24 09:24:14,070 DEBUG: 			View 1 : 0.455128205128
+2016-08-24 09:24:14,106 DEBUG: 			View 2 : 0.416666666667
+2016-08-24 09:24:14,114 DEBUG: 			View 3 : 0.532051282051
+2016-08-24 09:24:14,187 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:24:14,942 DEBUG: 		Start:	 Iteration 12
+2016-08-24 09:24:14,963 DEBUG: 			View 0 : 0.724358974359
+2016-08-24 09:24:14,972 DEBUG: 			View 1 : 0.775641025641
+2016-08-24 09:24:15,010 DEBUG: 			View 2 : 0.467948717949
+2016-08-24 09:24:15,019 DEBUG: 			View 3 : 0.487179487179
+2016-08-24 09:24:15,094 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:24:15,834 DEBUG: 		Start:	 Iteration 13
+2016-08-24 09:24:15,853 DEBUG: 			View 0 : 0.782051282051
+2016-08-24 09:24:15,861 DEBUG: 			View 1 : 0.480769230769
+2016-08-24 09:24:15,899 DEBUG: 			View 2 : 0.538461538462
+2016-08-24 09:24:15,907 DEBUG: 			View 3 : 0.423076923077
+2016-08-24 09:24:15,982 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:24:16,787 DEBUG: 		Start:	 Iteration 14
+2016-08-24 09:24:16,804 DEBUG: 			View 0 : 0.788461538462
+2016-08-24 09:24:16,812 DEBUG: 			View 1 : 0.641025641026
+2016-08-24 09:24:16,848 DEBUG: 			View 2 : 0.564102564103
+2016-08-24 09:24:16,856 DEBUG: 			View 3 : 0.615384615385
+2016-08-24 09:24:16,934 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:24:17,794 DEBUG: 		Start:	 Iteration 15
+2016-08-24 09:24:17,810 DEBUG: 			View 0 : 0.589743589744
+2016-08-24 09:24:17,818 DEBUG: 			View 1 : 0.519230769231
+2016-08-24 09:24:17,854 DEBUG: 			View 2 : 0.403846153846
+2016-08-24 09:24:17,861 DEBUG: 			View 3 : 0.570512820513
+2016-08-24 09:24:17,941 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:24:18,865 DEBUG: 		Start:	 Iteration 16
+2016-08-24 09:24:18,882 DEBUG: 			View 0 : 0.673076923077
+2016-08-24 09:24:18,890 DEBUG: 			View 1 : 0.634615384615
+2016-08-24 09:24:18,930 DEBUG: 			View 2 : 0.461538461538
+2016-08-24 09:24:18,938 DEBUG: 			View 3 : 0.416666666667
+2016-08-24 09:24:19,022 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:24:20,318 DEBUG: 		Start:	 Iteration 17
+2016-08-24 09:24:20,347 DEBUG: 			View 0 : 0.685897435897
+2016-08-24 09:24:20,361 DEBUG: 			View 1 : 0.403846153846
+2016-08-24 09:24:20,409 DEBUG: 			View 2 : 0.50641025641
+2016-08-24 09:24:20,418 DEBUG: 			View 3 : 0.666666666667
+2016-08-24 09:24:20,513 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:24:21,727 DEBUG: 		Start:	 Iteration 18
+2016-08-24 09:24:21,746 DEBUG: 			View 0 : 0.544871794872
+2016-08-24 09:24:21,755 DEBUG: 			View 1 : 0.467948717949
+2016-08-24 09:24:21,799 DEBUG: 			View 2 : 0.576923076923
+2016-08-24 09:24:21,809 DEBUG: 			View 3 : 0.455128205128
+2016-08-24 09:24:21,907 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:24:23,082 DEBUG: 		Start:	 Iteration 19
+2016-08-24 09:24:23,100 DEBUG: 			View 0 : 0.519230769231
+2016-08-24 09:24:23,109 DEBUG: 			View 1 : 0.339743589744
+2016-08-24 09:24:23,158 DEBUG: 			View 2 : 0.525641025641
+2016-08-24 09:24:23,167 DEBUG: 			View 3 : 0.525641025641
+2016-08-24 09:24:23,274 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:24:24,497 DEBUG: 		Start:	 Iteration 20
+2016-08-24 09:24:24,515 DEBUG: 			View 0 : 0.615384615385
+2016-08-24 09:24:24,523 DEBUG: 			View 1 : 0.50641025641
+2016-08-24 09:24:24,571 DEBUG: 			View 2 : 0.384615384615
+2016-08-24 09:24:24,579 DEBUG: 			View 3 : 0.512820512821
+2016-08-24 09:24:24,674 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:24:25,966 DEBUG: 		Start:	 Iteration 21
+2016-08-24 09:24:25,984 DEBUG: 			View 0 : 0.391025641026
+2016-08-24 09:24:25,992 DEBUG: 			View 1 : 0.615384615385
+2016-08-24 09:24:26,030 DEBUG: 			View 2 : 0.480769230769
+2016-08-24 09:24:26,038 DEBUG: 			View 3 : 0.538461538462
+2016-08-24 09:24:26,133 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:24:27,438 DEBUG: 		Start:	 Iteration 22
+2016-08-24 09:24:27,455 DEBUG: 			View 0 : 0.358974358974
+2016-08-24 09:24:27,463 DEBUG: 			View 1 : 0.730769230769
+2016-08-24 09:24:27,499 DEBUG: 			View 2 : 0.557692307692
+2016-08-24 09:24:27,507 DEBUG: 			View 3 : 0.378205128205
+2016-08-24 09:24:27,603 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:24:29,071 DEBUG: 		Start:	 Iteration 23
+2016-08-24 09:24:29,087 DEBUG: 			View 0 : 0.512820512821
+2016-08-24 09:24:29,095 DEBUG: 			View 1 : 0.371794871795
+2016-08-24 09:24:29,135 DEBUG: 			View 2 : 0.487179487179
+2016-08-24 09:24:29,143 DEBUG: 			View 3 : 0.455128205128
+2016-08-24 09:24:29,243 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:24:30,754 DEBUG: 		Start:	 Iteration 24
+2016-08-24 09:24:30,771 DEBUG: 			View 0 : 0.615384615385
+2016-08-24 09:24:30,779 DEBUG: 			View 1 : 0.698717948718
+2016-08-24 09:24:30,832 DEBUG: 			View 2 : 0.49358974359
+2016-08-24 09:24:30,848 DEBUG: 			View 3 : 0.583333333333
+2016-08-24 09:24:30,972 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:24:32,536 DEBUG: 		Start:	 Iteration 25
+2016-08-24 09:24:32,553 DEBUG: 			View 0 : 0.512820512821
+2016-08-24 09:24:32,561 DEBUG: 			View 1 : 0.461538461538
+2016-08-24 09:24:32,598 DEBUG: 			View 2 : 0.532051282051
+2016-08-24 09:24:32,609 DEBUG: 			View 3 : 0.512820512821
+2016-08-24 09:24:32,735 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:24:34,372 DEBUG: 		Start:	 Iteration 26
+2016-08-24 09:24:34,395 DEBUG: 			View 0 : 0.705128205128
+2016-08-24 09:24:34,404 DEBUG: 			View 1 : 0.442307692308
+2016-08-24 09:24:34,443 DEBUG: 			View 2 : 0.5
+2016-08-24 09:24:34,451 DEBUG: 			View 3 : 0.666666666667
+2016-08-24 09:24:34,558 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:24:36,187 DEBUG: 		Start:	 Iteration 27
+2016-08-24 09:24:36,206 DEBUG: 			View 0 : 0.525641025641
+2016-08-24 09:24:36,214 DEBUG: 			View 1 : 0.429487179487
+2016-08-24 09:24:36,252 DEBUG: 			View 2 : 0.467948717949
+2016-08-24 09:24:36,260 DEBUG: 			View 3 : 0.467948717949
+2016-08-24 09:24:36,370 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:24:38,001 DEBUG: 		Start:	 Iteration 28
+2016-08-24 09:24:38,017 DEBUG: 			View 0 : 0.608974358974
+2016-08-24 09:24:38,025 DEBUG: 			View 1 : 0.448717948718
+2016-08-24 09:24:38,061 DEBUG: 			View 2 : 0.589743589744
+2016-08-24 09:24:38,069 DEBUG: 			View 3 : 0.416666666667
+2016-08-24 09:24:38,177 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:24:39,928 DEBUG: 		Start:	 Iteration 29
+2016-08-24 09:24:39,944 DEBUG: 			View 0 : 0.403846153846
+2016-08-24 09:24:39,952 DEBUG: 			View 1 : 0.410256410256
+2016-08-24 09:24:39,989 DEBUG: 			View 2 : 0.538461538462
+2016-08-24 09:24:39,997 DEBUG: 			View 3 : 0.544871794872
+2016-08-24 09:24:40,108 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:24:41,868 DEBUG: 		Start:	 Iteration 30
+2016-08-24 09:24:41,885 DEBUG: 			View 0 : 0.692307692308
+2016-08-24 09:24:41,893 DEBUG: 			View 1 : 0.49358974359
+2016-08-24 09:24:41,929 DEBUG: 			View 2 : 0.423076923077
+2016-08-24 09:24:41,937 DEBUG: 			View 3 : 0.487179487179
+2016-08-24 09:24:42,050 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:24:44,013 DEBUG: 		Start:	 Iteration 31
+2016-08-24 09:24:44,030 DEBUG: 			View 0 : 0.442307692308
+2016-08-24 09:24:44,038 DEBUG: 			View 1 : 0.576923076923
+2016-08-24 09:24:44,074 DEBUG: 			View 2 : 0.442307692308
+2016-08-24 09:24:44,082 DEBUG: 			View 3 : 0.538461538462
+2016-08-24 09:24:44,197 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:24:46,115 DEBUG: 		Start:	 Iteration 32
+2016-08-24 09:24:46,140 DEBUG: 			View 0 : 0.448717948718
+2016-08-24 09:24:46,155 DEBUG: 			View 1 : 0.326923076923
+2016-08-24 09:24:46,202 DEBUG: 			View 2 : 0.512820512821
+2016-08-24 09:24:46,212 DEBUG: 			View 3 : 0.442307692308
+2016-08-24 09:24:46,350 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:24:48,336 DEBUG: 		Start:	 Iteration 33
+2016-08-24 09:24:48,352 DEBUG: 			View 0 : 0.621794871795
+2016-08-24 09:24:48,360 DEBUG: 			View 1 : 0.50641025641
+2016-08-24 09:24:48,397 DEBUG: 			View 2 : 0.589743589744
+2016-08-24 09:24:48,405 DEBUG: 			View 3 : 0.429487179487
+2016-08-24 09:24:48,525 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:24:50,614 DEBUG: 		Start:	 Iteration 34
+2016-08-24 09:24:50,633 DEBUG: 			View 0 : 0.416666666667
+2016-08-24 09:24:50,642 DEBUG: 			View 1 : 0.391025641026
+2016-08-24 09:24:50,684 DEBUG: 			View 2 : 0.5
+2016-08-24 09:24:50,693 DEBUG: 			View 3 : 0.423076923077
+2016-08-24 09:24:50,835 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:24:53,102 DEBUG: 		Start:	 Iteration 35
+2016-08-24 09:24:53,119 DEBUG: 			View 0 : 0.564102564103
+2016-08-24 09:24:53,126 DEBUG: 			View 1 : 0.589743589744
+2016-08-24 09:24:53,163 DEBUG: 			View 2 : 0.391025641026
+2016-08-24 09:24:53,171 DEBUG: 			View 3 : 0.519230769231
+2016-08-24 09:24:53,313 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:24:55,605 DEBUG: 		Start:	 Iteration 36
+2016-08-24 09:24:55,622 DEBUG: 			View 0 : 0.448717948718
+2016-08-24 09:24:55,630 DEBUG: 			View 1 : 0.653846153846
+2016-08-24 09:24:55,667 DEBUG: 			View 2 : 0.589743589744
+2016-08-24 09:24:55,675 DEBUG: 			View 3 : 0.397435897436
+2016-08-24 09:24:55,810 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:24:58,037 DEBUG: 		Start:	 Iteration 37
+2016-08-24 09:24:58,053 DEBUG: 			View 0 : 0.461538461538
+2016-08-24 09:24:58,061 DEBUG: 			View 1 : 0.660256410256
+2016-08-24 09:24:58,098 DEBUG: 			View 2 : 0.5
+2016-08-24 09:24:58,105 DEBUG: 			View 3 : 0.525641025641
+2016-08-24 09:24:58,235 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:25:00,477 DEBUG: 		Start:	 Iteration 38
+2016-08-24 09:25:00,494 DEBUG: 			View 0 : 0.525641025641
+2016-08-24 09:25:00,502 DEBUG: 			View 1 : 0.49358974359
+2016-08-24 09:25:00,540 DEBUG: 			View 2 : 0.551282051282
+2016-08-24 09:25:00,548 DEBUG: 			View 3 : 0.519230769231
+2016-08-24 09:25:00,684 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:25:02,984 DEBUG: 		Start:	 Iteration 39
+2016-08-24 09:25:03,001 DEBUG: 			View 0 : 0.532051282051
+2016-08-24 09:25:03,008 DEBUG: 			View 1 : 0.641025641026
+2016-08-24 09:25:03,045 DEBUG: 			View 2 : 0.576923076923
+2016-08-24 09:25:03,053 DEBUG: 			View 3 : 0.647435897436
+2016-08-24 09:25:03,187 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:25:05,555 DEBUG: 		Start:	 Iteration 40
+2016-08-24 09:25:05,571 DEBUG: 			View 0 : 0.442307692308
+2016-08-24 09:25:05,579 DEBUG: 			View 1 : 0.634615384615
+2016-08-24 09:25:05,616 DEBUG: 			View 2 : 0.512820512821
+2016-08-24 09:25:05,624 DEBUG: 			View 3 : 0.532051282051
+2016-08-24 09:25:05,761 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:25:08,173 DEBUG: 		Start:	 Iteration 41
+2016-08-24 09:25:08,189 DEBUG: 			View 0 : 0.576923076923
+2016-08-24 09:25:08,197 DEBUG: 			View 1 : 0.692307692308
+2016-08-24 09:25:08,233 DEBUG: 			View 2 : 0.615384615385
+2016-08-24 09:25:08,241 DEBUG: 			View 3 : 0.589743589744
+2016-08-24 09:25:08,380 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:25:10,856 DEBUG: 		Start:	 Iteration 42
+2016-08-24 09:25:10,873 DEBUG: 			View 0 : 0.410256410256
+2016-08-24 09:25:10,881 DEBUG: 			View 1 : 0.384615384615
+2016-08-24 09:25:10,918 DEBUG: 			View 2 : 0.621794871795
+2016-08-24 09:25:10,926 DEBUG: 			View 3 : 0.564102564103
+2016-08-24 09:25:11,067 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:25:13,607 DEBUG: 		Start:	 Iteration 43
+2016-08-24 09:25:13,623 DEBUG: 			View 0 : 0.608974358974
+2016-08-24 09:25:13,631 DEBUG: 			View 1 : 0.711538461538
+2016-08-24 09:25:13,668 DEBUG: 			View 2 : 0.557692307692
+2016-08-24 09:25:13,675 DEBUG: 			View 3 : 0.589743589744
+2016-08-24 09:25:13,817 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:25:16,417 DEBUG: 		Start:	 Iteration 44
+2016-08-24 09:25:16,434 DEBUG: 			View 0 : 0.423076923077
+2016-08-24 09:25:16,442 DEBUG: 			View 1 : 0.641025641026
+2016-08-24 09:25:16,478 DEBUG: 			View 2 : 0.538461538462
+2016-08-24 09:25:16,486 DEBUG: 			View 3 : 0.608974358974
+2016-08-24 09:25:16,632 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:25:19,287 DEBUG: 		Start:	 Iteration 45
+2016-08-24 09:25:19,303 DEBUG: 			View 0 : 0.49358974359
+2016-08-24 09:25:19,311 DEBUG: 			View 1 : 0.628205128205
+2016-08-24 09:25:19,348 DEBUG: 			View 2 : 0.519230769231
+2016-08-24 09:25:19,356 DEBUG: 			View 3 : 0.544871794872
+2016-08-24 09:25:19,504 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:25:22,218 DEBUG: 		Start:	 Iteration 46
+2016-08-24 09:25:22,235 DEBUG: 			View 0 : 0.525641025641
+2016-08-24 09:25:22,243 DEBUG: 			View 1 : 0.423076923077
+2016-08-24 09:25:22,280 DEBUG: 			View 2 : 0.544871794872
+2016-08-24 09:25:22,287 DEBUG: 			View 3 : 0.416666666667
+2016-08-24 09:25:22,437 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:25:25,212 DEBUG: 		Start:	 Iteration 47
+2016-08-24 09:25:25,228 DEBUG: 			View 0 : 0.378205128205
+2016-08-24 09:25:25,236 DEBUG: 			View 1 : 0.480769230769
+2016-08-24 09:25:25,273 DEBUG: 			View 2 : 0.583333333333
+2016-08-24 09:25:25,281 DEBUG: 			View 3 : 0.570512820513
+2016-08-24 09:25:25,434 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:25:28,262 DEBUG: 		Start:	 Iteration 48
+2016-08-24 09:25:28,279 DEBUG: 			View 0 : 0.525641025641
+2016-08-24 09:25:28,287 DEBUG: 			View 1 : 0.333333333333
+2016-08-24 09:25:28,323 DEBUG: 			View 2 : 0.544871794872
+2016-08-24 09:25:28,331 DEBUG: 			View 3 : 0.435897435897
+2016-08-24 09:25:28,487 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:25:31,392 DEBUG: 		Start:	 Iteration 49
+2016-08-24 09:25:31,409 DEBUG: 			View 0 : 0.570512820513
+2016-08-24 09:25:31,416 DEBUG: 			View 1 : 0.50641025641
+2016-08-24 09:25:31,453 DEBUG: 			View 2 : 0.474358974359
+2016-08-24 09:25:31,461 DEBUG: 			View 3 : 0.461538461538
+2016-08-24 09:25:31,616 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:25:34,579 DEBUG: 		Start:	 Iteration 50
+2016-08-24 09:25:34,596 DEBUG: 			View 0 : 0.628205128205
+2016-08-24 09:25:34,604 DEBUG: 			View 1 : 0.474358974359
+2016-08-24 09:25:34,640 DEBUG: 			View 2 : 0.576923076923
+2016-08-24 09:25:34,648 DEBUG: 			View 3 : 0.519230769231
+2016-08-24 09:25:34,807 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:25:37,851 DEBUG: 		Start:	 Iteration 51
+2016-08-24 09:25:37,868 DEBUG: 			View 0 : 0.525641025641
+2016-08-24 09:25:37,876 DEBUG: 			View 1 : 0.49358974359
+2016-08-24 09:25:37,912 DEBUG: 			View 2 : 0.50641025641
+2016-08-24 09:25:37,920 DEBUG: 			View 3 : 0.397435897436
+2016-08-24 09:25:38,082 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:25:41,390 DEBUG: 		Start:	 Iteration 52
+2016-08-24 09:25:41,409 DEBUG: 			View 0 : 0.397435897436
+2016-08-24 09:25:41,417 DEBUG: 			View 1 : 0.634615384615
+2016-08-24 09:25:41,454 DEBUG: 			View 2 : 0.532051282051
+2016-08-24 09:25:41,462 DEBUG: 			View 3 : 0.416666666667
+2016-08-24 09:25:41,625 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:25:44,792 INFO: 	Start: 	 Classification
+2016-08-24 09:25:52,398 INFO: 	Done: 	 Fold number 1
+2016-08-24 09:25:52,398 INFO: 	Start:	 Fold number 2
+2016-08-24 09:25:54,031 DEBUG: 		Start:	 Iteration 1
+2016-08-24 09:25:54,047 DEBUG: 			View 0 : 0.62962962963
+2016-08-24 09:25:54,055 DEBUG: 			View 1 : 0.666666666667
+2016-08-24 09:25:54,093 DEBUG: 			View 2 : 0.623456790123
+2016-08-24 09:25:54,101 DEBUG: 			View 3 : 0.37037037037
+2016-08-24 09:25:54,143 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:25:54,215 DEBUG: 		Start:	 Iteration 2
+2016-08-24 09:25:54,233 DEBUG: 			View 0 : 0.530864197531
+2016-08-24 09:25:54,241 DEBUG: 			View 1 : 0.277777777778
+2016-08-24 09:25:54,279 DEBUG: 			View 2 : 0.41975308642
+2016-08-24 09:25:54,287 DEBUG: 			View 3 : 0.561728395062
+2016-08-24 09:25:54,340 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:25:54,473 DEBUG: 		Start:	 Iteration 3
+2016-08-24 09:25:54,491 DEBUG: 			View 0 : 0.506172839506
+2016-08-24 09:25:54,502 DEBUG: 			View 1 : 0.592592592593
+2016-08-24 09:25:54,543 DEBUG: 			View 2 : 0.549382716049
+2016-08-24 09:25:54,551 DEBUG: 			View 3 : 0.450617283951
+2016-08-24 09:25:54,607 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:25:54,799 DEBUG: 		Start:	 Iteration 4
+2016-08-24 09:25:54,817 DEBUG: 			View 0 : 0.469135802469
+2016-08-24 09:25:54,825 DEBUG: 			View 1 : 0.549382716049
+2016-08-24 09:25:54,865 DEBUG: 			View 2 : 0.487654320988
+2016-08-24 09:25:54,873 DEBUG: 			View 3 : 0.382716049383
+2016-08-24 09:25:54,931 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:25:55,184 DEBUG: 		Start:	 Iteration 5
+2016-08-24 09:25:55,202 DEBUG: 			View 0 : 0.506172839506
+2016-08-24 09:25:55,211 DEBUG: 			View 1 : 0.716049382716
+2016-08-24 09:25:55,249 DEBUG: 			View 2 : 0.469135802469
+2016-08-24 09:25:55,257 DEBUG: 			View 3 : 0.623456790123
+2016-08-24 09:25:55,325 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:25:55,645 DEBUG: 		Start:	 Iteration 6
+2016-08-24 09:25:55,663 DEBUG: 			View 0 : 0.388888888889
+2016-08-24 09:25:55,671 DEBUG: 			View 1 : 0.771604938272
+2016-08-24 09:25:55,709 DEBUG: 			View 2 : 0.598765432099
+2016-08-24 09:25:55,717 DEBUG: 			View 3 : 0.524691358025
+2016-08-24 09:25:55,779 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:25:56,151 DEBUG: 		Start:	 Iteration 7
+2016-08-24 09:25:56,168 DEBUG: 			View 0 : 0.524691358025
+2016-08-24 09:25:56,176 DEBUG: 			View 1 : 0.641975308642
+2016-08-24 09:25:56,214 DEBUG: 			View 2 : 0.506172839506
+2016-08-24 09:25:56,222 DEBUG: 			View 3 : 0.537037037037
+2016-08-24 09:25:56,288 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:25:56,721 DEBUG: 		Start:	 Iteration 8
+2016-08-24 09:25:56,738 DEBUG: 			View 0 : 0.413580246914
+2016-08-24 09:25:56,747 DEBUG: 			View 1 : 0.524691358025
+2016-08-24 09:25:56,785 DEBUG: 			View 2 : 0.586419753086
+2016-08-24 09:25:56,793 DEBUG: 			View 3 : 0.407407407407
+2016-08-24 09:25:56,862 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:25:57,369 DEBUG: 		Start:	 Iteration 9
+2016-08-24 09:25:57,386 DEBUG: 			View 0 : 0.444444444444
+2016-08-24 09:25:57,394 DEBUG: 			View 1 : 0.604938271605
+2016-08-24 09:25:57,431 DEBUG: 			View 2 : 0.444444444444
+2016-08-24 09:25:57,439 DEBUG: 			View 3 : 0.481481481481
+2016-08-24 09:25:57,507 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:25:58,072 DEBUG: 		Start:	 Iteration 10
+2016-08-24 09:25:58,089 DEBUG: 			View 0 : 0.382716049383
+2016-08-24 09:25:58,097 DEBUG: 			View 1 : 0.623456790123
+2016-08-24 09:25:58,134 DEBUG: 			View 2 : 0.617283950617
+2016-08-24 09:25:58,142 DEBUG: 			View 3 : 0.41975308642
+2016-08-24 09:25:58,213 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:25:58,839 DEBUG: 		Start:	 Iteration 11
+2016-08-24 09:25:58,856 DEBUG: 			View 0 : 0.506172839506
+2016-08-24 09:25:58,864 DEBUG: 			View 1 : 0.487654320988
+2016-08-24 09:25:58,901 DEBUG: 			View 2 : 0.530864197531
+2016-08-24 09:25:58,909 DEBUG: 			View 3 : 0.407407407407
+2016-08-24 09:25:58,983 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:25:59,688 DEBUG: 		Start:	 Iteration 12
+2016-08-24 09:25:59,705 DEBUG: 			View 0 : 0.518518518519
+2016-08-24 09:25:59,714 DEBUG: 			View 1 : 0.543209876543
+2016-08-24 09:25:59,751 DEBUG: 			View 2 : 0.530864197531
+2016-08-24 09:25:59,759 DEBUG: 			View 3 : 0.469135802469
+2016-08-24 09:25:59,835 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:26:00,606 DEBUG: 		Start:	 Iteration 13
+2016-08-24 09:26:00,623 DEBUG: 			View 0 : 0.487654320988
+2016-08-24 09:26:00,631 DEBUG: 			View 1 : 0.549382716049
+2016-08-24 09:26:00,669 DEBUG: 			View 2 : 0.413580246914
+2016-08-24 09:26:00,676 DEBUG: 			View 3 : 0.530864197531
+2016-08-24 09:26:00,756 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:26:01,578 DEBUG: 		Start:	 Iteration 14
+2016-08-24 09:26:01,595 DEBUG: 			View 0 : 0.561728395062
+2016-08-24 09:26:01,603 DEBUG: 			View 1 : 0.555555555556
+2016-08-24 09:26:01,640 DEBUG: 			View 2 : 0.537037037037
+2016-08-24 09:26:01,648 DEBUG: 			View 3 : 0.376543209877
+2016-08-24 09:26:01,729 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:26:02,647 DEBUG: 		Start:	 Iteration 15
+2016-08-24 09:26:02,664 DEBUG: 			View 0 : 0.444444444444
+2016-08-24 09:26:02,672 DEBUG: 			View 1 : 0.364197530864
+2016-08-24 09:26:02,709 DEBUG: 			View 2 : 0.450617283951
+2016-08-24 09:26:02,717 DEBUG: 			View 3 : 0.561728395062
+2016-08-24 09:26:02,800 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:26:03,734 DEBUG: 		Start:	 Iteration 16
+2016-08-24 09:26:03,751 DEBUG: 			View 0 : 0.604938271605
+2016-08-24 09:26:03,759 DEBUG: 			View 1 : 0.666666666667
+2016-08-24 09:26:03,796 DEBUG: 			View 2 : 0.530864197531
+2016-08-24 09:26:03,804 DEBUG: 			View 3 : 0.611111111111
+2016-08-24 09:26:03,888 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:26:04,879 DEBUG: 		Start:	 Iteration 17
+2016-08-24 09:26:04,896 DEBUG: 			View 0 : 0.561728395062
+2016-08-24 09:26:04,904 DEBUG: 			View 1 : 0.641975308642
+2016-08-24 09:26:04,941 DEBUG: 			View 2 : 0.450617283951
+2016-08-24 09:26:04,948 DEBUG: 			View 3 : 0.62962962963
+2016-08-24 09:26:05,035 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:26:06,079 DEBUG: 		Start:	 Iteration 18
+2016-08-24 09:26:06,096 DEBUG: 			View 0 : 0.438271604938
+2016-08-24 09:26:06,104 DEBUG: 			View 1 : 0.549382716049
+2016-08-24 09:26:06,141 DEBUG: 			View 2 : 0.493827160494
+2016-08-24 09:26:06,149 DEBUG: 			View 3 : 0.524691358025
+2016-08-24 09:26:06,238 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:26:07,352 DEBUG: 		Start:	 Iteration 19
+2016-08-24 09:26:07,369 DEBUG: 			View 0 : 0.512345679012
+2016-08-24 09:26:07,377 DEBUG: 			View 1 : 0.611111111111
+2016-08-24 09:26:07,415 DEBUG: 			View 2 : 0.617283950617
+2016-08-24 09:26:07,423 DEBUG: 			View 3 : 0.574074074074
+2016-08-24 09:26:07,517 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:26:08,688 DEBUG: 		Start:	 Iteration 20
+2016-08-24 09:26:08,705 DEBUG: 			View 0 : 0.407407407407
+2016-08-24 09:26:08,713 DEBUG: 			View 1 : 0.62962962963
+2016-08-24 09:26:08,751 DEBUG: 			View 2 : 0.549382716049
+2016-08-24 09:26:08,759 DEBUG: 			View 3 : 0.493827160494
+2016-08-24 09:26:08,855 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:26:10,080 DEBUG: 		Start:	 Iteration 21
+2016-08-24 09:26:10,097 DEBUG: 			View 0 : 0.561728395062
+2016-08-24 09:26:10,105 DEBUG: 			View 1 : 0.672839506173
+2016-08-24 09:26:10,142 DEBUG: 			View 2 : 0.648148148148
+2016-08-24 09:26:10,150 DEBUG: 			View 3 : 0.438271604938
+2016-08-24 09:26:10,246 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:26:11,549 DEBUG: 		Start:	 Iteration 22
+2016-08-24 09:26:11,566 DEBUG: 			View 0 : 0.549382716049
+2016-08-24 09:26:11,574 DEBUG: 			View 1 : 0.586419753086
+2016-08-24 09:26:11,612 DEBUG: 			View 2 : 0.450617283951
+2016-08-24 09:26:11,620 DEBUG: 			View 3 : 0.561728395062
+2016-08-24 09:26:11,718 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:26:13,055 DEBUG: 		Start:	 Iteration 23
+2016-08-24 09:26:13,072 DEBUG: 			View 0 : 0.592592592593
+2016-08-24 09:26:13,080 DEBUG: 			View 1 : 0.666666666667
+2016-08-24 09:26:13,117 DEBUG: 			View 2 : 0.62962962963
+2016-08-24 09:26:13,125 DEBUG: 			View 3 : 0.586419753086
+2016-08-24 09:26:13,226 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:26:14,621 DEBUG: 		Start:	 Iteration 24
+2016-08-24 09:26:14,638 DEBUG: 			View 0 : 0.425925925926
+2016-08-24 09:26:14,646 DEBUG: 			View 1 : 0.376543209877
+2016-08-24 09:26:14,684 DEBUG: 			View 2 : 0.475308641975
+2016-08-24 09:26:14,691 DEBUG: 			View 3 : 0.413580246914
+2016-08-24 09:26:14,692 WARNING: All bad for iteration 23
+2016-08-24 09:26:14,795 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:26:16,277 DEBUG: 		Start:	 Iteration 25
+2016-08-24 09:26:16,294 DEBUG: 			View 0 : 0.462962962963
+2016-08-24 09:26:16,302 DEBUG: 			View 1 : 0.716049382716
+2016-08-24 09:26:16,339 DEBUG: 			View 2 : 0.530864197531
+2016-08-24 09:26:16,347 DEBUG: 			View 3 : 0.401234567901
+2016-08-24 09:26:16,452 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:26:18,023 DEBUG: 		Start:	 Iteration 26
+2016-08-24 09:26:18,040 DEBUG: 			View 0 : 0.62962962963
+2016-08-24 09:26:18,048 DEBUG: 			View 1 : 0.567901234568
+2016-08-24 09:26:18,089 DEBUG: 			View 2 : 0.506172839506
+2016-08-24 09:26:18,098 DEBUG: 			View 3 : 0.567901234568
+2016-08-24 09:26:18,209 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:26:19,837 DEBUG: 		Start:	 Iteration 27
+2016-08-24 09:26:19,854 DEBUG: 			View 0 : 0.413580246914
+2016-08-24 09:26:19,862 DEBUG: 			View 1 : 0.672839506173
+2016-08-24 09:26:19,900 DEBUG: 			View 2 : 0.364197530864
+2016-08-24 09:26:19,908 DEBUG: 			View 3 : 0.469135802469
+2016-08-24 09:26:20,019 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:26:21,774 DEBUG: 		Start:	 Iteration 28
+2016-08-24 09:26:21,791 DEBUG: 			View 0 : 0.555555555556
+2016-08-24 09:26:21,799 DEBUG: 			View 1 : 0.388888888889
+2016-08-24 09:26:21,837 DEBUG: 			View 2 : 0.530864197531
+2016-08-24 09:26:21,845 DEBUG: 			View 3 : 0.561728395062
+2016-08-24 09:26:21,962 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:26:23,703 DEBUG: 		Start:	 Iteration 29
+2016-08-24 09:26:23,720 DEBUG: 			View 0 : 0.493827160494
+2016-08-24 09:26:23,728 DEBUG: 			View 1 : 0.611111111111
+2016-08-24 09:26:23,765 DEBUG: 			View 2 : 0.617283950617
+2016-08-24 09:26:23,773 DEBUG: 			View 3 : 0.438271604938
+2016-08-24 09:26:23,890 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:26:25,713 DEBUG: 		Start:	 Iteration 30
+2016-08-24 09:26:25,730 DEBUG: 			View 0 : 0.432098765432
+2016-08-24 09:26:25,739 DEBUG: 			View 1 : 0.586419753086
+2016-08-24 09:26:25,776 DEBUG: 			View 2 : 0.604938271605
+2016-08-24 09:26:25,784 DEBUG: 			View 3 : 0.617283950617
+2016-08-24 09:26:25,904 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:26:27,986 DEBUG: 		Start:	 Iteration 31
+2016-08-24 09:26:28,004 DEBUG: 			View 0 : 0.623456790123
+2016-08-24 09:26:28,013 DEBUG: 			View 1 : 0.456790123457
+2016-08-24 09:26:28,051 DEBUG: 			View 2 : 0.506172839506
+2016-08-24 09:26:28,059 DEBUG: 			View 3 : 0.376543209877
+2016-08-24 09:26:28,180 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:26:30,112 DEBUG: 		Start:	 Iteration 32
+2016-08-24 09:26:30,129 DEBUG: 			View 0 : 0.456790123457
+2016-08-24 09:26:30,137 DEBUG: 			View 1 : 0.567901234568
+2016-08-24 09:26:30,175 DEBUG: 			View 2 : 0.382716049383
+2016-08-24 09:26:30,182 DEBUG: 			View 3 : 0.567901234568
+2016-08-24 09:26:30,305 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:26:32,285 DEBUG: 		Start:	 Iteration 33
+2016-08-24 09:26:32,302 DEBUG: 			View 0 : 0.512345679012
+2016-08-24 09:26:32,310 DEBUG: 			View 1 : 0.327160493827
+2016-08-24 09:26:32,347 DEBUG: 			View 2 : 0.592592592593
+2016-08-24 09:26:32,355 DEBUG: 			View 3 : 0.487654320988
+2016-08-24 09:26:32,483 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:26:34,814 DEBUG: 		Start:	 Iteration 34
+2016-08-24 09:26:34,837 DEBUG: 			View 0 : 0.5
+2016-08-24 09:26:34,853 DEBUG: 			View 1 : 0.537037037037
+2016-08-24 09:26:34,913 DEBUG: 			View 2 : 0.487654320988
+2016-08-24 09:26:34,927 DEBUG: 			View 3 : 0.395061728395
+2016-08-24 09:26:35,074 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:26:37,180 DEBUG: 		Start:	 Iteration 35
+2016-08-24 09:26:37,197 DEBUG: 			View 0 : 0.493827160494
+2016-08-24 09:26:37,205 DEBUG: 			View 1 : 0.493827160494
+2016-08-24 09:26:37,242 DEBUG: 			View 2 : 0.512345679012
+2016-08-24 09:26:37,250 DEBUG: 			View 3 : 0.641975308642
+2016-08-24 09:26:37,379 DEBUG: 			 Best view : 		Clinic_
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092640-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092640-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..1c9b53f08823be3ad9d40d9401da83eea1f96c6a
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092640-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,50 @@
+2016-08-24 09:26:40,875 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 09:26:40,875 INFO: Info:	 Labels used: No, Yes
+2016-08-24 09:26:40,875 INFO: Info:	 Length of dataset:347
+2016-08-24 09:26:40,877 INFO: ### Main Programm for Multiview Classification
+2016-08-24 09:26:40,877 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 09:26:40,877 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 09:26:40,878 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 09:26:40,878 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 09:26:40,878 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 09:26:40,879 INFO: Done:	 Read Database Files
+2016-08-24 09:26:40,879 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 09:26:40,882 INFO: Done:	 Determine validation split
+2016-08-24 09:26:40,882 INFO: Start:	 Determine 2 folds
+2016-08-24 09:26:40,891 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 09:26:40,892 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 09:26:40,892 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 09:26:40,892 INFO: Done:	 Determine folds
+2016-08-24 09:26:40,892 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 09:26:40,892 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 09:26:40,892 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl_
+2016-08-24 09:26:48,203 DEBUG: 0.593198847262Poulet
+2016-08-24 09:26:48,203 DEBUG: 0.572910662824Poulet
+2016-08-24 09:26:48,203 DEBUG: 0.586167146974Poulet
+2016-08-24 09:26:48,203 DEBUG: 0.5134870317Poulet
+2016-08-24 09:26:48,203 DEBUG: 0.508933717579Poulet
+2016-08-24 09:26:48,203 DEBUG: 0.549682997118Poulet
+2016-08-24 09:26:48,204 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:26:48,204 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA__
+2016-08-24 09:26:50,116 DEBUG: 0.584495677233Poulet
+2016-08-24 09:26:50,117 DEBUG: 0.583342939481Poulet
+2016-08-24 09:26:50,117 DEBUG: 0.52288184438Poulet
+2016-08-24 09:26:50,117 DEBUG: 0.560691642651Poulet
+2016-08-24 09:26:50,117 DEBUG: 0.536657060519Poulet
+2016-08-24 09:26:50,117 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:26:50,117 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq_
+2016-08-24 09:27:07,105 DEBUG: 0.571469740634Poulet
+2016-08-24 09:27:07,105 DEBUG: 0.587665706052Poulet
+2016-08-24 09:27:07,105 DEBUG: 0.551527377522Poulet
+2016-08-24 09:27:07,105 DEBUG: 0.55469740634Poulet
+2016-08-24 09:27:07,105 DEBUG: 0.508760806916Poulet
+2016-08-24 09:27:07,105 DEBUG: 0.507262247839Poulet
+2016-08-24 09:27:07,106 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:27:07,107 DEBUG: 	Start:	 Gridsearch for DecisionTree on Clinic_
+2016-08-24 09:27:08,919 DEBUG: 0.583227665706Poulet
+2016-08-24 09:27:08,919 DEBUG: 0.570489913545Poulet
+2016-08-24 09:27:08,919 DEBUG: 0.55976945245Poulet
+2016-08-24 09:27:08,919 DEBUG: 0.586570605187Poulet
+2016-08-24 09:27:08,919 DEBUG: 0.516195965418Poulet
+2016-08-24 09:27:08,919 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:27:08,920 DEBUG: 	Start:	 Gridsearch for DecisionTree on MRNASeq
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092735-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092735-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..a19abd196dec9008d67213022082119af465c39d
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-092735-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,650 @@
+2016-08-24 09:27:35,426 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 09:27:35,427 INFO: Info:	 Labels used: No, Yes
+2016-08-24 09:27:35,427 INFO: Info:	 Length of dataset:347
+2016-08-24 09:27:35,428 INFO: ### Main Programm for Multiview Classification
+2016-08-24 09:27:35,428 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 09:27:35,429 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 09:27:35,429 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 09:27:35,430 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 09:27:35,430 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 09:27:35,430 INFO: Done:	 Read Database Files
+2016-08-24 09:27:35,430 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 09:27:35,433 INFO: Done:	 Determine validation split
+2016-08-24 09:27:35,434 INFO: Start:	 Determine 2 folds
+2016-08-24 09:27:35,442 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 09:27:35,442 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 09:27:35,442 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 09:27:35,442 INFO: Done:	 Determine folds
+2016-08-24 09:27:35,442 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 09:27:35,442 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 09:27:35,442 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl_
+2016-08-24 09:27:42,729 DEBUG: 0.591873198847Poulet
+2016-08-24 09:27:42,729 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:27:42,730 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA__
+2016-08-24 09:27:44,640 DEBUG: 0.569740634006Poulet
+2016-08-24 09:27:44,640 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:27:44,641 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq_
+2016-08-24 09:28:01,306 DEBUG: 0.576945244957Poulet
+2016-08-24 09:28:01,306 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:28:01,307 DEBUG: 	Start:	 Gridsearch for DecisionTree on Clinic_
+2016-08-24 09:28:03,058 DEBUG: 0.582305475504Poulet
+2016-08-24 09:28:03,058 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:28:03,058 DEBUG: 	Start:	 Gridsearch for DecisionTree on MRNASeq
+2016-08-24 09:28:40,826 DEBUG: 0.558962536023Poulet
+2016-08-24 09:28:40,827 DEBUG: 0.560518731988Poulet
+2016-08-24 09:28:40,827 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:28:40,827 INFO: Done:	 Gridsearching best settings for monoview classifiers
+2016-08-24 09:28:40,827 INFO: 	Start:	 Fold number 1
+2016-08-24 09:28:42,410 DEBUG: 		Start:	 Iteration 1
+2016-08-24 09:28:42,426 DEBUG: 			View 0 : 0.602649006623
+2016-08-24 09:28:42,433 DEBUG: 			View 1 : 0.649006622517
+2016-08-24 09:28:42,460 DEBUG: 			View 2 : 0.602649006623
+2016-08-24 09:28:42,467 DEBUG: 			View 3 : 0.602649006623
+2016-08-24 09:28:42,507 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:28:42,579 DEBUG: 		Start:	 Iteration 2
+2016-08-24 09:28:42,596 DEBUG: 			View 0 : 0.549668874172
+2016-08-24 09:28:42,603 DEBUG: 			View 1 : 0.576158940397
+2016-08-24 09:28:42,639 DEBUG: 			View 2 : 0.529801324503
+2016-08-24 09:28:42,646 DEBUG: 			View 3 : 0.576158940397
+2016-08-24 09:28:42,689 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:28:42,816 DEBUG: 		Start:	 Iteration 3
+2016-08-24 09:28:42,832 DEBUG: 			View 0 : 0.470198675497
+2016-08-24 09:28:42,840 DEBUG: 			View 1 : 0.443708609272
+2016-08-24 09:28:42,875 DEBUG: 			View 2 : 0.543046357616
+2016-08-24 09:28:42,882 DEBUG: 			View 3 : 0.443708609272
+2016-08-24 09:28:42,933 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:28:43,132 DEBUG: 		Start:	 Iteration 4
+2016-08-24 09:28:43,148 DEBUG: 			View 0 : 0.390728476821
+2016-08-24 09:28:43,155 DEBUG: 			View 1 : 0.715231788079
+2016-08-24 09:28:43,190 DEBUG: 			View 2 : 0.503311258278
+2016-08-24 09:28:43,198 DEBUG: 			View 3 : 0.483443708609
+2016-08-24 09:28:43,250 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:28:43,503 DEBUG: 		Start:	 Iteration 5
+2016-08-24 09:28:43,520 DEBUG: 			View 0 : 0.483443708609
+2016-08-24 09:28:43,527 DEBUG: 			View 1 : 0.397350993377
+2016-08-24 09:28:43,563 DEBUG: 			View 2 : 0.602649006623
+2016-08-24 09:28:43,570 DEBUG: 			View 3 : 0.629139072848
+2016-08-24 09:28:43,624 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:28:43,933 DEBUG: 		Start:	 Iteration 6
+2016-08-24 09:28:43,949 DEBUG: 			View 0 : 0.675496688742
+2016-08-24 09:28:43,956 DEBUG: 			View 1 : 0.456953642384
+2016-08-24 09:28:43,992 DEBUG: 			View 2 : 0.476821192053
+2016-08-24 09:28:43,999 DEBUG: 			View 3 : 0.503311258278
+2016-08-24 09:28:44,056 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:28:44,423 DEBUG: 		Start:	 Iteration 7
+2016-08-24 09:28:44,439 DEBUG: 			View 0 : 0.602649006623
+2016-08-24 09:28:44,447 DEBUG: 			View 1 : 0.298013245033
+2016-08-24 09:28:44,482 DEBUG: 			View 2 : 0.602649006623
+2016-08-24 09:28:44,489 DEBUG: 			View 3 : 0.569536423841
+2016-08-24 09:28:44,547 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:28:44,982 DEBUG: 		Start:	 Iteration 8
+2016-08-24 09:28:44,998 DEBUG: 			View 0 : 0.529801324503
+2016-08-24 09:28:45,005 DEBUG: 			View 1 : 0.390728476821
+2016-08-24 09:28:45,041 DEBUG: 			View 2 : 0.509933774834
+2016-08-24 09:28:45,048 DEBUG: 			View 3 : 0.509933774834
+2016-08-24 09:28:45,108 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:28:45,601 DEBUG: 		Start:	 Iteration 9
+2016-08-24 09:28:45,618 DEBUG: 			View 0 : 0.417218543046
+2016-08-24 09:28:45,625 DEBUG: 			View 1 : 0.609271523179
+2016-08-24 09:28:45,660 DEBUG: 			View 2 : 0.582781456954
+2016-08-24 09:28:45,668 DEBUG: 			View 3 : 0.476821192053
+2016-08-24 09:28:45,730 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:28:46,279 DEBUG: 		Start:	 Iteration 10
+2016-08-24 09:28:46,295 DEBUG: 			View 0 : 0.503311258278
+2016-08-24 09:28:46,303 DEBUG: 			View 1 : 0.635761589404
+2016-08-24 09:28:46,338 DEBUG: 			View 2 : 0.470198675497
+2016-08-24 09:28:46,345 DEBUG: 			View 3 : 0.58940397351
+2016-08-24 09:28:46,410 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:28:47,014 DEBUG: 		Start:	 Iteration 11
+2016-08-24 09:28:47,030 DEBUG: 			View 0 : 0.562913907285
+2016-08-24 09:28:47,038 DEBUG: 			View 1 : 0.582781456954
+2016-08-24 09:28:47,073 DEBUG: 			View 2 : 0.423841059603
+2016-08-24 09:28:47,080 DEBUG: 			View 3 : 0.549668874172
+2016-08-24 09:28:47,147 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:28:47,805 DEBUG: 		Start:	 Iteration 12
+2016-08-24 09:28:47,821 DEBUG: 			View 0 : 0.529801324503
+2016-08-24 09:28:47,829 DEBUG: 			View 1 : 0.635761589404
+2016-08-24 09:28:47,864 DEBUG: 			View 2 : 0.437086092715
+2016-08-24 09:28:47,871 DEBUG: 			View 3 : 0.576158940397
+2016-08-24 09:28:47,940 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:28:48,655 DEBUG: 		Start:	 Iteration 13
+2016-08-24 09:28:48,671 DEBUG: 			View 0 : 0.483443708609
+2016-08-24 09:28:48,679 DEBUG: 			View 1 : 0.668874172185
+2016-08-24 09:28:48,714 DEBUG: 			View 2 : 0.53642384106
+2016-08-24 09:28:48,721 DEBUG: 			View 3 : 0.430463576159
+2016-08-24 09:28:48,792 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:28:49,562 DEBUG: 		Start:	 Iteration 14
+2016-08-24 09:28:49,579 DEBUG: 			View 0 : 0.450331125828
+2016-08-24 09:28:49,586 DEBUG: 			View 1 : 0.443708609272
+2016-08-24 09:28:49,621 DEBUG: 			View 2 : 0.483443708609
+2016-08-24 09:28:49,628 DEBUG: 			View 3 : 0.423841059603
+2016-08-24 09:28:49,628 WARNING: All bad for iteration 13
+2016-08-24 09:28:49,703 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:28:50,539 DEBUG: 		Start:	 Iteration 15
+2016-08-24 09:28:50,555 DEBUG: 			View 0 : 0.470198675497
+2016-08-24 09:28:50,563 DEBUG: 			View 1 : 0.615894039735
+2016-08-24 09:28:50,598 DEBUG: 			View 2 : 0.490066225166
+2016-08-24 09:28:50,605 DEBUG: 			View 3 : 0.569536423841
+2016-08-24 09:28:50,682 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:28:51,575 DEBUG: 		Start:	 Iteration 16
+2016-08-24 09:28:51,591 DEBUG: 			View 0 : 0.456953642384
+2016-08-24 09:28:51,598 DEBUG: 			View 1 : 0.430463576159
+2016-08-24 09:28:51,633 DEBUG: 			View 2 : 0.562913907285
+2016-08-24 09:28:51,640 DEBUG: 			View 3 : 0.549668874172
+2016-08-24 09:28:51,718 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:28:52,694 DEBUG: 		Start:	 Iteration 17
+2016-08-24 09:28:52,710 DEBUG: 			View 0 : 0.403973509934
+2016-08-24 09:28:52,717 DEBUG: 			View 1 : 0.370860927152
+2016-08-24 09:28:52,752 DEBUG: 			View 2 : 0.476821192053
+2016-08-24 09:28:52,760 DEBUG: 			View 3 : 0.417218543046
+2016-08-24 09:28:52,760 WARNING: All bad for iteration 16
+2016-08-24 09:28:52,839 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:28:53,853 DEBUG: 		Start:	 Iteration 18
+2016-08-24 09:28:53,869 DEBUG: 			View 0 : 0.437086092715
+2016-08-24 09:28:53,876 DEBUG: 			View 1 : 0.483443708609
+2016-08-24 09:28:53,911 DEBUG: 			View 2 : 0.622516556291
+2016-08-24 09:28:53,918 DEBUG: 			View 3 : 0.629139072848
+2016-08-24 09:28:54,002 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:28:55,105 DEBUG: 		Start:	 Iteration 19
+2016-08-24 09:28:55,121 DEBUG: 			View 0 : 0.615894039735
+2016-08-24 09:28:55,129 DEBUG: 			View 1 : 0.430463576159
+2016-08-24 09:28:55,164 DEBUG: 			View 2 : 0.46357615894
+2016-08-24 09:28:55,171 DEBUG: 			View 3 : 0.496688741722
+2016-08-24 09:28:55,255 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:28:56,383 DEBUG: 		Start:	 Iteration 20
+2016-08-24 09:28:56,399 DEBUG: 			View 0 : 0.503311258278
+2016-08-24 09:28:56,407 DEBUG: 			View 1 : 0.602649006623
+2016-08-24 09:28:56,442 DEBUG: 			View 2 : 0.576158940397
+2016-08-24 09:28:56,449 DEBUG: 			View 3 : 0.576158940397
+2016-08-24 09:28:56,535 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:28:57,716 DEBUG: 		Start:	 Iteration 21
+2016-08-24 09:28:57,732 DEBUG: 			View 0 : 0.496688741722
+2016-08-24 09:28:57,739 DEBUG: 			View 1 : 0.46357615894
+2016-08-24 09:28:57,774 DEBUG: 			View 2 : 0.417218543046
+2016-08-24 09:28:57,781 DEBUG: 			View 3 : 0.569536423841
+2016-08-24 09:28:57,870 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:28:59,107 DEBUG: 		Start:	 Iteration 22
+2016-08-24 09:28:59,123 DEBUG: 			View 0 : 0.728476821192
+2016-08-24 09:28:59,130 DEBUG: 			View 1 : 0.350993377483
+2016-08-24 09:28:59,165 DEBUG: 			View 2 : 0.529801324503
+2016-08-24 09:28:59,172 DEBUG: 			View 3 : 0.437086092715
+2016-08-24 09:28:59,262 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:29:00,559 DEBUG: 		Start:	 Iteration 23
+2016-08-24 09:29:00,575 DEBUG: 			View 0 : 0.476821192053
+2016-08-24 09:29:00,583 DEBUG: 			View 1 : 0.609271523179
+2016-08-24 09:29:00,618 DEBUG: 			View 2 : 0.503311258278
+2016-08-24 09:29:00,625 DEBUG: 			View 3 : 0.496688741722
+2016-08-24 09:29:00,718 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:29:02,130 DEBUG: 		Start:	 Iteration 24
+2016-08-24 09:29:02,147 DEBUG: 			View 0 : 0.615894039735
+2016-08-24 09:29:02,155 DEBUG: 			View 1 : 0.397350993377
+2016-08-24 09:29:02,193 DEBUG: 			View 2 : 0.476821192053
+2016-08-24 09:29:02,201 DEBUG: 			View 3 : 0.576158940397
+2016-08-24 09:29:02,307 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:29:03,725 DEBUG: 		Start:	 Iteration 25
+2016-08-24 09:29:03,741 DEBUG: 			View 0 : 0.443708609272
+2016-08-24 09:29:03,748 DEBUG: 			View 1 : 0.615894039735
+2016-08-24 09:29:03,783 DEBUG: 			View 2 : 0.443708609272
+2016-08-24 09:29:03,790 DEBUG: 			View 3 : 0.370860927152
+2016-08-24 09:29:03,888 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:29:05,358 DEBUG: 		Start:	 Iteration 26
+2016-08-24 09:29:05,374 DEBUG: 			View 0 : 0.615894039735
+2016-08-24 09:29:05,381 DEBUG: 			View 1 : 0.556291390728
+2016-08-24 09:29:05,417 DEBUG: 			View 2 : 0.556291390728
+2016-08-24 09:29:05,425 DEBUG: 			View 3 : 0.41059602649
+2016-08-24 09:29:05,526 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:29:07,057 DEBUG: 		Start:	 Iteration 27
+2016-08-24 09:29:07,073 DEBUG: 			View 0 : 0.423841059603
+2016-08-24 09:29:07,081 DEBUG: 			View 1 : 0.688741721854
+2016-08-24 09:29:07,116 DEBUG: 			View 2 : 0.509933774834
+2016-08-24 09:29:07,123 DEBUG: 			View 3 : 0.503311258278
+2016-08-24 09:29:07,225 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:29:08,808 DEBUG: 		Start:	 Iteration 28
+2016-08-24 09:29:08,824 DEBUG: 			View 0 : 0.543046357616
+2016-08-24 09:29:08,832 DEBUG: 			View 1 : 0.675496688742
+2016-08-24 09:29:08,867 DEBUG: 			View 2 : 0.549668874172
+2016-08-24 09:29:08,874 DEBUG: 			View 3 : 0.483443708609
+2016-08-24 09:29:08,979 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:29:10,621 DEBUG: 		Start:	 Iteration 29
+2016-08-24 09:29:10,637 DEBUG: 			View 0 : 0.53642384106
+2016-08-24 09:29:10,645 DEBUG: 			View 1 : 0.701986754967
+2016-08-24 09:29:10,680 DEBUG: 			View 2 : 0.496688741722
+2016-08-24 09:29:10,687 DEBUG: 			View 3 : 0.516556291391
+2016-08-24 09:29:10,794 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:29:12,491 DEBUG: 		Start:	 Iteration 30
+2016-08-24 09:29:12,507 DEBUG: 			View 0 : 0.483443708609
+2016-08-24 09:29:12,514 DEBUG: 			View 1 : 0.615894039735
+2016-08-24 09:29:12,550 DEBUG: 			View 2 : 0.390728476821
+2016-08-24 09:29:12,557 DEBUG: 			View 3 : 0.509933774834
+2016-08-24 09:29:12,666 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:29:14,431 DEBUG: 		Start:	 Iteration 31
+2016-08-24 09:29:14,447 DEBUG: 			View 0 : 0.53642384106
+2016-08-24 09:29:14,454 DEBUG: 			View 1 : 0.58940397351
+2016-08-24 09:29:14,490 DEBUG: 			View 2 : 0.529801324503
+2016-08-24 09:29:14,497 DEBUG: 			View 3 : 0.549668874172
+2016-08-24 09:29:14,607 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:29:16,428 DEBUG: 		Start:	 Iteration 32
+2016-08-24 09:29:16,445 DEBUG: 			View 0 : 0.523178807947
+2016-08-24 09:29:16,452 DEBUG: 			View 1 : 0.483443708609
+2016-08-24 09:29:16,488 DEBUG: 			View 2 : 0.470198675497
+2016-08-24 09:29:16,495 DEBUG: 			View 3 : 0.456953642384
+2016-08-24 09:29:16,608 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:29:18,508 DEBUG: 		Start:	 Iteration 33
+2016-08-24 09:29:18,524 DEBUG: 			View 0 : 0.582781456954
+2016-08-24 09:29:18,531 DEBUG: 			View 1 : 0.662251655629
+2016-08-24 09:29:18,568 DEBUG: 			View 2 : 0.476821192053
+2016-08-24 09:29:18,575 DEBUG: 			View 3 : 0.523178807947
+2016-08-24 09:29:18,688 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:29:20,620 DEBUG: 		Start:	 Iteration 34
+2016-08-24 09:29:20,637 DEBUG: 			View 0 : 0.529801324503
+2016-08-24 09:29:20,644 DEBUG: 			View 1 : 0.450331125828
+2016-08-24 09:29:20,679 DEBUG: 			View 2 : 0.476821192053
+2016-08-24 09:29:20,686 DEBUG: 			View 3 : 0.596026490066
+2016-08-24 09:29:20,802 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:29:22,810 DEBUG: 		Start:	 Iteration 35
+2016-08-24 09:29:22,827 DEBUG: 			View 0 : 0.523178807947
+2016-08-24 09:29:22,834 DEBUG: 			View 1 : 0.582781456954
+2016-08-24 09:29:22,872 DEBUG: 			View 2 : 0.668874172185
+2016-08-24 09:29:22,880 DEBUG: 			View 3 : 0.58940397351
+2016-08-24 09:29:23,000 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:29:25,109 DEBUG: 		Start:	 Iteration 36
+2016-08-24 09:29:25,125 DEBUG: 			View 0 : 0.46357615894
+2016-08-24 09:29:25,133 DEBUG: 			View 1 : 0.390728476821
+2016-08-24 09:29:25,170 DEBUG: 			View 2 : 0.384105960265
+2016-08-24 09:29:25,178 DEBUG: 			View 3 : 0.53642384106
+2016-08-24 09:29:25,307 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:29:27,522 DEBUG: 		Start:	 Iteration 37
+2016-08-24 09:29:27,538 DEBUG: 			View 0 : 0.635761589404
+2016-08-24 09:29:27,545 DEBUG: 			View 1 : 0.476821192053
+2016-08-24 09:29:27,580 DEBUG: 			View 2 : 0.509933774834
+2016-08-24 09:29:27,588 DEBUG: 			View 3 : 0.523178807947
+2016-08-24 09:29:27,714 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:29:29,889 DEBUG: 		Start:	 Iteration 38
+2016-08-24 09:29:29,905 DEBUG: 			View 0 : 0.569536423841
+2016-08-24 09:29:29,912 DEBUG: 			View 1 : 0.64238410596
+2016-08-24 09:29:29,948 DEBUG: 			View 2 : 0.556291390728
+2016-08-24 09:29:29,955 DEBUG: 			View 3 : 0.423841059603
+2016-08-24 09:29:30,079 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:29:32,282 DEBUG: 		Start:	 Iteration 39
+2016-08-24 09:29:32,298 DEBUG: 			View 0 : 0.549668874172
+2016-08-24 09:29:32,305 DEBUG: 			View 1 : 0.562913907285
+2016-08-24 09:29:32,341 DEBUG: 			View 2 : 0.403973509934
+2016-08-24 09:29:32,348 DEBUG: 			View 3 : 0.503311258278
+2016-08-24 09:29:32,473 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:29:34,735 DEBUG: 		Start:	 Iteration 40
+2016-08-24 09:29:34,751 DEBUG: 			View 0 : 0.569536423841
+2016-08-24 09:29:34,760 DEBUG: 			View 1 : 0.437086092715
+2016-08-24 09:29:34,797 DEBUG: 			View 2 : 0.46357615894
+2016-08-24 09:29:34,804 DEBUG: 			View 3 : 0.503311258278
+2016-08-24 09:29:34,933 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:29:37,258 DEBUG: 		Start:	 Iteration 41
+2016-08-24 09:29:37,274 DEBUG: 			View 0 : 0.549668874172
+2016-08-24 09:29:37,281 DEBUG: 			View 1 : 0.708609271523
+2016-08-24 09:29:37,316 DEBUG: 			View 2 : 0.41059602649
+2016-08-24 09:29:37,323 DEBUG: 			View 3 : 0.437086092715
+2016-08-24 09:29:37,453 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:29:39,827 DEBUG: 		Start:	 Iteration 42
+2016-08-24 09:29:39,843 DEBUG: 			View 0 : 0.615894039735
+2016-08-24 09:29:39,850 DEBUG: 			View 1 : 0.549668874172
+2016-08-24 09:29:39,886 DEBUG: 			View 2 : 0.562913907285
+2016-08-24 09:29:39,893 DEBUG: 			View 3 : 0.543046357616
+2016-08-24 09:29:40,025 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:29:42,592 DEBUG: 		Start:	 Iteration 43
+2016-08-24 09:29:42,611 DEBUG: 			View 0 : 0.602649006623
+2016-08-24 09:29:42,620 DEBUG: 			View 1 : 0.549668874172
+2016-08-24 09:29:42,664 DEBUG: 			View 2 : 0.450331125828
+2016-08-24 09:29:42,673 DEBUG: 			View 3 : 0.549668874172
+2016-08-24 09:29:42,907 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:29:45,611 DEBUG: 		Start:	 Iteration 44
+2016-08-24 09:29:45,627 DEBUG: 			View 0 : 0.344370860927
+2016-08-24 09:29:45,635 DEBUG: 			View 1 : 0.582781456954
+2016-08-24 09:29:45,672 DEBUG: 			View 2 : 0.556291390728
+2016-08-24 09:29:45,679 DEBUG: 			View 3 : 0.450331125828
+2016-08-24 09:29:45,821 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:29:48,520 DEBUG: 		Start:	 Iteration 45
+2016-08-24 09:29:48,539 DEBUG: 			View 0 : 0.662251655629
+2016-08-24 09:29:48,548 DEBUG: 			View 1 : 0.596026490066
+2016-08-24 09:29:48,589 DEBUG: 			View 2 : 0.549668874172
+2016-08-24 09:29:48,597 DEBUG: 			View 3 : 0.483443708609
+2016-08-24 09:29:48,760 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:29:51,441 DEBUG: 		Start:	 Iteration 46
+2016-08-24 09:29:51,457 DEBUG: 			View 0 : 0.523178807947
+2016-08-24 09:29:51,466 DEBUG: 			View 1 : 0.64238410596
+2016-08-24 09:29:51,502 DEBUG: 			View 2 : 0.562913907285
+2016-08-24 09:29:51,510 DEBUG: 			View 3 : 0.430463576159
+2016-08-24 09:29:51,667 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:29:54,334 DEBUG: 		Start:	 Iteration 47
+2016-08-24 09:29:54,350 DEBUG: 			View 0 : 0.437086092715
+2016-08-24 09:29:54,358 DEBUG: 			View 1 : 0.53642384106
+2016-08-24 09:29:54,393 DEBUG: 			View 2 : 0.437086092715
+2016-08-24 09:29:54,401 DEBUG: 			View 3 : 0.483443708609
+2016-08-24 09:29:54,544 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:29:57,261 DEBUG: 		Start:	 Iteration 48
+2016-08-24 09:29:57,277 DEBUG: 			View 0 : 0.53642384106
+2016-08-24 09:29:57,285 DEBUG: 			View 1 : 0.569536423841
+2016-08-24 09:29:57,320 DEBUG: 			View 2 : 0.562913907285
+2016-08-24 09:29:57,327 DEBUG: 			View 3 : 0.456953642384
+2016-08-24 09:29:57,473 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:30:00,260 DEBUG: 		Start:	 Iteration 49
+2016-08-24 09:30:00,276 DEBUG: 			View 0 : 0.509933774834
+2016-08-24 09:30:00,283 DEBUG: 			View 1 : 0.41059602649
+2016-08-24 09:30:00,319 DEBUG: 			View 2 : 0.562913907285
+2016-08-24 09:30:00,326 DEBUG: 			View 3 : 0.496688741722
+2016-08-24 09:30:00,474 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:30:03,315 DEBUG: 		Start:	 Iteration 50
+2016-08-24 09:30:03,331 DEBUG: 			View 0 : 0.569536423841
+2016-08-24 09:30:03,338 DEBUG: 			View 1 : 0.437086092715
+2016-08-24 09:30:03,373 DEBUG: 			View 2 : 0.430463576159
+2016-08-24 09:30:03,381 DEBUG: 			View 3 : 0.503311258278
+2016-08-24 09:30:03,531 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:30:06,430 DEBUG: 		Start:	 Iteration 51
+2016-08-24 09:30:06,446 DEBUG: 			View 0 : 0.476821192053
+2016-08-24 09:30:06,453 DEBUG: 			View 1 : 0.602649006623
+2016-08-24 09:30:06,489 DEBUG: 			View 2 : 0.556291390728
+2016-08-24 09:30:06,496 DEBUG: 			View 3 : 0.609271523179
+2016-08-24 09:30:06,648 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:30:09,800 DEBUG: 		Start:	 Iteration 52
+2016-08-24 09:30:09,818 DEBUG: 			View 0 : 0.64238410596
+2016-08-24 09:30:09,826 DEBUG: 			View 1 : 0.490066225166
+2016-08-24 09:30:09,861 DEBUG: 			View 2 : 0.423841059603
+2016-08-24 09:30:09,868 DEBUG: 			View 3 : 0.470198675497
+2016-08-24 09:30:10,026 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:30:13,052 INFO: 	Start: 	 Classification
+2016-08-24 09:30:20,660 INFO: 	Done: 	 Fold number 1
+2016-08-24 09:30:20,660 INFO: 	Start:	 Fold number 2
+2016-08-24 09:30:22,264 DEBUG: 		Start:	 Iteration 1
+2016-08-24 09:30:22,279 DEBUG: 			View 0 : 0.62962962963
+2016-08-24 09:30:22,287 DEBUG: 			View 1 : 0.62962962963
+2016-08-24 09:30:22,315 DEBUG: 			View 2 : 0.62962962963
+2016-08-24 09:30:22,323 DEBUG: 			View 3 : 0.62962962963
+2016-08-24 09:30:22,364 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:30:22,443 DEBUG: 		Start:	 Iteration 2
+2016-08-24 09:30:22,461 DEBUG: 			View 0 : 0.432098765432
+2016-08-24 09:30:22,468 DEBUG: 			View 1 : 0.345679012346
+2016-08-24 09:30:22,506 DEBUG: 			View 2 : 0.37037037037
+2016-08-24 09:30:22,514 DEBUG: 			View 3 : 0.598765432099
+2016-08-24 09:30:22,560 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:30:22,701 DEBUG: 		Start:	 Iteration 3
+2016-08-24 09:30:22,718 DEBUG: 			View 0 : 0.481481481481
+2016-08-24 09:30:22,726 DEBUG: 			View 1 : 0.425925925926
+2016-08-24 09:30:22,764 DEBUG: 			View 2 : 0.555555555556
+2016-08-24 09:30:22,772 DEBUG: 			View 3 : 0.444444444444
+2016-08-24 09:30:22,827 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:30:23,047 DEBUG: 		Start:	 Iteration 4
+2016-08-24 09:30:23,064 DEBUG: 			View 0 : 0.635802469136
+2016-08-24 09:30:23,072 DEBUG: 			View 1 : 0.549382716049
+2016-08-24 09:30:23,109 DEBUG: 			View 2 : 0.450617283951
+2016-08-24 09:30:23,117 DEBUG: 			View 3 : 0.598765432099
+2016-08-24 09:30:23,174 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:30:23,451 DEBUG: 		Start:	 Iteration 5
+2016-08-24 09:30:23,468 DEBUG: 			View 0 : 0.462962962963
+2016-08-24 09:30:23,476 DEBUG: 			View 1 : 0.364197530864
+2016-08-24 09:30:23,513 DEBUG: 			View 2 : 0.469135802469
+2016-08-24 09:30:23,521 DEBUG: 			View 3 : 0.524691358025
+2016-08-24 09:30:23,579 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:30:23,913 DEBUG: 		Start:	 Iteration 6
+2016-08-24 09:30:23,929 DEBUG: 			View 0 : 0.592592592593
+2016-08-24 09:30:23,937 DEBUG: 			View 1 : 0.666666666667
+2016-08-24 09:30:23,974 DEBUG: 			View 2 : 0.493827160494
+2016-08-24 09:30:23,981 DEBUG: 			View 3 : 0.549382716049
+2016-08-24 09:30:24,042 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:30:24,446 DEBUG: 		Start:	 Iteration 7
+2016-08-24 09:30:24,463 DEBUG: 			View 0 : 0.413580246914
+2016-08-24 09:30:24,471 DEBUG: 			View 1 : 0.450617283951
+2016-08-24 09:30:24,509 DEBUG: 			View 2 : 0.432098765432
+2016-08-24 09:30:24,517 DEBUG: 			View 3 : 0.401234567901
+2016-08-24 09:30:24,517 WARNING: All bad for iteration 6
+2016-08-24 09:30:24,581 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:30:25,033 DEBUG: 		Start:	 Iteration 8
+2016-08-24 09:30:25,050 DEBUG: 			View 0 : 0.413580246914
+2016-08-24 09:30:25,058 DEBUG: 			View 1 : 0.648148148148
+2016-08-24 09:30:25,095 DEBUG: 			View 2 : 0.598765432099
+2016-08-24 09:30:25,102 DEBUG: 			View 3 : 0.549382716049
+2016-08-24 09:30:25,168 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:30:25,678 DEBUG: 		Start:	 Iteration 9
+2016-08-24 09:30:25,695 DEBUG: 			View 0 : 0.549382716049
+2016-08-24 09:30:25,703 DEBUG: 			View 1 : 0.549382716049
+2016-08-24 09:30:25,740 DEBUG: 			View 2 : 0.567901234568
+2016-08-24 09:30:25,748 DEBUG: 			View 3 : 0.530864197531
+2016-08-24 09:30:25,815 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:30:26,384 DEBUG: 		Start:	 Iteration 10
+2016-08-24 09:30:26,401 DEBUG: 			View 0 : 0.716049382716
+2016-08-24 09:30:26,409 DEBUG: 			View 1 : 0.524691358025
+2016-08-24 09:30:26,445 DEBUG: 			View 2 : 0.444444444444
+2016-08-24 09:30:26,453 DEBUG: 			View 3 : 0.395061728395
+2016-08-24 09:30:26,522 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:30:27,154 DEBUG: 		Start:	 Iteration 11
+2016-08-24 09:30:27,171 DEBUG: 			View 0 : 0.407407407407
+2016-08-24 09:30:27,179 DEBUG: 			View 1 : 0.506172839506
+2016-08-24 09:30:27,216 DEBUG: 			View 2 : 0.469135802469
+2016-08-24 09:30:27,223 DEBUG: 			View 3 : 0.506172839506
+2016-08-24 09:30:27,295 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:30:27,985 DEBUG: 		Start:	 Iteration 12
+2016-08-24 09:30:28,001 DEBUG: 			View 0 : 0.524691358025
+2016-08-24 09:30:28,009 DEBUG: 			View 1 : 0.586419753086
+2016-08-24 09:30:28,046 DEBUG: 			View 2 : 0.543209876543
+2016-08-24 09:30:28,054 DEBUG: 			View 3 : 0.617283950617
+2016-08-24 09:30:28,128 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:30:28,887 DEBUG: 		Start:	 Iteration 13
+2016-08-24 09:30:28,904 DEBUG: 			View 0 : 0.567901234568
+2016-08-24 09:30:28,911 DEBUG: 			View 1 : 0.648148148148
+2016-08-24 09:30:28,948 DEBUG: 			View 2 : 0.432098765432
+2016-08-24 09:30:28,956 DEBUG: 			View 3 : 0.395061728395
+2016-08-24 09:30:29,034 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:30:29,843 DEBUG: 		Start:	 Iteration 14
+2016-08-24 09:30:29,860 DEBUG: 			View 0 : 0.5
+2016-08-24 09:30:29,868 DEBUG: 			View 1 : 0.716049382716
+2016-08-24 09:30:29,905 DEBUG: 			View 2 : 0.487654320988
+2016-08-24 09:30:29,912 DEBUG: 			View 3 : 0.537037037037
+2016-08-24 09:30:29,991 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:30:30,859 DEBUG: 		Start:	 Iteration 15
+2016-08-24 09:30:30,876 DEBUG: 			View 0 : 0.487654320988
+2016-08-24 09:30:30,884 DEBUG: 			View 1 : 0.70987654321
+2016-08-24 09:30:30,921 DEBUG: 			View 2 : 0.425925925926
+2016-08-24 09:30:30,929 DEBUG: 			View 3 : 0.462962962963
+2016-08-24 09:30:31,012 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:30:31,939 DEBUG: 		Start:	 Iteration 16
+2016-08-24 09:30:31,956 DEBUG: 			View 0 : 0.574074074074
+2016-08-24 09:30:31,963 DEBUG: 			View 1 : 0.364197530864
+2016-08-24 09:30:32,000 DEBUG: 			View 2 : 0.592592592593
+2016-08-24 09:30:32,008 DEBUG: 			View 3 : 0.444444444444
+2016-08-24 09:30:32,090 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:30:33,081 DEBUG: 		Start:	 Iteration 17
+2016-08-24 09:30:33,098 DEBUG: 			View 0 : 0.58024691358
+2016-08-24 09:30:33,106 DEBUG: 			View 1 : 0.413580246914
+2016-08-24 09:30:33,143 DEBUG: 			View 2 : 0.5
+2016-08-24 09:30:33,150 DEBUG: 			View 3 : 0.543209876543
+2016-08-24 09:30:33,236 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:30:34,291 DEBUG: 		Start:	 Iteration 18
+2016-08-24 09:30:34,307 DEBUG: 			View 0 : 0.530864197531
+2016-08-24 09:30:34,315 DEBUG: 			View 1 : 0.623456790123
+2016-08-24 09:30:34,352 DEBUG: 			View 2 : 0.444444444444
+2016-08-24 09:30:34,360 DEBUG: 			View 3 : 0.493827160494
+2016-08-24 09:30:34,448 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:30:35,560 DEBUG: 		Start:	 Iteration 19
+2016-08-24 09:30:35,576 DEBUG: 			View 0 : 0.41975308642
+2016-08-24 09:30:35,584 DEBUG: 			View 1 : 0.481481481481
+2016-08-24 09:30:35,621 DEBUG: 			View 2 : 0.432098765432
+2016-08-24 09:30:35,628 DEBUG: 			View 3 : 0.518518518519
+2016-08-24 09:30:35,719 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:30:36,890 DEBUG: 		Start:	 Iteration 20
+2016-08-24 09:30:36,907 DEBUG: 			View 0 : 0.518518518519
+2016-08-24 09:30:36,915 DEBUG: 			View 1 : 0.283950617284
+2016-08-24 09:30:36,952 DEBUG: 			View 2 : 0.58024691358
+2016-08-24 09:30:36,960 DEBUG: 			View 3 : 0.487654320988
+2016-08-24 09:30:37,053 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:30:38,326 DEBUG: 		Start:	 Iteration 21
+2016-08-24 09:30:38,343 DEBUG: 			View 0 : 0.450617283951
+2016-08-24 09:30:38,351 DEBUG: 			View 1 : 0.623456790123
+2016-08-24 09:30:38,389 DEBUG: 			View 2 : 0.456790123457
+2016-08-24 09:30:38,397 DEBUG: 			View 3 : 0.462962962963
+2016-08-24 09:30:38,493 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:30:39,813 DEBUG: 		Start:	 Iteration 22
+2016-08-24 09:30:39,831 DEBUG: 			View 0 : 0.598765432099
+2016-08-24 09:30:39,839 DEBUG: 			View 1 : 0.345679012346
+2016-08-24 09:30:39,876 DEBUG: 			View 2 : 0.462962962963
+2016-08-24 09:30:39,884 DEBUG: 			View 3 : 0.604938271605
+2016-08-24 09:30:39,984 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:30:41,351 DEBUG: 		Start:	 Iteration 23
+2016-08-24 09:30:41,368 DEBUG: 			View 0 : 0.524691358025
+2016-08-24 09:30:41,375 DEBUG: 			View 1 : 0.549382716049
+2016-08-24 09:30:41,413 DEBUG: 			View 2 : 0.635802469136
+2016-08-24 09:30:41,420 DEBUG: 			View 3 : 0.487654320988
+2016-08-24 09:30:41,519 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:30:42,958 DEBUG: 		Start:	 Iteration 24
+2016-08-24 09:30:42,975 DEBUG: 			View 0 : 0.679012345679
+2016-08-24 09:30:42,983 DEBUG: 			View 1 : 0.401234567901
+2016-08-24 09:30:43,020 DEBUG: 			View 2 : 0.592592592593
+2016-08-24 09:30:43,027 DEBUG: 			View 3 : 0.456790123457
+2016-08-24 09:30:43,129 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:30:44,627 DEBUG: 		Start:	 Iteration 25
+2016-08-24 09:30:44,644 DEBUG: 			View 0 : 0.487654320988
+2016-08-24 09:30:44,652 DEBUG: 			View 1 : 0.654320987654
+2016-08-24 09:30:44,689 DEBUG: 			View 2 : 0.450617283951
+2016-08-24 09:30:44,696 DEBUG: 			View 3 : 0.58024691358
+2016-08-24 09:30:44,800 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:30:46,374 DEBUG: 		Start:	 Iteration 26
+2016-08-24 09:30:46,392 DEBUG: 			View 0 : 0.425925925926
+2016-08-24 09:30:46,400 DEBUG: 			View 1 : 0.376543209877
+2016-08-24 09:30:46,439 DEBUG: 			View 2 : 0.512345679012
+2016-08-24 09:30:46,446 DEBUG: 			View 3 : 0.475308641975
+2016-08-24 09:30:46,558 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:30:48,255 DEBUG: 		Start:	 Iteration 27
+2016-08-24 09:30:48,272 DEBUG: 			View 0 : 0.586419753086
+2016-08-24 09:30:48,280 DEBUG: 			View 1 : 0.549382716049
+2016-08-24 09:30:48,318 DEBUG: 			View 2 : 0.5
+2016-08-24 09:30:48,326 DEBUG: 			View 3 : 0.432098765432
+2016-08-24 09:30:48,434 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:30:50,179 DEBUG: 		Start:	 Iteration 28
+2016-08-24 09:30:50,196 DEBUG: 			View 0 : 0.524691358025
+2016-08-24 09:30:50,204 DEBUG: 			View 1 : 0.41975308642
+2016-08-24 09:30:50,242 DEBUG: 			View 2 : 0.481481481481
+2016-08-24 09:30:50,250 DEBUG: 			View 3 : 0.549382716049
+2016-08-24 09:30:50,361 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:30:52,134 DEBUG: 		Start:	 Iteration 29
+2016-08-24 09:30:52,151 DEBUG: 			View 0 : 0.438271604938
+2016-08-24 09:30:52,159 DEBUG: 			View 1 : 0.672839506173
+2016-08-24 09:30:52,197 DEBUG: 			View 2 : 0.617283950617
+2016-08-24 09:30:52,205 DEBUG: 			View 3 : 0.407407407407
+2016-08-24 09:30:52,321 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:30:54,169 DEBUG: 		Start:	 Iteration 30
+2016-08-24 09:30:54,186 DEBUG: 			View 0 : 0.475308641975
+2016-08-24 09:30:54,194 DEBUG: 			View 1 : 0.487654320988
+2016-08-24 09:30:54,232 DEBUG: 			View 2 : 0.58024691358
+2016-08-24 09:30:54,239 DEBUG: 			View 3 : 0.376543209877
+2016-08-24 09:30:54,355 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:30:56,248 DEBUG: 		Start:	 Iteration 31
+2016-08-24 09:30:56,266 DEBUG: 			View 0 : 0.586419753086
+2016-08-24 09:30:56,274 DEBUG: 			View 1 : 0.407407407407
+2016-08-24 09:30:56,312 DEBUG: 			View 2 : 0.66049382716
+2016-08-24 09:30:56,320 DEBUG: 			View 3 : 0.549382716049
+2016-08-24 09:30:56,442 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:30:58,403 DEBUG: 		Start:	 Iteration 32
+2016-08-24 09:30:58,420 DEBUG: 			View 0 : 0.469135802469
+2016-08-24 09:30:58,428 DEBUG: 			View 1 : 0.734567901235
+2016-08-24 09:30:58,465 DEBUG: 			View 2 : 0.567901234568
+2016-08-24 09:30:58,472 DEBUG: 			View 3 : 0.506172839506
+2016-08-24 09:30:58,592 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:31:00,607 DEBUG: 		Start:	 Iteration 33
+2016-08-24 09:31:00,623 DEBUG: 			View 0 : 0.493827160494
+2016-08-24 09:31:00,631 DEBUG: 			View 1 : 0.685185185185
+2016-08-24 09:31:00,668 DEBUG: 			View 2 : 0.41975308642
+2016-08-24 09:31:00,676 DEBUG: 			View 3 : 0.487654320988
+2016-08-24 09:31:00,798 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:31:02,869 DEBUG: 		Start:	 Iteration 34
+2016-08-24 09:31:02,885 DEBUG: 			View 0 : 0.425925925926
+2016-08-24 09:31:02,893 DEBUG: 			View 1 : 0.567901234568
+2016-08-24 09:31:02,931 DEBUG: 			View 2 : 0.425925925926
+2016-08-24 09:31:02,939 DEBUG: 			View 3 : 0.462962962963
+2016-08-24 09:31:03,064 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:31:05,264 DEBUG: 		Start:	 Iteration 35
+2016-08-24 09:31:05,281 DEBUG: 			View 0 : 0.611111111111
+2016-08-24 09:31:05,289 DEBUG: 			View 1 : 0.444444444444
+2016-08-24 09:31:05,327 DEBUG: 			View 2 : 0.456790123457
+2016-08-24 09:31:05,334 DEBUG: 			View 3 : 0.567901234568
+2016-08-24 09:31:05,465 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:31:07,724 DEBUG: 		Start:	 Iteration 36
+2016-08-24 09:31:07,741 DEBUG: 			View 0 : 0.296296296296
+2016-08-24 09:31:07,749 DEBUG: 			View 1 : 0.635802469136
+2016-08-24 09:31:07,787 DEBUG: 			View 2 : 0.487654320988
+2016-08-24 09:31:07,795 DEBUG: 			View 3 : 0.506172839506
+2016-08-24 09:31:07,928 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:31:10,248 DEBUG: 		Start:	 Iteration 37
+2016-08-24 09:31:10,264 DEBUG: 			View 0 : 0.364197530864
+2016-08-24 09:31:10,272 DEBUG: 			View 1 : 0.623456790123
+2016-08-24 09:31:10,309 DEBUG: 			View 2 : 0.518518518519
+2016-08-24 09:31:10,317 DEBUG: 			View 3 : 0.586419753086
+2016-08-24 09:31:10,448 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:31:12,764 DEBUG: 		Start:	 Iteration 38
+2016-08-24 09:31:12,781 DEBUG: 			View 0 : 0.567901234568
+2016-08-24 09:31:12,789 DEBUG: 			View 1 : 0.66049382716
+2016-08-24 09:31:12,825 DEBUG: 			View 2 : 0.561728395062
+2016-08-24 09:31:12,833 DEBUG: 			View 3 : 0.41975308642
+2016-08-24 09:31:12,966 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:31:15,340 DEBUG: 		Start:	 Iteration 39
+2016-08-24 09:31:15,356 DEBUG: 			View 0 : 0.432098765432
+2016-08-24 09:31:15,364 DEBUG: 			View 1 : 0.654320987654
+2016-08-24 09:31:15,402 DEBUG: 			View 2 : 0.574074074074
+2016-08-24 09:31:15,410 DEBUG: 			View 3 : 0.450617283951
+2016-08-24 09:31:15,550 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:31:17,981 DEBUG: 		Start:	 Iteration 40
+2016-08-24 09:31:17,998 DEBUG: 			View 0 : 0.598765432099
+2016-08-24 09:31:18,006 DEBUG: 			View 1 : 0.623456790123
+2016-08-24 09:31:18,043 DEBUG: 			View 2 : 0.555555555556
+2016-08-24 09:31:18,051 DEBUG: 			View 3 : 0.530864197531
+2016-08-24 09:31:18,189 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:31:20,681 DEBUG: 		Start:	 Iteration 41
+2016-08-24 09:31:20,699 DEBUG: 			View 0 : 0.5
+2016-08-24 09:31:20,706 DEBUG: 			View 1 : 0.716049382716
+2016-08-24 09:31:20,744 DEBUG: 			View 2 : 0.388888888889
+2016-08-24 09:31:20,751 DEBUG: 			View 3 : 0.617283950617
+2016-08-24 09:31:20,895 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:31:23,510 DEBUG: 		Start:	 Iteration 42
+2016-08-24 09:31:23,528 DEBUG: 			View 0 : 0.388888888889
+2016-08-24 09:31:23,536 DEBUG: 			View 1 : 0.654320987654
+2016-08-24 09:31:23,574 DEBUG: 			View 2 : 0.58024691358
+2016-08-24 09:31:23,582 DEBUG: 			View 3 : 0.407407407407
+2016-08-24 09:31:23,729 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:31:26,574 DEBUG: 		Start:	 Iteration 43
+2016-08-24 09:31:26,592 DEBUG: 			View 0 : 0.481481481481
+2016-08-24 09:31:26,600 DEBUG: 			View 1 : 0.604938271605
+2016-08-24 09:31:26,638 DEBUG: 			View 2 : 0.481481481481
+2016-08-24 09:31:26,646 DEBUG: 			View 3 : 0.407407407407
+2016-08-24 09:31:26,793 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:31:29,678 DEBUG: 		Start:	 Iteration 44
+2016-08-24 09:31:29,697 DEBUG: 			View 0 : 0.462962962963
+2016-08-24 09:31:29,706 DEBUG: 			View 1 : 0.561728395062
+2016-08-24 09:31:29,749 DEBUG: 			View 2 : 0.537037037037
+2016-08-24 09:31:29,758 DEBUG: 			View 3 : 0.543209876543
+2016-08-24 09:31:29,929 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:31:32,694 DEBUG: 		Start:	 Iteration 45
+2016-08-24 09:31:32,711 DEBUG: 			View 0 : 0.530864197531
+2016-08-24 09:31:32,719 DEBUG: 			View 1 : 0.679012345679
+2016-08-24 09:31:32,756 DEBUG: 			View 2 : 0.358024691358
+2016-08-24 09:31:32,764 DEBUG: 			View 3 : 0.518518518519
+2016-08-24 09:31:32,917 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:31:35,983 DEBUG: 		Start:	 Iteration 46
+2016-08-24 09:31:36,000 DEBUG: 			View 0 : 0.475308641975
+2016-08-24 09:31:36,008 DEBUG: 			View 1 : 0.382716049383
+2016-08-24 09:31:36,045 DEBUG: 			View 2 : 0.493827160494
+2016-08-24 09:31:36,053 DEBUG: 			View 3 : 0.475308641975
+2016-08-24 09:31:36,053 WARNING: All bad for iteration 45
+2016-08-24 09:31:36,209 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:31:39,103 DEBUG: 		Start:	 Iteration 47
+2016-08-24 09:31:39,122 DEBUG: 			View 0 : 0.611111111111
+2016-08-24 09:31:39,130 DEBUG: 			View 1 : 0.512345679012
+2016-08-24 09:31:39,174 DEBUG: 			View 2 : 0.462962962963
+2016-08-24 09:31:39,182 DEBUG: 			View 3 : 0.506172839506
+2016-08-24 09:31:39,352 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:31:42,556 DEBUG: 		Start:	 Iteration 48
+2016-08-24 09:31:42,572 DEBUG: 			View 0 : 0.530864197531
+2016-08-24 09:31:42,580 DEBUG: 			View 1 : 0.604938271605
+2016-08-24 09:31:42,619 DEBUG: 			View 2 : 0.518518518519
+2016-08-24 09:31:42,628 DEBUG: 			View 3 : 0.407407407407
+2016-08-24 09:31:42,789 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:31:46,061 DEBUG: 		Start:	 Iteration 49
+2016-08-24 09:31:46,078 DEBUG: 			View 0 : 0.413580246914
+2016-08-24 09:31:46,086 DEBUG: 			View 1 : 0.549382716049
+2016-08-24 09:31:46,124 DEBUG: 			View 2 : 0.62962962963
+2016-08-24 09:31:46,131 DEBUG: 			View 3 : 0.407407407407
+2016-08-24 09:31:46,294 DEBUG: 			 Best view : 		RANSeq_
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093148-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093148-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..81280fafd9f5ba7f5f428ea342b0a231f53b3de1
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093148-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,30 @@
+2016-08-24 09:31:48,286 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 09:31:48,286 INFO: Info:	 Labels used: No, Yes
+2016-08-24 09:31:48,287 INFO: Info:	 Length of dataset:347
+2016-08-24 09:31:48,288 INFO: ### Main Programm for Multiview Classification
+2016-08-24 09:31:48,288 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 09:31:48,289 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 09:31:48,289 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 09:31:48,289 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 09:31:48,290 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 09:31:48,290 INFO: Done:	 Read Database Files
+2016-08-24 09:31:48,290 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 09:31:48,293 INFO: Done:	 Determine validation split
+2016-08-24 09:31:48,293 INFO: Start:	 Determine 2 folds
+2016-08-24 09:31:48,304 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 09:31:48,304 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 09:31:48,304 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 09:31:48,304 INFO: Done:	 Determine folds
+2016-08-24 09:31:48,304 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 09:31:48,304 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 09:31:48,305 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl_
+2016-08-24 09:31:55,692 DEBUG: 0.579596541787Poulet
+2016-08-24 09:31:55,692 DEBUG: 0.592103746398Poulet
+2016-08-24 09:31:55,693 DEBUG: 0.599135446686Poulet
+2016-08-24 09:31:55,694 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:31:55,694 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA__
+2016-08-24 09:31:57,621 DEBUG: 0.502997118156Poulet
+2016-08-24 09:31:57,621 DEBUG: 0.571354466859Poulet
+2016-08-24 09:31:57,621 DEBUG: 0.575331412104Poulet
+2016-08-24 09:31:57,621 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:31:57,622 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq_
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093234-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093234-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..d2aff05edd9ca76570b2d7dc018eb6430a8c89a4
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093234-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,27 @@
+2016-08-24 09:32:34,093 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 09:32:34,093 INFO: Info:	 Labels used: No, Yes
+2016-08-24 09:32:34,094 INFO: Info:	 Length of dataset:347
+2016-08-24 09:32:34,095 INFO: ### Main Programm for Multiview Classification
+2016-08-24 09:32:34,095 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 09:32:34,096 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 09:32:34,096 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 09:32:34,096 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 09:32:34,097 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 09:32:34,097 INFO: Done:	 Read Database Files
+2016-08-24 09:32:34,097 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 09:32:34,100 INFO: Done:	 Determine validation split
+2016-08-24 09:32:34,100 INFO: Start:	 Determine 2 folds
+2016-08-24 09:32:34,111 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 09:32:34,111 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 09:32:34,111 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 09:32:34,111 INFO: Done:	 Determine folds
+2016-08-24 09:32:34,111 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 09:32:34,112 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 09:32:34,112 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl_
+2016-08-24 09:32:41,471 DEBUG: 0.585014409222Poulet
+2016-08-24 09:32:41,471 DEBUG: 0.596714697406Poulet
+2016-08-24 09:32:41,472 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:32:41,472 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA__
+2016-08-24 09:32:43,398 DEBUG: 0.58386167147Poulet
+2016-08-24 09:32:43,399 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:32:43,399 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq_
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093312-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093312-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..3862f8c6dde772c5f7804dd85526bebd79f7d53e
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093312-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,53 @@
+2016-08-24 09:33:12,122 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 09:33:12,123 INFO: Info:	 Labels used: No, Yes
+2016-08-24 09:33:12,123 INFO: Info:	 Length of dataset:347
+2016-08-24 09:33:12,124 INFO: ### Main Programm for Multiview Classification
+2016-08-24 09:33:12,124 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 09:33:12,125 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 09:33:12,125 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 09:33:12,125 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 09:33:12,126 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 09:33:12,126 INFO: Done:	 Read Database Files
+2016-08-24 09:33:12,126 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 09:33:12,129 INFO: Done:	 Determine validation split
+2016-08-24 09:33:12,129 INFO: Start:	 Determine 2 folds
+2016-08-24 09:33:12,143 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 09:33:12,143 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 09:33:12,143 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 09:33:12,143 INFO: Done:	 Determine folds
+2016-08-24 09:33:12,143 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 09:33:12,143 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 09:33:12,143 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl_
+2016-08-24 09:33:19,481 DEBUG: 0.596714697406Poulet
+2016-08-24 09:33:19,481 DEBUG: 0.583227665706Poulet
+2016-08-24 09:33:19,481 DEBUG: 0.591527377522Poulet
+2016-08-24 09:33:19,481 DEBUG: 0.58288184438Poulet
+2016-08-24 09:33:19,481 DEBUG: 0.535273775216Poulet
+2016-08-24 09:33:19,481 DEBUG: 0.515619596542Poulet
+2016-08-24 09:33:19,481 DEBUG: 0.523804034582Poulet
+2016-08-24 09:33:19,481 DEBUG: 0.521556195965Poulet
+2016-08-24 09:33:19,482 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:33:19,482 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA__
+2016-08-24 09:33:21,403 DEBUG: 0.58553314121Poulet
+2016-08-24 09:33:21,403 DEBUG: 0.554178674352Poulet
+2016-08-24 09:33:21,403 DEBUG: 0.53734870317Poulet
+2016-08-24 09:33:21,403 DEBUG: 0.575792507205Poulet
+2016-08-24 09:33:21,403 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:33:21,404 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq_
+2016-08-24 09:33:38,038 DEBUG: 0.576253602305Poulet
+2016-08-24 09:33:38,038 DEBUG: 0.566109510086Poulet
+2016-08-24 09:33:38,038 DEBUG: 0.577925072046Poulet
+2016-08-24 09:33:38,039 DEBUG: 0.58144092219Poulet
+2016-08-24 09:33:38,039 DEBUG: 0.502305475504Poulet
+2016-08-24 09:33:38,039 DEBUG: 0.501613832853Poulet
+2016-08-24 09:33:38,039 DEBUG: 0.50818443804Poulet
+2016-08-24 09:33:38,039 DEBUG: 0.52795389049Poulet
+2016-08-24 09:33:38,039 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:33:38,040 DEBUG: 	Start:	 Gridsearch for DecisionTree on Clinic_
+2016-08-24 09:33:39,777 DEBUG: 0.551296829971Poulet
+2016-08-24 09:33:39,777 DEBUG: 0.591008645533Poulet
+2016-08-24 09:33:39,777 DEBUG: 0.582478386167Poulet
+2016-08-24 09:33:39,777 DEBUG: 0.567838616715Poulet
+2016-08-24 09:33:39,777 DEBUG: 0.517002881844Poulet
+2016-08-24 09:33:39,777 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:33:39,778 DEBUG: 	Start:	 Gridsearch for DecisionTree on MRNASeq
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093355-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093355-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..2c779d8c58a02ca2bdc27dcb7a71399efd035c26
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093355-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,14742 @@
+2016-08-24 09:33:55,099 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 09:33:55,100 INFO: Info:	 Labels used: No, Yes
+2016-08-24 09:33:55,100 INFO: Info:	 Length of dataset:347
+2016-08-24 09:33:55,101 INFO: ### Main Programm for Multiview Classification
+2016-08-24 09:33:55,101 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 09:33:55,102 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 09:33:55,102 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 09:33:55,103 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 09:33:55,103 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 09:33:55,103 INFO: Done:	 Read Database Files
+2016-08-24 09:33:55,103 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 09:33:55,107 INFO: Done:	 Determine validation split
+2016-08-24 09:33:55,107 INFO: Start:	 Determine 2 folds
+2016-08-24 09:33:55,116 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 09:33:55,116 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 09:33:55,116 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 09:33:55,116 INFO: Done:	 Determine folds
+2016-08-24 09:33:55,117 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 09:33:55,117 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 09:33:55,117 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl_
+2016-08-24 09:34:02,435 DEBUG: 0.591988472622Poulet
+2016-08-24 09:34:02,435 DEBUG: 0.58386167147Poulet
+2016-08-24 09:34:02,435 DEBUG: 0.517752161383Poulet
+2016-08-24 09:34:02,435 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:34:02,436 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA__
+2016-08-24 09:34:04,356 DEBUG: 0.533083573487Poulet
+2016-08-24 09:34:04,356 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:34:04,357 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq_
+2016-08-24 09:34:20,901 DEBUG: 0.582997118156Poulet
+2016-08-24 09:34:20,902 DEBUG: 0.549682997118Poulet
+2016-08-24 09:34:20,902 DEBUG: 0.503746397695Poulet
+2016-08-24 09:34:20,902 DEBUG: 0.50674351585Poulet
+2016-08-24 09:34:20,902 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:34:20,903 DEBUG: 	Start:	 Gridsearch for DecisionTree on Clinic_
+2016-08-24 09:34:22,667 DEBUG: 0.567319884726Poulet
+2016-08-24 09:34:22,667 DEBUG: 0.554409221902Poulet
+2016-08-24 09:34:22,667 DEBUG: 0.504553314121Poulet
+2016-08-24 09:34:22,667 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:34:22,668 DEBUG: 	Start:	 Gridsearch for DecisionTree on MRNASeq
+2016-08-24 09:34:59,961 DEBUG: 0.553544668588Poulet
+2016-08-24 09:34:59,961 DEBUG: 0.549452449568Poulet
+2016-08-24 09:34:59,961 DEBUG: 0.53325648415Poulet
+2016-08-24 09:34:59,962 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:34:59,962 INFO: Done:	 Gridsearching best settings for monoview classifiers
+2016-08-24 09:34:59,962 INFO: 	Start:	 Fold number 1
+2016-08-24 09:35:01,610 DEBUG: 		Start:	 Iteration 1
+2016-08-24 09:35:01,630 DEBUG: 			View 0 : 0.615384615385
+2016-08-24 09:35:01,638 DEBUG: 			View 1 : 0.615384615385
+2016-08-24 09:35:01,679 DEBUG: 			View 2 : 0.615384615385
+2016-08-24 09:35:01,687 DEBUG: 			View 3 : 0.615384615385
+2016-08-24 09:35:01,730 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:35:01,811 DEBUG: 		Start:	 Iteration 2
+2016-08-24 09:35:01,829 DEBUG: 			View 0 : 0.666666666667
+2016-08-24 09:35:01,838 DEBUG: 			View 1 : 0.564102564103
+2016-08-24 09:35:01,876 DEBUG: 			View 2 : 0.564102564103
+2016-08-24 09:35:01,884 DEBUG: 			View 3 : 0.5
+2016-08-24 09:35:01,931 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:35:02,070 DEBUG: 		Start:	 Iteration 3
+2016-08-24 09:35:02,086 DEBUG: 			View 0 : 0.461538461538
+2016-08-24 09:35:02,094 DEBUG: 			View 1 : 0.538461538462
+2016-08-24 09:35:02,130 DEBUG: 			View 2 : 0.512820512821
+2016-08-24 09:35:02,138 DEBUG: 			View 3 : 0.5
+2016-08-24 09:35:02,191 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:35:02,387 DEBUG: 		Start:	 Iteration 4
+2016-08-24 09:35:02,404 DEBUG: 			View 0 : 0.538461538462
+2016-08-24 09:35:02,412 DEBUG: 			View 1 : 0.525641025641
+2016-08-24 09:35:02,448 DEBUG: 			View 2 : 0.455128205128
+2016-08-24 09:35:02,456 DEBUG: 			View 3 : 0.512820512821
+2016-08-24 09:35:02,512 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:35:02,768 DEBUG: 		Start:	 Iteration 5
+2016-08-24 09:35:02,784 DEBUG: 			View 0 : 0.448717948718
+2016-08-24 09:35:02,792 DEBUG: 			View 1 : 0.647435897436
+2016-08-24 09:35:02,828 DEBUG: 			View 2 : 0.455128205128
+2016-08-24 09:35:02,836 DEBUG: 			View 3 : 0.461538461538
+2016-08-24 09:35:02,895 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:35:03,209 DEBUG: 		Start:	 Iteration 6
+2016-08-24 09:35:03,225 DEBUG: 			View 0 : 0.628205128205
+2016-08-24 09:35:03,233 DEBUG: 			View 1 : 0.679487179487
+2016-08-24 09:35:03,269 DEBUG: 			View 2 : 0.391025641026
+2016-08-24 09:35:03,277 DEBUG: 			View 3 : 0.544871794872
+2016-08-24 09:35:03,339 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:35:03,710 DEBUG: 		Start:	 Iteration 7
+2016-08-24 09:35:03,727 DEBUG: 			View 0 : 0.538461538462
+2016-08-24 09:35:03,734 DEBUG: 			View 1 : 0.512820512821
+2016-08-24 09:35:03,771 DEBUG: 			View 2 : 0.391025641026
+2016-08-24 09:35:03,778 DEBUG: 			View 3 : 0.5
+2016-08-24 09:35:03,842 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:35:04,273 DEBUG: 		Start:	 Iteration 8
+2016-08-24 09:35:04,290 DEBUG: 			View 0 : 0.442307692308
+2016-08-24 09:35:04,297 DEBUG: 			View 1 : 0.608974358974
+2016-08-24 09:35:04,334 DEBUG: 			View 2 : 0.474358974359
+2016-08-24 09:35:04,341 DEBUG: 			View 3 : 0.50641025641
+2016-08-24 09:35:04,407 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:35:04,895 DEBUG: 		Start:	 Iteration 9
+2016-08-24 09:35:04,911 DEBUG: 			View 0 : 0.435897435897
+2016-08-24 09:35:04,919 DEBUG: 			View 1 : 0.525641025641
+2016-08-24 09:35:04,957 DEBUG: 			View 2 : 0.602564102564
+2016-08-24 09:35:04,964 DEBUG: 			View 3 : 0.608974358974
+2016-08-24 09:35:05,033 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:35:05,579 DEBUG: 		Start:	 Iteration 10
+2016-08-24 09:35:05,595 DEBUG: 			View 0 : 0.596153846154
+2016-08-24 09:35:05,603 DEBUG: 			View 1 : 0.371794871795
+2016-08-24 09:35:05,639 DEBUG: 			View 2 : 0.532051282051
+2016-08-24 09:35:05,646 DEBUG: 			View 3 : 0.442307692308
+2016-08-24 09:35:05,717 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:35:06,322 DEBUG: 		Start:	 Iteration 11
+2016-08-24 09:35:06,338 DEBUG: 			View 0 : 0.474358974359
+2016-08-24 09:35:06,346 DEBUG: 			View 1 : 0.608974358974
+2016-08-24 09:35:06,382 DEBUG: 			View 2 : 0.608974358974
+2016-08-24 09:35:06,389 DEBUG: 			View 3 : 0.557692307692
+2016-08-24 09:35:06,462 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:35:07,123 DEBUG: 		Start:	 Iteration 12
+2016-08-24 09:35:07,140 DEBUG: 			View 0 : 0.5
+2016-08-24 09:35:07,147 DEBUG: 			View 1 : 0.391025641026
+2016-08-24 09:35:07,184 DEBUG: 			View 2 : 0.551282051282
+2016-08-24 09:35:07,192 DEBUG: 			View 3 : 0.50641025641
+2016-08-24 09:35:07,266 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:35:08,000 DEBUG: 		Start:	 Iteration 13
+2016-08-24 09:35:08,016 DEBUG: 			View 0 : 0.519230769231
+2016-08-24 09:35:08,024 DEBUG: 			View 1 : 0.647435897436
+2016-08-24 09:35:08,060 DEBUG: 			View 2 : 0.557692307692
+2016-08-24 09:35:08,068 DEBUG: 			View 3 : 0.634615384615
+2016-08-24 09:35:08,144 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:35:08,935 DEBUG: 		Start:	 Iteration 14
+2016-08-24 09:35:08,951 DEBUG: 			View 0 : 0.461538461538
+2016-08-24 09:35:08,959 DEBUG: 			View 1 : 0.519230769231
+2016-08-24 09:35:08,995 DEBUG: 			View 2 : 0.474358974359
+2016-08-24 09:35:09,003 DEBUG: 			View 3 : 0.435897435897
+2016-08-24 09:35:09,080 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:35:09,927 DEBUG: 		Start:	 Iteration 15
+2016-08-24 09:35:09,943 DEBUG: 			View 0 : 0.442307692308
+2016-08-24 09:35:09,951 DEBUG: 			View 1 : 0.474358974359
+2016-08-24 09:35:09,987 DEBUG: 			View 2 : 0.589743589744
+2016-08-24 09:35:09,995 DEBUG: 			View 3 : 0.410256410256
+2016-08-24 09:35:10,074 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:35:10,994 DEBUG: 		Start:	 Iteration 16
+2016-08-24 09:35:11,011 DEBUG: 			View 0 : 0.455128205128
+2016-08-24 09:35:11,019 DEBUG: 			View 1 : 0.628205128205
+2016-08-24 09:35:11,056 DEBUG: 			View 2 : 0.532051282051
+2016-08-24 09:35:11,064 DEBUG: 			View 3 : 0.50641025641
+2016-08-24 09:35:11,146 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:35:12,120 DEBUG: 		Start:	 Iteration 17
+2016-08-24 09:35:12,136 DEBUG: 			View 0 : 0.621794871795
+2016-08-24 09:35:12,144 DEBUG: 			View 1 : 0.551282051282
+2016-08-24 09:35:12,181 DEBUG: 			View 2 : 0.49358974359
+2016-08-24 09:35:12,188 DEBUG: 			View 3 : 0.455128205128
+2016-08-24 09:35:12,273 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:35:13,308 DEBUG: 		Start:	 Iteration 18
+2016-08-24 09:35:13,325 DEBUG: 			View 0 : 0.557692307692
+2016-08-24 09:35:13,332 DEBUG: 			View 1 : 0.608974358974
+2016-08-24 09:35:13,369 DEBUG: 			View 2 : 0.49358974359
+2016-08-24 09:35:13,376 DEBUG: 			View 3 : 0.512820512821
+2016-08-24 09:35:13,464 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:35:14,557 DEBUG: 		Start:	 Iteration 19
+2016-08-24 09:35:14,573 DEBUG: 			View 0 : 0.416666666667
+2016-08-24 09:35:14,581 DEBUG: 			View 1 : 0.403846153846
+2016-08-24 09:35:14,618 DEBUG: 			View 2 : 0.589743589744
+2016-08-24 09:35:14,626 DEBUG: 			View 3 : 0.403846153846
+2016-08-24 09:35:14,714 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:35:15,878 DEBUG: 		Start:	 Iteration 20
+2016-08-24 09:35:15,895 DEBUG: 			View 0 : 0.467948717949
+2016-08-24 09:35:15,902 DEBUG: 			View 1 : 0.685897435897
+2016-08-24 09:35:15,939 DEBUG: 			View 2 : 0.628205128205
+2016-08-24 09:35:15,946 DEBUG: 			View 3 : 0.49358974359
+2016-08-24 09:35:16,038 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:35:17,259 DEBUG: 		Start:	 Iteration 21
+2016-08-24 09:35:17,275 DEBUG: 			View 0 : 0.564102564103
+2016-08-24 09:35:17,283 DEBUG: 			View 1 : 0.711538461538
+2016-08-24 09:35:17,319 DEBUG: 			View 2 : 0.429487179487
+2016-08-24 09:35:17,327 DEBUG: 			View 3 : 0.532051282051
+2016-08-24 09:35:17,419 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:35:18,697 DEBUG: 		Start:	 Iteration 22
+2016-08-24 09:35:18,713 DEBUG: 			View 0 : 0.538461538462
+2016-08-24 09:35:18,721 DEBUG: 			View 1 : 0.634615384615
+2016-08-24 09:35:18,757 DEBUG: 			View 2 : 0.525641025641
+2016-08-24 09:35:18,765 DEBUG: 			View 3 : 0.570512820513
+2016-08-24 09:35:18,860 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:35:20,195 DEBUG: 		Start:	 Iteration 23
+2016-08-24 09:35:20,212 DEBUG: 			View 0 : 0.525641025641
+2016-08-24 09:35:20,219 DEBUG: 			View 1 : 0.641025641026
+2016-08-24 09:35:20,256 DEBUG: 			View 2 : 0.551282051282
+2016-08-24 09:35:20,264 DEBUG: 			View 3 : 0.602564102564
+2016-08-24 09:35:20,360 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:35:21,760 DEBUG: 		Start:	 Iteration 24
+2016-08-24 09:35:21,776 DEBUG: 			View 0 : 0.762820512821
+2016-08-24 09:35:21,784 DEBUG: 			View 1 : 0.628205128205
+2016-08-24 09:35:21,820 DEBUG: 			View 2 : 0.371794871795
+2016-08-24 09:35:21,828 DEBUG: 			View 3 : 0.461538461538
+2016-08-24 09:35:21,926 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:35:23,376 DEBUG: 		Start:	 Iteration 25
+2016-08-24 09:35:23,392 DEBUG: 			View 0 : 0.487179487179
+2016-08-24 09:35:23,400 DEBUG: 			View 1 : 0.391025641026
+2016-08-24 09:35:23,436 DEBUG: 			View 2 : 0.487179487179
+2016-08-24 09:35:23,444 DEBUG: 			View 3 : 0.403846153846
+2016-08-24 09:35:23,444 WARNING: All bad for iteration 24
+2016-08-24 09:35:23,545 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:35:25,059 DEBUG: 		Start:	 Iteration 26
+2016-08-24 09:35:25,076 DEBUG: 			View 0 : 0.602564102564
+2016-08-24 09:35:25,084 DEBUG: 			View 1 : 0.608974358974
+2016-08-24 09:35:25,121 DEBUG: 			View 2 : 0.5
+2016-08-24 09:35:25,129 DEBUG: 			View 3 : 0.467948717949
+2016-08-24 09:35:25,232 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:35:26,805 DEBUG: 		Start:	 Iteration 27
+2016-08-24 09:35:26,821 DEBUG: 			View 0 : 0.544871794872
+2016-08-24 09:35:26,829 DEBUG: 			View 1 : 0.416666666667
+2016-08-24 09:35:26,866 DEBUG: 			View 2 : 0.557692307692
+2016-08-24 09:35:26,873 DEBUG: 			View 3 : 0.570512820513
+2016-08-24 09:35:26,978 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:35:28,607 DEBUG: 		Start:	 Iteration 28
+2016-08-24 09:35:28,624 DEBUG: 			View 0 : 0.608974358974
+2016-08-24 09:35:28,632 DEBUG: 			View 1 : 0.519230769231
+2016-08-24 09:35:28,668 DEBUG: 			View 2 : 0.467948717949
+2016-08-24 09:35:28,676 DEBUG: 			View 3 : 0.50641025641
+2016-08-24 09:35:28,783 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:35:30,474 DEBUG: 		Start:	 Iteration 29
+2016-08-24 09:35:30,490 DEBUG: 			View 0 : 0.602564102564
+2016-08-24 09:35:30,498 DEBUG: 			View 1 : 0.480769230769
+2016-08-24 09:35:30,534 DEBUG: 			View 2 : 0.474358974359
+2016-08-24 09:35:30,541 DEBUG: 			View 3 : 0.589743589744
+2016-08-24 09:35:30,651 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:35:32,412 DEBUG: 		Start:	 Iteration 30
+2016-08-24 09:35:32,428 DEBUG: 			View 0 : 0.455128205128
+2016-08-24 09:35:32,436 DEBUG: 			View 1 : 0.429487179487
+2016-08-24 09:35:32,472 DEBUG: 			View 2 : 0.423076923077
+2016-08-24 09:35:32,479 DEBUG: 			View 3 : 0.647435897436
+2016-08-24 09:35:32,591 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:35:34,461 DEBUG: 		Start:	 Iteration 31
+2016-08-24 09:35:34,480 DEBUG: 			View 0 : 0.576923076923
+2016-08-24 09:35:34,488 DEBUG: 			View 1 : 0.615384615385
+2016-08-24 09:35:34,526 DEBUG: 			View 2 : 0.448717948718
+2016-08-24 09:35:34,533 DEBUG: 			View 3 : 0.442307692308
+2016-08-24 09:35:34,653 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:35:36,567 DEBUG: 		Start:	 Iteration 32
+2016-08-24 09:35:36,583 DEBUG: 			View 0 : 0.602564102564
+2016-08-24 09:35:36,591 DEBUG: 			View 1 : 0.647435897436
+2016-08-24 09:35:36,628 DEBUG: 			View 2 : 0.519230769231
+2016-08-24 09:35:36,635 DEBUG: 			View 3 : 0.602564102564
+2016-08-24 09:35:36,760 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:35:38,858 DEBUG: 		Start:	 Iteration 33
+2016-08-24 09:35:38,875 DEBUG: 			View 0 : 0.50641025641
+2016-08-24 09:35:38,883 DEBUG: 			View 1 : 0.371794871795
+2016-08-24 09:35:38,920 DEBUG: 			View 2 : 0.403846153846
+2016-08-24 09:35:38,928 DEBUG: 			View 3 : 0.641025641026
+2016-08-24 09:35:39,047 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:35:41,049 DEBUG: 		Start:	 Iteration 34
+2016-08-24 09:35:41,066 DEBUG: 			View 0 : 0.596153846154
+2016-08-24 09:35:41,074 DEBUG: 			View 1 : 0.641025641026
+2016-08-24 09:35:41,110 DEBUG: 			View 2 : 0.448717948718
+2016-08-24 09:35:41,118 DEBUG: 			View 3 : 0.397435897436
+2016-08-24 09:35:41,241 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:35:43,293 DEBUG: 		Start:	 Iteration 35
+2016-08-24 09:35:43,310 DEBUG: 			View 0 : 0.5
+2016-08-24 09:35:43,317 DEBUG: 			View 1 : 0.666666666667
+2016-08-24 09:35:43,354 DEBUG: 			View 2 : 0.557692307692
+2016-08-24 09:35:43,361 DEBUG: 			View 3 : 0.576923076923
+2016-08-24 09:35:43,483 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:35:45,576 DEBUG: 		Start:	 Iteration 36
+2016-08-24 09:35:45,593 DEBUG: 			View 0 : 0.435897435897
+2016-08-24 09:35:45,600 DEBUG: 			View 1 : 0.358974358974
+2016-08-24 09:35:45,636 DEBUG: 			View 2 : 0.487179487179
+2016-08-24 09:35:45,644 DEBUG: 			View 3 : 0.570512820513
+2016-08-24 09:35:45,768 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:35:47,921 DEBUG: 		Start:	 Iteration 37
+2016-08-24 09:35:47,937 DEBUG: 			View 0 : 0.583333333333
+2016-08-24 09:35:47,945 DEBUG: 			View 1 : 0.647435897436
+2016-08-24 09:35:47,981 DEBUG: 			View 2 : 0.583333333333
+2016-08-24 09:35:47,989 DEBUG: 			View 3 : 0.557692307692
+2016-08-24 09:35:48,116 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:35:50,347 DEBUG: 		Start:	 Iteration 38
+2016-08-24 09:35:50,364 DEBUG: 			View 0 : 0.423076923077
+2016-08-24 09:35:50,372 DEBUG: 			View 1 : 0.685897435897
+2016-08-24 09:35:50,409 DEBUG: 			View 2 : 0.50641025641
+2016-08-24 09:35:50,416 DEBUG: 			View 3 : 0.410256410256
+2016-08-24 09:35:50,547 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:35:52,847 DEBUG: 		Start:	 Iteration 39
+2016-08-24 09:35:52,863 DEBUG: 			View 0 : 0.423076923077
+2016-08-24 09:35:52,871 DEBUG: 			View 1 : 0.532051282051
+2016-08-24 09:35:52,909 DEBUG: 			View 2 : 0.596153846154
+2016-08-24 09:35:52,917 DEBUG: 			View 3 : 0.621794871795
+2016-08-24 09:35:53,050 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:35:55,388 DEBUG: 		Start:	 Iteration 40
+2016-08-24 09:35:55,405 DEBUG: 			View 0 : 0.628205128205
+2016-08-24 09:35:55,413 DEBUG: 			View 1 : 0.474358974359
+2016-08-24 09:35:55,450 DEBUG: 			View 2 : 0.474358974359
+2016-08-24 09:35:55,459 DEBUG: 			View 3 : 0.448717948718
+2016-08-24 09:35:55,654 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:35:58,192 DEBUG: 		Start:	 Iteration 41
+2016-08-24 09:35:58,210 DEBUG: 			View 0 : 0.615384615385
+2016-08-24 09:35:58,219 DEBUG: 			View 1 : 0.628205128205
+2016-08-24 09:35:58,261 DEBUG: 			View 2 : 0.570512820513
+2016-08-24 09:35:58,270 DEBUG: 			View 3 : 0.435897435897
+2016-08-24 09:35:58,469 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:36:01,082 DEBUG: 		Start:	 Iteration 42
+2016-08-24 09:36:01,099 DEBUG: 			View 0 : 0.705128205128
+2016-08-24 09:36:01,107 DEBUG: 			View 1 : 0.647435897436
+2016-08-24 09:36:01,144 DEBUG: 			View 2 : 0.435897435897
+2016-08-24 09:36:01,152 DEBUG: 			View 3 : 0.602564102564
+2016-08-24 09:36:01,298 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:36:04,147 DEBUG: 		Start:	 Iteration 43
+2016-08-24 09:36:04,173 DEBUG: 			View 0 : 0.448717948718
+2016-08-24 09:36:04,182 DEBUG: 			View 1 : 0.416666666667
+2016-08-24 09:36:04,224 DEBUG: 			View 2 : 0.480769230769
+2016-08-24 09:36:04,236 DEBUG: 			View 3 : 0.551282051282
+2016-08-24 09:36:04,378 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:36:07,254 DEBUG: 		Start:	 Iteration 44
+2016-08-24 09:36:07,271 DEBUG: 			View 0 : 0.564102564103
+2016-08-24 09:36:07,278 DEBUG: 			View 1 : 0.660256410256
+2016-08-24 09:36:07,315 DEBUG: 			View 2 : 0.557692307692
+2016-08-24 09:36:07,322 DEBUG: 			View 3 : 0.557692307692
+2016-08-24 09:36:07,468 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:36:10,373 DEBUG: 		Start:	 Iteration 45
+2016-08-24 09:36:10,391 DEBUG: 			View 0 : 0.371794871795
+2016-08-24 09:36:10,400 DEBUG: 			View 1 : 0.673076923077
+2016-08-24 09:36:10,447 DEBUG: 			View 2 : 0.538461538462
+2016-08-24 09:36:10,456 DEBUG: 			View 3 : 0.487179487179
+2016-08-24 09:36:10,702 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:36:13,728 DEBUG: 		Start:	 Iteration 46
+2016-08-24 09:36:13,744 DEBUG: 			View 0 : 0.532051282051
+2016-08-24 09:36:13,752 DEBUG: 			View 1 : 0.576923076923
+2016-08-24 09:36:13,789 DEBUG: 			View 2 : 0.487179487179
+2016-08-24 09:36:13,797 DEBUG: 			View 3 : 0.628205128205
+2016-08-24 09:36:13,944 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:36:16,698 DEBUG: 		Start:	 Iteration 47
+2016-08-24 09:36:16,714 DEBUG: 			View 0 : 0.410256410256
+2016-08-24 09:36:16,722 DEBUG: 			View 1 : 0.532051282051
+2016-08-24 09:36:16,759 DEBUG: 			View 2 : 0.487179487179
+2016-08-24 09:36:16,767 DEBUG: 			View 3 : 0.448717948718
+2016-08-24 09:36:16,916 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:36:19,727 DEBUG: 		Start:	 Iteration 48
+2016-08-24 09:36:19,743 DEBUG: 			View 0 : 0.423076923077
+2016-08-24 09:36:19,751 DEBUG: 			View 1 : 0.615384615385
+2016-08-24 09:36:19,787 DEBUG: 			View 2 : 0.532051282051
+2016-08-24 09:36:19,794 DEBUG: 			View 3 : 0.583333333333
+2016-08-24 09:36:19,945 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:36:22,795 DEBUG: 		Start:	 Iteration 49
+2016-08-24 09:36:22,811 DEBUG: 			View 0 : 0.487179487179
+2016-08-24 09:36:22,819 DEBUG: 			View 1 : 0.608974358974
+2016-08-24 09:36:22,855 DEBUG: 			View 2 : 0.378205128205
+2016-08-24 09:36:22,863 DEBUG: 			View 3 : 0.596153846154
+2016-08-24 09:36:23,015 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:36:25,918 DEBUG: 		Start:	 Iteration 50
+2016-08-24 09:36:25,934 DEBUG: 			View 0 : 0.423076923077
+2016-08-24 09:36:25,942 DEBUG: 			View 1 : 0.365384615385
+2016-08-24 09:36:25,979 DEBUG: 			View 2 : 0.570512820513
+2016-08-24 09:36:25,987 DEBUG: 			View 3 : 0.544871794872
+2016-08-24 09:36:26,144 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:36:29,125 DEBUG: 		Start:	 Iteration 51
+2016-08-24 09:36:29,141 DEBUG: 			View 0 : 0.602564102564
+2016-08-24 09:36:29,149 DEBUG: 			View 1 : 0.653846153846
+2016-08-24 09:36:29,185 DEBUG: 			View 2 : 0.397435897436
+2016-08-24 09:36:29,193 DEBUG: 			View 3 : 0.615384615385
+2016-08-24 09:36:29,350 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:36:32,554 DEBUG: 		Start:	 Iteration 52
+2016-08-24 09:36:32,572 DEBUG: 			View 0 : 0.621794871795
+2016-08-24 09:36:32,580 DEBUG: 			View 1 : 0.692307692308
+2016-08-24 09:36:32,617 DEBUG: 			View 2 : 0.435897435897
+2016-08-24 09:36:32,625 DEBUG: 			View 3 : 0.608974358974
+2016-08-24 09:36:32,784 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:36:35,871 INFO: 	Start: 	 Classification
+2016-08-24 09:36:43,411 INFO: 	Done: 	 Fold number 1
+2016-08-24 09:36:43,411 INFO: 	Start:	 Fold number 2
+2016-08-24 09:36:44,984 DEBUG: 		Start:	 Iteration 1
+2016-08-24 09:36:44,998 DEBUG: 			View 0 : 0.382165605096
+2016-08-24 09:36:45,006 DEBUG: 			View 1 : 0.617834394904
+2016-08-24 09:36:45,042 DEBUG: 			View 2 : 0.369426751592
+2016-08-24 09:36:45,049 DEBUG: 			View 3 : 0.617834394904
+2016-08-24 09:36:45,089 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:36:45,164 DEBUG: 		Start:	 Iteration 2
+2016-08-24 09:36:45,180 DEBUG: 			View 0 : 0.43949044586
+2016-08-24 09:36:45,188 DEBUG: 			View 1 : 0.649681528662
+2016-08-24 09:36:45,224 DEBUG: 			View 2 : 0.541401273885
+2016-08-24 09:36:45,231 DEBUG: 			View 3 : 0.509554140127
+2016-08-24 09:36:45,276 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:36:45,408 DEBUG: 		Start:	 Iteration 3
+2016-08-24 09:36:45,424 DEBUG: 			View 0 : 0.420382165605
+2016-08-24 09:36:45,432 DEBUG: 			View 1 : 0.630573248408
+2016-08-24 09:36:45,467 DEBUG: 			View 2 : 0.535031847134
+2016-08-24 09:36:45,475 DEBUG: 			View 3 : 0.388535031847
+2016-08-24 09:36:45,527 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:36:45,717 DEBUG: 		Start:	 Iteration 4
+2016-08-24 09:36:45,733 DEBUG: 			View 0 : 0.375796178344
+2016-08-24 09:36:45,741 DEBUG: 			View 1 : 0.573248407643
+2016-08-24 09:36:45,777 DEBUG: 			View 2 : 0.490445859873
+2016-08-24 09:36:45,784 DEBUG: 			View 3 : 0.503184713376
+2016-08-24 09:36:45,839 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:36:46,086 DEBUG: 		Start:	 Iteration 5
+2016-08-24 09:36:46,103 DEBUG: 			View 0 : 0.566878980892
+2016-08-24 09:36:46,110 DEBUG: 			View 1 : 0.585987261146
+2016-08-24 09:36:46,146 DEBUG: 			View 2 : 0.566878980892
+2016-08-24 09:36:46,154 DEBUG: 			View 3 : 0.579617834395
+2016-08-24 09:36:46,210 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:36:46,514 DEBUG: 		Start:	 Iteration 6
+2016-08-24 09:36:46,530 DEBUG: 			View 0 : 0.484076433121
+2016-08-24 09:36:46,538 DEBUG: 			View 1 : 0.496815286624
+2016-08-24 09:36:46,574 DEBUG: 			View 2 : 0.56050955414
+2016-08-24 09:36:46,581 DEBUG: 			View 3 : 0.445859872611
+2016-08-24 09:36:46,640 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:36:47,001 DEBUG: 		Start:	 Iteration 7
+2016-08-24 09:36:47,018 DEBUG: 			View 0 : 0.541401273885
+2016-08-24 09:36:47,025 DEBUG: 			View 1 : 0.624203821656
+2016-08-24 09:36:47,061 DEBUG: 			View 2 : 0.43949044586
+2016-08-24 09:36:47,069 DEBUG: 			View 3 : 0.375796178344
+2016-08-24 09:36:47,129 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:36:47,548 DEBUG: 		Start:	 Iteration 8
+2016-08-24 09:36:47,565 DEBUG: 			View 0 : 0.643312101911
+2016-08-24 09:36:47,572 DEBUG: 			View 1 : 0.312101910828
+2016-08-24 09:36:47,608 DEBUG: 			View 2 : 0.420382165605
+2016-08-24 09:36:47,615 DEBUG: 			View 3 : 0.541401273885
+2016-08-24 09:36:47,678 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:36:48,158 DEBUG: 		Start:	 Iteration 9
+2016-08-24 09:36:48,174 DEBUG: 			View 0 : 0.458598726115
+2016-08-24 09:36:48,182 DEBUG: 			View 1 : 0.407643312102
+2016-08-24 09:36:48,217 DEBUG: 			View 2 : 0.445859872611
+2016-08-24 09:36:48,224 DEBUG: 			View 3 : 0.458598726115
+2016-08-24 09:36:48,225 WARNING: All bad for iteration 8
+2016-08-24 09:36:48,290 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:36:48,826 DEBUG: 		Start:	 Iteration 10
+2016-08-24 09:36:48,843 DEBUG: 			View 0 : 0.547770700637
+2016-08-24 09:36:48,851 DEBUG: 			View 1 : 0.566878980892
+2016-08-24 09:36:48,887 DEBUG: 			View 2 : 0.407643312102
+2016-08-24 09:36:48,894 DEBUG: 			View 3 : 0.43949044586
+2016-08-24 09:36:48,962 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:36:49,554 DEBUG: 		Start:	 Iteration 11
+2016-08-24 09:36:49,571 DEBUG: 			View 0 : 0.535031847134
+2016-08-24 09:36:49,579 DEBUG: 			View 1 : 0.433121019108
+2016-08-24 09:36:49,614 DEBUG: 			View 2 : 0.484076433121
+2016-08-24 09:36:49,622 DEBUG: 			View 3 : 0.420382165605
+2016-08-24 09:36:49,691 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:36:50,358 DEBUG: 		Start:	 Iteration 12
+2016-08-24 09:36:50,374 DEBUG: 			View 0 : 0.770700636943
+2016-08-24 09:36:50,382 DEBUG: 			View 1 : 0.56050955414
+2016-08-24 09:36:50,418 DEBUG: 			View 2 : 0.426751592357
+2016-08-24 09:36:50,425 DEBUG: 			View 3 : 0.433121019108
+2016-08-24 09:36:50,498 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:36:51,225 DEBUG: 		Start:	 Iteration 13
+2016-08-24 09:36:51,242 DEBUG: 			View 0 : 0.420382165605
+2016-08-24 09:36:51,249 DEBUG: 			View 1 : 0.343949044586
+2016-08-24 09:36:51,285 DEBUG: 			View 2 : 0.573248407643
+2016-08-24 09:36:51,293 DEBUG: 			View 3 : 0.394904458599
+2016-08-24 09:36:51,367 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:36:52,162 DEBUG: 		Start:	 Iteration 14
+2016-08-24 09:36:52,179 DEBUG: 			View 0 : 0.445859872611
+2016-08-24 09:36:52,187 DEBUG: 			View 1 : 0.566878980892
+2016-08-24 09:36:52,223 DEBUG: 			View 2 : 0.579617834395
+2016-08-24 09:36:52,230 DEBUG: 			View 3 : 0.541401273885
+2016-08-24 09:36:52,308 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:36:53,175 DEBUG: 		Start:	 Iteration 15
+2016-08-24 09:36:53,191 DEBUG: 			View 0 : 0.624203821656
+2016-08-24 09:36:53,199 DEBUG: 			View 1 : 0.656050955414
+2016-08-24 09:36:53,235 DEBUG: 			View 2 : 0.592356687898
+2016-08-24 09:36:53,242 DEBUG: 			View 3 : 0.503184713376
+2016-08-24 09:36:53,321 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:36:54,247 DEBUG: 		Start:	 Iteration 16
+2016-08-24 09:36:54,263 DEBUG: 			View 0 : 0.636942675159
+2016-08-24 09:36:54,271 DEBUG: 			View 1 : 0.592356687898
+2016-08-24 09:36:54,307 DEBUG: 			View 2 : 0.554140127389
+2016-08-24 09:36:54,314 DEBUG: 			View 3 : 0.484076433121
+2016-08-24 09:36:54,396 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:36:55,378 DEBUG: 		Start:	 Iteration 17
+2016-08-24 09:36:55,395 DEBUG: 			View 0 : 0.458598726115
+2016-08-24 09:36:55,402 DEBUG: 			View 1 : 0.624203821656
+2016-08-24 09:36:55,439 DEBUG: 			View 2 : 0.426751592357
+2016-08-24 09:36:55,446 DEBUG: 			View 3 : 0.414012738854
+2016-08-24 09:36:55,529 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:36:56,570 DEBUG: 		Start:	 Iteration 18
+2016-08-24 09:36:56,586 DEBUG: 			View 0 : 0.535031847134
+2016-08-24 09:36:56,594 DEBUG: 			View 1 : 0.343949044586
+2016-08-24 09:36:56,630 DEBUG: 			View 2 : 0.605095541401
+2016-08-24 09:36:56,638 DEBUG: 			View 3 : 0.496815286624
+2016-08-24 09:36:56,724 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:36:57,833 DEBUG: 		Start:	 Iteration 19
+2016-08-24 09:36:57,850 DEBUG: 			View 0 : 0.426751592357
+2016-08-24 09:36:57,857 DEBUG: 			View 1 : 0.414012738854
+2016-08-24 09:36:57,893 DEBUG: 			View 2 : 0.433121019108
+2016-08-24 09:36:57,901 DEBUG: 			View 3 : 0.56050955414
+2016-08-24 09:36:57,989 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:36:59,153 DEBUG: 		Start:	 Iteration 20
+2016-08-24 09:36:59,170 DEBUG: 			View 0 : 0.40127388535
+2016-08-24 09:36:59,178 DEBUG: 			View 1 : 0.630573248408
+2016-08-24 09:36:59,214 DEBUG: 			View 2 : 0.477707006369
+2016-08-24 09:36:59,221 DEBUG: 			View 3 : 0.624203821656
+2016-08-24 09:36:59,312 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:37:00,535 DEBUG: 		Start:	 Iteration 21
+2016-08-24 09:37:00,552 DEBUG: 			View 0 : 0.566878980892
+2016-08-24 09:37:00,559 DEBUG: 			View 1 : 0.541401273885
+2016-08-24 09:37:00,595 DEBUG: 			View 2 : 0.509554140127
+2016-08-24 09:37:00,602 DEBUG: 			View 3 : 0.515923566879
+2016-08-24 09:37:00,695 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:37:01,976 DEBUG: 		Start:	 Iteration 22
+2016-08-24 09:37:01,992 DEBUG: 			View 0 : 0.452229299363
+2016-08-24 09:37:02,000 DEBUG: 			View 1 : 0.566878980892
+2016-08-24 09:37:02,036 DEBUG: 			View 2 : 0.433121019108
+2016-08-24 09:37:02,043 DEBUG: 			View 3 : 0.484076433121
+2016-08-24 09:37:02,137 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:37:03,474 DEBUG: 		Start:	 Iteration 23
+2016-08-24 09:37:03,490 DEBUG: 			View 0 : 0.573248407643
+2016-08-24 09:37:03,498 DEBUG: 			View 1 : 0.624203821656
+2016-08-24 09:37:03,534 DEBUG: 			View 2 : 0.503184713376
+2016-08-24 09:37:03,541 DEBUG: 			View 3 : 0.394904458599
+2016-08-24 09:37:03,638 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:37:05,032 DEBUG: 		Start:	 Iteration 24
+2016-08-24 09:37:05,048 DEBUG: 			View 0 : 0.605095541401
+2016-08-24 09:37:05,056 DEBUG: 			View 1 : 0.643312101911
+2016-08-24 09:37:05,092 DEBUG: 			View 2 : 0.630573248408
+2016-08-24 09:37:05,099 DEBUG: 			View 3 : 0.541401273885
+2016-08-24 09:37:05,197 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:37:06,651 DEBUG: 		Start:	 Iteration 25
+2016-08-24 09:37:06,668 DEBUG: 			View 0 : 0.43949044586
+2016-08-24 09:37:06,675 DEBUG: 			View 1 : 0.350318471338
+2016-08-24 09:37:06,711 DEBUG: 			View 2 : 0.414012738854
+2016-08-24 09:37:06,719 DEBUG: 			View 3 : 0.611464968153
+2016-08-24 09:37:06,819 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:37:08,325 DEBUG: 		Start:	 Iteration 26
+2016-08-24 09:37:08,342 DEBUG: 			View 0 : 0.43949044586
+2016-08-24 09:37:08,349 DEBUG: 			View 1 : 0.675159235669
+2016-08-24 09:37:08,385 DEBUG: 			View 2 : 0.585987261146
+2016-08-24 09:37:08,393 DEBUG: 			View 3 : 0.573248407643
+2016-08-24 09:37:08,496 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:37:10,064 DEBUG: 		Start:	 Iteration 27
+2016-08-24 09:37:10,080 DEBUG: 			View 0 : 0.433121019108
+2016-08-24 09:37:10,088 DEBUG: 			View 1 : 0.496815286624
+2016-08-24 09:37:10,124 DEBUG: 			View 2 : 0.496815286624
+2016-08-24 09:37:10,131 DEBUG: 			View 3 : 0.515923566879
+2016-08-24 09:37:10,237 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:37:11,867 DEBUG: 		Start:	 Iteration 28
+2016-08-24 09:37:11,883 DEBUG: 			View 0 : 0.522292993631
+2016-08-24 09:37:11,891 DEBUG: 			View 1 : 0.464968152866
+2016-08-24 09:37:11,927 DEBUG: 			View 2 : 0.452229299363
+2016-08-24 09:37:11,935 DEBUG: 			View 3 : 0.420382165605
+2016-08-24 09:37:12,042 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:37:13,729 DEBUG: 		Start:	 Iteration 29
+2016-08-24 09:37:13,746 DEBUG: 			View 0 : 0.764331210191
+2016-08-24 09:37:13,753 DEBUG: 			View 1 : 0.40127388535
+2016-08-24 09:37:13,789 DEBUG: 			View 2 : 0.40127388535
+2016-08-24 09:37:13,797 DEBUG: 			View 3 : 0.566878980892
+2016-08-24 09:37:13,907 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:37:15,653 DEBUG: 		Start:	 Iteration 30
+2016-08-24 09:37:15,669 DEBUG: 			View 0 : 0.522292993631
+2016-08-24 09:37:15,677 DEBUG: 			View 1 : 0.649681528662
+2016-08-24 09:37:15,713 DEBUG: 			View 2 : 0.426751592357
+2016-08-24 09:37:15,721 DEBUG: 			View 3 : 0.59872611465
+2016-08-24 09:37:15,834 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:37:17,639 DEBUG: 		Start:	 Iteration 31
+2016-08-24 09:37:17,655 DEBUG: 			View 0 : 0.605095541401
+2016-08-24 09:37:17,663 DEBUG: 			View 1 : 0.477707006369
+2016-08-24 09:37:17,699 DEBUG: 			View 2 : 0.388535031847
+2016-08-24 09:37:17,706 DEBUG: 			View 3 : 0.605095541401
+2016-08-24 09:37:17,820 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:37:19,683 DEBUG: 		Start:	 Iteration 32
+2016-08-24 09:37:19,699 DEBUG: 			View 0 : 0.579617834395
+2016-08-24 09:37:19,707 DEBUG: 			View 1 : 0.445859872611
+2016-08-24 09:37:19,743 DEBUG: 			View 2 : 0.464968152866
+2016-08-24 09:37:19,751 DEBUG: 			View 3 : 0.458598726115
+2016-08-24 09:37:19,868 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:37:21,795 DEBUG: 		Start:	 Iteration 33
+2016-08-24 09:37:21,811 DEBUG: 			View 0 : 0.630573248408
+2016-08-24 09:37:21,819 DEBUG: 			View 1 : 0.656050955414
+2016-08-24 09:37:21,855 DEBUG: 			View 2 : 0.617834394904
+2016-08-24 09:37:21,866 DEBUG: 			View 3 : 0.40127388535
+2016-08-24 09:37:21,984 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:37:23,972 DEBUG: 		Start:	 Iteration 34
+2016-08-24 09:37:23,989 DEBUG: 			View 0 : 0.585987261146
+2016-08-24 09:37:23,996 DEBUG: 			View 1 : 0.624203821656
+2016-08-24 09:37:24,033 DEBUG: 			View 2 : 0.56050955414
+2016-08-24 09:37:24,044 DEBUG: 			View 3 : 0.554140127389
+2016-08-24 09:37:24,164 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:37:26,207 DEBUG: 		Start:	 Iteration 35
+2016-08-24 09:37:26,223 DEBUG: 			View 0 : 0.515923566879
+2016-08-24 09:37:26,231 DEBUG: 			View 1 : 0.68152866242
+2016-08-24 09:37:26,267 DEBUG: 			View 2 : 0.369426751592
+2016-08-24 09:37:26,275 DEBUG: 			View 3 : 0.452229299363
+2016-08-24 09:37:26,397 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:37:28,497 DEBUG: 		Start:	 Iteration 36
+2016-08-24 09:37:28,513 DEBUG: 			View 0 : 0.503184713376
+2016-08-24 09:37:28,521 DEBUG: 			View 1 : 0.458598726115
+2016-08-24 09:37:28,557 DEBUG: 			View 2 : 0.528662420382
+2016-08-24 09:37:28,564 DEBUG: 			View 3 : 0.624203821656
+2016-08-24 09:37:28,689 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:37:30,849 DEBUG: 		Start:	 Iteration 37
+2016-08-24 09:37:30,866 DEBUG: 			View 0 : 0.630573248408
+2016-08-24 09:37:30,873 DEBUG: 			View 1 : 0.662420382166
+2016-08-24 09:37:30,910 DEBUG: 			View 2 : 0.414012738854
+2016-08-24 09:37:30,917 DEBUG: 			View 3 : 0.43949044586
+2016-08-24 09:37:31,044 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:37:33,257 DEBUG: 		Start:	 Iteration 38
+2016-08-24 09:37:33,273 DEBUG: 			View 0 : 0.414012738854
+2016-08-24 09:37:33,281 DEBUG: 			View 1 : 0.414012738854
+2016-08-24 09:37:33,316 DEBUG: 			View 2 : 0.471337579618
+2016-08-24 09:37:33,324 DEBUG: 			View 3 : 0.503184713376
+2016-08-24 09:37:33,453 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:37:35,720 DEBUG: 		Start:	 Iteration 39
+2016-08-24 09:37:35,736 DEBUG: 			View 0 : 0.375796178344
+2016-08-24 09:37:35,744 DEBUG: 			View 1 : 0.471337579618
+2016-08-24 09:37:35,780 DEBUG: 			View 2 : 0.585987261146
+2016-08-24 09:37:35,787 DEBUG: 			View 3 : 0.547770700637
+2016-08-24 09:37:35,923 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:37:38,261 DEBUG: 		Start:	 Iteration 40
+2016-08-24 09:37:38,278 DEBUG: 			View 0 : 0.554140127389
+2016-08-24 09:37:38,286 DEBUG: 			View 1 : 0.528662420382
+2016-08-24 09:37:38,322 DEBUG: 			View 2 : 0.43949044586
+2016-08-24 09:37:38,329 DEBUG: 			View 3 : 0.515923566879
+2016-08-24 09:37:38,463 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:37:40,864 DEBUG: 		Start:	 Iteration 41
+2016-08-24 09:37:40,880 DEBUG: 			View 0 : 0.611464968153
+2016-08-24 09:37:40,888 DEBUG: 			View 1 : 0.675159235669
+2016-08-24 09:37:40,924 DEBUG: 			View 2 : 0.535031847134
+2016-08-24 09:37:40,931 DEBUG: 			View 3 : 0.471337579618
+2016-08-24 09:37:41,067 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:37:43,527 DEBUG: 		Start:	 Iteration 42
+2016-08-24 09:37:43,544 DEBUG: 			View 0 : 0.656050955414
+2016-08-24 09:37:43,552 DEBUG: 			View 1 : 0.522292993631
+2016-08-24 09:37:43,587 DEBUG: 			View 2 : 0.554140127389
+2016-08-24 09:37:43,595 DEBUG: 			View 3 : 0.617834394904
+2016-08-24 09:37:43,733 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:37:46,249 DEBUG: 		Start:	 Iteration 43
+2016-08-24 09:37:46,266 DEBUG: 			View 0 : 0.573248407643
+2016-08-24 09:37:46,274 DEBUG: 			View 1 : 0.31847133758
+2016-08-24 09:37:46,310 DEBUG: 			View 2 : 0.445859872611
+2016-08-24 09:37:46,317 DEBUG: 			View 3 : 0.573248407643
+2016-08-24 09:37:46,457 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:37:49,037 DEBUG: 		Start:	 Iteration 44
+2016-08-24 09:37:49,053 DEBUG: 			View 0 : 0.662420382166
+2016-08-24 09:37:49,061 DEBUG: 			View 1 : 0.656050955414
+2016-08-24 09:37:49,097 DEBUG: 			View 2 : 0.509554140127
+2016-08-24 09:37:49,104 DEBUG: 			View 3 : 0.433121019108
+2016-08-24 09:37:49,246 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:37:51,883 DEBUG: 		Start:	 Iteration 45
+2016-08-24 09:37:51,900 DEBUG: 			View 0 : 0.630573248408
+2016-08-24 09:37:51,908 DEBUG: 			View 1 : 0.649681528662
+2016-08-24 09:37:51,943 DEBUG: 			View 2 : 0.452229299363
+2016-08-24 09:37:51,951 DEBUG: 			View 3 : 0.566878980892
+2016-08-24 09:37:52,096 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:37:54,788 DEBUG: 		Start:	 Iteration 46
+2016-08-24 09:37:54,804 DEBUG: 			View 0 : 0.426751592357
+2016-08-24 09:37:54,812 DEBUG: 			View 1 : 0.471337579618
+2016-08-24 09:37:54,848 DEBUG: 			View 2 : 0.509554140127
+2016-08-24 09:37:54,855 DEBUG: 			View 3 : 0.585987261146
+2016-08-24 09:37:55,001 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:37:57,748 DEBUG: 		Start:	 Iteration 47
+2016-08-24 09:37:57,764 DEBUG: 			View 0 : 0.503184713376
+2016-08-24 09:37:57,772 DEBUG: 			View 1 : 0.40127388535
+2016-08-24 09:37:57,808 DEBUG: 			View 2 : 0.464968152866
+2016-08-24 09:37:57,815 DEBUG: 			View 3 : 0.43949044586
+2016-08-24 09:37:57,963 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:38:00,821 DEBUG: 		Start:	 Iteration 48
+2016-08-24 09:38:00,837 DEBUG: 			View 0 : 0.687898089172
+2016-08-24 09:38:00,845 DEBUG: 			View 1 : 0.726114649682
+2016-08-24 09:38:00,883 DEBUG: 			View 2 : 0.503184713376
+2016-08-24 09:38:00,891 DEBUG: 			View 3 : 0.630573248408
+2016-08-24 09:38:01,052 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:38:04,075 DEBUG: 		Start:	 Iteration 49
+2016-08-24 09:38:04,092 DEBUG: 			View 0 : 0.496815286624
+2016-08-24 09:38:04,099 DEBUG: 			View 1 : 0.426751592357
+2016-08-24 09:38:04,135 DEBUG: 			View 2 : 0.420382165605
+2016-08-24 09:38:04,142 DEBUG: 			View 3 : 0.426751592357
+2016-08-24 09:38:04,142 WARNING: All bad for iteration 48
+2016-08-24 09:38:04,297 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:38:07,226 DEBUG: 		Start:	 Iteration 50
+2016-08-24 09:38:07,243 DEBUG: 			View 0 : 0.630573248408
+2016-08-24 09:38:07,250 DEBUG: 			View 1 : 0.777070063694
+2016-08-24 09:38:07,286 DEBUG: 			View 2 : 0.464968152866
+2016-08-24 09:38:07,294 DEBUG: 			View 3 : 0.605095541401
+2016-08-24 09:38:07,449 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:38:10,439 DEBUG: 		Start:	 Iteration 51
+2016-08-24 09:38:10,456 DEBUG: 			View 0 : 0.757961783439
+2016-08-24 09:38:10,464 DEBUG: 			View 1 : 0.490445859873
+2016-08-24 09:38:10,499 DEBUG: 			View 2 : 0.464968152866
+2016-08-24 09:38:10,507 DEBUG: 			View 3 : 0.509554140127
+2016-08-24 09:38:10,664 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:38:13,867 DEBUG: 		Start:	 Iteration 52
+2016-08-24 09:38:13,885 DEBUG: 			View 0 : 0.496815286624
+2016-08-24 09:38:13,892 DEBUG: 			View 1 : 0.59872611465
+2016-08-24 09:38:13,928 DEBUG: 			View 2 : 0.407643312102
+2016-08-24 09:38:13,936 DEBUG: 			View 3 : 0.585987261146
+2016-08-24 09:38:14,100 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:38:17,221 INFO: 	Start: 	 Classification
+2016-08-24 09:38:24,786 INFO: 	Done: 	 Fold number 2
+2016-08-24 09:38:24,786 INFO: Done:	 Classification
+2016-08-24 09:38:24,786 INFO: Info:	 Time for Classification: 269[s]
+2016-08-24 09:38:24,786 INFO: Start:	 Result Analysis for Mumbo
+2016-08-24 09:38:42,191 INFO: 		Result for Multiview classification with Mumbo
+
+Average accuracy :
+	-On Train : 74.1078719582
+	-On Test : 79.0983606557
+	-On Validation : 81.5533980583
+
+Dataset info :
+	-Database name : ModifiedMultiOmic
+	-Labels : No, Yes
+	-Views : Methyl, MiRNA, RNASEQ, Clinical
+	-2 folds
+	- Validation set length : 103 for learning rate : 0.7
+
+Classification configuration : 
+	-Algorithm used : Mumbo 
+	-Iterations : 1000
+	-Weak Classifiers : DecisionTree with depth 1.0,  sub-sampled at 0.0075 on Methyl
+		-DecisionTree with depth 1.0,  sub-sampled at 0.007 on MiRNA
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on RNASEQ
+		-DecisionTree with depth 1.0,  sub-sampled at 0.0075 on Clinical
+
+ Mean average accuracies and stats for each fold : 
+	- Fold 0
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.0274615384615
+			- Percentage of time chosen : 0.96
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.0292820512821
+			- Percentage of time chosen : 0.028
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.0261987179487
+			- Percentage of time chosen : 0.004
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.027391025641
+			- Percentage of time chosen : 0.008
+	- Fold 1
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.0279617834395
+			- Percentage of time chosen : 0.961
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.028178343949
+			- Percentage of time chosen : 0.026
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.0253566878981
+			- Percentage of time chosen : 0.005
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.0265031847134
+			- Percentage of time chosen : 0.008
+
+ For each iteration : 
+	- Iteration 1
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 2
+		 Fold 1
+			Accuracy on train : 66.6666666667
+			Accuracy on test : 69.6721311475
+			Accuracy on validation : 72.8155339806
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 64.9681528662
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 65.8174097665
+			 Accuracy on test : 71.7213114754
+	- Iteration 3
+		 Fold 1
+			Accuracy on train : 66.6666666667
+			Accuracy on test : 69.6721311475
+			Accuracy on validation : 72.8155339806
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 64.9681528662
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 65.8174097665
+			 Accuracy on test : 71.7213114754
+	- Iteration 4
+		 Fold 1
+			Accuracy on train : 56.4102564103
+			Accuracy on test : 65.5737704918
+			Accuracy on validation : 66.0194174757
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 63.0573248408
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 76.6990291262
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 59.7337906255
+			 Accuracy on test : 69.262295082
+	- Iteration 5
+		 Fold 1
+			Accuracy on train : 66.0256410256
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 67.9611650485
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 72.8155339806
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 63.904540258
+			 Accuracy on test : 72.9508196721
+	- Iteration 6
+		 Fold 1
+			Accuracy on train : 65.3846153846
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 72.8155339806
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 63.5840274375
+			 Accuracy on test : 72.9508196721
+	- Iteration 7
+		 Fold 1
+			Accuracy on train : 68.5897435897
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 63.6942675159
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 72.8155339806
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 66.1420055528
+			 Accuracy on test : 75.8196721311
+	- Iteration 8
+		 Fold 1
+			Accuracy on train : 66.0256410256
+			Accuracy on test : 68.8524590164
+			Accuracy on validation : 71.8446601942
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 62.4203821656
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 72.8155339806
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 64.2230115956
+			 Accuracy on test : 71.3114754098
+	- Iteration 9
+		 Fold 1
+			Accuracy on train : 73.0769230769
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 75.7281553398
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 62.4203821656
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 72.8155339806
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 67.7486526213
+			 Accuracy on test : 75.4098360656
+	- Iteration 10
+		 Fold 1
+			Accuracy on train : 73.7179487179
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 65.6050955414
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 71.8446601942
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 69.6615221297
+			 Accuracy on test : 77.0491803279
+	- Iteration 11
+		 Fold 1
+			Accuracy on train : 71.7948717949
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 65.6050955414
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 71.8446601942
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 68.6999836681
+			 Accuracy on test : 77.4590163934
+	- Iteration 12
+		 Fold 1
+			Accuracy on train : 69.8717948718
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 76.6990291262
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 71.3375796178
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 70.6046872448
+			 Accuracy on test : 77.868852459
+	- Iteration 13
+		 Fold 1
+			Accuracy on train : 69.8717948718
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 76.6990291262
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 69.4267515924
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 77.6699029126
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 69.6492732321
+			 Accuracy on test : 76.6393442623
+	- Iteration 14
+		 Fold 1
+			Accuracy on train : 69.8717948718
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 70.7006369427
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 70.2862159072
+			 Accuracy on test : 76.6393442623
+	- Iteration 15
+		 Fold 1
+			Accuracy on train : 70.5128205128
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 76.6990291262
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 68.7898089172
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 69.651314715
+			 Accuracy on test : 78.6885245902
+	- Iteration 16
+		 Fold 1
+			Accuracy on train : 68.5897435897
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.2484076433
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 70.9190756165
+			 Accuracy on test : 77.868852459
+	- Iteration 17
+		 Fold 1
+			Accuracy on train : 67.3076923077
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 76.6990291262
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 66.8789808917
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 67.0933365997
+			 Accuracy on test : 77.4590163934
+	- Iteration 18
+		 Fold 1
+			Accuracy on train : 62.8205128205
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 67.5159235669
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 76.6990291262
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 65.1682181937
+			 Accuracy on test : 76.2295081967
+	- Iteration 19
+		 Fold 1
+			Accuracy on train : 66.0256410256
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 74.7572815534
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 68.7898089172
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 76.6990291262
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 67.4077249714
+			 Accuracy on test : 77.0491803279
+	- Iteration 20
+		 Fold 1
+			Accuracy on train : 68.5897435897
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 66.2420382166
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 76.6990291262
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 67.4158909032
+			 Accuracy on test : 78.2786885246
+	- Iteration 21
+		 Fold 1
+			Accuracy on train : 71.7948717949
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 76.6990291262
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 66.2420382166
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 69.0184550057
+			 Accuracy on test : 78.2786885246
+	- Iteration 22
+		 Fold 1
+			Accuracy on train : 73.7179487179
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 68.152866242
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 70.93540748
+			 Accuracy on test : 79.9180327869
+	- Iteration 23
+		 Fold 1
+			Accuracy on train : 71.7948717949
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 66.2420382166
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 69.0184550057
+			 Accuracy on test : 78.6885245902
+	- Iteration 24
+		 Fold 1
+			Accuracy on train : 74.358974359
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 65.6050955414
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 69.9820349502
+			 Accuracy on test : 79.9180327869
+	- Iteration 25
+		 Fold 1
+			Accuracy on train : 74.358974359
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 64.9681528662
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 72.8155339806
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 69.6635636126
+			 Accuracy on test : 80.3278688525
+	- Iteration 26
+		 Fold 1
+			Accuracy on train : 78.2051282051
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 67.5159235669
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.860525886
+			 Accuracy on test : 80.3278688525
+	- Iteration 27
+		 Fold 1
+			Accuracy on train : 74.358974359
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 81.5533980583
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 67.5159235669
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 70.9374489629
+			 Accuracy on test : 79.9180327869
+	- Iteration 28
+		 Fold 1
+			Accuracy on train : 75.641025641
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 82.5242718447
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 67.5159235669
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 71.578474604
+			 Accuracy on test : 80.3278688525
+	- Iteration 29
+		 Fold 1
+			Accuracy on train : 73.7179487179
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 68.7898089172
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 75.7281553398
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 71.2538788176
+			 Accuracy on test : 79.5081967213
+	- Iteration 30
+		 Fold 1
+			Accuracy on train : 71.1538461538
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 71.3375796178
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 71.2457128858
+			 Accuracy on test : 80.3278688525
+	- Iteration 31
+		 Fold 1
+			Accuracy on train : 75.0
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.2484076433
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 74.1242038217
+			 Accuracy on test : 81.5573770492
+	- Iteration 32
+		 Fold 1
+			Accuracy on train : 75.641025641
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 75.1592356688
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 75.4001306549
+			 Accuracy on test : 81.1475409836
+	- Iteration 33
+		 Fold 1
+			Accuracy on train : 74.358974359
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 81.5533980583
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 71.974522293
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 73.166748326
+			 Accuracy on test : 79.9180327869
+	- Iteration 34
+		 Fold 1
+			Accuracy on train : 71.1538461538
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 71.3375796178
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 71.2457128858
+			 Accuracy on test : 79.5081967213
+	- Iteration 35
+		 Fold 1
+			Accuracy on train : 73.7179487179
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 71.974522293
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.8462355055
+			 Accuracy on test : 79.5081967213
+	- Iteration 36
+		 Fold 1
+			Accuracy on train : 72.4358974359
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 70.7006369427
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 74.7572815534
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 71.5682671893
+			 Accuracy on test : 78.6885245902
+	- Iteration 37
+		 Fold 1
+			Accuracy on train : 73.0769230769
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 71.974522293
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.525722685
+			 Accuracy on test : 78.2786885246
+	- Iteration 38
+		 Fold 1
+			Accuracy on train : 73.0769230769
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.2484076433
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 73.1626653601
+			 Accuracy on test : 79.9180327869
+	- Iteration 39
+		 Fold 1
+			Accuracy on train : 72.4358974359
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 74.5222929936
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 79.6116504854
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 73.4790952148
+			 Accuracy on test : 79.9180327869
+	- Iteration 40
+		 Fold 1
+			Accuracy on train : 73.0769230769
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 73.8853503185
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.4811366977
+			 Accuracy on test : 80.737704918
+	- Iteration 41
+		 Fold 1
+			Accuracy on train : 71.7948717949
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 74.5222929936
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 73.1585823943
+			 Accuracy on test : 78.2786885246
+	- Iteration 42
+		 Fold 1
+			Accuracy on train : 73.0769230769
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 74.5222929936
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.7996080353
+			 Accuracy on test : 80.3278688525
+	- Iteration 43
+		 Fold 1
+			Accuracy on train : 72.4358974359
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 73.8853503185
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.1606238772
+			 Accuracy on test : 79.5081967213
+	- Iteration 44
+		 Fold 1
+			Accuracy on train : 73.0769230769
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.2484076433
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 73.1626653601
+			 Accuracy on test : 79.0983606557
+	- Iteration 45
+		 Fold 1
+			Accuracy on train : 73.0769230769
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.8853503185
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 73.4811366977
+			 Accuracy on test : 80.737704918
+	- Iteration 46
+		 Fold 1
+			Accuracy on train : 72.4358974359
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 73.2484076433
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 72.8421525396
+			 Accuracy on test : 77.868852459
+	- Iteration 47
+		 Fold 1
+			Accuracy on train : 71.7948717949
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.8853503185
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 80.5825242718
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 72.8401110567
+			 Accuracy on test : 78.2786885246
+	- Iteration 48
+		 Fold 1
+			Accuracy on train : 70.5128205128
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.8853503185
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.1990854156
+			 Accuracy on test : 79.0983606557
+	- Iteration 49
+		 Fold 1
+			Accuracy on train : 72.4358974359
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.8853503185
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.1606238772
+			 Accuracy on test : 79.5081967213
+	- Iteration 50
+		 Fold 1
+			Accuracy on train : 71.1538461538
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 80.5825242718
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 73.8853503185
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.5195982362
+			 Accuracy on test : 78.6885245902
+	- Iteration 51
+		 Fold 1
+			Accuracy on train : 71.1538461538
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 77.0700636943
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 83.4951456311
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 74.1119549241
+			 Accuracy on test : 80.3278688525
+	- Iteration 52
+		 Fold 1
+			Accuracy on train : 69.8717948718
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 78.3439490446
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 74.1078719582
+			 Accuracy on test : 79.0983606557
+	- Iteration 53
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 54
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 55
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 56
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 57
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 58
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 59
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 60
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 61
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 62
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 63
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 64
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 65
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 66
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 67
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 68
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 69
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 70
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 71
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 72
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 73
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 74
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 75
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 76
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 77
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 78
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 79
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 80
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 81
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 82
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 83
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 84
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 85
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 86
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 87
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 88
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 89
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 90
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 91
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 92
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 93
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 94
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 95
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 96
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 97
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 98
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 99
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 100
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 101
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 102
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 103
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 104
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 105
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 106
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 107
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 108
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 109
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 110
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 111
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 112
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 113
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 114
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 115
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 116
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 117
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 118
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 119
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 120
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 121
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 122
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 123
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 124
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 125
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 126
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 127
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 128
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 129
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 130
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 131
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 132
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 133
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 134
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 135
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 136
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 137
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 138
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 139
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 140
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 141
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 142
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 143
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 144
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 145
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 146
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 147
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 148
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 149
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 150
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 151
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 152
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 153
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 154
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 155
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 156
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 157
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 158
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 159
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 160
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 161
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 162
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 163
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 164
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 165
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 166
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 167
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 168
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 169
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 170
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 171
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 172
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 173
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 174
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 175
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 176
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 177
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 178
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 179
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 180
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 181
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 182
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 183
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 184
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 185
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 186
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 187
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 188
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 189
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 190
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 191
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 192
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 193
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 194
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 195
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 196
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 197
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 198
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 199
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 200
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 201
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 202
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 203
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 204
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 205
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 206
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 207
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 208
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 209
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 210
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 211
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 212
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 213
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 214
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 215
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 216
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 217
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 218
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 219
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 220
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 221
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 222
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 223
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 224
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 225
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 226
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 227
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 228
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 229
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 230
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 231
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 232
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 233
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 234
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 235
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 236
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 237
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 238
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 239
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 240
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 241
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 242
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 243
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 244
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 245
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 246
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 247
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 248
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 249
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 250
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 251
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 252
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 253
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 254
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 255
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 256
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 257
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 258
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 259
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 260
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 261
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 262
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 263
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 264
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 265
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 266
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 267
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 268
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 269
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 270
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 271
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 272
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 273
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 274
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 275
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 276
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 277
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 278
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 279
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 280
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 281
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 282
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 283
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 284
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 285
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 286
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 287
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 288
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 289
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 290
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 291
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 292
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 293
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 294
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 295
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 296
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 297
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 298
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 299
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 300
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 301
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 302
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 303
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 304
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 305
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 306
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 307
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 308
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 309
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 310
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 311
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 312
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 313
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 314
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 315
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 316
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 317
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 318
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 319
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 320
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 321
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 322
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 323
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 324
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 325
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 326
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 327
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 328
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 329
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 330
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 331
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 332
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 333
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 334
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 335
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 336
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 337
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 338
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 339
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 340
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 341
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 342
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 343
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 344
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 345
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 346
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 347
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 348
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 349
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 350
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 351
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 352
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 353
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 354
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 355
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 356
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 357
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 358
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 359
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 360
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 361
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 362
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 363
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 364
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 365
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 366
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 367
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 368
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 369
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 370
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 371
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 372
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 373
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 374
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 375
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 376
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 377
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 378
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 379
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 380
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 381
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 382
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 383
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 384
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 385
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 386
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 387
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 388
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 389
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 390
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 391
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 392
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 393
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 394
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 395
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 396
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 397
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 398
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 399
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 400
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 401
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 402
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 403
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 404
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 405
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 406
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 407
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 408
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 409
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 410
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 411
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 412
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 413
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 414
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 415
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 416
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 417
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 418
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 419
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 420
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 421
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 422
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 423
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 424
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 425
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 426
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 427
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 428
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 429
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 430
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 431
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 432
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 433
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 434
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 435
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 436
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 437
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 438
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 439
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 440
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 441
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 442
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 443
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 444
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 445
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 446
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 447
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 448
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 449
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 450
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 451
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 452
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 453
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 454
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 455
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 456
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 457
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 458
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 459
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 460
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 461
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 462
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 463
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 464
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 465
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 466
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 467
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 468
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 469
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 470
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 471
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 472
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 473
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 474
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 475
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 476
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 477
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 478
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 479
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 480
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 481
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 482
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 483
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 484
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 485
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 486
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 487
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 488
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 489
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 490
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 491
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 492
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 493
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 494
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 495
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 496
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 497
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 498
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 499
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 500
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 501
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 502
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 503
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 504
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 505
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 506
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 507
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 508
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 509
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 510
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 511
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 512
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 513
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 514
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 515
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 516
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 517
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 518
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 519
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 520
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 521
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 522
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 523
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 524
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 525
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 526
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 527
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 528
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 529
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 530
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 531
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 532
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 533
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 534
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 535
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 536
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 537
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 538
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 539
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 540
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 541
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 542
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 543
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 544
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 545
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 546
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 547
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 548
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 549
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 550
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 551
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 552
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 553
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 554
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 555
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 556
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 557
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 558
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 559
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 560
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 561
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 562
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 563
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 564
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 565
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 566
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 567
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 568
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 569
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 570
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 571
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 572
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 573
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 574
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 575
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 576
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 577
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 578
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 579
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 580
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 581
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 582
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 583
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 584
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 585
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 586
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 587
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 588
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 589
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 590
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 591
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 592
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 593
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 594
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 595
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 596
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 597
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 598
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 599
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 600
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 601
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 602
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 603
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 604
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 605
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 606
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 607
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 608
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 609
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 610
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 611
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 612
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 613
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 614
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 615
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 616
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 617
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 618
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 619
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 620
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 621
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 622
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 623
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 624
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 625
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 626
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 627
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 628
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 629
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 630
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 631
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 632
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 633
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 634
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 635
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 636
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 637
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 638
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 639
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 640
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 641
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 642
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 643
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 644
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 645
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 646
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 647
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 648
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 649
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 650
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 651
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 652
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 653
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 654
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 655
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 656
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 657
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 658
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 659
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 660
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 661
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 662
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 663
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 664
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 665
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 666
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 667
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 668
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 669
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 670
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 671
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 672
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 673
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 674
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 675
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 676
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 677
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 678
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 679
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 680
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 681
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 682
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 683
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 684
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 685
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 686
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 687
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 688
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 689
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 690
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 691
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 692
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 693
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 694
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 695
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 696
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 697
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 698
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 699
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 700
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 701
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 702
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 703
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 704
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 705
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 706
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 707
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 708
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 709
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 710
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 711
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 712
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 713
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 714
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 715
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 716
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 717
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 718
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 719
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 720
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 721
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 722
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 723
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 724
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 725
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 726
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 727
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 728
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 729
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 730
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 731
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 732
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 733
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 734
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 735
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 736
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 737
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 738
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 739
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 740
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 741
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 742
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 743
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 744
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 745
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 746
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 747
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 748
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 749
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 750
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 751
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 752
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 753
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 754
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 755
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 756
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 757
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 758
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 759
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 760
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 761
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 762
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 763
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 764
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 765
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 766
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 767
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 768
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 769
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 770
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 771
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 772
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 773
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 774
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 775
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 776
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 777
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 778
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 779
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 780
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 781
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 782
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 783
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 784
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 785
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 786
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 787
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 788
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 789
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 790
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 791
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 792
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 793
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 794
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 795
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 796
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 797
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 798
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 799
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 800
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 801
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 802
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 803
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 804
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 805
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 806
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 807
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 808
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 809
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 810
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 811
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 812
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 813
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 814
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 815
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 816
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 817
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 818
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 819
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 820
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 821
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 822
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 823
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 824
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 825
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 826
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 827
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 828
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 829
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 830
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 831
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 832
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 833
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 834
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 835
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 836
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 837
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 838
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 839
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 840
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 841
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 842
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 843
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 844
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 845
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 846
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 847
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 848
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 849
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 850
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 851
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 852
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 853
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 854
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 855
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 856
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 857
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 858
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 859
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 860
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 861
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 862
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 863
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 864
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 865
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 866
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 867
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 868
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 869
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 870
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 871
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 872
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 873
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 874
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 875
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 876
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 877
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 878
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 879
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 880
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 881
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 882
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 883
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 884
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 885
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 886
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 887
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 888
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 889
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 890
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 891
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 892
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 893
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 894
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 895
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 896
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 897
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 898
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 899
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 900
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 901
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 902
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 903
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 904
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 905
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 906
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 907
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 908
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 909
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 910
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 911
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 912
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 913
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 914
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 915
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 916
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 917
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 918
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 919
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 920
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 921
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 922
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 923
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 924
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 925
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 926
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 927
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 928
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 929
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 930
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 931
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 932
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 933
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 934
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 935
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 936
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 937
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 938
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 939
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 940
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 941
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 942
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 943
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 944
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 945
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 946
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 947
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 948
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 949
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 950
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 951
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 952
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 953
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 954
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 955
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 956
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 957
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 958
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 959
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 960
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 961
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 962
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 963
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 964
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 965
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 966
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 967
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 968
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 969
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 970
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 971
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 972
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 973
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 974
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 975
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 976
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 977
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 978
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 979
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 980
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 981
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 982
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 983
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 984
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 985
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 986
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 987
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 988
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 989
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 990
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 991
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 992
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 993
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 994
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 995
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 996
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 997
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 998
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 999
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 1000
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+
+Computation time on 1 cores : 
+	Database extraction time : 0:00:00
+	                         Learn     Prediction
+	         Fold 1        0:02:40        0:00:07
+	         Fold 2        0:04:22        0:00:07
+	          Total        0:07:02        0:00:15
+	So a total classification time of 0:04:29.
+
+
+2016-08-24 09:38:43,134 INFO: Done:	 Result Analysis
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093842Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093842Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png
new file mode 100644
index 0000000000000000000000000000000000000000..50c8876ea3458bb044bb4ed265a50cce6ac905b0
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093842Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png differ
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093842Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093842Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt
new file mode 100644
index 0000000000000000000000000000000000000000..6a91f6d691bc3e2c7009838126628a0ae2baafd8
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-093842Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt
@@ -0,0 +1,14060 @@
+		Result for Multiview classification with Mumbo
+
+Average accuracy :
+	-On Train : 74.1078719582
+	-On Test : 79.0983606557
+	-On Validation : 81.5533980583
+
+Dataset info :
+	-Database name : ModifiedMultiOmic
+	-Labels : No, Yes
+	-Views : Methyl, MiRNA, RNASEQ, Clinical
+	-2 folds
+	- Validation set length : 103 for learning rate : 0.7
+
+Classification configuration : 
+	-Algorithm used : Mumbo 
+	-Iterations : 1000
+	-Weak Classifiers : DecisionTree with depth 1.0,  sub-sampled at 0.0075 on Methyl
+		-DecisionTree with depth 1.0,  sub-sampled at 0.007 on MiRNA
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on RNASEQ
+		-DecisionTree with depth 1.0,  sub-sampled at 0.0075 on Clinical
+
+ Mean average accuracies and stats for each fold : 
+	- Fold 0
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.0274615384615
+			- Percentage of time chosen : 0.96
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.0292820512821
+			- Percentage of time chosen : 0.028
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.0261987179487
+			- Percentage of time chosen : 0.004
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.027391025641
+			- Percentage of time chosen : 0.008
+	- Fold 1
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.0279617834395
+			- Percentage of time chosen : 0.961
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.028178343949
+			- Percentage of time chosen : 0.026
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.0253566878981
+			- Percentage of time chosen : 0.005
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.0265031847134
+			- Percentage of time chosen : 0.008
+
+ For each iteration : 
+	- Iteration 1
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 2
+		 Fold 1
+			Accuracy on train : 66.6666666667
+			Accuracy on test : 69.6721311475
+			Accuracy on validation : 72.8155339806
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 64.9681528662
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 65.8174097665
+			 Accuracy on test : 71.7213114754
+	- Iteration 3
+		 Fold 1
+			Accuracy on train : 66.6666666667
+			Accuracy on test : 69.6721311475
+			Accuracy on validation : 72.8155339806
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 64.9681528662
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 65.8174097665
+			 Accuracy on test : 71.7213114754
+	- Iteration 4
+		 Fold 1
+			Accuracy on train : 56.4102564103
+			Accuracy on test : 65.5737704918
+			Accuracy on validation : 66.0194174757
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 63.0573248408
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 76.6990291262
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 59.7337906255
+			 Accuracy on test : 69.262295082
+	- Iteration 5
+		 Fold 1
+			Accuracy on train : 66.0256410256
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 67.9611650485
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 72.8155339806
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 63.904540258
+			 Accuracy on test : 72.9508196721
+	- Iteration 6
+		 Fold 1
+			Accuracy on train : 65.3846153846
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 72.8155339806
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 63.5840274375
+			 Accuracy on test : 72.9508196721
+	- Iteration 7
+		 Fold 1
+			Accuracy on train : 68.5897435897
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 63.6942675159
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 72.8155339806
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 66.1420055528
+			 Accuracy on test : 75.8196721311
+	- Iteration 8
+		 Fold 1
+			Accuracy on train : 66.0256410256
+			Accuracy on test : 68.8524590164
+			Accuracy on validation : 71.8446601942
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 62.4203821656
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 72.8155339806
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 64.2230115956
+			 Accuracy on test : 71.3114754098
+	- Iteration 9
+		 Fold 1
+			Accuracy on train : 73.0769230769
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 75.7281553398
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 62.4203821656
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 72.8155339806
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 67.7486526213
+			 Accuracy on test : 75.4098360656
+	- Iteration 10
+		 Fold 1
+			Accuracy on train : 73.7179487179
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 65.6050955414
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 71.8446601942
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 69.6615221297
+			 Accuracy on test : 77.0491803279
+	- Iteration 11
+		 Fold 1
+			Accuracy on train : 71.7948717949
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 65.6050955414
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 71.8446601942
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 68.6999836681
+			 Accuracy on test : 77.4590163934
+	- Iteration 12
+		 Fold 1
+			Accuracy on train : 69.8717948718
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 76.6990291262
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 71.3375796178
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 70.6046872448
+			 Accuracy on test : 77.868852459
+	- Iteration 13
+		 Fold 1
+			Accuracy on train : 69.8717948718
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 76.6990291262
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 69.4267515924
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 77.6699029126
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 69.6492732321
+			 Accuracy on test : 76.6393442623
+	- Iteration 14
+		 Fold 1
+			Accuracy on train : 69.8717948718
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 70.7006369427
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 70.2862159072
+			 Accuracy on test : 76.6393442623
+	- Iteration 15
+		 Fold 1
+			Accuracy on train : 70.5128205128
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 76.6990291262
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 68.7898089172
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 69.651314715
+			 Accuracy on test : 78.6885245902
+	- Iteration 16
+		 Fold 1
+			Accuracy on train : 68.5897435897
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.2484076433
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 70.9190756165
+			 Accuracy on test : 77.868852459
+	- Iteration 17
+		 Fold 1
+			Accuracy on train : 67.3076923077
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 76.6990291262
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 66.8789808917
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 67.0933365997
+			 Accuracy on test : 77.4590163934
+	- Iteration 18
+		 Fold 1
+			Accuracy on train : 62.8205128205
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 67.5159235669
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 76.6990291262
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 65.1682181937
+			 Accuracy on test : 76.2295081967
+	- Iteration 19
+		 Fold 1
+			Accuracy on train : 66.0256410256
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 74.7572815534
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 68.7898089172
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 76.6990291262
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 67.4077249714
+			 Accuracy on test : 77.0491803279
+	- Iteration 20
+		 Fold 1
+			Accuracy on train : 68.5897435897
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 66.2420382166
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 76.6990291262
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 67.4158909032
+			 Accuracy on test : 78.2786885246
+	- Iteration 21
+		 Fold 1
+			Accuracy on train : 71.7948717949
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 76.6990291262
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 66.2420382166
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 69.0184550057
+			 Accuracy on test : 78.2786885246
+	- Iteration 22
+		 Fold 1
+			Accuracy on train : 73.7179487179
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 68.152866242
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 70.93540748
+			 Accuracy on test : 79.9180327869
+	- Iteration 23
+		 Fold 1
+			Accuracy on train : 71.7948717949
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 66.2420382166
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 69.0184550057
+			 Accuracy on test : 78.6885245902
+	- Iteration 24
+		 Fold 1
+			Accuracy on train : 74.358974359
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 65.6050955414
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 69.9820349502
+			 Accuracy on test : 79.9180327869
+	- Iteration 25
+		 Fold 1
+			Accuracy on train : 74.358974359
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 64.9681528662
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 72.8155339806
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 69.6635636126
+			 Accuracy on test : 80.3278688525
+	- Iteration 26
+		 Fold 1
+			Accuracy on train : 78.2051282051
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 67.5159235669
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.860525886
+			 Accuracy on test : 80.3278688525
+	- Iteration 27
+		 Fold 1
+			Accuracy on train : 74.358974359
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 81.5533980583
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 67.5159235669
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 70.9374489629
+			 Accuracy on test : 79.9180327869
+	- Iteration 28
+		 Fold 1
+			Accuracy on train : 75.641025641
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 82.5242718447
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 67.5159235669
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 71.578474604
+			 Accuracy on test : 80.3278688525
+	- Iteration 29
+		 Fold 1
+			Accuracy on train : 73.7179487179
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 68.7898089172
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 75.7281553398
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 71.2538788176
+			 Accuracy on test : 79.5081967213
+	- Iteration 30
+		 Fold 1
+			Accuracy on train : 71.1538461538
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 71.3375796178
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 71.2457128858
+			 Accuracy on test : 80.3278688525
+	- Iteration 31
+		 Fold 1
+			Accuracy on train : 75.0
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.2484076433
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 74.1242038217
+			 Accuracy on test : 81.5573770492
+	- Iteration 32
+		 Fold 1
+			Accuracy on train : 75.641025641
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 75.1592356688
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 75.4001306549
+			 Accuracy on test : 81.1475409836
+	- Iteration 33
+		 Fold 1
+			Accuracy on train : 74.358974359
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 81.5533980583
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 71.974522293
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 73.166748326
+			 Accuracy on test : 79.9180327869
+	- Iteration 34
+		 Fold 1
+			Accuracy on train : 71.1538461538
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 71.3375796178
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 71.2457128858
+			 Accuracy on test : 79.5081967213
+	- Iteration 35
+		 Fold 1
+			Accuracy on train : 73.7179487179
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 71.974522293
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.8462355055
+			 Accuracy on test : 79.5081967213
+	- Iteration 36
+		 Fold 1
+			Accuracy on train : 72.4358974359
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 70.7006369427
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 74.7572815534
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 71.5682671893
+			 Accuracy on test : 78.6885245902
+	- Iteration 37
+		 Fold 1
+			Accuracy on train : 73.0769230769
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 71.974522293
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.525722685
+			 Accuracy on test : 78.2786885246
+	- Iteration 38
+		 Fold 1
+			Accuracy on train : 73.0769230769
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.2484076433
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 73.1626653601
+			 Accuracy on test : 79.9180327869
+	- Iteration 39
+		 Fold 1
+			Accuracy on train : 72.4358974359
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 74.5222929936
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 79.6116504854
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 73.4790952148
+			 Accuracy on test : 79.9180327869
+	- Iteration 40
+		 Fold 1
+			Accuracy on train : 73.0769230769
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 73.8853503185
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.4811366977
+			 Accuracy on test : 80.737704918
+	- Iteration 41
+		 Fold 1
+			Accuracy on train : 71.7948717949
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 74.5222929936
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 73.1585823943
+			 Accuracy on test : 78.2786885246
+	- Iteration 42
+		 Fold 1
+			Accuracy on train : 73.0769230769
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 74.5222929936
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.7996080353
+			 Accuracy on test : 80.3278688525
+	- Iteration 43
+		 Fold 1
+			Accuracy on train : 72.4358974359
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 73.8853503185
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.1606238772
+			 Accuracy on test : 79.5081967213
+	- Iteration 44
+		 Fold 1
+			Accuracy on train : 73.0769230769
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.2484076433
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 73.1626653601
+			 Accuracy on test : 79.0983606557
+	- Iteration 45
+		 Fold 1
+			Accuracy on train : 73.0769230769
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.8853503185
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 73.4811366977
+			 Accuracy on test : 80.737704918
+	- Iteration 46
+		 Fold 1
+			Accuracy on train : 72.4358974359
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 73.2484076433
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 72.8421525396
+			 Accuracy on test : 77.868852459
+	- Iteration 47
+		 Fold 1
+			Accuracy on train : 71.7948717949
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.8853503185
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 80.5825242718
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 72.8401110567
+			 Accuracy on test : 78.2786885246
+	- Iteration 48
+		 Fold 1
+			Accuracy on train : 70.5128205128
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.8853503185
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.1990854156
+			 Accuracy on test : 79.0983606557
+	- Iteration 49
+		 Fold 1
+			Accuracy on train : 72.4358974359
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.8853503185
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.1606238772
+			 Accuracy on test : 79.5081967213
+	- Iteration 50
+		 Fold 1
+			Accuracy on train : 71.1538461538
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 80.5825242718
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 73.8853503185
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.5195982362
+			 Accuracy on test : 78.6885245902
+	- Iteration 51
+		 Fold 1
+			Accuracy on train : 71.1538461538
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 77.0700636943
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 83.4951456311
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 74.1119549241
+			 Accuracy on test : 80.3278688525
+	- Iteration 52
+		 Fold 1
+			Accuracy on train : 69.8717948718
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 78.3439490446
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 74.1078719582
+			 Accuracy on test : 79.0983606557
+	- Iteration 53
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 54
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 55
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 56
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 57
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 58
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 59
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 60
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 61
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 62
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 63
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 64
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 65
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 66
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 67
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 68
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 69
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 70
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 71
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 72
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 73
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 74
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 75
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 76
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 77
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 78
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 79
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 80
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 81
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 82
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 83
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 84
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 85
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 86
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 87
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 88
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 89
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 90
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 91
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 92
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 93
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 94
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 95
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 96
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 97
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 98
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 99
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 100
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 101
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 102
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 103
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 104
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 105
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 106
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 107
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 108
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 109
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 110
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 111
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 112
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 113
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 114
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 115
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 116
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 117
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 118
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 119
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 120
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 121
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 122
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 123
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 124
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 125
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 126
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 127
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 128
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 129
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 130
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 131
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 132
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 133
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 134
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 135
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 136
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 137
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 138
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 139
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 140
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 141
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 142
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 143
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 144
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 145
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 146
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 147
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 148
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 149
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 150
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 151
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 152
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 153
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 154
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 155
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 156
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 157
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 158
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 159
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 160
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 161
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 162
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 163
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 164
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 165
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 166
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 167
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 168
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 169
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 170
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 171
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 172
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 173
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 174
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 175
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 176
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 177
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 178
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 179
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 180
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 181
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 182
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 183
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 184
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 185
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 186
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 187
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 188
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 189
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 190
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 191
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 192
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 193
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 194
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 195
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 196
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 197
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 198
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 199
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 200
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 201
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 202
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 203
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 204
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 205
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 206
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 207
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 208
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 209
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 210
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 211
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 212
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 213
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 214
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 215
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 216
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 217
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 218
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 219
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 220
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 221
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 222
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 223
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 224
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 225
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 226
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 227
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 228
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 229
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 230
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 231
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 232
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 233
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 234
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 235
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 236
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 237
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 238
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 239
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 240
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 241
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 242
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 243
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 244
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 245
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 246
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 247
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 248
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 249
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 250
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 251
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 252
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 253
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 254
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 255
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 256
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 257
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 258
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 259
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 260
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 261
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 262
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 263
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 264
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 265
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 266
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 267
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 268
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 269
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 270
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 271
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 272
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 273
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 274
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 275
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 276
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 277
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 278
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 279
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 280
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 281
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 282
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 283
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 284
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 285
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 286
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 287
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 288
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 289
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 290
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 291
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 292
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 293
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 294
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 295
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 296
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 297
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 298
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 299
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 300
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 301
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 302
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 303
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 304
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 305
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 306
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 307
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 308
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 309
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 310
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 311
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 312
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 313
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 314
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 315
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 316
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 317
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 318
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 319
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 320
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 321
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 322
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 323
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 324
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 325
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 326
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 327
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 328
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 329
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 330
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 331
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 332
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 333
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 334
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 335
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 336
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 337
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 338
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 339
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 340
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 341
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 342
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 343
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 344
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 345
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 346
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 347
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 348
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 349
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 350
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 351
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 352
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 353
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 354
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 355
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 356
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 357
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 358
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 359
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 360
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 361
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 362
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 363
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 364
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 365
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 366
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 367
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 368
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 369
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 370
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 371
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 372
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 373
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 374
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 375
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 376
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 377
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 378
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 379
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 380
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 381
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 382
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 383
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 384
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 385
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 386
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 387
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 388
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 389
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 390
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 391
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 392
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 393
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 394
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 395
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 396
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 397
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 398
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 399
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 400
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 401
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 402
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 403
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 404
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 405
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 406
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 407
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 408
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 409
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 410
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 411
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 412
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 413
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 414
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 415
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 416
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 417
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 418
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 419
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 420
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 421
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 422
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 423
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 424
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 425
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 426
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 427
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 428
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 429
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 430
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 431
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 432
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 433
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 434
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 435
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 436
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 437
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 438
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 439
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 440
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 441
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 442
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 443
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 444
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 445
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 446
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 447
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 448
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 449
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 450
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 451
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 452
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 453
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 454
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 455
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 456
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 457
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 458
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 459
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 460
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 461
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 462
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 463
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 464
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 465
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 466
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 467
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 468
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 469
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 470
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 471
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 472
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 473
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 474
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 475
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 476
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 477
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 478
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 479
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 480
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 481
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 482
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 483
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 484
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 485
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 486
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 487
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 488
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 489
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 490
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 491
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 492
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 493
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 494
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 495
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 496
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 497
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 498
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 499
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 500
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 501
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 502
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 503
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 504
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 505
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 506
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 507
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 508
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 509
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 510
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 511
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 512
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 513
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 514
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 515
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 516
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 517
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 518
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 519
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 520
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 521
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 522
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 523
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 524
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 525
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 526
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 527
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 528
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 529
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 530
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 531
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 532
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 533
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 534
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 535
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 536
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 537
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 538
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 539
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 540
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 541
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 542
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 543
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 544
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 545
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 546
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 547
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 548
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 549
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 550
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 551
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 552
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 553
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 554
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 555
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 556
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 557
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 558
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 559
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 560
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 561
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 562
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 563
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 564
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 565
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 566
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 567
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 568
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 569
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 570
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 571
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 572
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 573
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 574
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 575
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 576
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 577
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 578
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 579
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 580
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 581
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 582
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 583
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 584
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 585
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 586
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 587
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 588
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 589
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 590
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 591
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 592
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 593
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 594
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 595
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 596
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 597
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 598
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 599
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 600
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 601
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 602
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 603
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 604
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 605
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 606
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 607
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 608
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 609
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 610
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 611
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 612
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 613
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 614
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 615
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 616
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 617
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 618
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 619
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 620
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 621
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 622
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 623
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 624
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 625
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 626
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 627
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 628
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 629
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 630
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 631
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 632
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 633
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 634
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 635
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 636
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 637
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 638
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 639
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 640
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 641
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 642
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 643
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 644
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 645
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 646
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 647
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 648
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 649
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 650
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 651
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 652
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 653
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 654
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 655
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 656
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 657
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 658
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 659
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 660
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 661
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 662
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 663
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 664
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 665
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 666
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 667
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 668
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 669
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 670
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 671
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 672
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 673
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 674
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 675
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 676
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 677
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 678
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 679
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 680
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 681
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 682
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 683
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 684
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 685
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 686
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 687
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 688
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 689
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 690
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 691
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 692
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 693
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 694
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 695
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 696
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 697
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 698
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 699
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 700
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 701
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 702
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 703
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 704
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 705
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 706
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 707
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 708
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 709
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 710
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 711
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 712
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 713
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 714
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 715
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 716
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 717
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 718
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 719
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 720
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 721
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 722
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 723
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 724
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 725
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 726
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 727
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 728
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 729
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 730
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 731
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 732
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 733
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 734
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 735
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 736
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 737
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 738
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 739
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 740
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 741
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 742
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 743
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 744
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 745
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 746
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 747
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 748
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 749
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 750
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 751
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 752
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 753
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 754
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 755
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 756
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 757
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 758
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 759
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 760
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 761
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 762
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 763
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 764
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 765
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 766
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 767
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 768
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 769
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 770
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 771
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 772
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 773
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 774
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 775
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 776
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 777
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 778
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 779
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 780
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 781
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 782
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 783
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 784
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 785
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 786
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 787
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 788
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 789
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 790
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 791
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 792
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 793
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 794
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 795
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 796
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 797
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 798
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 799
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 800
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 801
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 802
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 803
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 804
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 805
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 806
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 807
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 808
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 809
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 810
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 811
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 812
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 813
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 814
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 815
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 816
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 817
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 818
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 819
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 820
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 821
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 822
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 823
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 824
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 825
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 826
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 827
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 828
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 829
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 830
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 831
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 832
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 833
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 834
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 835
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 836
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 837
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 838
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 839
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 840
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 841
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 842
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 843
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 844
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 845
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 846
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 847
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 848
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 849
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 850
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 851
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 852
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 853
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 854
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 855
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 856
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 857
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 858
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 859
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 860
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 861
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 862
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 863
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 864
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 865
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 866
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 867
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 868
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 869
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 870
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 871
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 872
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 873
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 874
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 875
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 876
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 877
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 878
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 879
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 880
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 881
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 882
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 883
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 884
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 885
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 886
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 887
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 888
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 889
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 890
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 891
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 892
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 893
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 894
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 895
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 896
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 897
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 898
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 899
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 900
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 901
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 902
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 903
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 904
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 905
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 906
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 907
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 908
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 909
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 910
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 911
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 912
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 913
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 914
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 915
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 916
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 917
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 918
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 919
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 920
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 921
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 922
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 923
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 924
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 925
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 926
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 927
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 928
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 929
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 930
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 931
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 932
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 933
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 934
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 935
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 936
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 937
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 938
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 939
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 940
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 941
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 942
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 943
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 944
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 945
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 946
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 947
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 948
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 949
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 950
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 951
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 952
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 953
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 954
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 955
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 956
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 957
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 958
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 959
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 960
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 961
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 962
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 963
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 964
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 965
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 966
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 967
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 968
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 969
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 970
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 971
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 972
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 973
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 974
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 975
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 976
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 977
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 978
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 979
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 980
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 981
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 982
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 983
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 984
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 985
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 986
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 987
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 988
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 989
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 990
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 991
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 992
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 993
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 994
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 995
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 996
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 997
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 998
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 999
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+	- Iteration 1000
+		 Fold 1
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.7834394904
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.6609505145
+			 Accuracy on test : 72.9508196721
+
+Computation time on 1 cores : 
+	Database extraction time : 0:00:00
+	                         Learn     Prediction
+	         Fold 1        0:02:40        0:00:07
+	         Fold 2        0:04:22        0:00:07
+	          Total        0:07:02        0:00:15
+	So a total classification time of 0:04:29.
+
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-094408-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-094408-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..f87aee135296c70980613b7e93a00eec9b073189
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-094408-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,531 @@
+2016-08-24 09:44:08,361 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 09:44:08,361 INFO: Info:	 Labels used: No, Yes
+2016-08-24 09:44:08,361 INFO: Info:	 Length of dataset:347
+2016-08-24 09:44:08,363 INFO: ### Main Programm for Multiview Classification
+2016-08-24 09:44:08,363 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 09:44:08,363 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 09:44:08,364 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 09:44:08,364 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 09:44:08,365 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 09:44:08,365 INFO: Done:	 Read Database Files
+2016-08-24 09:44:08,365 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 09:44:08,368 INFO: Done:	 Determine validation split
+2016-08-24 09:44:08,368 INFO: Start:	 Determine 2 folds
+2016-08-24 09:44:08,378 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 09:44:08,378 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 09:44:08,378 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 09:44:08,379 INFO: Done:	 Determine folds
+2016-08-24 09:44:08,379 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 09:44:08,379 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 09:44:08,379 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl_
+2016-08-24 09:44:15,803 DEBUG: 0.585648414986Poulet
+2016-08-24 09:44:15,803 DEBUG: 0.560864553314Poulet
+2016-08-24 09:44:15,803 DEBUG: 0.511642651297Poulet
+2016-08-24 09:44:15,803 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:44:15,804 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA__
+2016-08-24 09:44:17,725 DEBUG: 0.543054755043Poulet
+2016-08-24 09:44:17,725 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:44:17,725 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq_
+2016-08-24 09:44:34,897 DEBUG: 0.577463976945Poulet
+2016-08-24 09:44:34,898 DEBUG: 0.563400576369Poulet
+2016-08-24 09:44:34,898 DEBUG: 0.511930835735Poulet
+2016-08-24 09:44:34,899 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:44:34,899 DEBUG: 	Start:	 Gridsearch for DecisionTree on Clinic_
+2016-08-24 09:44:36,702 DEBUG: 0.56265129683Poulet
+2016-08-24 09:44:36,702 DEBUG: 0.561383285303Poulet
+2016-08-24 09:44:36,702 DEBUG: 0.501844380403Poulet
+2016-08-24 09:44:36,702 DEBUG: 0.514351585014Poulet
+2016-08-24 09:44:36,702 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:44:36,703 DEBUG: 	Start:	 Gridsearch for DecisionTree on MRNASeq
+2016-08-24 09:45:24,687 DEBUG: 0.541556195965Poulet
+2016-08-24 09:45:24,687 DEBUG: 0.528357348703Poulet
+2016-08-24 09:45:24,689 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:45:24,689 INFO: Done:	 Gridsearching best settings for monoview classifiers
+2016-08-24 09:45:24,689 INFO: 	Start:	 Fold number 1
+2016-08-24 09:45:26,374 DEBUG: 		Start:	 Iteration 1
+2016-08-24 09:45:26,392 DEBUG: 			View 0 : 0.379746835443
+2016-08-24 09:45:26,400 DEBUG: 			View 1 : 0.620253164557
+2016-08-24 09:45:26,431 DEBUG: 			View 2 : 0.620253164557
+2016-08-24 09:45:26,442 DEBUG: 			View 3 : 0.620253164557
+2016-08-24 09:45:26,485 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:45:26,561 DEBUG: 		Start:	 Iteration 2
+2016-08-24 09:45:26,579 DEBUG: 			View 0 : 0.443037974684
+2016-08-24 09:45:26,587 DEBUG: 			View 1 : 0.563291139241
+2016-08-24 09:45:26,628 DEBUG: 			View 2 : 0.563291139241
+2016-08-24 09:45:26,636 DEBUG: 			View 3 : 0.651898734177
+2016-08-24 09:45:26,693 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:45:26,830 DEBUG: 		Start:	 Iteration 3
+2016-08-24 09:45:26,847 DEBUG: 			View 0 : 0.550632911392
+2016-08-24 09:45:26,855 DEBUG: 			View 1 : 0.563291139241
+2016-08-24 09:45:26,892 DEBUG: 			View 2 : 0.53164556962
+2016-08-24 09:45:26,902 DEBUG: 			View 3 : 0.462025316456
+2016-08-24 09:45:26,957 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:45:27,145 DEBUG: 		Start:	 Iteration 4
+2016-08-24 09:45:27,161 DEBUG: 			View 0 : 0.569620253165
+2016-08-24 09:45:27,169 DEBUG: 			View 1 : 0.329113924051
+2016-08-24 09:45:27,206 DEBUG: 			View 2 : 0.525316455696
+2016-08-24 09:45:27,214 DEBUG: 			View 3 : 0.588607594937
+2016-08-24 09:45:27,272 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:45:27,520 DEBUG: 		Start:	 Iteration 5
+2016-08-24 09:45:27,537 DEBUG: 			View 0 : 0.443037974684
+2016-08-24 09:45:27,545 DEBUG: 			View 1 : 0.569620253165
+2016-08-24 09:45:27,582 DEBUG: 			View 2 : 0.537974683544
+2016-08-24 09:45:27,590 DEBUG: 			View 3 : 0.518987341772
+2016-08-24 09:45:27,648 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:45:27,951 DEBUG: 		Start:	 Iteration 6
+2016-08-24 09:45:27,968 DEBUG: 			View 0 : 0.386075949367
+2016-08-24 09:45:27,976 DEBUG: 			View 1 : 0.651898734177
+2016-08-24 09:45:28,012 DEBUG: 			View 2 : 0.430379746835
+2016-08-24 09:45:28,020 DEBUG: 			View 3 : 0.443037974684
+2016-08-24 09:45:28,080 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:45:28,444 DEBUG: 		Start:	 Iteration 7
+2016-08-24 09:45:28,460 DEBUG: 			View 0 : 0.664556962025
+2016-08-24 09:45:28,468 DEBUG: 			View 1 : 0.443037974684
+2016-08-24 09:45:28,505 DEBUG: 			View 2 : 0.525316455696
+2016-08-24 09:45:28,512 DEBUG: 			View 3 : 0.487341772152
+2016-08-24 09:45:28,575 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:45:28,997 DEBUG: 		Start:	 Iteration 8
+2016-08-24 09:45:29,014 DEBUG: 			View 0 : 0.424050632911
+2016-08-24 09:45:29,021 DEBUG: 			View 1 : 0.417721518987
+2016-08-24 09:45:29,058 DEBUG: 			View 2 : 0.556962025316
+2016-08-24 09:45:29,066 DEBUG: 			View 3 : 0.594936708861
+2016-08-24 09:45:29,131 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:45:29,628 DEBUG: 		Start:	 Iteration 9
+2016-08-24 09:45:29,645 DEBUG: 			View 0 : 0.512658227848
+2016-08-24 09:45:29,653 DEBUG: 			View 1 : 0.417721518987
+2016-08-24 09:45:29,691 DEBUG: 			View 2 : 0.639240506329
+2016-08-24 09:45:29,699 DEBUG: 			View 3 : 0.411392405063
+2016-08-24 09:45:29,769 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:45:30,333 DEBUG: 		Start:	 Iteration 10
+2016-08-24 09:45:30,349 DEBUG: 			View 0 : 0.506329113924
+2016-08-24 09:45:30,357 DEBUG: 			View 1 : 0.639240506329
+2016-08-24 09:45:30,394 DEBUG: 			View 2 : 0.424050632911
+2016-08-24 09:45:30,402 DEBUG: 			View 3 : 0.436708860759
+2016-08-24 09:45:30,471 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:45:31,083 DEBUG: 		Start:	 Iteration 11
+2016-08-24 09:45:31,100 DEBUG: 			View 0 : 0.626582278481
+2016-08-24 09:45:31,107 DEBUG: 			View 1 : 0.354430379747
+2016-08-24 09:45:31,144 DEBUG: 			View 2 : 0.398734177215
+2016-08-24 09:45:31,152 DEBUG: 			View 3 : 0.607594936709
+2016-08-24 09:45:31,223 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:45:31,904 DEBUG: 		Start:	 Iteration 12
+2016-08-24 09:45:31,921 DEBUG: 			View 0 : 0.689873417722
+2016-08-24 09:45:31,929 DEBUG: 			View 1 : 0.481012658228
+2016-08-24 09:45:31,965 DEBUG: 			View 2 : 0.46835443038
+2016-08-24 09:45:31,973 DEBUG: 			View 3 : 0.493670886076
+2016-08-24 09:45:32,047 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:45:32,812 DEBUG: 		Start:	 Iteration 13
+2016-08-24 09:45:32,829 DEBUG: 			View 0 : 0.417721518987
+2016-08-24 09:45:32,837 DEBUG: 			View 1 : 0.639240506329
+2016-08-24 09:45:32,874 DEBUG: 			View 2 : 0.405063291139
+2016-08-24 09:45:32,882 DEBUG: 			View 3 : 0.620253164557
+2016-08-24 09:45:32,957 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:45:33,749 DEBUG: 		Start:	 Iteration 14
+2016-08-24 09:45:33,765 DEBUG: 			View 0 : 0.481012658228
+2016-08-24 09:45:33,773 DEBUG: 			View 1 : 0.278481012658
+2016-08-24 09:45:33,809 DEBUG: 			View 2 : 0.379746835443
+2016-08-24 09:45:33,817 DEBUG: 			View 3 : 0.392405063291
+2016-08-24 09:45:33,818 WARNING: WARNING:	All bad for iteration 13
+2016-08-24 09:45:33,896 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:45:34,783 DEBUG: 		Start:	 Iteration 15
+2016-08-24 09:45:34,801 DEBUG: 			View 0 : 0.436708860759
+2016-08-24 09:45:34,809 DEBUG: 			View 1 : 0.563291139241
+2016-08-24 09:45:34,849 DEBUG: 			View 2 : 0.544303797468
+2016-08-24 09:45:34,858 DEBUG: 			View 3 : 0.474683544304
+2016-08-24 09:45:34,952 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:45:35,984 DEBUG: 		Start:	 Iteration 16
+2016-08-24 09:45:36,002 DEBUG: 			View 0 : 0.550632911392
+2016-08-24 09:45:36,010 DEBUG: 			View 1 : 0.443037974684
+2016-08-24 09:45:36,049 DEBUG: 			View 2 : 0.544303797468
+2016-08-24 09:45:36,057 DEBUG: 			View 3 : 0.506329113924
+2016-08-24 09:45:36,141 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:45:37,137 DEBUG: 		Start:	 Iteration 17
+2016-08-24 09:45:37,154 DEBUG: 			View 0 : 0.392405063291
+2016-08-24 09:45:37,162 DEBUG: 			View 1 : 0.670886075949
+2016-08-24 09:45:37,199 DEBUG: 			View 2 : 0.443037974684
+2016-08-24 09:45:37,207 DEBUG: 			View 3 : 0.398734177215
+2016-08-24 09:45:37,294 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:45:38,383 DEBUG: 		Start:	 Iteration 18
+2016-08-24 09:45:38,400 DEBUG: 			View 0 : 0.462025316456
+2016-08-24 09:45:38,407 DEBUG: 			View 1 : 0.620253164557
+2016-08-24 09:45:38,444 DEBUG: 			View 2 : 0.493670886076
+2016-08-24 09:45:38,452 DEBUG: 			View 3 : 0.556962025316
+2016-08-24 09:45:38,541 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:45:39,640 DEBUG: 		Start:	 Iteration 19
+2016-08-24 09:45:39,656 DEBUG: 			View 0 : 0.689873417722
+2016-08-24 09:45:39,664 DEBUG: 			View 1 : 0.544303797468
+2016-08-24 09:45:39,701 DEBUG: 			View 2 : 0.594936708861
+2016-08-24 09:45:39,708 DEBUG: 			View 3 : 0.594936708861
+2016-08-24 09:45:39,799 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:45:40,989 DEBUG: 		Start:	 Iteration 20
+2016-08-24 09:45:41,005 DEBUG: 			View 0 : 0.550632911392
+2016-08-24 09:45:41,013 DEBUG: 			View 1 : 0.613924050633
+2016-08-24 09:45:41,050 DEBUG: 			View 2 : 0.613924050633
+2016-08-24 09:45:41,058 DEBUG: 			View 3 : 0.607594936709
+2016-08-24 09:45:41,151 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:45:42,389 DEBUG: 		Start:	 Iteration 21
+2016-08-24 09:45:42,405 DEBUG: 			View 0 : 0.651898734177
+2016-08-24 09:45:42,413 DEBUG: 			View 1 : 0.664556962025
+2016-08-24 09:45:42,450 DEBUG: 			View 2 : 0.563291139241
+2016-08-24 09:45:42,458 DEBUG: 			View 3 : 0.417721518987
+2016-08-24 09:45:42,554 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:45:43,837 DEBUG: 		Start:	 Iteration 22
+2016-08-24 09:45:43,853 DEBUG: 			View 0 : 0.537974683544
+2016-08-24 09:45:43,861 DEBUG: 			View 1 : 0.607594936709
+2016-08-24 09:45:43,899 DEBUG: 			View 2 : 0.582278481013
+2016-08-24 09:45:43,906 DEBUG: 			View 3 : 0.493670886076
+2016-08-24 09:45:44,006 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:45:45,380 DEBUG: 		Start:	 Iteration 23
+2016-08-24 09:45:45,397 DEBUG: 			View 0 : 0.626582278481
+2016-08-24 09:45:45,405 DEBUG: 			View 1 : 0.462025316456
+2016-08-24 09:45:45,443 DEBUG: 			View 2 : 0.613924050633
+2016-08-24 09:45:45,451 DEBUG: 			View 3 : 0.487341772152
+2016-08-24 09:45:45,552 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:45:46,972 DEBUG: 		Start:	 Iteration 24
+2016-08-24 09:45:46,991 DEBUG: 			View 0 : 0.474683544304
+2016-08-24 09:45:46,999 DEBUG: 			View 1 : 0.607594936709
+2016-08-24 09:45:47,037 DEBUG: 			View 2 : 0.556962025316
+2016-08-24 09:45:47,045 DEBUG: 			View 3 : 0.405063291139
+2016-08-24 09:45:47,149 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:45:48,783 DEBUG: 		Start:	 Iteration 25
+2016-08-24 09:45:48,799 DEBUG: 			View 0 : 0.5
+2016-08-24 09:45:48,807 DEBUG: 			View 1 : 0.512658227848
+2016-08-24 09:45:48,844 DEBUG: 			View 2 : 0.487341772152
+2016-08-24 09:45:48,852 DEBUG: 			View 3 : 0.474683544304
+2016-08-24 09:45:48,956 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:45:50,533 DEBUG: 		Start:	 Iteration 26
+2016-08-24 09:45:50,550 DEBUG: 			View 0 : 0.645569620253
+2016-08-24 09:45:50,558 DEBUG: 			View 1 : 0.651898734177
+2016-08-24 09:45:50,595 DEBUG: 			View 2 : 0.411392405063
+2016-08-24 09:45:50,603 DEBUG: 			View 3 : 0.582278481013
+2016-08-24 09:45:50,707 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:45:52,409 DEBUG: 		Start:	 Iteration 27
+2016-08-24 09:45:52,430 DEBUG: 			View 0 : 0.588607594937
+2016-08-24 09:45:52,439 DEBUG: 			View 1 : 0.601265822785
+2016-08-24 09:45:52,483 DEBUG: 			View 2 : 0.588607594937
+2016-08-24 09:45:52,492 DEBUG: 			View 3 : 0.449367088608
+2016-08-24 09:45:52,615 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:45:54,284 DEBUG: 		Start:	 Iteration 28
+2016-08-24 09:45:54,301 DEBUG: 			View 0 : 0.46835443038
+2016-08-24 09:45:54,309 DEBUG: 			View 1 : 0.405063291139
+2016-08-24 09:45:54,345 DEBUG: 			View 2 : 0.455696202532
+2016-08-24 09:45:54,353 DEBUG: 			View 3 : 0.436708860759
+2016-08-24 09:45:54,354 WARNING: WARNING:	All bad for iteration 27
+2016-08-24 09:45:54,463 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:45:56,154 DEBUG: 		Start:	 Iteration 29
+2016-08-24 09:45:56,170 DEBUG: 			View 0 : 0.405063291139
+2016-08-24 09:45:56,178 DEBUG: 			View 1 : 0.632911392405
+2016-08-24 09:45:56,214 DEBUG: 			View 2 : 0.417721518987
+2016-08-24 09:45:56,222 DEBUG: 			View 3 : 0.474683544304
+2016-08-24 09:45:56,334 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:45:58,088 DEBUG: 		Start:	 Iteration 30
+2016-08-24 09:45:58,104 DEBUG: 			View 0 : 0.5
+2016-08-24 09:45:58,112 DEBUG: 			View 1 : 0.398734177215
+2016-08-24 09:45:58,149 DEBUG: 			View 2 : 0.455696202532
+2016-08-24 09:45:58,157 DEBUG: 			View 3 : 0.417721518987
+2016-08-24 09:45:58,270 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:46:00,083 DEBUG: 		Start:	 Iteration 31
+2016-08-24 09:46:00,100 DEBUG: 			View 0 : 0.462025316456
+2016-08-24 09:46:00,108 DEBUG: 			View 1 : 0.424050632911
+2016-08-24 09:46:00,144 DEBUG: 			View 2 : 0.417721518987
+2016-08-24 09:46:00,152 DEBUG: 			View 3 : 0.436708860759
+2016-08-24 09:46:00,152 WARNING: WARNING:	All bad for iteration 30
+2016-08-24 09:46:00,269 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:46:02,316 DEBUG: 		Start:	 Iteration 32
+2016-08-24 09:46:02,332 DEBUG: 			View 0 : 0.632911392405
+2016-08-24 09:46:02,340 DEBUG: 			View 1 : 0.727848101266
+2016-08-24 09:46:02,377 DEBUG: 			View 2 : 0.626582278481
+2016-08-24 09:46:02,385 DEBUG: 			View 3 : 0.449367088608
+2016-08-24 09:46:02,504 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:46:04,444 DEBUG: 		Start:	 Iteration 33
+2016-08-24 09:46:04,461 DEBUG: 			View 0 : 0.556962025316
+2016-08-24 09:46:04,469 DEBUG: 			View 1 : 0.626582278481
+2016-08-24 09:46:04,505 DEBUG: 			View 2 : 0.506329113924
+2016-08-24 09:46:04,513 DEBUG: 			View 3 : 0.525316455696
+2016-08-24 09:46:04,633 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:46:06,628 DEBUG: 		Start:	 Iteration 34
+2016-08-24 09:46:06,645 DEBUG: 			View 0 : 0.53164556962
+2016-08-24 09:46:06,652 DEBUG: 			View 1 : 0.506329113924
+2016-08-24 09:46:06,689 DEBUG: 			View 2 : 0.430379746835
+2016-08-24 09:46:06,697 DEBUG: 			View 3 : 0.481012658228
+2016-08-24 09:46:06,820 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:46:08,877 DEBUG: 		Start:	 Iteration 35
+2016-08-24 09:46:08,894 DEBUG: 			View 0 : 0.430379746835
+2016-08-24 09:46:08,901 DEBUG: 			View 1 : 0.544303797468
+2016-08-24 09:46:08,938 DEBUG: 			View 2 : 0.474683544304
+2016-08-24 09:46:08,945 DEBUG: 			View 3 : 0.405063291139
+2016-08-24 09:46:09,070 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:46:11,182 DEBUG: 		Start:	 Iteration 36
+2016-08-24 09:46:11,198 DEBUG: 			View 0 : 0.569620253165
+2016-08-24 09:46:11,206 DEBUG: 			View 1 : 0.664556962025
+2016-08-24 09:46:11,243 DEBUG: 			View 2 : 0.651898734177
+2016-08-24 09:46:11,251 DEBUG: 			View 3 : 0.594936708861
+2016-08-24 09:46:11,378 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:46:13,547 DEBUG: 		Start:	 Iteration 37
+2016-08-24 09:46:13,563 DEBUG: 			View 0 : 0.474683544304
+2016-08-24 09:46:13,571 DEBUG: 			View 1 : 0.651898734177
+2016-08-24 09:46:13,607 DEBUG: 			View 2 : 0.392405063291
+2016-08-24 09:46:13,615 DEBUG: 			View 3 : 0.392405063291
+2016-08-24 09:46:13,744 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:46:15,973 DEBUG: 		Start:	 Iteration 38
+2016-08-24 09:46:15,989 DEBUG: 			View 0 : 0.651898734177
+2016-08-24 09:46:15,997 DEBUG: 			View 1 : 0.639240506329
+2016-08-24 09:46:16,034 DEBUG: 			View 2 : 0.487341772152
+2016-08-24 09:46:16,042 DEBUG: 			View 3 : 0.582278481013
+2016-08-24 09:46:16,175 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:46:18,469 DEBUG: 		Start:	 Iteration 39
+2016-08-24 09:46:18,485 DEBUG: 			View 0 : 0.537974683544
+2016-08-24 09:46:18,493 DEBUG: 			View 1 : 0.392405063291
+2016-08-24 09:46:18,529 DEBUG: 			View 2 : 0.525316455696
+2016-08-24 09:46:18,537 DEBUG: 			View 3 : 0.46835443038
+2016-08-24 09:46:18,671 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:46:21,024 DEBUG: 		Start:	 Iteration 40
+2016-08-24 09:46:21,041 DEBUG: 			View 0 : 0.639240506329
+2016-08-24 09:46:21,049 DEBUG: 			View 1 : 0.582278481013
+2016-08-24 09:46:21,085 DEBUG: 			View 2 : 0.474683544304
+2016-08-24 09:46:21,093 DEBUG: 			View 3 : 0.481012658228
+2016-08-24 09:46:21,229 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:46:23,647 DEBUG: 		Start:	 Iteration 41
+2016-08-24 09:46:23,663 DEBUG: 			View 0 : 0.481012658228
+2016-08-24 09:46:23,671 DEBUG: 			View 1 : 0.664556962025
+2016-08-24 09:46:23,708 DEBUG: 			View 2 : 0.5
+2016-08-24 09:46:23,715 DEBUG: 			View 3 : 0.392405063291
+2016-08-24 09:46:23,854 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:46:26,328 DEBUG: 		Start:	 Iteration 42
+2016-08-24 09:46:26,345 DEBUG: 			View 0 : 0.506329113924
+2016-08-24 09:46:26,352 DEBUG: 			View 1 : 0.582278481013
+2016-08-24 09:46:26,389 DEBUG: 			View 2 : 0.430379746835
+2016-08-24 09:46:26,397 DEBUG: 			View 3 : 0.632911392405
+2016-08-24 09:46:26,539 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:46:29,075 DEBUG: 		Start:	 Iteration 43
+2016-08-24 09:46:29,091 DEBUG: 			View 0 : 0.398734177215
+2016-08-24 09:46:29,099 DEBUG: 			View 1 : 0.5
+2016-08-24 09:46:29,136 DEBUG: 			View 2 : 0.651898734177
+2016-08-24 09:46:29,143 DEBUG: 			View 3 : 0.424050632911
+2016-08-24 09:46:29,287 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:46:31,887 DEBUG: 		Start:	 Iteration 44
+2016-08-24 09:46:31,904 DEBUG: 			View 0 : 0.506329113924
+2016-08-24 09:46:31,912 DEBUG: 			View 1 : 0.594936708861
+2016-08-24 09:46:31,949 DEBUG: 			View 2 : 0.348101265823
+2016-08-24 09:46:31,956 DEBUG: 			View 3 : 0.462025316456
+2016-08-24 09:46:32,102 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:46:34,802 DEBUG: 		Start:	 Iteration 45
+2016-08-24 09:46:34,819 DEBUG: 			View 0 : 0.436708860759
+2016-08-24 09:46:34,826 DEBUG: 			View 1 : 0.601265822785
+2016-08-24 09:46:34,863 DEBUG: 			View 2 : 0.575949367089
+2016-08-24 09:46:34,870 DEBUG: 			View 3 : 0.537974683544
+2016-08-24 09:46:35,017 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:46:37,732 DEBUG: 		Start:	 Iteration 46
+2016-08-24 09:46:37,748 DEBUG: 			View 0 : 0.430379746835
+2016-08-24 09:46:37,756 DEBUG: 			View 1 : 0.651898734177
+2016-08-24 09:46:37,792 DEBUG: 			View 2 : 0.398734177215
+2016-08-24 09:46:37,800 DEBUG: 			View 3 : 0.594936708861
+2016-08-24 09:46:37,949 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:46:40,720 DEBUG: 		Start:	 Iteration 47
+2016-08-24 09:46:40,737 DEBUG: 			View 0 : 0.537974683544
+2016-08-24 09:46:40,744 DEBUG: 			View 1 : 0.373417721519
+2016-08-24 09:46:40,781 DEBUG: 			View 2 : 0.424050632911
+2016-08-24 09:46:40,789 DEBUG: 			View 3 : 0.506329113924
+2016-08-24 09:46:40,941 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:46:43,774 DEBUG: 		Start:	 Iteration 48
+2016-08-24 09:46:43,791 DEBUG: 			View 0 : 0.455696202532
+2016-08-24 09:46:43,799 DEBUG: 			View 1 : 0.677215189873
+2016-08-24 09:46:43,835 DEBUG: 			View 2 : 0.601265822785
+2016-08-24 09:46:43,843 DEBUG: 			View 3 : 0.443037974684
+2016-08-24 09:46:43,997 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:46:46,889 DEBUG: 		Start:	 Iteration 49
+2016-08-24 09:46:46,906 DEBUG: 			View 0 : 0.443037974684
+2016-08-24 09:46:46,913 DEBUG: 			View 1 : 0.29746835443
+2016-08-24 09:46:46,950 DEBUG: 			View 2 : 0.582278481013
+2016-08-24 09:46:46,958 DEBUG: 			View 3 : 0.613924050633
+2016-08-24 09:46:47,114 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:46:50,150 DEBUG: 		Start:	 Iteration 50
+2016-08-24 09:46:50,167 DEBUG: 			View 0 : 0.436708860759
+2016-08-24 09:46:50,175 DEBUG: 			View 1 : 0.537974683544
+2016-08-24 09:46:50,211 DEBUG: 			View 2 : 0.569620253165
+2016-08-24 09:46:50,219 DEBUG: 			View 3 : 0.405063291139
+2016-08-24 09:46:50,378 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:46:53,398 DEBUG: 		Start:	 Iteration 51
+2016-08-24 09:46:53,415 DEBUG: 			View 0 : 0.569620253165
+2016-08-24 09:46:53,423 DEBUG: 			View 1 : 0.417721518987
+2016-08-24 09:46:53,459 DEBUG: 			View 2 : 0.386075949367
+2016-08-24 09:46:53,467 DEBUG: 			View 3 : 0.563291139241
+2016-08-24 09:46:53,629 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:46:56,894 DEBUG: 		Start:	 Iteration 52
+2016-08-24 09:46:56,913 DEBUG: 			View 0 : 0.53164556962
+2016-08-24 09:46:56,921 DEBUG: 			View 1 : 0.405063291139
+2016-08-24 09:46:56,958 DEBUG: 			View 2 : 0.443037974684
+2016-08-24 09:46:56,966 DEBUG: 			View 3 : 0.405063291139
+2016-08-24 09:46:57,131 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:47:00,275 INFO: 	Start: 	 Classification
+2016-08-24 09:47:07,807 INFO: 	Done: 	 Fold number 1
+2016-08-24 09:47:07,807 INFO: 	Start:	 Fold number 2
+2016-08-24 09:47:09,379 DEBUG: 		Start:	 Iteration 1
+2016-08-24 09:47:09,398 DEBUG: 			View 0 : 0.446540880503
+2016-08-24 09:47:09,405 DEBUG: 			View 1 : 0.377358490566
+2016-08-24 09:47:09,433 DEBUG: 			View 2 : 0.622641509434
+2016-08-24 09:47:09,441 DEBUG: 			View 3 : 0.622641509434
+2016-08-24 09:47:09,482 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:47:09,568 DEBUG: 		Start:	 Iteration 2
+2016-08-24 09:47:09,585 DEBUG: 			View 0 : 0.459119496855
+2016-08-24 09:47:09,593 DEBUG: 			View 1 : 0.477987421384
+2016-08-24 09:47:09,630 DEBUG: 			View 2 : 0.572327044025
+2016-08-24 09:47:09,637 DEBUG: 			View 3 : 0.389937106918
+2016-08-24 09:47:09,682 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:47:09,840 DEBUG: 		Start:	 Iteration 3
+2016-08-24 09:47:09,856 DEBUG: 			View 0 : 0.534591194969
+2016-08-24 09:47:09,864 DEBUG: 			View 1 : 0.610062893082
+2016-08-24 09:47:09,900 DEBUG: 			View 2 : 0.383647798742
+2016-08-24 09:47:09,908 DEBUG: 			View 3 : 0.452830188679
+2016-08-24 09:47:09,960 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:47:10,177 DEBUG: 		Start:	 Iteration 4
+2016-08-24 09:47:10,194 DEBUG: 			View 0 : 0.566037735849
+2016-08-24 09:47:10,201 DEBUG: 			View 1 : 0.427672955975
+2016-08-24 09:47:10,239 DEBUG: 			View 2 : 0.408805031447
+2016-08-24 09:47:10,246 DEBUG: 			View 3 : 0.660377358491
+2016-08-24 09:47:10,301 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:47:10,577 DEBUG: 		Start:	 Iteration 5
+2016-08-24 09:47:10,594 DEBUG: 			View 0 : 0.509433962264
+2016-08-24 09:47:10,601 DEBUG: 			View 1 : 0.660377358491
+2016-08-24 09:47:10,638 DEBUG: 			View 2 : 0.490566037736
+2016-08-24 09:47:10,646 DEBUG: 			View 3 : 0.553459119497
+2016-08-24 09:47:10,703 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:47:11,037 DEBUG: 		Start:	 Iteration 6
+2016-08-24 09:47:11,053 DEBUG: 			View 0 : 0.660377358491
+2016-08-24 09:47:11,061 DEBUG: 			View 1 : 0.396226415094
+2016-08-24 09:47:11,098 DEBUG: 			View 2 : 0.553459119497
+2016-08-24 09:47:11,106 DEBUG: 			View 3 : 0.540880503145
+2016-08-24 09:47:11,167 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:47:11,562 DEBUG: 		Start:	 Iteration 7
+2016-08-24 09:47:11,578 DEBUG: 			View 0 : 0.339622641509
+2016-08-24 09:47:11,586 DEBUG: 			View 1 : 0.62893081761
+2016-08-24 09:47:11,623 DEBUG: 			View 2 : 0.566037735849
+2016-08-24 09:47:11,630 DEBUG: 			View 3 : 0.465408805031
+2016-08-24 09:47:11,692 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:47:12,144 DEBUG: 		Start:	 Iteration 8
+2016-08-24 09:47:12,160 DEBUG: 			View 0 : 0.471698113208
+2016-08-24 09:47:12,168 DEBUG: 			View 1 : 0.654088050314
+2016-08-24 09:47:12,205 DEBUG: 			View 2 : 0.383647798742
+2016-08-24 09:47:12,212 DEBUG: 			View 3 : 0.59748427673
+2016-08-24 09:47:12,276 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:47:12,787 DEBUG: 		Start:	 Iteration 9
+2016-08-24 09:47:12,803 DEBUG: 			View 0 : 0.622641509434
+2016-08-24 09:47:12,811 DEBUG: 			View 1 : 0.383647798742
+2016-08-24 09:47:12,848 DEBUG: 			View 2 : 0.389937106918
+2016-08-24 09:47:12,856 DEBUG: 			View 3 : 0.584905660377
+2016-08-24 09:47:12,923 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:47:13,494 DEBUG: 		Start:	 Iteration 10
+2016-08-24 09:47:13,511 DEBUG: 			View 0 : 0.433962264151
+2016-08-24 09:47:13,519 DEBUG: 			View 1 : 0.685534591195
+2016-08-24 09:47:13,556 DEBUG: 			View 2 : 0.452830188679
+2016-08-24 09:47:13,563 DEBUG: 			View 3 : 0.40251572327
+2016-08-24 09:47:13,632 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:47:14,261 DEBUG: 		Start:	 Iteration 11
+2016-08-24 09:47:14,278 DEBUG: 			View 0 : 0.584905660377
+2016-08-24 09:47:14,286 DEBUG: 			View 1 : 0.566037735849
+2016-08-24 09:47:14,322 DEBUG: 			View 2 : 0.477987421384
+2016-08-24 09:47:14,330 DEBUG: 			View 3 : 0.440251572327
+2016-08-24 09:47:14,401 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:47:15,092 DEBUG: 		Start:	 Iteration 12
+2016-08-24 09:47:15,109 DEBUG: 			View 0 : 0.301886792453
+2016-08-24 09:47:15,116 DEBUG: 			View 1 : 0.37106918239
+2016-08-24 09:47:15,153 DEBUG: 			View 2 : 0.59748427673
+2016-08-24 09:47:15,160 DEBUG: 			View 3 : 0.528301886792
+2016-08-24 09:47:15,233 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:47:16,016 DEBUG: 		Start:	 Iteration 13
+2016-08-24 09:47:16,033 DEBUG: 			View 0 : 0.427672955975
+2016-08-24 09:47:16,040 DEBUG: 			View 1 : 0.660377358491
+2016-08-24 09:47:16,077 DEBUG: 			View 2 : 0.377358490566
+2016-08-24 09:47:16,084 DEBUG: 			View 3 : 0.452830188679
+2016-08-24 09:47:16,162 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:47:17,170 DEBUG: 		Start:	 Iteration 14
+2016-08-24 09:47:17,190 DEBUG: 			View 0 : 0.622641509434
+2016-08-24 09:47:17,199 DEBUG: 			View 1 : 0.641509433962
+2016-08-24 09:47:17,242 DEBUG: 			View 2 : 0.584905660377
+2016-08-24 09:47:17,251 DEBUG: 			View 3 : 0.528301886792
+2016-08-24 09:47:17,335 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:47:18,276 DEBUG: 		Start:	 Iteration 15
+2016-08-24 09:47:18,294 DEBUG: 			View 0 : 0.440251572327
+2016-08-24 09:47:18,302 DEBUG: 			View 1 : 0.283018867925
+2016-08-24 09:47:18,343 DEBUG: 			View 2 : 0.377358490566
+2016-08-24 09:47:18,351 DEBUG: 			View 3 : 0.522012578616
+2016-08-24 09:47:18,437 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:47:19,473 DEBUG: 		Start:	 Iteration 16
+2016-08-24 09:47:19,491 DEBUG: 			View 0 : 0.509433962264
+2016-08-24 09:47:19,499 DEBUG: 			View 1 : 0.522012578616
+2016-08-24 09:47:19,535 DEBUG: 			View 2 : 0.452830188679
+2016-08-24 09:47:19,543 DEBUG: 			View 3 : 0.40251572327
+2016-08-24 09:47:19,626 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:47:20,644 DEBUG: 		Start:	 Iteration 17
+2016-08-24 09:47:20,661 DEBUG: 			View 0 : 0.415094339623
+2016-08-24 09:47:20,669 DEBUG: 			View 1 : 0.452830188679
+2016-08-24 09:47:20,707 DEBUG: 			View 2 : 0.471698113208
+2016-08-24 09:47:20,714 DEBUG: 			View 3 : 0.48427672956
+2016-08-24 09:47:20,715 WARNING: WARNING:	All bad for iteration 16
+2016-08-24 09:47:20,803 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:47:21,871 DEBUG: 		Start:	 Iteration 18
+2016-08-24 09:47:21,889 DEBUG: 			View 0 : 0.396226415094
+2016-08-24 09:47:21,897 DEBUG: 			View 1 : 0.62893081761
+2016-08-24 09:47:21,935 DEBUG: 			View 2 : 0.553459119497
+2016-08-24 09:47:21,942 DEBUG: 			View 3 : 0.534591194969
+2016-08-24 09:47:22,033 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:47:23,205 DEBUG: 		Start:	 Iteration 19
+2016-08-24 09:47:23,222 DEBUG: 			View 0 : 0.415094339623
+2016-08-24 09:47:23,230 DEBUG: 			View 1 : 0.710691823899
+2016-08-24 09:47:23,268 DEBUG: 			View 2 : 0.660377358491
+2016-08-24 09:47:23,276 DEBUG: 			View 3 : 0.534591194969
+2016-08-24 09:47:23,370 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:47:24,573 DEBUG: 		Start:	 Iteration 20
+2016-08-24 09:47:24,590 DEBUG: 			View 0 : 0.459119496855
+2016-08-24 09:47:24,598 DEBUG: 			View 1 : 0.616352201258
+2016-08-24 09:47:24,636 DEBUG: 			View 2 : 0.465408805031
+2016-08-24 09:47:24,643 DEBUG: 			View 3 : 0.415094339623
+2016-08-24 09:47:24,737 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:47:25,998 DEBUG: 		Start:	 Iteration 21
+2016-08-24 09:47:26,016 DEBUG: 			View 0 : 0.48427672956
+2016-08-24 09:47:26,024 DEBUG: 			View 1 : 0.616352201258
+2016-08-24 09:47:26,063 DEBUG: 			View 2 : 0.415094339623
+2016-08-24 09:47:26,071 DEBUG: 			View 3 : 0.553459119497
+2016-08-24 09:47:26,172 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:47:27,510 DEBUG: 		Start:	 Iteration 22
+2016-08-24 09:47:27,527 DEBUG: 			View 0 : 0.547169811321
+2016-08-24 09:47:27,534 DEBUG: 			View 1 : 0.584905660377
+2016-08-24 09:47:27,571 DEBUG: 			View 2 : 0.540880503145
+2016-08-24 09:47:27,579 DEBUG: 			View 3 : 0.440251572327
+2016-08-24 09:47:27,682 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:47:29,064 DEBUG: 		Start:	 Iteration 23
+2016-08-24 09:47:29,081 DEBUG: 			View 0 : 0.534591194969
+2016-08-24 09:47:29,088 DEBUG: 			View 1 : 0.704402515723
+2016-08-24 09:47:29,125 DEBUG: 			View 2 : 0.48427672956
+2016-08-24 09:47:29,132 DEBUG: 			View 3 : 0.471698113208
+2016-08-24 09:47:29,232 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:47:30,679 DEBUG: 		Start:	 Iteration 24
+2016-08-24 09:47:30,696 DEBUG: 			View 0 : 0.679245283019
+2016-08-24 09:47:30,704 DEBUG: 			View 1 : 0.691823899371
+2016-08-24 09:47:30,742 DEBUG: 			View 2 : 0.559748427673
+2016-08-24 09:47:30,750 DEBUG: 			View 3 : 0.471698113208
+2016-08-24 09:47:30,856 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:47:32,537 DEBUG: 		Start:	 Iteration 25
+2016-08-24 09:47:32,554 DEBUG: 			View 0 : 0.465408805031
+2016-08-24 09:47:32,562 DEBUG: 			View 1 : 0.452830188679
+2016-08-24 09:47:32,599 DEBUG: 			View 2 : 0.40251572327
+2016-08-24 09:47:32,606 DEBUG: 			View 3 : 0.540880503145
+2016-08-24 09:47:32,710 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:47:34,272 DEBUG: 		Start:	 Iteration 26
+2016-08-24 09:47:34,292 DEBUG: 			View 0 : 0.446540880503
+2016-08-24 09:47:34,303 DEBUG: 			View 1 : 0.389937106918
+2016-08-24 09:47:34,343 DEBUG: 			View 2 : 0.509433962264
+2016-08-24 09:47:34,351 DEBUG: 			View 3 : 0.553459119497
+2016-08-24 09:47:34,466 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:47:36,204 DEBUG: 		Start:	 Iteration 27
+2016-08-24 09:47:36,223 DEBUG: 			View 0 : 0.522012578616
+2016-08-24 09:47:36,234 DEBUG: 			View 1 : 0.685534591195
+2016-08-24 09:47:36,278 DEBUG: 			View 2 : 0.578616352201
+2016-08-24 09:47:36,287 DEBUG: 			View 3 : 0.496855345912
+2016-08-24 09:47:36,415 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:47:38,235 DEBUG: 		Start:	 Iteration 28
+2016-08-24 09:47:38,252 DEBUG: 			View 0 : 0.660377358491
+2016-08-24 09:47:38,260 DEBUG: 			View 1 : 0.679245283019
+2016-08-24 09:47:38,297 DEBUG: 			View 2 : 0.559748427673
+2016-08-24 09:47:38,305 DEBUG: 			View 3 : 0.641509433962
+2016-08-24 09:47:38,415 DEBUG: 			 Best view : 		MiRNA__
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-094740-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-094740-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..34b92ceb01d8dbb452625738f7b5ad3c1007f8c8
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-094740-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,15348 @@
+2016-08-24 09:47:40,713 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 09:47:40,714 INFO: Info:	 Labels used: No, Yes
+2016-08-24 09:47:40,714 INFO: Info:	 Length of dataset:347
+2016-08-24 09:47:40,716 INFO: ### Main Programm for Multiview Classification
+2016-08-24 09:47:40,716 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 09:47:40,716 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 09:47:40,717 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 09:47:40,717 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 09:47:40,718 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 09:47:40,718 INFO: Done:	 Read Database Files
+2016-08-24 09:47:40,718 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 09:47:40,721 INFO: Done:	 Determine validation split
+2016-08-24 09:47:40,721 INFO: Start:	 Determine 2 folds
+2016-08-24 09:47:40,733 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 09:47:40,733 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 09:47:40,733 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 09:47:40,733 INFO: Done:	 Determine folds
+2016-08-24 09:47:40,733 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 09:47:40,733 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 09:47:40,733 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl_
+2016-08-24 09:47:48,128 DEBUG: 0.589798270893Poulet
+2016-08-24 09:47:48,128 DEBUG: 0.521498559078Poulet
+2016-08-24 09:47:48,128 DEBUG: 0.521556195965Poulet
+2016-08-24 09:47:48,128 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:47:48,129 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA__
+2016-08-24 09:47:50,083 DEBUG: 0.585360230548Poulet
+2016-08-24 09:47:50,083 DEBUG: 0.573025936599Poulet
+2016-08-24 09:47:50,083 DEBUG: 0.55613832853Poulet
+2016-08-24 09:47:50,083 DEBUG: 0.54507204611Poulet
+2016-08-24 09:47:50,083 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:47:50,084 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq_
+2016-08-24 09:48:06,845 DEBUG: 0.559365994236Poulet
+2016-08-24 09:48:06,845 DEBUG: 0.530201729107Poulet
+2016-08-24 09:48:06,846 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:48:06,847 DEBUG: 	Start:	 Gridsearch for DecisionTree on Clinic_
+2016-08-24 09:48:08,580 DEBUG: 0.584034582133Poulet
+2016-08-24 09:48:08,580 DEBUG: 0.556945244957Poulet
+2016-08-24 09:48:08,581 DEBUG: 0.508876080692Poulet
+2016-08-24 09:48:08,581 DEBUG: 0.523170028818Poulet
+2016-08-24 09:48:08,581 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:48:08,581 DEBUG: 	Start:	 Gridsearch for DecisionTree on MRNASeq
+2016-08-24 09:49:01,049 DEBUG: 0.563976945245Poulet
+2016-08-24 09:49:01,050 DEBUG: 0.553371757925Poulet
+2016-08-24 09:49:01,050 DEBUG: 0.501268011527Poulet
+2016-08-24 09:49:01,055 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 09:49:01,055 INFO: Done:	 Gridsearching best settings for monoview classifiers
+2016-08-24 09:49:01,055 INFO: 	Start:	 Fold number 1
+2016-08-24 09:49:03,043 DEBUG: 		Start:	 Iteration 1
+2016-08-24 09:49:03,080 DEBUG: 			View 0 : 0.601226993865
+2016-08-24 09:49:03,088 DEBUG: 			View 1 : 0.631901840491
+2016-08-24 09:49:03,116 DEBUG: 			View 2 : 0.368098159509
+2016-08-24 09:49:03,124 DEBUG: 			View 3 : 0.368098159509
+2016-08-24 09:49:03,167 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:49:03,245 DEBUG: 		Start:	 Iteration 2
+2016-08-24 09:49:03,262 DEBUG: 			View 0 : 0.558282208589
+2016-08-24 09:49:03,270 DEBUG: 			View 1 : 0.625766871166
+2016-08-24 09:49:03,307 DEBUG: 			View 2 : 0.570552147239
+2016-08-24 09:49:03,315 DEBUG: 			View 3 : 0.466257668712
+2016-08-24 09:49:03,362 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:49:03,499 DEBUG: 		Start:	 Iteration 3
+2016-08-24 09:49:03,516 DEBUG: 			View 0 : 0.460122699387
+2016-08-24 09:49:03,524 DEBUG: 			View 1 : 0.680981595092
+2016-08-24 09:49:03,561 DEBUG: 			View 2 : 0.435582822086
+2016-08-24 09:49:03,569 DEBUG: 			View 3 : 0.625766871166
+2016-08-24 09:49:03,624 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:49:03,821 DEBUG: 		Start:	 Iteration 4
+2016-08-24 09:49:03,838 DEBUG: 			View 0 : 0.503067484663
+2016-08-24 09:49:03,846 DEBUG: 			View 1 : 0.546012269939
+2016-08-24 09:49:03,883 DEBUG: 			View 2 : 0.429447852761
+2016-08-24 09:49:03,890 DEBUG: 			View 3 : 0.533742331288
+2016-08-24 09:49:03,947 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:49:04,204 DEBUG: 		Start:	 Iteration 5
+2016-08-24 09:49:04,221 DEBUG: 			View 0 : 0.662576687117
+2016-08-24 09:49:04,228 DEBUG: 			View 1 : 0.674846625767
+2016-08-24 09:49:04,266 DEBUG: 			View 2 : 0.466257668712
+2016-08-24 09:49:04,273 DEBUG: 			View 3 : 0.429447852761
+2016-08-24 09:49:04,332 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:49:04,648 DEBUG: 		Start:	 Iteration 6
+2016-08-24 09:49:04,665 DEBUG: 			View 0 : 0.398773006135
+2016-08-24 09:49:04,673 DEBUG: 			View 1 : 0.527607361963
+2016-08-24 09:49:04,710 DEBUG: 			View 2 : 0.552147239264
+2016-08-24 09:49:04,717 DEBUG: 			View 3 : 0.625766871166
+2016-08-24 09:49:04,779 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:49:05,154 DEBUG: 		Start:	 Iteration 7
+2016-08-24 09:49:05,170 DEBUG: 			View 0 : 0.680981595092
+2016-08-24 09:49:05,178 DEBUG: 			View 1 : 0.478527607362
+2016-08-24 09:49:05,215 DEBUG: 			View 2 : 0.478527607362
+2016-08-24 09:49:05,223 DEBUG: 			View 3 : 0.429447852761
+2016-08-24 09:49:05,287 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:49:05,725 DEBUG: 		Start:	 Iteration 8
+2016-08-24 09:49:05,741 DEBUG: 			View 0 : 0.527607361963
+2016-08-24 09:49:05,749 DEBUG: 			View 1 : 0.429447852761
+2016-08-24 09:49:05,787 DEBUG: 			View 2 : 0.539877300613
+2016-08-24 09:49:05,795 DEBUG: 			View 3 : 0.472392638037
+2016-08-24 09:49:05,861 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:49:06,363 DEBUG: 		Start:	 Iteration 9
+2016-08-24 09:49:06,380 DEBUG: 			View 0 : 0.460122699387
+2016-08-24 09:49:06,388 DEBUG: 			View 1 : 0.546012269939
+2016-08-24 09:49:06,425 DEBUG: 			View 2 : 0.490797546012
+2016-08-24 09:49:06,433 DEBUG: 			View 3 : 0.398773006135
+2016-08-24 09:49:06,501 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:49:07,061 DEBUG: 		Start:	 Iteration 10
+2016-08-24 09:49:07,077 DEBUG: 			View 0 : 0.558282208589
+2016-08-24 09:49:07,085 DEBUG: 			View 1 : 0.60736196319
+2016-08-24 09:49:07,123 DEBUG: 			View 2 : 0.41717791411
+2016-08-24 09:49:07,130 DEBUG: 			View 3 : 0.411042944785
+2016-08-24 09:49:07,201 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:49:07,822 DEBUG: 		Start:	 Iteration 11
+2016-08-24 09:49:07,838 DEBUG: 			View 0 : 0.638036809816
+2016-08-24 09:49:07,846 DEBUG: 			View 1 : 0.40490797546
+2016-08-24 09:49:07,884 DEBUG: 			View 2 : 0.60736196319
+2016-08-24 09:49:07,891 DEBUG: 			View 3 : 0.429447852761
+2016-08-24 09:49:07,965 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:49:08,649 DEBUG: 		Start:	 Iteration 12
+2016-08-24 09:49:08,665 DEBUG: 			View 0 : 0.564417177914
+2016-08-24 09:49:08,673 DEBUG: 			View 1 : 0.429447852761
+2016-08-24 09:49:08,710 DEBUG: 			View 2 : 0.570552147239
+2016-08-24 09:49:08,718 DEBUG: 			View 3 : 0.601226993865
+2016-08-24 09:49:08,794 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:49:09,540 DEBUG: 		Start:	 Iteration 13
+2016-08-24 09:49:09,557 DEBUG: 			View 0 : 0.576687116564
+2016-08-24 09:49:09,565 DEBUG: 			View 1 : 0.625766871166
+2016-08-24 09:49:09,604 DEBUG: 			View 2 : 0.484662576687
+2016-08-24 09:49:09,612 DEBUG: 			View 3 : 0.552147239264
+2016-08-24 09:49:09,691 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:49:10,498 DEBUG: 		Start:	 Iteration 14
+2016-08-24 09:49:10,515 DEBUG: 			View 0 : 0.39263803681
+2016-08-24 09:49:10,522 DEBUG: 			View 1 : 0.60736196319
+2016-08-24 09:49:10,562 DEBUG: 			View 2 : 0.40490797546
+2016-08-24 09:49:10,570 DEBUG: 			View 3 : 0.552147239264
+2016-08-24 09:49:10,650 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:49:11,517 DEBUG: 		Start:	 Iteration 15
+2016-08-24 09:49:11,534 DEBUG: 			View 0 : 0.59509202454
+2016-08-24 09:49:11,541 DEBUG: 			View 1 : 0.288343558282
+2016-08-24 09:49:11,581 DEBUG: 			View 2 : 0.576687116564
+2016-08-24 09:49:11,589 DEBUG: 			View 3 : 0.41717791411
+2016-08-24 09:49:11,672 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:49:12,603 DEBUG: 		Start:	 Iteration 16
+2016-08-24 09:49:12,619 DEBUG: 			View 0 : 0.38036809816
+2016-08-24 09:49:12,627 DEBUG: 			View 1 : 0.58282208589
+2016-08-24 09:49:12,667 DEBUG: 			View 2 : 0.515337423313
+2016-08-24 09:49:12,675 DEBUG: 			View 3 : 0.466257668712
+2016-08-24 09:49:12,760 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:49:13,748 DEBUG: 		Start:	 Iteration 17
+2016-08-24 09:49:13,764 DEBUG: 			View 0 : 0.441717791411
+2016-08-24 09:49:13,772 DEBUG: 			View 1 : 0.374233128834
+2016-08-24 09:49:13,812 DEBUG: 			View 2 : 0.478527607362
+2016-08-24 09:49:13,820 DEBUG: 			View 3 : 0.546012269939
+2016-08-24 09:49:13,907 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:49:14,953 DEBUG: 		Start:	 Iteration 18
+2016-08-24 09:49:14,970 DEBUG: 			View 0 : 0.650306748466
+2016-08-24 09:49:14,978 DEBUG: 			View 1 : 0.269938650307
+2016-08-24 09:49:15,018 DEBUG: 			View 2 : 0.644171779141
+2016-08-24 09:49:15,026 DEBUG: 			View 3 : 0.398773006135
+2016-08-24 09:49:15,115 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:49:16,227 DEBUG: 		Start:	 Iteration 19
+2016-08-24 09:49:16,244 DEBUG: 			View 0 : 0.662576687117
+2016-08-24 09:49:16,252 DEBUG: 			View 1 : 0.398773006135
+2016-08-24 09:49:16,291 DEBUG: 			View 2 : 0.411042944785
+2016-08-24 09:49:16,299 DEBUG: 			View 3 : 0.613496932515
+2016-08-24 09:49:16,391 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:49:17,580 DEBUG: 		Start:	 Iteration 20
+2016-08-24 09:49:17,597 DEBUG: 			View 0 : 0.588957055215
+2016-08-24 09:49:17,605 DEBUG: 			View 1 : 0.429447852761
+2016-08-24 09:49:17,645 DEBUG: 			View 2 : 0.601226993865
+2016-08-24 09:49:17,653 DEBUG: 			View 3 : 0.39263803681
+2016-08-24 09:49:17,747 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:49:18,983 DEBUG: 		Start:	 Iteration 21
+2016-08-24 09:49:19,000 DEBUG: 			View 0 : 0.41717791411
+2016-08-24 09:49:19,008 DEBUG: 			View 1 : 0.515337423313
+2016-08-24 09:49:19,048 DEBUG: 			View 2 : 0.515337423313
+2016-08-24 09:49:19,056 DEBUG: 			View 3 : 0.40490797546
+2016-08-24 09:49:19,152 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:49:20,448 DEBUG: 		Start:	 Iteration 22
+2016-08-24 09:49:20,464 DEBUG: 			View 0 : 0.39263803681
+2016-08-24 09:49:20,472 DEBUG: 			View 1 : 0.730061349693
+2016-08-24 09:49:20,511 DEBUG: 			View 2 : 0.558282208589
+2016-08-24 09:49:20,520 DEBUG: 			View 3 : 0.650306748466
+2016-08-24 09:49:20,619 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:49:21,975 DEBUG: 		Start:	 Iteration 23
+2016-08-24 09:49:21,992 DEBUG: 			View 0 : 0.527607361963
+2016-08-24 09:49:22,000 DEBUG: 			View 1 : 0.576687116564
+2016-08-24 09:49:22,039 DEBUG: 			View 2 : 0.631901840491
+2016-08-24 09:49:22,047 DEBUG: 			View 3 : 0.503067484663
+2016-08-24 09:49:22,149 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:49:23,580 DEBUG: 		Start:	 Iteration 24
+2016-08-24 09:49:23,596 DEBUG: 			View 0 : 0.58282208589
+2016-08-24 09:49:23,604 DEBUG: 			View 1 : 0.533742331288
+2016-08-24 09:49:23,644 DEBUG: 			View 2 : 0.576687116564
+2016-08-24 09:49:23,653 DEBUG: 			View 3 : 0.447852760736
+2016-08-24 09:49:23,756 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:49:25,260 DEBUG: 		Start:	 Iteration 25
+2016-08-24 09:49:25,277 DEBUG: 			View 0 : 0.58282208589
+2016-08-24 09:49:25,285 DEBUG: 			View 1 : 0.60736196319
+2016-08-24 09:49:25,324 DEBUG: 			View 2 : 0.423312883436
+2016-08-24 09:49:25,333 DEBUG: 			View 3 : 0.60736196319
+2016-08-24 09:49:25,439 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:49:26,999 DEBUG: 		Start:	 Iteration 26
+2016-08-24 09:49:27,016 DEBUG: 			View 0 : 0.588957055215
+2016-08-24 09:49:27,024 DEBUG: 			View 1 : 0.539877300613
+2016-08-24 09:49:27,063 DEBUG: 			View 2 : 0.546012269939
+2016-08-24 09:49:27,071 DEBUG: 			View 3 : 0.625766871166
+2016-08-24 09:49:27,179 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:49:28,797 DEBUG: 		Start:	 Iteration 27
+2016-08-24 09:49:28,814 DEBUG: 			View 0 : 0.552147239264
+2016-08-24 09:49:28,822 DEBUG: 			View 1 : 0.674846625767
+2016-08-24 09:49:28,862 DEBUG: 			View 2 : 0.662576687117
+2016-08-24 09:49:28,870 DEBUG: 			View 3 : 0.496932515337
+2016-08-24 09:49:28,980 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:49:30,657 DEBUG: 		Start:	 Iteration 28
+2016-08-24 09:49:30,674 DEBUG: 			View 0 : 0.472392638037
+2016-08-24 09:49:30,681 DEBUG: 			View 1 : 0.674846625767
+2016-08-24 09:49:30,721 DEBUG: 			View 2 : 0.588957055215
+2016-08-24 09:49:30,729 DEBUG: 			View 3 : 0.564417177914
+2016-08-24 09:49:30,841 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:49:32,609 DEBUG: 		Start:	 Iteration 29
+2016-08-24 09:49:32,625 DEBUG: 			View 0 : 0.717791411043
+2016-08-24 09:49:32,633 DEBUG: 			View 1 : 0.650306748466
+2016-08-24 09:49:32,673 DEBUG: 			View 2 : 0.546012269939
+2016-08-24 09:49:32,681 DEBUG: 			View 3 : 0.411042944785
+2016-08-24 09:49:32,796 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:49:34,618 DEBUG: 		Start:	 Iteration 30
+2016-08-24 09:49:34,635 DEBUG: 			View 0 : 0.41717791411
+2016-08-24 09:49:34,643 DEBUG: 			View 1 : 0.355828220859
+2016-08-24 09:49:34,684 DEBUG: 			View 2 : 0.521472392638
+2016-08-24 09:49:34,692 DEBUG: 			View 3 : 0.509202453988
+2016-08-24 09:49:34,811 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:49:36,776 DEBUG: 		Start:	 Iteration 31
+2016-08-24 09:49:36,793 DEBUG: 			View 0 : 0.539877300613
+2016-08-24 09:49:36,801 DEBUG: 			View 1 : 0.386503067485
+2016-08-24 09:49:36,841 DEBUG: 			View 2 : 0.374233128834
+2016-08-24 09:49:36,850 DEBUG: 			View 3 : 0.533742331288
+2016-08-24 09:49:36,978 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:49:38,949 DEBUG: 		Start:	 Iteration 32
+2016-08-24 09:49:38,966 DEBUG: 			View 0 : 0.423312883436
+2016-08-24 09:49:38,974 DEBUG: 			View 1 : 0.478527607362
+2016-08-24 09:49:39,014 DEBUG: 			View 2 : 0.466257668712
+2016-08-24 09:49:39,022 DEBUG: 			View 3 : 0.631901840491
+2016-08-24 09:49:39,143 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:49:41,144 DEBUG: 		Start:	 Iteration 33
+2016-08-24 09:49:41,161 DEBUG: 			View 0 : 0.515337423313
+2016-08-24 09:49:41,169 DEBUG: 			View 1 : 0.509202453988
+2016-08-24 09:49:41,208 DEBUG: 			View 2 : 0.447852760736
+2016-08-24 09:49:41,217 DEBUG: 			View 3 : 0.460122699387
+2016-08-24 09:49:41,341 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:49:43,399 DEBUG: 		Start:	 Iteration 34
+2016-08-24 09:49:43,415 DEBUG: 			View 0 : 0.601226993865
+2016-08-24 09:49:43,423 DEBUG: 			View 1 : 0.613496932515
+2016-08-24 09:49:43,463 DEBUG: 			View 2 : 0.435582822086
+2016-08-24 09:49:43,471 DEBUG: 			View 3 : 0.39263803681
+2016-08-24 09:49:43,596 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:49:45,710 DEBUG: 		Start:	 Iteration 35
+2016-08-24 09:49:45,726 DEBUG: 			View 0 : 0.521472392638
+2016-08-24 09:49:45,734 DEBUG: 			View 1 : 0.503067484663
+2016-08-24 09:49:45,774 DEBUG: 			View 2 : 0.386503067485
+2016-08-24 09:49:45,782 DEBUG: 			View 3 : 0.411042944785
+2016-08-24 09:49:45,910 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:49:48,090 DEBUG: 		Start:	 Iteration 36
+2016-08-24 09:49:48,107 DEBUG: 			View 0 : 0.539877300613
+2016-08-24 09:49:48,115 DEBUG: 			View 1 : 0.478527607362
+2016-08-24 09:49:48,155 DEBUG: 			View 2 : 0.576687116564
+2016-08-24 09:49:48,163 DEBUG: 			View 3 : 0.539877300613
+2016-08-24 09:49:48,293 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:49:50,546 DEBUG: 		Start:	 Iteration 37
+2016-08-24 09:49:50,562 DEBUG: 			View 0 : 0.447852760736
+2016-08-24 09:49:50,570 DEBUG: 			View 1 : 0.705521472393
+2016-08-24 09:49:50,610 DEBUG: 			View 2 : 0.509202453988
+2016-08-24 09:49:50,618 DEBUG: 			View 3 : 0.570552147239
+2016-08-24 09:49:50,750 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:49:53,060 DEBUG: 		Start:	 Iteration 38
+2016-08-24 09:49:53,077 DEBUG: 			View 0 : 0.509202453988
+2016-08-24 09:49:53,085 DEBUG: 			View 1 : 0.558282208589
+2016-08-24 09:49:53,124 DEBUG: 			View 2 : 0.423312883436
+2016-08-24 09:49:53,133 DEBUG: 			View 3 : 0.61963190184
+2016-08-24 09:49:53,267 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:49:55,637 DEBUG: 		Start:	 Iteration 39
+2016-08-24 09:49:55,653 DEBUG: 			View 0 : 0.337423312883
+2016-08-24 09:49:55,661 DEBUG: 			View 1 : 0.38036809816
+2016-08-24 09:49:55,701 DEBUG: 			View 2 : 0.423312883436
+2016-08-24 09:49:55,709 DEBUG: 			View 3 : 0.601226993865
+2016-08-24 09:49:55,846 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:49:58,274 DEBUG: 		Start:	 Iteration 40
+2016-08-24 09:49:58,290 DEBUG: 			View 0 : 0.60736196319
+2016-08-24 09:49:58,298 DEBUG: 			View 1 : 0.509202453988
+2016-08-24 09:49:58,338 DEBUG: 			View 2 : 0.631901840491
+2016-08-24 09:49:58,346 DEBUG: 			View 3 : 0.361963190184
+2016-08-24 09:49:58,485 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:50:00,977 DEBUG: 		Start:	 Iteration 41
+2016-08-24 09:50:00,993 DEBUG: 			View 0 : 0.496932515337
+2016-08-24 09:50:01,001 DEBUG: 			View 1 : 0.58282208589
+2016-08-24 09:50:01,042 DEBUG: 			View 2 : 0.411042944785
+2016-08-24 09:50:01,050 DEBUG: 			View 3 : 0.429447852761
+2016-08-24 09:50:01,192 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:50:03,745 DEBUG: 		Start:	 Iteration 42
+2016-08-24 09:50:03,761 DEBUG: 			View 0 : 0.521472392638
+2016-08-24 09:50:03,769 DEBUG: 			View 1 : 0.650306748466
+2016-08-24 09:50:03,810 DEBUG: 			View 2 : 0.625766871166
+2016-08-24 09:50:03,818 DEBUG: 			View 3 : 0.539877300613
+2016-08-24 09:50:03,961 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:50:06,572 DEBUG: 		Start:	 Iteration 43
+2016-08-24 09:50:06,589 DEBUG: 			View 0 : 0.521472392638
+2016-08-24 09:50:06,597 DEBUG: 			View 1 : 0.423312883436
+2016-08-24 09:50:06,637 DEBUG: 			View 2 : 0.441717791411
+2016-08-24 09:50:06,646 DEBUG: 			View 3 : 0.558282208589
+2016-08-24 09:50:06,792 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:50:09,466 DEBUG: 		Start:	 Iteration 44
+2016-08-24 09:50:09,483 DEBUG: 			View 0 : 0.466257668712
+2016-08-24 09:50:09,491 DEBUG: 			View 1 : 0.472392638037
+2016-08-24 09:50:09,532 DEBUG: 			View 2 : 0.441717791411
+2016-08-24 09:50:09,541 DEBUG: 			View 3 : 0.398773006135
+2016-08-24 09:50:09,541 WARNING: WARNING:	All bad for iteration 43
+2016-08-24 09:50:09,689 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:50:12,423 DEBUG: 		Start:	 Iteration 45
+2016-08-24 09:50:12,440 DEBUG: 			View 0 : 0.38036809816
+2016-08-24 09:50:12,447 DEBUG: 			View 1 : 0.558282208589
+2016-08-24 09:50:12,489 DEBUG: 			View 2 : 0.411042944785
+2016-08-24 09:50:12,498 DEBUG: 			View 3 : 0.625766871166
+2016-08-24 09:50:12,649 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:50:15,438 DEBUG: 		Start:	 Iteration 46
+2016-08-24 09:50:15,455 DEBUG: 			View 0 : 0.730061349693
+2016-08-24 09:50:15,463 DEBUG: 			View 1 : 0.374233128834
+2016-08-24 09:50:15,505 DEBUG: 			View 2 : 0.576687116564
+2016-08-24 09:50:15,514 DEBUG: 			View 3 : 0.613496932515
+2016-08-24 09:50:15,667 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:50:18,525 DEBUG: 		Start:	 Iteration 47
+2016-08-24 09:50:18,542 DEBUG: 			View 0 : 0.423312883436
+2016-08-24 09:50:18,549 DEBUG: 			View 1 : 0.656441717791
+2016-08-24 09:50:18,591 DEBUG: 			View 2 : 0.429447852761
+2016-08-24 09:50:18,600 DEBUG: 			View 3 : 0.460122699387
+2016-08-24 09:50:18,756 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:50:21,672 DEBUG: 		Start:	 Iteration 48
+2016-08-24 09:50:21,688 DEBUG: 			View 0 : 0.355828220859
+2016-08-24 09:50:21,696 DEBUG: 			View 1 : 0.39263803681
+2016-08-24 09:50:21,740 DEBUG: 			View 2 : 0.411042944785
+2016-08-24 09:50:21,749 DEBUG: 			View 3 : 0.435582822086
+2016-08-24 09:50:21,749 WARNING: WARNING:	All bad for iteration 47
+2016-08-24 09:50:21,907 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:50:24,889 DEBUG: 		Start:	 Iteration 49
+2016-08-24 09:50:24,906 DEBUG: 			View 0 : 0.521472392638
+2016-08-24 09:50:24,913 DEBUG: 			View 1 : 0.680981595092
+2016-08-24 09:50:24,957 DEBUG: 			View 2 : 0.38036809816
+2016-08-24 09:50:24,966 DEBUG: 			View 3 : 0.558282208589
+2016-08-24 09:50:25,137 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:50:28,192 DEBUG: 		Start:	 Iteration 50
+2016-08-24 09:50:28,209 DEBUG: 			View 0 : 0.40490797546
+2016-08-24 09:50:28,217 DEBUG: 			View 1 : 0.650306748466
+2016-08-24 09:50:28,261 DEBUG: 			View 2 : 0.625766871166
+2016-08-24 09:50:28,270 DEBUG: 			View 3 : 0.429447852761
+2016-08-24 09:50:28,433 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:50:31,590 DEBUG: 		Start:	 Iteration 51
+2016-08-24 09:50:31,607 DEBUG: 			View 0 : 0.40490797546
+2016-08-24 09:50:31,615 DEBUG: 			View 1 : 0.447852760736
+2016-08-24 09:50:31,660 DEBUG: 			View 2 : 0.490797546012
+2016-08-24 09:50:31,669 DEBUG: 			View 3 : 0.644171779141
+2016-08-24 09:50:31,836 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:50:35,243 DEBUG: 		Start:	 Iteration 52
+2016-08-24 09:50:35,259 DEBUG: 			View 0 : 0.588957055215
+2016-08-24 09:50:35,267 DEBUG: 			View 1 : 0.38036809816
+2016-08-24 09:50:35,313 DEBUG: 			View 2 : 0.509202453988
+2016-08-24 09:50:35,322 DEBUG: 			View 3 : 0.564417177914
+2016-08-24 09:50:35,492 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:50:38,719 DEBUG: 		Start:	 Iteration 53
+2016-08-24 09:50:38,736 DEBUG: 			View 0 : 0.521472392638
+2016-08-24 09:50:38,744 DEBUG: 			View 1 : 0.263803680982
+2016-08-24 09:50:38,789 DEBUG: 			View 2 : 0.453987730061
+2016-08-24 09:50:38,798 DEBUG: 			View 3 : 0.41717791411
+2016-08-24 09:50:38,970 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:50:42,262 DEBUG: 		Start:	 Iteration 54
+2016-08-24 09:50:42,278 DEBUG: 			View 0 : 0.546012269939
+2016-08-24 09:50:42,286 DEBUG: 			View 1 : 0.460122699387
+2016-08-24 09:50:42,334 DEBUG: 			View 2 : 0.539877300613
+2016-08-24 09:50:42,343 DEBUG: 			View 3 : 0.564417177914
+2016-08-24 09:50:42,517 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:50:45,859 DEBUG: 		Start:	 Iteration 55
+2016-08-24 09:50:45,876 DEBUG: 			View 0 : 0.38036809816
+2016-08-24 09:50:45,884 DEBUG: 			View 1 : 0.374233128834
+2016-08-24 09:50:45,932 DEBUG: 			View 2 : 0.484662576687
+2016-08-24 09:50:45,942 DEBUG: 			View 3 : 0.60736196319
+2016-08-24 09:50:46,117 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:50:49,519 DEBUG: 		Start:	 Iteration 56
+2016-08-24 09:50:49,536 DEBUG: 			View 0 : 0.564417177914
+2016-08-24 09:50:49,543 DEBUG: 			View 1 : 0.736196319018
+2016-08-24 09:50:49,592 DEBUG: 			View 2 : 0.515337423313
+2016-08-24 09:50:49,601 DEBUG: 			View 3 : 0.527607361963
+2016-08-24 09:50:49,778 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:50:53,243 DEBUG: 		Start:	 Iteration 57
+2016-08-24 09:50:53,259 DEBUG: 			View 0 : 0.668711656442
+2016-08-24 09:50:53,267 DEBUG: 			View 1 : 0.687116564417
+2016-08-24 09:50:53,315 DEBUG: 			View 2 : 0.631901840491
+2016-08-24 09:50:53,325 DEBUG: 			View 3 : 0.576687116564
+2016-08-24 09:50:53,505 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:50:57,031 DEBUG: 		Start:	 Iteration 58
+2016-08-24 09:50:57,047 DEBUG: 			View 0 : 0.466257668712
+2016-08-24 09:50:57,055 DEBUG: 			View 1 : 0.650306748466
+2016-08-24 09:50:57,104 DEBUG: 			View 2 : 0.503067484663
+2016-08-24 09:50:57,113 DEBUG: 			View 3 : 0.61963190184
+2016-08-24 09:50:57,296 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:51:00,872 DEBUG: 		Start:	 Iteration 59
+2016-08-24 09:51:00,889 DEBUG: 			View 0 : 0.423312883436
+2016-08-24 09:51:00,897 DEBUG: 			View 1 : 0.472392638037
+2016-08-24 09:51:00,945 DEBUG: 			View 2 : 0.453987730061
+2016-08-24 09:51:00,954 DEBUG: 			View 3 : 0.39263803681
+2016-08-24 09:51:00,954 WARNING: WARNING:	All bad for iteration 58
+2016-08-24 09:51:01,138 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:51:04,914 DEBUG: 		Start:	 Iteration 60
+2016-08-24 09:51:04,931 DEBUG: 			View 0 : 0.570552147239
+2016-08-24 09:51:04,939 DEBUG: 			View 1 : 0.355828220859
+2016-08-24 09:51:04,987 DEBUG: 			View 2 : 0.552147239264
+2016-08-24 09:51:04,997 DEBUG: 			View 3 : 0.570552147239
+2016-08-24 09:51:05,188 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:51:08,910 DEBUG: 		Start:	 Iteration 61
+2016-08-24 09:51:08,927 DEBUG: 			View 0 : 0.58282208589
+2016-08-24 09:51:08,934 DEBUG: 			View 1 : 0.319018404908
+2016-08-24 09:51:08,981 DEBUG: 			View 2 : 0.374233128834
+2016-08-24 09:51:08,990 DEBUG: 			View 3 : 0.558282208589
+2016-08-24 09:51:09,179 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:51:12,965 DEBUG: 		Start:	 Iteration 62
+2016-08-24 09:51:12,981 DEBUG: 			View 0 : 0.570552147239
+2016-08-24 09:51:12,989 DEBUG: 			View 1 : 0.558282208589
+2016-08-24 09:51:13,036 DEBUG: 			View 2 : 0.503067484663
+2016-08-24 09:51:13,046 DEBUG: 			View 3 : 0.539877300613
+2016-08-24 09:51:13,236 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:51:17,077 DEBUG: 		Start:	 Iteration 63
+2016-08-24 09:51:17,094 DEBUG: 			View 0 : 0.441717791411
+2016-08-24 09:51:17,102 DEBUG: 			View 1 : 0.61963190184
+2016-08-24 09:51:17,150 DEBUG: 			View 2 : 0.472392638037
+2016-08-24 09:51:17,159 DEBUG: 			View 3 : 0.447852760736
+2016-08-24 09:51:17,355 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:51:21,260 DEBUG: 		Start:	 Iteration 64
+2016-08-24 09:51:21,276 DEBUG: 			View 0 : 0.631901840491
+2016-08-24 09:51:21,284 DEBUG: 			View 1 : 0.631901840491
+2016-08-24 09:51:21,333 DEBUG: 			View 2 : 0.521472392638
+2016-08-24 09:51:21,342 DEBUG: 			View 3 : 0.472392638037
+2016-08-24 09:51:21,536 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:51:25,514 DEBUG: 		Start:	 Iteration 65
+2016-08-24 09:51:25,531 DEBUG: 			View 0 : 0.558282208589
+2016-08-24 09:51:25,538 DEBUG: 			View 1 : 0.472392638037
+2016-08-24 09:51:25,586 DEBUG: 			View 2 : 0.386503067485
+2016-08-24 09:51:25,595 DEBUG: 			View 3 : 0.613496932515
+2016-08-24 09:51:25,791 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:51:29,825 DEBUG: 		Start:	 Iteration 66
+2016-08-24 09:51:29,842 DEBUG: 			View 0 : 0.546012269939
+2016-08-24 09:51:29,850 DEBUG: 			View 1 : 0.466257668712
+2016-08-24 09:51:29,898 DEBUG: 			View 2 : 0.503067484663
+2016-08-24 09:51:29,907 DEBUG: 			View 3 : 0.374233128834
+2016-08-24 09:51:30,105 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:51:34,197 DEBUG: 		Start:	 Iteration 67
+2016-08-24 09:51:34,214 DEBUG: 			View 0 : 0.509202453988
+2016-08-24 09:51:34,222 DEBUG: 			View 1 : 0.625766871166
+2016-08-24 09:51:34,270 DEBUG: 			View 2 : 0.558282208589
+2016-08-24 09:51:34,279 DEBUG: 			View 3 : 0.60736196319
+2016-08-24 09:51:34,480 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:51:38,632 DEBUG: 		Start:	 Iteration 68
+2016-08-24 09:51:38,649 DEBUG: 			View 0 : 0.662576687117
+2016-08-24 09:51:38,657 DEBUG: 			View 1 : 0.662576687117
+2016-08-24 09:51:38,704 DEBUG: 			View 2 : 0.478527607362
+2016-08-24 09:51:38,713 DEBUG: 			View 3 : 0.447852760736
+2016-08-24 09:51:38,916 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:51:43,129 DEBUG: 		Start:	 Iteration 69
+2016-08-24 09:51:43,145 DEBUG: 			View 0 : 0.644171779141
+2016-08-24 09:51:43,153 DEBUG: 			View 1 : 0.355828220859
+2016-08-24 09:51:43,201 DEBUG: 			View 2 : 0.386503067485
+2016-08-24 09:51:43,210 DEBUG: 			View 3 : 0.59509202454
+2016-08-24 09:51:43,415 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:51:47,699 DEBUG: 		Start:	 Iteration 70
+2016-08-24 09:51:47,715 DEBUG: 			View 0 : 0.466257668712
+2016-08-24 09:51:47,723 DEBUG: 			View 1 : 0.717791411043
+2016-08-24 09:51:47,771 DEBUG: 			View 2 : 0.411042944785
+2016-08-24 09:51:47,780 DEBUG: 			View 3 : 0.472392638037
+2016-08-24 09:51:47,988 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:51:52,330 DEBUG: 		Start:	 Iteration 71
+2016-08-24 09:51:52,347 DEBUG: 			View 0 : 0.411042944785
+2016-08-24 09:51:52,354 DEBUG: 			View 1 : 0.58282208589
+2016-08-24 09:51:52,402 DEBUG: 			View 2 : 0.490797546012
+2016-08-24 09:51:52,411 DEBUG: 			View 3 : 0.552147239264
+2016-08-24 09:51:52,621 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:51:57,005 DEBUG: 		Start:	 Iteration 72
+2016-08-24 09:51:57,022 DEBUG: 			View 0 : 0.411042944785
+2016-08-24 09:51:57,030 DEBUG: 			View 1 : 0.705521472393
+2016-08-24 09:51:57,078 DEBUG: 			View 2 : 0.564417177914
+2016-08-24 09:51:57,087 DEBUG: 			View 3 : 0.613496932515
+2016-08-24 09:51:57,298 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:52:01,758 DEBUG: 		Start:	 Iteration 73
+2016-08-24 09:52:01,774 DEBUG: 			View 0 : 0.564417177914
+2016-08-24 09:52:01,782 DEBUG: 			View 1 : 0.644171779141
+2016-08-24 09:52:01,828 DEBUG: 			View 2 : 0.533742331288
+2016-08-24 09:52:01,837 DEBUG: 			View 3 : 0.546012269939
+2016-08-24 09:52:02,052 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:52:06,564 DEBUG: 		Start:	 Iteration 74
+2016-08-24 09:52:06,580 DEBUG: 			View 0 : 0.39263803681
+2016-08-24 09:52:06,588 DEBUG: 			View 1 : 0.251533742331
+2016-08-24 09:52:06,637 DEBUG: 			View 2 : 0.466257668712
+2016-08-24 09:52:06,646 DEBUG: 			View 3 : 0.601226993865
+2016-08-24 09:52:06,862 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:52:11,562 DEBUG: 		Start:	 Iteration 75
+2016-08-24 09:52:11,579 DEBUG: 			View 0 : 0.58282208589
+2016-08-24 09:52:11,588 DEBUG: 			View 1 : 0.650306748466
+2016-08-24 09:52:11,636 DEBUG: 			View 2 : 0.466257668712
+2016-08-24 09:52:11,646 DEBUG: 			View 3 : 0.564417177914
+2016-08-24 09:52:11,883 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:52:17,020 DEBUG: 		Start:	 Iteration 76
+2016-08-24 09:52:17,038 DEBUG: 			View 0 : 0.447852760736
+2016-08-24 09:52:17,046 DEBUG: 			View 1 : 0.374233128834
+2016-08-24 09:52:17,097 DEBUG: 			View 2 : 0.564417177914
+2016-08-24 09:52:17,105 DEBUG: 			View 3 : 0.60736196319
+2016-08-24 09:52:17,339 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:52:22,234 DEBUG: 		Start:	 Iteration 77
+2016-08-24 09:52:22,251 DEBUG: 			View 0 : 0.588957055215
+2016-08-24 09:52:22,259 DEBUG: 			View 1 : 0.558282208589
+2016-08-24 09:52:22,297 DEBUG: 			View 2 : 0.656441717791
+2016-08-24 09:52:22,305 DEBUG: 			View 3 : 0.59509202454
+2016-08-24 09:52:22,535 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:52:27,433 DEBUG: 		Start:	 Iteration 78
+2016-08-24 09:52:27,450 DEBUG: 			View 0 : 0.411042944785
+2016-08-24 09:52:27,458 DEBUG: 			View 1 : 0.484662576687
+2016-08-24 09:52:27,496 DEBUG: 			View 2 : 0.466257668712
+2016-08-24 09:52:27,503 DEBUG: 			View 3 : 0.58282208589
+2016-08-24 09:52:27,729 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:52:32,667 DEBUG: 		Start:	 Iteration 79
+2016-08-24 09:52:32,684 DEBUG: 			View 0 : 0.411042944785
+2016-08-24 09:52:32,692 DEBUG: 			View 1 : 0.59509202454
+2016-08-24 09:52:32,730 DEBUG: 			View 2 : 0.61963190184
+2016-08-24 09:52:32,737 DEBUG: 			View 3 : 0.613496932515
+2016-08-24 09:52:32,967 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:52:38,035 DEBUG: 		Start:	 Iteration 80
+2016-08-24 09:52:38,053 DEBUG: 			View 0 : 0.503067484663
+2016-08-24 09:52:38,061 DEBUG: 			View 1 : 0.61963190184
+2016-08-24 09:52:38,101 DEBUG: 			View 2 : 0.558282208589
+2016-08-24 09:52:38,109 DEBUG: 			View 3 : 0.576687116564
+2016-08-24 09:52:38,351 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:52:43,584 DEBUG: 		Start:	 Iteration 81
+2016-08-24 09:52:43,601 DEBUG: 			View 0 : 0.472392638037
+2016-08-24 09:52:43,609 DEBUG: 			View 1 : 0.509202453988
+2016-08-24 09:52:43,648 DEBUG: 			View 2 : 0.386503067485
+2016-08-24 09:52:43,656 DEBUG: 			View 3 : 0.564417177914
+2016-08-24 09:52:43,897 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:52:49,124 DEBUG: 		Start:	 Iteration 82
+2016-08-24 09:52:49,141 DEBUG: 			View 0 : 0.398773006135
+2016-08-24 09:52:49,150 DEBUG: 			View 1 : 0.625766871166
+2016-08-24 09:52:49,191 DEBUG: 			View 2 : 0.59509202454
+2016-08-24 09:52:49,199 DEBUG: 			View 3 : 0.58282208589
+2016-08-24 09:52:49,451 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:52:54,668 DEBUG: 		Start:	 Iteration 83
+2016-08-24 09:52:54,685 DEBUG: 			View 0 : 0.251533742331
+2016-08-24 09:52:54,693 DEBUG: 			View 1 : 0.539877300613
+2016-08-24 09:52:54,731 DEBUG: 			View 2 : 0.429447852761
+2016-08-24 09:52:54,739 DEBUG: 			View 3 : 0.423312883436
+2016-08-24 09:52:54,986 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:53:00,332 DEBUG: 		Start:	 Iteration 84
+2016-08-24 09:53:00,349 DEBUG: 			View 0 : 0.411042944785
+2016-08-24 09:53:00,357 DEBUG: 			View 1 : 0.368098159509
+2016-08-24 09:53:00,394 DEBUG: 			View 2 : 0.521472392638
+2016-08-24 09:53:00,402 DEBUG: 			View 3 : 0.576687116564
+2016-08-24 09:53:00,642 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:53:05,890 DEBUG: 		Start:	 Iteration 85
+2016-08-24 09:53:05,908 DEBUG: 			View 0 : 0.343558282209
+2016-08-24 09:53:05,916 DEBUG: 			View 1 : 0.625766871166
+2016-08-24 09:53:05,955 DEBUG: 			View 2 : 0.472392638037
+2016-08-24 09:53:05,963 DEBUG: 			View 3 : 0.564417177914
+2016-08-24 09:53:06,217 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:53:11,740 DEBUG: 		Start:	 Iteration 86
+2016-08-24 09:53:11,758 DEBUG: 			View 0 : 0.398773006135
+2016-08-24 09:53:11,766 DEBUG: 			View 1 : 0.539877300613
+2016-08-24 09:53:11,804 DEBUG: 			View 2 : 0.478527607362
+2016-08-24 09:53:11,812 DEBUG: 			View 3 : 0.429447852761
+2016-08-24 09:53:12,066 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:53:17,553 DEBUG: 		Start:	 Iteration 87
+2016-08-24 09:53:17,570 DEBUG: 			View 0 : 0.386503067485
+2016-08-24 09:53:17,579 DEBUG: 			View 1 : 0.503067484663
+2016-08-24 09:53:17,617 DEBUG: 			View 2 : 0.539877300613
+2016-08-24 09:53:17,625 DEBUG: 			View 3 : 0.490797546012
+2016-08-24 09:53:17,893 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:53:23,454 DEBUG: 		Start:	 Iteration 88
+2016-08-24 09:53:23,472 DEBUG: 			View 0 : 0.423312883436
+2016-08-24 09:53:23,480 DEBUG: 			View 1 : 0.705521472393
+2016-08-24 09:53:23,520 DEBUG: 			View 2 : 0.472392638037
+2016-08-24 09:53:23,528 DEBUG: 			View 3 : 0.41717791411
+2016-08-24 09:53:23,792 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:53:29,579 DEBUG: 		Start:	 Iteration 89
+2016-08-24 09:53:29,598 DEBUG: 			View 0 : 0.38036809816
+2016-08-24 09:53:29,607 DEBUG: 			View 1 : 0.343558282209
+2016-08-24 09:53:29,663 DEBUG: 			View 2 : 0.429447852761
+2016-08-24 09:53:29,671 DEBUG: 			View 3 : 0.435582822086
+2016-08-24 09:53:29,671 WARNING: WARNING:	All bad for iteration 88
+2016-08-24 09:53:29,966 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:53:35,846 DEBUG: 		Start:	 Iteration 90
+2016-08-24 09:53:35,863 DEBUG: 			View 0 : 0.601226993865
+2016-08-24 09:53:35,871 DEBUG: 			View 1 : 0.644171779141
+2016-08-24 09:53:35,919 DEBUG: 			View 2 : 0.478527607362
+2016-08-24 09:53:35,927 DEBUG: 			View 3 : 0.61963190184
+2016-08-24 09:53:36,194 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:53:41,790 DEBUG: 		Start:	 Iteration 91
+2016-08-24 09:53:41,807 DEBUG: 			View 0 : 0.613496932515
+2016-08-24 09:53:41,815 DEBUG: 			View 1 : 0.558282208589
+2016-08-24 09:53:41,852 DEBUG: 			View 2 : 0.588957055215
+2016-08-24 09:53:41,860 DEBUG: 			View 3 : 0.441717791411
+2016-08-24 09:53:42,117 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:53:47,786 DEBUG: 		Start:	 Iteration 92
+2016-08-24 09:53:47,803 DEBUG: 			View 0 : 0.668711656442
+2016-08-24 09:53:47,811 DEBUG: 			View 1 : 0.515337423313
+2016-08-24 09:53:47,848 DEBUG: 			View 2 : 0.638036809816
+2016-08-24 09:53:47,856 DEBUG: 			View 3 : 0.38036809816
+2016-08-24 09:53:48,114 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:53:53,801 DEBUG: 		Start:	 Iteration 93
+2016-08-24 09:53:53,818 DEBUG: 			View 0 : 0.552147239264
+2016-08-24 09:53:53,825 DEBUG: 			View 1 : 0.631901840491
+2016-08-24 09:53:53,863 DEBUG: 			View 2 : 0.558282208589
+2016-08-24 09:53:53,871 DEBUG: 			View 3 : 0.447852760736
+2016-08-24 09:53:54,140 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:53:59,928 DEBUG: 		Start:	 Iteration 94
+2016-08-24 09:53:59,945 DEBUG: 			View 0 : 0.460122699387
+2016-08-24 09:53:59,953 DEBUG: 			View 1 : 0.638036809816
+2016-08-24 09:53:59,990 DEBUG: 			View 2 : 0.576687116564
+2016-08-24 09:53:59,998 DEBUG: 			View 3 : 0.398773006135
+2016-08-24 09:54:00,264 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:54:06,103 DEBUG: 		Start:	 Iteration 95
+2016-08-24 09:54:06,120 DEBUG: 			View 0 : 0.59509202454
+2016-08-24 09:54:06,128 DEBUG: 			View 1 : 0.638036809816
+2016-08-24 09:54:06,165 DEBUG: 			View 2 : 0.429447852761
+2016-08-24 09:54:06,173 DEBUG: 			View 3 : 0.496932515337
+2016-08-24 09:54:06,440 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:54:12,344 DEBUG: 		Start:	 Iteration 96
+2016-08-24 09:54:12,361 DEBUG: 			View 0 : 0.601226993865
+2016-08-24 09:54:12,368 DEBUG: 			View 1 : 0.521472392638
+2016-08-24 09:54:12,406 DEBUG: 			View 2 : 0.58282208589
+2016-08-24 09:54:12,414 DEBUG: 			View 3 : 0.533742331288
+2016-08-24 09:54:12,683 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:54:18,660 DEBUG: 		Start:	 Iteration 97
+2016-08-24 09:54:18,677 DEBUG: 			View 0 : 0.374233128834
+2016-08-24 09:54:18,684 DEBUG: 			View 1 : 0.742331288344
+2016-08-24 09:54:18,722 DEBUG: 			View 2 : 0.423312883436
+2016-08-24 09:54:18,730 DEBUG: 			View 3 : 0.638036809816
+2016-08-24 09:54:19,002 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:54:25,028 DEBUG: 		Start:	 Iteration 98
+2016-08-24 09:54:25,045 DEBUG: 			View 0 : 0.355828220859
+2016-08-24 09:54:25,053 DEBUG: 			View 1 : 0.558282208589
+2016-08-24 09:54:25,096 DEBUG: 			View 2 : 0.472392638037
+2016-08-24 09:54:25,104 DEBUG: 			View 3 : 0.558282208589
+2016-08-24 09:54:25,377 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:54:31,445 DEBUG: 		Start:	 Iteration 99
+2016-08-24 09:54:31,462 DEBUG: 			View 0 : 0.58282208589
+2016-08-24 09:54:31,469 DEBUG: 			View 1 : 0.58282208589
+2016-08-24 09:54:31,507 DEBUG: 			View 2 : 0.58282208589
+2016-08-24 09:54:31,515 DEBUG: 			View 3 : 0.564417177914
+2016-08-24 09:54:31,788 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:54:37,994 DEBUG: 		Start:	 Iteration 100
+2016-08-24 09:54:38,010 DEBUG: 			View 0 : 0.496932515337
+2016-08-24 09:54:38,018 DEBUG: 			View 1 : 0.546012269939
+2016-08-24 09:54:38,056 DEBUG: 			View 2 : 0.521472392638
+2016-08-24 09:54:38,064 DEBUG: 			View 3 : 0.40490797546
+2016-08-24 09:54:38,339 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:54:44,470 DEBUG: 		Start:	 Iteration 101
+2016-08-24 09:54:44,487 DEBUG: 			View 0 : 0.490797546012
+2016-08-24 09:54:44,495 DEBUG: 			View 1 : 0.533742331288
+2016-08-24 09:54:44,532 DEBUG: 			View 2 : 0.490797546012
+2016-08-24 09:54:44,539 DEBUG: 			View 3 : 0.546012269939
+2016-08-24 09:54:44,817 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:54:51,232 DEBUG: 		Start:	 Iteration 102
+2016-08-24 09:54:51,252 DEBUG: 			View 0 : 0.300613496933
+2016-08-24 09:54:51,261 DEBUG: 			View 1 : 0.368098159509
+2016-08-24 09:54:51,315 DEBUG: 			View 2 : 0.509202453988
+2016-08-24 09:54:51,324 DEBUG: 			View 3 : 0.60736196319
+2016-08-24 09:54:51,621 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:54:57,874 INFO: 	Start: 	 Classification
+2016-08-24 09:55:12,569 INFO: 	Done: 	 Fold number 1
+2016-08-24 09:55:12,569 INFO: 	Start:	 Fold number 2
+2016-08-24 09:55:14,073 DEBUG: 		Start:	 Iteration 1
+2016-08-24 09:55:14,088 DEBUG: 			View 0 : 0.602649006623
+2016-08-24 09:55:14,095 DEBUG: 			View 1 : 0.602649006623
+2016-08-24 09:55:14,126 DEBUG: 			View 2 : 0.602649006623
+2016-08-24 09:55:14,133 DEBUG: 			View 3 : 0.602649006623
+2016-08-24 09:55:14,172 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:55:14,242 DEBUG: 		Start:	 Iteration 2
+2016-08-24 09:55:14,258 DEBUG: 			View 0 : 0.331125827815
+2016-08-24 09:55:14,265 DEBUG: 			View 1 : 0.251655629139
+2016-08-24 09:55:14,301 DEBUG: 			View 2 : 0.390728476821
+2016-08-24 09:55:14,308 DEBUG: 			View 3 : 0.384105960265
+2016-08-24 09:55:14,308 WARNING: WARNING:	All bad for iteration 1
+2016-08-24 09:55:14,351 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:55:14,492 DEBUG: 		Start:	 Iteration 3
+2016-08-24 09:55:14,508 DEBUG: 			View 0 : 0.53642384106
+2016-08-24 09:55:14,515 DEBUG: 			View 1 : 0.735099337748
+2016-08-24 09:55:14,550 DEBUG: 			View 2 : 0.516556291391
+2016-08-24 09:55:14,558 DEBUG: 			View 3 : 0.456953642384
+2016-08-24 09:55:14,603 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:55:14,797 DEBUG: 		Start:	 Iteration 4
+2016-08-24 09:55:14,813 DEBUG: 			View 0 : 0.814569536424
+2016-08-24 09:55:14,820 DEBUG: 			View 1 : 0.377483443709
+2016-08-24 09:55:14,856 DEBUG: 			View 2 : 0.523178807947
+2016-08-24 09:55:14,863 DEBUG: 			View 3 : 0.443708609272
+2016-08-24 09:55:14,916 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:55:15,168 DEBUG: 		Start:	 Iteration 5
+2016-08-24 09:55:15,184 DEBUG: 			View 0 : 0.609271523179
+2016-08-24 09:55:15,192 DEBUG: 			View 1 : 0.708609271523
+2016-08-24 09:55:15,227 DEBUG: 			View 2 : 0.516556291391
+2016-08-24 09:55:15,234 DEBUG: 			View 3 : 0.456953642384
+2016-08-24 09:55:15,288 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:55:15,596 DEBUG: 		Start:	 Iteration 6
+2016-08-24 09:55:15,612 DEBUG: 			View 0 : 0.615894039735
+2016-08-24 09:55:15,619 DEBUG: 			View 1 : 0.635761589404
+2016-08-24 09:55:15,654 DEBUG: 			View 2 : 0.503311258278
+2016-08-24 09:55:15,661 DEBUG: 			View 3 : 0.476821192053
+2016-08-24 09:55:15,717 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:55:16,081 DEBUG: 		Start:	 Iteration 7
+2016-08-24 09:55:16,097 DEBUG: 			View 0 : 0.384105960265
+2016-08-24 09:55:16,104 DEBUG: 			View 1 : 0.53642384106
+2016-08-24 09:55:16,140 DEBUG: 			View 2 : 0.476821192053
+2016-08-24 09:55:16,147 DEBUG: 			View 3 : 0.549668874172
+2016-08-24 09:55:16,206 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:55:16,624 DEBUG: 		Start:	 Iteration 8
+2016-08-24 09:55:16,639 DEBUG: 			View 0 : 0.456953642384
+2016-08-24 09:55:16,647 DEBUG: 			View 1 : 0.470198675497
+2016-08-24 09:55:16,682 DEBUG: 			View 2 : 0.450331125828
+2016-08-24 09:55:16,689 DEBUG: 			View 3 : 0.450331125828
+2016-08-24 09:55:16,689 WARNING: WARNING:	All bad for iteration 7
+2016-08-24 09:55:16,751 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:55:17,223 DEBUG: 		Start:	 Iteration 9
+2016-08-24 09:55:17,239 DEBUG: 			View 0 : 0.456953642384
+2016-08-24 09:55:17,247 DEBUG: 			View 1 : 0.602649006623
+2016-08-24 09:55:17,282 DEBUG: 			View 2 : 0.569536423841
+2016-08-24 09:55:17,289 DEBUG: 			View 3 : 0.430463576159
+2016-08-24 09:55:17,353 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:55:17,881 DEBUG: 		Start:	 Iteration 10
+2016-08-24 09:55:17,896 DEBUG: 			View 0 : 0.622516556291
+2016-08-24 09:55:17,904 DEBUG: 			View 1 : 0.58940397351
+2016-08-24 09:55:17,939 DEBUG: 			View 2 : 0.543046357616
+2016-08-24 09:55:17,947 DEBUG: 			View 3 : 0.562913907285
+2016-08-24 09:55:18,013 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:55:18,596 DEBUG: 		Start:	 Iteration 11
+2016-08-24 09:55:18,613 DEBUG: 			View 0 : 0.450331125828
+2016-08-24 09:55:18,620 DEBUG: 			View 1 : 0.622516556291
+2016-08-24 09:55:18,655 DEBUG: 			View 2 : 0.41059602649
+2016-08-24 09:55:18,662 DEBUG: 			View 3 : 0.417218543046
+2016-08-24 09:55:18,730 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:55:19,382 DEBUG: 		Start:	 Iteration 12
+2016-08-24 09:55:19,398 DEBUG: 			View 0 : 0.562913907285
+2016-08-24 09:55:19,405 DEBUG: 			View 1 : 0.576158940397
+2016-08-24 09:55:19,441 DEBUG: 			View 2 : 0.456953642384
+2016-08-24 09:55:19,449 DEBUG: 			View 3 : 0.41059602649
+2016-08-24 09:55:19,519 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:55:20,210 DEBUG: 		Start:	 Iteration 13
+2016-08-24 09:55:20,226 DEBUG: 			View 0 : 0.483443708609
+2016-08-24 09:55:20,233 DEBUG: 			View 1 : 0.635761589404
+2016-08-24 09:55:20,269 DEBUG: 			View 2 : 0.476821192053
+2016-08-24 09:55:20,276 DEBUG: 			View 3 : 0.483443708609
+2016-08-24 09:55:20,349 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:55:21,098 DEBUG: 		Start:	 Iteration 14
+2016-08-24 09:55:21,114 DEBUG: 			View 0 : 0.523178807947
+2016-08-24 09:55:21,121 DEBUG: 			View 1 : 0.582781456954
+2016-08-24 09:55:21,157 DEBUG: 			View 2 : 0.470198675497
+2016-08-24 09:55:21,164 DEBUG: 			View 3 : 0.53642384106
+2016-08-24 09:55:21,239 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:55:22,041 DEBUG: 		Start:	 Iteration 15
+2016-08-24 09:55:22,056 DEBUG: 			View 0 : 0.350993377483
+2016-08-24 09:55:22,064 DEBUG: 			View 1 : 0.668874172185
+2016-08-24 09:55:22,099 DEBUG: 			View 2 : 0.476821192053
+2016-08-24 09:55:22,106 DEBUG: 			View 3 : 0.569536423841
+2016-08-24 09:55:22,183 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:55:23,038 DEBUG: 		Start:	 Iteration 16
+2016-08-24 09:55:23,054 DEBUG: 			View 0 : 0.596026490066
+2016-08-24 09:55:23,061 DEBUG: 			View 1 : 0.543046357616
+2016-08-24 09:55:23,097 DEBUG: 			View 2 : 0.629139072848
+2016-08-24 09:55:23,104 DEBUG: 			View 3 : 0.649006622517
+2016-08-24 09:55:23,183 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:55:24,094 DEBUG: 		Start:	 Iteration 17
+2016-08-24 09:55:24,111 DEBUG: 			View 0 : 0.456953642384
+2016-08-24 09:55:24,118 DEBUG: 			View 1 : 0.615894039735
+2016-08-24 09:55:24,154 DEBUG: 			View 2 : 0.490066225166
+2016-08-24 09:55:24,161 DEBUG: 			View 3 : 0.516556291391
+2016-08-24 09:55:24,242 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:55:25,204 DEBUG: 		Start:	 Iteration 18
+2016-08-24 09:55:25,220 DEBUG: 			View 0 : 0.562913907285
+2016-08-24 09:55:25,227 DEBUG: 			View 1 : 0.450331125828
+2016-08-24 09:55:25,263 DEBUG: 			View 2 : 0.450331125828
+2016-08-24 09:55:25,270 DEBUG: 			View 3 : 0.483443708609
+2016-08-24 09:55:25,354 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:55:26,372 DEBUG: 		Start:	 Iteration 19
+2016-08-24 09:55:26,388 DEBUG: 			View 0 : 0.364238410596
+2016-08-24 09:55:26,396 DEBUG: 			View 1 : 0.668874172185
+2016-08-24 09:55:26,431 DEBUG: 			View 2 : 0.53642384106
+2016-08-24 09:55:26,438 DEBUG: 			View 3 : 0.529801324503
+2016-08-24 09:55:26,523 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:55:27,596 DEBUG: 		Start:	 Iteration 20
+2016-08-24 09:55:27,612 DEBUG: 			View 0 : 0.317880794702
+2016-08-24 09:55:27,620 DEBUG: 			View 1 : 0.403973509934
+2016-08-24 09:55:27,655 DEBUG: 			View 2 : 0.529801324503
+2016-08-24 09:55:27,663 DEBUG: 			View 3 : 0.629139072848
+2016-08-24 09:55:27,751 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:55:28,884 DEBUG: 		Start:	 Iteration 21
+2016-08-24 09:55:28,900 DEBUG: 			View 0 : 0.549668874172
+2016-08-24 09:55:28,907 DEBUG: 			View 1 : 0.649006622517
+2016-08-24 09:55:28,945 DEBUG: 			View 2 : 0.529801324503
+2016-08-24 09:55:28,952 DEBUG: 			View 3 : 0.503311258278
+2016-08-24 09:55:29,041 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:55:30,227 DEBUG: 		Start:	 Iteration 22
+2016-08-24 09:55:30,243 DEBUG: 			View 0 : 0.483443708609
+2016-08-24 09:55:30,250 DEBUG: 			View 1 : 0.556291390728
+2016-08-24 09:55:30,285 DEBUG: 			View 2 : 0.622516556291
+2016-08-24 09:55:30,293 DEBUG: 			View 3 : 0.46357615894
+2016-08-24 09:55:30,385 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:55:31,630 DEBUG: 		Start:	 Iteration 23
+2016-08-24 09:55:31,646 DEBUG: 			View 0 : 0.609271523179
+2016-08-24 09:55:31,653 DEBUG: 			View 1 : 0.629139072848
+2016-08-24 09:55:31,688 DEBUG: 			View 2 : 0.556291390728
+2016-08-24 09:55:31,696 DEBUG: 			View 3 : 0.629139072848
+2016-08-24 09:55:31,789 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:55:33,091 DEBUG: 		Start:	 Iteration 24
+2016-08-24 09:55:33,107 DEBUG: 			View 0 : 0.503311258278
+2016-08-24 09:55:33,114 DEBUG: 			View 1 : 0.668874172185
+2016-08-24 09:55:33,149 DEBUG: 			View 2 : 0.470198675497
+2016-08-24 09:55:33,157 DEBUG: 			View 3 : 0.476821192053
+2016-08-24 09:55:33,252 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:55:34,607 DEBUG: 		Start:	 Iteration 25
+2016-08-24 09:55:34,623 DEBUG: 			View 0 : 0.562913907285
+2016-08-24 09:55:34,630 DEBUG: 			View 1 : 0.284768211921
+2016-08-24 09:55:34,666 DEBUG: 			View 2 : 0.556291390728
+2016-08-24 09:55:34,673 DEBUG: 			View 3 : 0.456953642384
+2016-08-24 09:55:34,771 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:55:36,182 DEBUG: 		Start:	 Iteration 26
+2016-08-24 09:55:36,198 DEBUG: 			View 0 : 0.390728476821
+2016-08-24 09:55:36,205 DEBUG: 			View 1 : 0.576158940397
+2016-08-24 09:55:36,241 DEBUG: 			View 2 : 0.390728476821
+2016-08-24 09:55:36,248 DEBUG: 			View 3 : 0.569536423841
+2016-08-24 09:55:36,348 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:55:37,816 DEBUG: 		Start:	 Iteration 27
+2016-08-24 09:55:37,832 DEBUG: 			View 0 : 0.377483443709
+2016-08-24 09:55:37,839 DEBUG: 			View 1 : 0.509933774834
+2016-08-24 09:55:37,875 DEBUG: 			View 2 : 0.543046357616
+2016-08-24 09:55:37,882 DEBUG: 			View 3 : 0.417218543046
+2016-08-24 09:55:37,984 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:55:39,506 DEBUG: 		Start:	 Iteration 28
+2016-08-24 09:55:39,522 DEBUG: 			View 0 : 0.556291390728
+2016-08-24 09:55:39,530 DEBUG: 			View 1 : 0.397350993377
+2016-08-24 09:55:39,565 DEBUG: 			View 2 : 0.576158940397
+2016-08-24 09:55:39,572 DEBUG: 			View 3 : 0.549668874172
+2016-08-24 09:55:39,676 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:55:41,263 DEBUG: 		Start:	 Iteration 29
+2016-08-24 09:55:41,279 DEBUG: 			View 0 : 0.655629139073
+2016-08-24 09:55:41,286 DEBUG: 			View 1 : 0.728476821192
+2016-08-24 09:55:41,321 DEBUG: 			View 2 : 0.615894039735
+2016-08-24 09:55:41,329 DEBUG: 			View 3 : 0.470198675497
+2016-08-24 09:55:41,436 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:55:43,079 DEBUG: 		Start:	 Iteration 30
+2016-08-24 09:55:43,095 DEBUG: 			View 0 : 0.569536423841
+2016-08-24 09:55:43,102 DEBUG: 			View 1 : 0.344370860927
+2016-08-24 09:55:43,137 DEBUG: 			View 2 : 0.470198675497
+2016-08-24 09:55:43,144 DEBUG: 			View 3 : 0.470198675497
+2016-08-24 09:55:43,253 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:55:44,951 DEBUG: 		Start:	 Iteration 31
+2016-08-24 09:55:44,967 DEBUG: 			View 0 : 0.562913907285
+2016-08-24 09:55:44,975 DEBUG: 			View 1 : 0.218543046358
+2016-08-24 09:55:45,009 DEBUG: 			View 2 : 0.53642384106
+2016-08-24 09:55:45,017 DEBUG: 			View 3 : 0.516556291391
+2016-08-24 09:55:45,128 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:55:46,886 DEBUG: 		Start:	 Iteration 32
+2016-08-24 09:55:46,902 DEBUG: 			View 0 : 0.470198675497
+2016-08-24 09:55:46,909 DEBUG: 			View 1 : 0.35761589404
+2016-08-24 09:55:46,944 DEBUG: 			View 2 : 0.509933774834
+2016-08-24 09:55:46,952 DEBUG: 			View 3 : 0.549668874172
+2016-08-24 09:55:47,064 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:55:48,874 DEBUG: 		Start:	 Iteration 33
+2016-08-24 09:55:48,889 DEBUG: 			View 0 : 0.569536423841
+2016-08-24 09:55:48,897 DEBUG: 			View 1 : 0.596026490066
+2016-08-24 09:55:48,932 DEBUG: 			View 2 : 0.377483443709
+2016-08-24 09:55:48,939 DEBUG: 			View 3 : 0.556291390728
+2016-08-24 09:55:49,054 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:55:50,918 DEBUG: 		Start:	 Iteration 34
+2016-08-24 09:55:50,934 DEBUG: 			View 0 : 0.450331125828
+2016-08-24 09:55:50,942 DEBUG: 			View 1 : 0.549668874172
+2016-08-24 09:55:50,976 DEBUG: 			View 2 : 0.503311258278
+2016-08-24 09:55:50,984 DEBUG: 			View 3 : 0.41059602649
+2016-08-24 09:55:51,099 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:55:53,017 DEBUG: 		Start:	 Iteration 35
+2016-08-24 09:55:53,032 DEBUG: 			View 0 : 0.430463576159
+2016-08-24 09:55:53,040 DEBUG: 			View 1 : 0.668874172185
+2016-08-24 09:55:53,075 DEBUG: 			View 2 : 0.596026490066
+2016-08-24 09:55:53,082 DEBUG: 			View 3 : 0.423841059603
+2016-08-24 09:55:53,199 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:55:55,212 DEBUG: 		Start:	 Iteration 36
+2016-08-24 09:55:55,229 DEBUG: 			View 0 : 0.675496688742
+2016-08-24 09:55:55,236 DEBUG: 			View 1 : 0.450331125828
+2016-08-24 09:55:55,271 DEBUG: 			View 2 : 0.576158940397
+2016-08-24 09:55:55,279 DEBUG: 			View 3 : 0.58940397351
+2016-08-24 09:55:55,400 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:55:57,436 DEBUG: 		Start:	 Iteration 37
+2016-08-24 09:55:57,451 DEBUG: 			View 0 : 0.569536423841
+2016-08-24 09:55:57,459 DEBUG: 			View 1 : 0.649006622517
+2016-08-24 09:55:57,494 DEBUG: 			View 2 : 0.543046357616
+2016-08-24 09:55:57,501 DEBUG: 			View 3 : 0.490066225166
+2016-08-24 09:55:57,623 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:55:59,706 DEBUG: 		Start:	 Iteration 38
+2016-08-24 09:55:59,722 DEBUG: 			View 0 : 0.549668874172
+2016-08-24 09:55:59,730 DEBUG: 			View 1 : 0.64238410596
+2016-08-24 09:55:59,765 DEBUG: 			View 2 : 0.490066225166
+2016-08-24 09:55:59,773 DEBUG: 			View 3 : 0.403973509934
+2016-08-24 09:55:59,897 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:56:02,038 DEBUG: 		Start:	 Iteration 39
+2016-08-24 09:56:02,053 DEBUG: 			View 0 : 0.476821192053
+2016-08-24 09:56:02,061 DEBUG: 			View 1 : 0.622516556291
+2016-08-24 09:56:02,096 DEBUG: 			View 2 : 0.602649006623
+2016-08-24 09:56:02,103 DEBUG: 			View 3 : 0.496688741722
+2016-08-24 09:56:02,230 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:56:04,427 DEBUG: 		Start:	 Iteration 40
+2016-08-24 09:56:04,443 DEBUG: 			View 0 : 0.476821192053
+2016-08-24 09:56:04,451 DEBUG: 			View 1 : 0.569536423841
+2016-08-24 09:56:04,486 DEBUG: 			View 2 : 0.576158940397
+2016-08-24 09:56:04,493 DEBUG: 			View 3 : 0.549668874172
+2016-08-24 09:56:04,621 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:56:06,880 DEBUG: 		Start:	 Iteration 41
+2016-08-24 09:56:06,896 DEBUG: 			View 0 : 0.556291390728
+2016-08-24 09:56:06,903 DEBUG: 			View 1 : 0.668874172185
+2016-08-24 09:56:06,939 DEBUG: 			View 2 : 0.596026490066
+2016-08-24 09:56:06,946 DEBUG: 			View 3 : 0.569536423841
+2016-08-24 09:56:07,075 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:56:09,389 DEBUG: 		Start:	 Iteration 42
+2016-08-24 09:56:09,405 DEBUG: 			View 0 : 0.543046357616
+2016-08-24 09:56:09,413 DEBUG: 			View 1 : 0.344370860927
+2016-08-24 09:56:09,448 DEBUG: 			View 2 : 0.437086092715
+2016-08-24 09:56:09,455 DEBUG: 			View 3 : 0.490066225166
+2016-08-24 09:56:09,587 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:56:11,958 DEBUG: 		Start:	 Iteration 43
+2016-08-24 09:56:11,973 DEBUG: 			View 0 : 0.596026490066
+2016-08-24 09:56:11,981 DEBUG: 			View 1 : 0.668874172185
+2016-08-24 09:56:12,016 DEBUG: 			View 2 : 0.456953642384
+2016-08-24 09:56:12,024 DEBUG: 			View 3 : 0.556291390728
+2016-08-24 09:56:12,158 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:56:14,594 DEBUG: 		Start:	 Iteration 44
+2016-08-24 09:56:14,610 DEBUG: 			View 0 : 0.430463576159
+2016-08-24 09:56:14,617 DEBUG: 			View 1 : 0.483443708609
+2016-08-24 09:56:14,653 DEBUG: 			View 2 : 0.430463576159
+2016-08-24 09:56:14,660 DEBUG: 			View 3 : 0.476821192053
+2016-08-24 09:56:14,660 WARNING: WARNING:	All bad for iteration 43
+2016-08-24 09:56:14,797 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:56:17,274 DEBUG: 		Start:	 Iteration 45
+2016-08-24 09:56:17,291 DEBUG: 			View 0 : 0.470198675497
+2016-08-24 09:56:17,298 DEBUG: 			View 1 : 0.443708609272
+2016-08-24 09:56:17,333 DEBUG: 			View 2 : 0.58940397351
+2016-08-24 09:56:17,341 DEBUG: 			View 3 : 0.496688741722
+2016-08-24 09:56:17,480 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:56:20,029 DEBUG: 		Start:	 Iteration 46
+2016-08-24 09:56:20,045 DEBUG: 			View 0 : 0.496688741722
+2016-08-24 09:56:20,052 DEBUG: 			View 1 : 0.576158940397
+2016-08-24 09:56:20,088 DEBUG: 			View 2 : 0.423841059603
+2016-08-24 09:56:20,095 DEBUG: 			View 3 : 0.423841059603
+2016-08-24 09:56:20,235 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:56:22,835 DEBUG: 		Start:	 Iteration 47
+2016-08-24 09:56:22,851 DEBUG: 			View 0 : 0.337748344371
+2016-08-24 09:56:22,858 DEBUG: 			View 1 : 0.145695364238
+2016-08-24 09:56:22,894 DEBUG: 			View 2 : 0.523178807947
+2016-08-24 09:56:22,901 DEBUG: 			View 3 : 0.556291390728
+2016-08-24 09:56:23,043 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:56:25,695 DEBUG: 		Start:	 Iteration 48
+2016-08-24 09:56:25,710 DEBUG: 			View 0 : 0.476821192053
+2016-08-24 09:56:25,718 DEBUG: 			View 1 : 0.35761589404
+2016-08-24 09:56:25,753 DEBUG: 			View 2 : 0.483443708609
+2016-08-24 09:56:25,760 DEBUG: 			View 3 : 0.549668874172
+2016-08-24 09:56:25,906 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:56:28,607 DEBUG: 		Start:	 Iteration 49
+2016-08-24 09:56:28,623 DEBUG: 			View 0 : 0.390728476821
+2016-08-24 09:56:28,631 DEBUG: 			View 1 : 0.668874172185
+2016-08-24 09:56:28,665 DEBUG: 			View 2 : 0.490066225166
+2016-08-24 09:56:28,673 DEBUG: 			View 3 : 0.490066225166
+2016-08-24 09:56:28,820 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:56:31,591 DEBUG: 		Start:	 Iteration 50
+2016-08-24 09:56:31,607 DEBUG: 			View 0 : 0.46357615894
+2016-08-24 09:56:31,614 DEBUG: 			View 1 : 0.496688741722
+2016-08-24 09:56:31,651 DEBUG: 			View 2 : 0.516556291391
+2016-08-24 09:56:31,658 DEBUG: 			View 3 : 0.496688741722
+2016-08-24 09:56:31,807 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:56:34,616 DEBUG: 		Start:	 Iteration 51
+2016-08-24 09:56:34,632 DEBUG: 			View 0 : 0.529801324503
+2016-08-24 09:56:34,639 DEBUG: 			View 1 : 0.609271523179
+2016-08-24 09:56:34,674 DEBUG: 			View 2 : 0.569536423841
+2016-08-24 09:56:34,682 DEBUG: 			View 3 : 0.46357615894
+2016-08-24 09:56:34,832 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:56:37,700 DEBUG: 		Start:	 Iteration 52
+2016-08-24 09:56:37,715 DEBUG: 			View 0 : 0.516556291391
+2016-08-24 09:56:37,723 DEBUG: 			View 1 : 0.337748344371
+2016-08-24 09:56:37,758 DEBUG: 			View 2 : 0.596026490066
+2016-08-24 09:56:37,765 DEBUG: 			View 3 : 0.58940397351
+2016-08-24 09:56:37,918 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:56:40,853 DEBUG: 		Start:	 Iteration 53
+2016-08-24 09:56:40,869 DEBUG: 			View 0 : 0.503311258278
+2016-08-24 09:56:40,877 DEBUG: 			View 1 : 0.53642384106
+2016-08-24 09:56:40,913 DEBUG: 			View 2 : 0.490066225166
+2016-08-24 09:56:40,920 DEBUG: 			View 3 : 0.403973509934
+2016-08-24 09:56:41,076 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:56:44,061 DEBUG: 		Start:	 Iteration 54
+2016-08-24 09:56:44,077 DEBUG: 			View 0 : 0.576158940397
+2016-08-24 09:56:44,085 DEBUG: 			View 1 : 0.509933774834
+2016-08-24 09:56:44,120 DEBUG: 			View 2 : 0.430463576159
+2016-08-24 09:56:44,128 DEBUG: 			View 3 : 0.456953642384
+2016-08-24 09:56:44,286 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:56:47,328 DEBUG: 		Start:	 Iteration 55
+2016-08-24 09:56:47,344 DEBUG: 			View 0 : 0.483443708609
+2016-08-24 09:56:47,351 DEBUG: 			View 1 : 0.317880794702
+2016-08-24 09:56:47,387 DEBUG: 			View 2 : 0.622516556291
+2016-08-24 09:56:47,394 DEBUG: 			View 3 : 0.483443708609
+2016-08-24 09:56:47,552 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:56:50,670 DEBUG: 		Start:	 Iteration 56
+2016-08-24 09:56:50,686 DEBUG: 			View 0 : 0.53642384106
+2016-08-24 09:56:50,693 DEBUG: 			View 1 : 0.53642384106
+2016-08-24 09:56:50,728 DEBUG: 			View 2 : 0.622516556291
+2016-08-24 09:56:50,736 DEBUG: 			View 3 : 0.549668874172
+2016-08-24 09:56:50,897 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:56:54,078 DEBUG: 		Start:	 Iteration 57
+2016-08-24 09:56:54,094 DEBUG: 			View 0 : 0.53642384106
+2016-08-24 09:56:54,102 DEBUG: 			View 1 : 0.708609271523
+2016-08-24 09:56:54,137 DEBUG: 			View 2 : 0.450331125828
+2016-08-24 09:56:54,144 DEBUG: 			View 3 : 0.523178807947
+2016-08-24 09:56:54,307 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:56:57,540 DEBUG: 		Start:	 Iteration 58
+2016-08-24 09:56:57,556 DEBUG: 			View 0 : 0.582781456954
+2016-08-24 09:56:57,563 DEBUG: 			View 1 : 0.602649006623
+2016-08-24 09:56:57,598 DEBUG: 			View 2 : 0.576158940397
+2016-08-24 09:56:57,605 DEBUG: 			View 3 : 0.496688741722
+2016-08-24 09:56:57,771 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:57:01,055 DEBUG: 		Start:	 Iteration 59
+2016-08-24 09:57:01,071 DEBUG: 			View 0 : 0.615894039735
+2016-08-24 09:57:01,078 DEBUG: 			View 1 : 0.284768211921
+2016-08-24 09:57:01,114 DEBUG: 			View 2 : 0.569536423841
+2016-08-24 09:57:01,121 DEBUG: 			View 3 : 0.503311258278
+2016-08-24 09:57:01,288 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:57:04,633 DEBUG: 		Start:	 Iteration 60
+2016-08-24 09:57:04,648 DEBUG: 			View 0 : 0.543046357616
+2016-08-24 09:57:04,656 DEBUG: 			View 1 : 0.615894039735
+2016-08-24 09:57:04,691 DEBUG: 			View 2 : 0.582781456954
+2016-08-24 09:57:04,699 DEBUG: 			View 3 : 0.582781456954
+2016-08-24 09:57:04,868 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:57:08,269 DEBUG: 		Start:	 Iteration 61
+2016-08-24 09:57:08,284 DEBUG: 			View 0 : 0.529801324503
+2016-08-24 09:57:08,291 DEBUG: 			View 1 : 0.715231788079
+2016-08-24 09:57:08,327 DEBUG: 			View 2 : 0.562913907285
+2016-08-24 09:57:08,334 DEBUG: 			View 3 : 0.423841059603
+2016-08-24 09:57:08,506 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:57:11,957 DEBUG: 		Start:	 Iteration 62
+2016-08-24 09:57:11,973 DEBUG: 			View 0 : 0.523178807947
+2016-08-24 09:57:11,980 DEBUG: 			View 1 : 0.350993377483
+2016-08-24 09:57:12,023 DEBUG: 			View 2 : 0.456953642384
+2016-08-24 09:57:12,030 DEBUG: 			View 3 : 0.483443708609
+2016-08-24 09:57:12,204 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:57:15,727 DEBUG: 		Start:	 Iteration 63
+2016-08-24 09:57:15,743 DEBUG: 			View 0 : 0.331125827815
+2016-08-24 09:57:15,750 DEBUG: 			View 1 : 0.688741721854
+2016-08-24 09:57:15,785 DEBUG: 			View 2 : 0.64238410596
+2016-08-24 09:57:15,793 DEBUG: 			View 3 : 0.503311258278
+2016-08-24 09:57:15,968 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:57:19,529 DEBUG: 		Start:	 Iteration 64
+2016-08-24 09:57:19,545 DEBUG: 			View 0 : 0.58940397351
+2016-08-24 09:57:19,552 DEBUG: 			View 1 : 0.596026490066
+2016-08-24 09:57:19,591 DEBUG: 			View 2 : 0.503311258278
+2016-08-24 09:57:19,598 DEBUG: 			View 3 : 0.596026490066
+2016-08-24 09:57:19,775 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:57:23,387 DEBUG: 		Start:	 Iteration 65
+2016-08-24 09:57:23,403 DEBUG: 			View 0 : 0.470198675497
+2016-08-24 09:57:23,411 DEBUG: 			View 1 : 0.41059602649
+2016-08-24 09:57:23,446 DEBUG: 			View 2 : 0.523178807947
+2016-08-24 09:57:23,454 DEBUG: 			View 3 : 0.417218543046
+2016-08-24 09:57:23,632 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:57:27,319 DEBUG: 		Start:	 Iteration 66
+2016-08-24 09:57:27,335 DEBUG: 			View 0 : 0.728476821192
+2016-08-24 09:57:27,343 DEBUG: 			View 1 : 0.523178807947
+2016-08-24 09:57:27,379 DEBUG: 			View 2 : 0.562913907285
+2016-08-24 09:57:27,386 DEBUG: 			View 3 : 0.41059602649
+2016-08-24 09:57:27,568 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:57:31,325 DEBUG: 		Start:	 Iteration 67
+2016-08-24 09:57:31,341 DEBUG: 			View 0 : 0.450331125828
+2016-08-24 09:57:31,348 DEBUG: 			View 1 : 0.649006622517
+2016-08-24 09:57:31,383 DEBUG: 			View 2 : 0.569536423841
+2016-08-24 09:57:31,391 DEBUG: 			View 3 : 0.483443708609
+2016-08-24 09:57:31,574 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:57:35,371 DEBUG: 		Start:	 Iteration 68
+2016-08-24 09:57:35,386 DEBUG: 			View 0 : 0.443708609272
+2016-08-24 09:57:35,394 DEBUG: 			View 1 : 0.509933774834
+2016-08-24 09:57:35,429 DEBUG: 			View 2 : 0.635761589404
+2016-08-24 09:57:35,436 DEBUG: 			View 3 : 0.46357615894
+2016-08-24 09:57:35,622 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:57:39,510 DEBUG: 		Start:	 Iteration 69
+2016-08-24 09:57:39,526 DEBUG: 			View 0 : 0.344370860927
+2016-08-24 09:57:39,533 DEBUG: 			View 1 : 0.708609271523
+2016-08-24 09:57:39,568 DEBUG: 			View 2 : 0.423841059603
+2016-08-24 09:57:39,576 DEBUG: 			View 3 : 0.417218543046
+2016-08-24 09:57:39,765 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:57:43,687 DEBUG: 		Start:	 Iteration 70
+2016-08-24 09:57:43,703 DEBUG: 			View 0 : 0.701986754967
+2016-08-24 09:57:43,711 DEBUG: 			View 1 : 0.483443708609
+2016-08-24 09:57:43,746 DEBUG: 			View 2 : 0.562913907285
+2016-08-24 09:57:43,753 DEBUG: 			View 3 : 0.470198675497
+2016-08-24 09:57:43,943 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:57:47,935 DEBUG: 		Start:	 Iteration 71
+2016-08-24 09:57:47,951 DEBUG: 			View 0 : 0.569536423841
+2016-08-24 09:57:47,958 DEBUG: 			View 1 : 0.609271523179
+2016-08-24 09:57:47,993 DEBUG: 			View 2 : 0.417218543046
+2016-08-24 09:57:48,001 DEBUG: 			View 3 : 0.41059602649
+2016-08-24 09:57:48,193 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:57:52,229 DEBUG: 		Start:	 Iteration 72
+2016-08-24 09:57:52,245 DEBUG: 			View 0 : 0.377483443709
+2016-08-24 09:57:52,252 DEBUG: 			View 1 : 0.662251655629
+2016-08-24 09:57:52,290 DEBUG: 			View 2 : 0.569536423841
+2016-08-24 09:57:52,297 DEBUG: 			View 3 : 0.503311258278
+2016-08-24 09:57:52,491 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:57:56,588 DEBUG: 		Start:	 Iteration 73
+2016-08-24 09:57:56,604 DEBUG: 			View 0 : 0.46357615894
+2016-08-24 09:57:56,612 DEBUG: 			View 1 : 0.615894039735
+2016-08-24 09:57:56,647 DEBUG: 			View 2 : 0.609271523179
+2016-08-24 09:57:56,654 DEBUG: 			View 3 : 0.403973509934
+2016-08-24 09:57:56,850 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:58:00,989 DEBUG: 		Start:	 Iteration 74
+2016-08-24 09:58:01,005 DEBUG: 			View 0 : 0.602649006623
+2016-08-24 09:58:01,012 DEBUG: 			View 1 : 0.741721854305
+2016-08-24 09:58:01,054 DEBUG: 			View 2 : 0.58940397351
+2016-08-24 09:58:01,061 DEBUG: 			View 3 : 0.53642384106
+2016-08-24 09:58:01,259 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:58:05,450 DEBUG: 		Start:	 Iteration 75
+2016-08-24 09:58:05,466 DEBUG: 			View 0 : 0.549668874172
+2016-08-24 09:58:05,473 DEBUG: 			View 1 : 0.662251655629
+2016-08-24 09:58:05,513 DEBUG: 			View 2 : 0.562913907285
+2016-08-24 09:58:05,520 DEBUG: 			View 3 : 0.450331125828
+2016-08-24 09:58:05,721 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:58:09,965 DEBUG: 		Start:	 Iteration 76
+2016-08-24 09:58:09,981 DEBUG: 			View 0 : 0.529801324503
+2016-08-24 09:58:09,988 DEBUG: 			View 1 : 0.576158940397
+2016-08-24 09:58:10,029 DEBUG: 			View 2 : 0.569536423841
+2016-08-24 09:58:10,037 DEBUG: 			View 3 : 0.582781456954
+2016-08-24 09:58:10,238 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:58:14,540 DEBUG: 		Start:	 Iteration 77
+2016-08-24 09:58:14,556 DEBUG: 			View 0 : 0.503311258278
+2016-08-24 09:58:14,564 DEBUG: 			View 1 : 0.701986754967
+2016-08-24 09:58:14,604 DEBUG: 			View 2 : 0.509933774834
+2016-08-24 09:58:14,612 DEBUG: 			View 3 : 0.53642384106
+2016-08-24 09:58:14,817 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:58:19,168 DEBUG: 		Start:	 Iteration 78
+2016-08-24 09:58:19,183 DEBUG: 			View 0 : 0.735099337748
+2016-08-24 09:58:19,191 DEBUG: 			View 1 : 0.576158940397
+2016-08-24 09:58:19,233 DEBUG: 			View 2 : 0.609271523179
+2016-08-24 09:58:19,242 DEBUG: 			View 3 : 0.556291390728
+2016-08-24 09:58:19,448 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:58:23,864 DEBUG: 		Start:	 Iteration 79
+2016-08-24 09:58:23,880 DEBUG: 			View 0 : 0.629139072848
+2016-08-24 09:58:23,887 DEBUG: 			View 1 : 0.655629139073
+2016-08-24 09:58:23,929 DEBUG: 			View 2 : 0.423841059603
+2016-08-24 09:58:23,938 DEBUG: 			View 3 : 0.549668874172
+2016-08-24 09:58:24,146 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:58:28,610 DEBUG: 		Start:	 Iteration 80
+2016-08-24 09:58:28,626 DEBUG: 			View 0 : 0.562913907285
+2016-08-24 09:58:28,633 DEBUG: 			View 1 : 0.622516556291
+2016-08-24 09:58:28,676 DEBUG: 			View 2 : 0.490066225166
+2016-08-24 09:58:28,684 DEBUG: 			View 3 : 0.549668874172
+2016-08-24 09:58:28,895 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:58:33,419 DEBUG: 		Start:	 Iteration 81
+2016-08-24 09:58:33,435 DEBUG: 			View 0 : 0.496688741722
+2016-08-24 09:58:33,442 DEBUG: 			View 1 : 0.41059602649
+2016-08-24 09:58:33,487 DEBUG: 			View 2 : 0.516556291391
+2016-08-24 09:58:33,495 DEBUG: 			View 3 : 0.576158940397
+2016-08-24 09:58:33,706 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:58:38,279 DEBUG: 		Start:	 Iteration 82
+2016-08-24 09:58:38,294 DEBUG: 			View 0 : 0.377483443709
+2016-08-24 09:58:38,302 DEBUG: 			View 1 : 0.516556291391
+2016-08-24 09:58:38,347 DEBUG: 			View 2 : 0.562913907285
+2016-08-24 09:58:38,355 DEBUG: 			View 3 : 0.46357615894
+2016-08-24 09:58:38,570 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:58:43,207 DEBUG: 		Start:	 Iteration 83
+2016-08-24 09:58:43,222 DEBUG: 			View 0 : 0.456953642384
+2016-08-24 09:58:43,230 DEBUG: 			View 1 : 0.46357615894
+2016-08-24 09:58:43,275 DEBUG: 			View 2 : 0.523178807947
+2016-08-24 09:58:43,283 DEBUG: 			View 3 : 0.350993377483
+2016-08-24 09:58:43,501 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 09:58:48,208 DEBUG: 		Start:	 Iteration 84
+2016-08-24 09:58:48,224 DEBUG: 			View 0 : 0.470198675497
+2016-08-24 09:58:48,231 DEBUG: 			View 1 : 0.602649006623
+2016-08-24 09:58:48,276 DEBUG: 			View 2 : 0.41059602649
+2016-08-24 09:58:48,285 DEBUG: 			View 3 : 0.602649006623
+2016-08-24 09:58:48,504 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:58:53,266 DEBUG: 		Start:	 Iteration 85
+2016-08-24 09:58:53,282 DEBUG: 			View 0 : 0.503311258278
+2016-08-24 09:58:53,290 DEBUG: 			View 1 : 0.337748344371
+2016-08-24 09:58:53,335 DEBUG: 			View 2 : 0.483443708609
+2016-08-24 09:58:53,344 DEBUG: 			View 3 : 0.483443708609
+2016-08-24 09:58:53,567 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:58:58,390 DEBUG: 		Start:	 Iteration 86
+2016-08-24 09:58:58,406 DEBUG: 			View 0 : 0.46357615894
+2016-08-24 09:58:58,414 DEBUG: 			View 1 : 0.615894039735
+2016-08-24 09:58:58,460 DEBUG: 			View 2 : 0.562913907285
+2016-08-24 09:58:58,469 DEBUG: 			View 3 : 0.476821192053
+2016-08-24 09:58:58,700 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:59:03,579 DEBUG: 		Start:	 Iteration 87
+2016-08-24 09:59:03,595 DEBUG: 			View 0 : 0.622516556291
+2016-08-24 09:59:03,602 DEBUG: 			View 1 : 0.860927152318
+2016-08-24 09:59:03,647 DEBUG: 			View 2 : 0.456953642384
+2016-08-24 09:59:03,656 DEBUG: 			View 3 : 0.556291390728
+2016-08-24 09:59:03,881 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:59:08,810 DEBUG: 		Start:	 Iteration 88
+2016-08-24 09:59:08,826 DEBUG: 			View 0 : 0.635761589404
+2016-08-24 09:59:08,833 DEBUG: 			View 1 : 0.403973509934
+2016-08-24 09:59:08,879 DEBUG: 			View 2 : 0.470198675497
+2016-08-24 09:59:08,888 DEBUG: 			View 3 : 0.516556291391
+2016-08-24 09:59:09,115 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:59:14,094 DEBUG: 		Start:	 Iteration 89
+2016-08-24 09:59:14,111 DEBUG: 			View 0 : 0.562913907285
+2016-08-24 09:59:14,118 DEBUG: 			View 1 : 0.735099337748
+2016-08-24 09:59:14,164 DEBUG: 			View 2 : 0.456953642384
+2016-08-24 09:59:14,172 DEBUG: 			View 3 : 0.576158940397
+2016-08-24 09:59:14,401 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:59:19,446 DEBUG: 		Start:	 Iteration 90
+2016-08-24 09:59:19,461 DEBUG: 			View 0 : 0.549668874172
+2016-08-24 09:59:19,469 DEBUG: 			View 1 : 0.490066225166
+2016-08-24 09:59:19,515 DEBUG: 			View 2 : 0.509933774834
+2016-08-24 09:59:19,524 DEBUG: 			View 3 : 0.622516556291
+2016-08-24 09:59:19,755 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:59:24,857 DEBUG: 		Start:	 Iteration 91
+2016-08-24 09:59:24,873 DEBUG: 			View 0 : 0.523178807947
+2016-08-24 09:59:24,881 DEBUG: 			View 1 : 0.635761589404
+2016-08-24 09:59:24,926 DEBUG: 			View 2 : 0.609271523179
+2016-08-24 09:59:24,935 DEBUG: 			View 3 : 0.450331125828
+2016-08-24 09:59:25,168 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:59:30,327 DEBUG: 		Start:	 Iteration 92
+2016-08-24 09:59:30,343 DEBUG: 			View 0 : 0.430463576159
+2016-08-24 09:59:30,350 DEBUG: 			View 1 : 0.655629139073
+2016-08-24 09:59:30,396 DEBUG: 			View 2 : 0.450331125828
+2016-08-24 09:59:30,405 DEBUG: 			View 3 : 0.476821192053
+2016-08-24 09:59:30,639 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:59:35,851 DEBUG: 		Start:	 Iteration 93
+2016-08-24 09:59:35,867 DEBUG: 			View 0 : 0.596026490066
+2016-08-24 09:59:35,874 DEBUG: 			View 1 : 0.635761589404
+2016-08-24 09:59:35,929 DEBUG: 			View 2 : 0.423841059603
+2016-08-24 09:59:35,937 DEBUG: 			View 3 : 0.58940397351
+2016-08-24 09:59:36,174 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 09:59:41,498 DEBUG: 		Start:	 Iteration 94
+2016-08-24 09:59:41,514 DEBUG: 			View 0 : 0.582781456954
+2016-08-24 09:59:41,522 DEBUG: 			View 1 : 0.562913907285
+2016-08-24 09:59:41,557 DEBUG: 			View 2 : 0.622516556291
+2016-08-24 09:59:41,565 DEBUG: 			View 3 : 0.476821192053
+2016-08-24 09:59:41,807 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:59:47,218 DEBUG: 		Start:	 Iteration 95
+2016-08-24 09:59:47,234 DEBUG: 			View 0 : 0.390728476821
+2016-08-24 09:59:47,242 DEBUG: 			View 1 : 0.430463576159
+2016-08-24 09:59:47,277 DEBUG: 			View 2 : 0.46357615894
+2016-08-24 09:59:47,284 DEBUG: 			View 3 : 0.602649006623
+2016-08-24 09:59:47,529 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 09:59:53,061 DEBUG: 		Start:	 Iteration 96
+2016-08-24 09:59:53,077 DEBUG: 			View 0 : 0.688741721854
+2016-08-24 09:59:53,085 DEBUG: 			View 1 : 0.556291390728
+2016-08-24 09:59:53,120 DEBUG: 			View 2 : 0.629139072848
+2016-08-24 09:59:53,128 DEBUG: 			View 3 : 0.53642384106
+2016-08-24 09:59:53,372 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 09:59:58,805 DEBUG: 		Start:	 Iteration 97
+2016-08-24 09:59:58,821 DEBUG: 			View 0 : 0.668874172185
+2016-08-24 09:59:58,828 DEBUG: 			View 1 : 0.443708609272
+2016-08-24 09:59:58,864 DEBUG: 			View 2 : 0.516556291391
+2016-08-24 09:59:58,871 DEBUG: 			View 3 : 0.53642384106
+2016-08-24 09:59:59,116 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 10:00:04,596 DEBUG: 		Start:	 Iteration 98
+2016-08-24 10:00:04,612 DEBUG: 			View 0 : 0.509933774834
+2016-08-24 10:00:04,620 DEBUG: 			View 1 : 0.675496688742
+2016-08-24 10:00:04,655 DEBUG: 			View 2 : 0.46357615894
+2016-08-24 10:00:04,662 DEBUG: 			View 3 : 0.417218543046
+2016-08-24 10:00:04,910 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 10:00:10,446 DEBUG: 		Start:	 Iteration 99
+2016-08-24 10:00:10,462 DEBUG: 			View 0 : 0.569536423841
+2016-08-24 10:00:10,469 DEBUG: 			View 1 : 0.509933774834
+2016-08-24 10:00:10,505 DEBUG: 			View 2 : 0.476821192053
+2016-08-24 10:00:10,512 DEBUG: 			View 3 : 0.503311258278
+2016-08-24 10:00:10,761 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 10:00:16,350 DEBUG: 		Start:	 Iteration 100
+2016-08-24 10:00:16,366 DEBUG: 			View 0 : 0.437086092715
+2016-08-24 10:00:16,374 DEBUG: 			View 1 : 0.503311258278
+2016-08-24 10:00:16,409 DEBUG: 			View 2 : 0.417218543046
+2016-08-24 10:00:16,416 DEBUG: 			View 3 : 0.602649006623
+2016-08-24 10:00:16,668 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 10:00:22,325 DEBUG: 		Start:	 Iteration 101
+2016-08-24 10:00:22,341 DEBUG: 			View 0 : 0.516556291391
+2016-08-24 10:00:22,348 DEBUG: 			View 1 : 0.701986754967
+2016-08-24 10:00:22,384 DEBUG: 			View 2 : 0.483443708609
+2016-08-24 10:00:22,391 DEBUG: 			View 3 : 0.483443708609
+2016-08-24 10:00:22,646 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 10:00:28,562 DEBUG: 		Start:	 Iteration 102
+2016-08-24 10:00:28,580 DEBUG: 			View 0 : 0.516556291391
+2016-08-24 10:00:28,589 DEBUG: 			View 1 : 0.403973509934
+2016-08-24 10:00:28,626 DEBUG: 			View 2 : 0.443708609272
+2016-08-24 10:00:28,633 DEBUG: 			View 3 : 0.443708609272
+2016-08-24 10:00:28,896 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 10:00:34,676 INFO: 	Start: 	 Classification
+2016-08-24 10:00:48,946 INFO: 	Done: 	 Fold number 2
+2016-08-24 10:00:48,947 INFO: Done:	 Classification
+2016-08-24 10:00:48,947 INFO: Info:	 Time for Classification: 788[s]
+2016-08-24 10:00:48,947 INFO: Start:	 Result Analysis for Mumbo
+2016-08-24 10:01:20,963 INFO: 		Result for Multiview classification with Mumbo
+
+Average accuracy :
+	-On Train : 73.3311664568
+	-On Test : 76.2295081967
+	-On Validation : 80.0970873786
+
+Dataset info :
+	-Database name : ModifiedMultiOmic
+	-Labels : No, Yes
+	-Views : Methyl, MiRNA, RNASEQ, Clinical
+	-2 folds
+	- Validation set length : 103 for learning rate : 0.7
+
+Classification configuration : 
+	-Algorithm used : Mumbo 
+	-Iterations : 1000
+	-Weak Classifiers : DecisionTree with depth 1.0,  sub-sampled at 0.006 on Methyl
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on MiRNA
+		-DecisionTree with depth 1.0,  sub-sampled at 0.007 on RNASEQ
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on Clinical
+
+ Mean average accuracies and stats for each fold : 
+	- Fold 0
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.0516503067485
+			- Percentage of time chosen : 0.926
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.0545460122699
+			- Percentage of time chosen : 0.048
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.0513374233129
+			- Percentage of time chosen : 0.007
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.0527116564417
+			- Percentage of time chosen : 0.019
+	- Fold 1
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.0529801324503
+			- Percentage of time chosen : 0.922
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.0560728476821
+			- Percentage of time chosen : 0.057
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.0528675496689
+			- Percentage of time chosen : 0.012
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.0512847682119
+			- Percentage of time chosen : 0.009
+
+ For each iteration : 
+	- Iteration 1
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 2
+		 Fold 1
+			Accuracy on train : 62.5766871166
+			Accuracy on test : 59.8360655738
+			Accuracy on validation : 52.427184466
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 61.4207938894
+			 Accuracy on test : 66.393442623
+	- Iteration 3
+		 Fold 1
+			Accuracy on train : 68.0981595092
+			Accuracy on test : 68.0327868852
+			Accuracy on validation : 64.0776699029
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.5099337748
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 70.804046642
+			 Accuracy on test : 70.9016393443
+	- Iteration 4
+		 Fold 1
+			Accuracy on train : 66.2576687117
+			Accuracy on test : 64.7540983607
+			Accuracy on validation : 62.1359223301
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 81.4569536424
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 74.7572815534
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.857311177
+			 Accuracy on test : 72.5409836066
+	- Iteration 5
+		 Fold 1
+			Accuracy on train : 69.3251533742
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 67.9611650485
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 84.1059602649
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 76.7155568196
+			 Accuracy on test : 78.2786885246
+	- Iteration 6
+		 Fold 1
+			Accuracy on train : 68.0981595092
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 68.932038835
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 84.1059602649
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 80.5825242718
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 76.1020598871
+			 Accuracy on test : 80.3278688525
+	- Iteration 7
+		 Fold 1
+			Accuracy on train : 73.6196319018
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 70.8737864078
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 83.4437086093
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.5316702556
+			 Accuracy on test : 79.0983606557
+	- Iteration 8
+		 Fold 1
+			Accuracy on train : 73.6196319018
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 72.8155339806
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 83.4437086093
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.5316702556
+			 Accuracy on test : 79.0983606557
+	- Iteration 9
+		 Fold 1
+			Accuracy on train : 76.0736196319
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 73.786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 84.1059602649
+			Accuracy on test : 85.2459016393
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.0897899484
+			 Accuracy on test : 81.1475409836
+	- Iteration 10
+		 Fold 1
+			Accuracy on train : 73.6196319018
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 70.8737864078
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 81.4569536424
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 80.5825242718
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 77.5382927721
+			 Accuracy on test : 78.2786885246
+	- Iteration 11
+		 Fold 1
+			Accuracy on train : 73.0061349693
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 72.8155339806
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 81.4569536424
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 77.2315443059
+			 Accuracy on test : 80.3278688525
+	- Iteration 12
+		 Fold 1
+			Accuracy on train : 70.5521472393
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 75.7281553398
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 76.821192053
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 73.6866696461
+			 Accuracy on test : 77.4590163934
+	- Iteration 13
+		 Fold 1
+			Accuracy on train : 73.0061349693
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 84.1059602649
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.5560476171
+			 Accuracy on test : 79.5081967213
+	- Iteration 14
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 82.119205298
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 77.2559216674
+			 Accuracy on test : 77.868852459
+	- Iteration 15
+		 Fold 1
+			Accuracy on train : 71.7791411043
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 72.8155339806
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 84.1059602649
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 77.9425506846
+			 Accuracy on test : 78.6885245902
+	- Iteration 16
+		 Fold 1
+			Accuracy on train : 71.1656441718
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 69.9029126214
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 84.7682119205
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 89.3203883495
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 77.9669280462
+			 Accuracy on test : 76.2295081967
+	- Iteration 17
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 70.8737864078
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 84.7682119205
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.5804249787
+			 Accuracy on test : 77.868852459
+	- Iteration 18
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 71.8446601942
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 85.4304635762
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 86.4077669903
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 78.9115508065
+			 Accuracy on test : 79.0983606557
+	- Iteration 19
+		 Fold 1
+			Accuracy on train : 74.8466257669
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 76.6990291262
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 85.4304635762
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.1385446715
+			 Accuracy on test : 77.868852459
+	- Iteration 20
+		 Fold 1
+			Accuracy on train : 74.8466257669
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 75.7281553398
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 86.0927152318
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.4696704993
+			 Accuracy on test : 76.6393442623
+	- Iteration 21
+		 Fold 1
+			Accuracy on train : 73.6196319018
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 85.4304635762
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.525047739
+			 Accuracy on test : 79.0983606557
+	- Iteration 22
+		 Fold 1
+			Accuracy on train : 76.6871165644
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 83.4437086093
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 88.3495145631
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 80.0654125868
+			 Accuracy on test : 77.0491803279
+	- Iteration 23
+		 Fold 1
+			Accuracy on train : 75.4601226994
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 77.6699029126
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 84.7682119205
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.11416731
+			 Accuracy on test : 78.2786885246
+	- Iteration 24
+		 Fold 1
+			Accuracy on train : 76.6871165644
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 84.1059602649
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.3965384147
+			 Accuracy on test : 77.0491803279
+	- Iteration 25
+		 Fold 1
+			Accuracy on train : 77.9141104294
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 84.7682119205
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 86.4077669903
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 81.341161175
+			 Accuracy on test : 77.4590163934
+	- Iteration 26
+		 Fold 1
+			Accuracy on train : 74.8466257669
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 84.7682119205
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.8074188437
+			 Accuracy on test : 77.0491803279
+	- Iteration 27
+		 Fold 1
+			Accuracy on train : 73.6196319018
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 82.7814569536
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.2005444277
+			 Accuracy on test : 76.6393442623
+	- Iteration 28
+		 Fold 1
+			Accuracy on train : 74.8466257669
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 83.4437086093
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 79.1451671881
+			 Accuracy on test : 77.4590163934
+	- Iteration 29
+		 Fold 1
+			Accuracy on train : 73.0061349693
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 84.1059602649
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.5560476171
+			 Accuracy on test : 77.868852459
+	- Iteration 30
+		 Fold 1
+			Accuracy on train : 74.8466257669
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 80.5825242718
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 84.7682119205
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 85.4368932039
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 79.8074188437
+			 Accuracy on test : 77.0491803279
+	- Iteration 31
+		 Fold 1
+			Accuracy on train : 74.8466257669
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 82.119205298
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 84.4660194175
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 78.4829155324
+			 Accuracy on test : 77.4590163934
+	- Iteration 32
+		 Fold 1
+			Accuracy on train : 74.8466257669
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 84.7682119205
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.8074188437
+			 Accuracy on test : 75.8196721311
+	- Iteration 33
+		 Fold 1
+			Accuracy on train : 74.2331288344
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 82.119205298
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.1761670662
+			 Accuracy on test : 77.868852459
+	- Iteration 34
+		 Fold 1
+			Accuracy on train : 74.8466257669
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 84.7682119205
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.8074188437
+			 Accuracy on test : 77.868852459
+	- Iteration 35
+		 Fold 1
+			Accuracy on train : 75.4601226994
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 84.7682119205
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.11416731
+			 Accuracy on test : 79.5081967213
+	- Iteration 36
+		 Fold 1
+			Accuracy on train : 74.8466257669
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 87.417218543
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 88.3495145631
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 81.131922155
+			 Accuracy on test : 78.6885245902
+	- Iteration 37
+		 Fold 1
+			Accuracy on train : 73.0061349693
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 83.4437086093
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.2249217893
+			 Accuracy on test : 79.9180327869
+	- Iteration 38
+		 Fold 1
+			Accuracy on train : 73.0061349693
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 86.7549668874
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 88.3495145631
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.8805509284
+			 Accuracy on test : 79.5081967213
+	- Iteration 39
+		 Fold 1
+			Accuracy on train : 74.2331288344
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 82.7814569536
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.507292894
+			 Accuracy on test : 79.0983606557
+	- Iteration 40
+		 Fold 1
+			Accuracy on train : 74.2331288344
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 82.7814569536
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 78.507292894
+			 Accuracy on test : 77.868852459
+	- Iteration 41
+		 Fold 1
+			Accuracy on train : 74.8466257669
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 82.7814569536
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.8140413603
+			 Accuracy on test : 79.5081967213
+	- Iteration 42
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 76.6990291262
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 81.4569536424
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 86.4077669903
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 76.9247958396
+			 Accuracy on test : 78.2786885246
+	- Iteration 43
+		 Fold 1
+			Accuracy on train : 73.6196319018
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 84.7682119205
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.1939219112
+			 Accuracy on test : 79.9180327869
+	- Iteration 44
+		 Fold 1
+			Accuracy on train : 73.6196319018
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 84.7682119205
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.1939219112
+			 Accuracy on test : 79.9180327869
+	- Iteration 45
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 76.6990291262
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 83.4437086093
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 87.3786407767
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 77.918173323
+			 Accuracy on test : 77.868852459
+	- Iteration 46
+		 Fold 1
+			Accuracy on train : 70.5521472393
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 76.6990291262
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 81.4569536424
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 76.0045504408
+			 Accuracy on test : 77.0491803279
+	- Iteration 47
+		 Fold 1
+			Accuracy on train : 71.1656441718
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 79.4701986755
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 75.3179214236
+			 Accuracy on test : 76.6393442623
+	- Iteration 48
+		 Fold 1
+			Accuracy on train : 71.1656441718
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.4701986755
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 75.3179214236
+			 Accuracy on test : 77.868852459
+	- Iteration 49
+		 Fold 1
+			Accuracy on train : 70.5521472393
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 78.8079470199
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 74.6800471296
+			 Accuracy on test : 77.0491803279
+	- Iteration 50
+		 Fold 1
+			Accuracy on train : 71.7791411043
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 78.8079470199
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 75.2935440621
+			 Accuracy on test : 77.4590163934
+	- Iteration 51
+		 Fold 1
+			Accuracy on train : 69.9386503067
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 76.6990291262
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.4701986755
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 74.7044244911
+			 Accuracy on test : 77.4590163934
+	- Iteration 52
+		 Fold 1
+			Accuracy on train : 70.5521472393
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 77.6699029126
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 78.1456953642
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 74.3489213018
+			 Accuracy on test : 77.4590163934
+	- Iteration 53
+		 Fold 1
+			Accuracy on train : 71.7791411043
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 78.1456953642
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 74.9624182343
+			 Accuracy on test : 76.2295081967
+	- Iteration 54
+		 Fold 1
+			Accuracy on train : 69.9386503067
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 76.821192053
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 84.4660194175
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.3799211799
+			 Accuracy on test : 77.4590163934
+	- Iteration 55
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 76.1589403974
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 74.2757892171
+			 Accuracy on test : 76.2295081967
+	- Iteration 56
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.5099337748
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 82.5242718447
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 72.9512859058
+			 Accuracy on test : 76.6393442623
+	- Iteration 57
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 73.9446633893
+			 Accuracy on test : 77.0491803279
+	- Iteration 58
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.5099337748
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.9512859058
+			 Accuracy on test : 77.0491803279
+	- Iteration 59
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 74.1721854305
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.2824117336
+			 Accuracy on test : 77.0491803279
+	- Iteration 60
+		 Fold 1
+			Accuracy on train : 73.0061349693
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 74.1721854305
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 73.5891601999
+			 Accuracy on test : 77.0491803279
+	- Iteration 61
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 74.1721854305
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 73.2824117336
+			 Accuracy on test : 77.0491803279
+	- Iteration 62
+		 Fold 1
+			Accuracy on train : 73.0061349693
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 74.1721854305
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 82.5242718447
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.5891601999
+			 Accuracy on test : 76.6393442623
+	- Iteration 63
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 74.1721854305
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 73.2824117336
+			 Accuracy on test : 78.2786885246
+	- Iteration 64
+		 Fold 1
+			Accuracy on train : 73.6196319018
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 80.5825242718
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 73.5099337748
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.5647828383
+			 Accuracy on test : 79.5081967213
+	- Iteration 65
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 82.5242718447
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 73.9446633893
+			 Accuracy on test : 79.5081967213
+	- Iteration 66
+		 Fold 1
+			Accuracy on train : 71.7791411043
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 76.821192053
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 83.4951456311
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 74.3001665786
+			 Accuracy on test : 78.6885245902
+	- Iteration 67
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 76.1589403974
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 74.2757892171
+			 Accuracy on test : 78.6885245902
+	- Iteration 68
+		 Fold 1
+			Accuracy on train : 71.1656441718
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 76.1589403974
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 82.5242718447
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 73.6622922846
+			 Accuracy on test : 78.6885245902
+	- Iteration 69
+		 Fold 1
+			Accuracy on train : 71.7791411043
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 76.821192053
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 74.3001665786
+			 Accuracy on test : 77.868852459
+	- Iteration 70
+		 Fold 1
+			Accuracy on train : 71.7791411043
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 74.8344370861
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.3067890952
+			 Accuracy on test : 77.868852459
+	- Iteration 71
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.5099337748
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.9512859058
+			 Accuracy on test : 77.4590163934
+	- Iteration 72
+		 Fold 1
+			Accuracy on train : 71.1656441718
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 71.5231788079
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 71.3444114899
+			 Accuracy on test : 77.868852459
+	- Iteration 73
+		 Fold 1
+			Accuracy on train : 70.5521472393
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 69.5364238411
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 70.0442855402
+			 Accuracy on test : 76.2295081967
+	- Iteration 74
+		 Fold 1
+			Accuracy on train : 70.5521472393
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 72.8476821192
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 71.6999146792
+			 Accuracy on test : 77.0491803279
+	- Iteration 75
+		 Fold 1
+			Accuracy on train : 69.9386503067
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 72.1854304636
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 71.0620403852
+			 Accuracy on test : 76.6393442623
+	- Iteration 76
+		 Fold 1
+			Accuracy on train : 69.9386503067
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 72.8476821192
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 71.393166213
+			 Accuracy on test : 76.2295081967
+	- Iteration 77
+		 Fold 1
+			Accuracy on train : 69.3251533742
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 77.6699029126
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 72.1854304636
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 70.7552919189
+			 Accuracy on test : 76.2295081967
+	- Iteration 78
+		 Fold 1
+			Accuracy on train : 68.7116564417
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 76.6990291262
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 73.5099337748
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 80.5825242718
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 71.1107951083
+			 Accuracy on test : 76.6393442623
+	- Iteration 79
+		 Fold 1
+			Accuracy on train : 69.3251533742
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.410921058
+			 Accuracy on test : 77.0491803279
+	- Iteration 80
+		 Fold 1
+			Accuracy on train : 69.3251533742
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 74.1721854305
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 71.7486694023
+			 Accuracy on test : 76.2295081967
+	- Iteration 81
+		 Fold 1
+			Accuracy on train : 69.3251533742
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 77.6699029126
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 81.5533980583
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 72.410921058
+			 Accuracy on test : 77.4590163934
+	- Iteration 82
+		 Fold 1
+			Accuracy on train : 68.7116564417
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 74.8344370861
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 81.5533980583
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 71.7730467639
+			 Accuracy on test : 76.6393442623
+	- Iteration 83
+		 Fold 1
+			Accuracy on train : 68.7116564417
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 74.8344370861
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 81.5533980583
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 71.7730467639
+			 Accuracy on test : 77.0491803279
+	- Iteration 84
+		 Fold 1
+			Accuracy on train : 68.7116564417
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 77.6699029126
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.1041725917
+			 Accuracy on test : 76.6393442623
+	- Iteration 85
+		 Fold 1
+			Accuracy on train : 67.4846625767
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 76.6990291262
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 76.1589403974
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 71.821801487
+			 Accuracy on test : 76.2295081967
+	- Iteration 86
+		 Fold 1
+			Accuracy on train : 68.7116564417
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 74.1721854305
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 71.4419209361
+			 Accuracy on test : 76.2295081967
+	- Iteration 87
+		 Fold 1
+			Accuracy on train : 68.7116564417
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 76.821192053
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.7664242473
+			 Accuracy on test : 77.0491803279
+	- Iteration 88
+		 Fold 1
+			Accuracy on train : 68.7116564417
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 76.1589403974
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 72.4352984195
+			 Accuracy on test : 77.0491803279
+	- Iteration 89
+		 Fold 1
+			Accuracy on train : 68.7116564417
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.1041725917
+			 Accuracy on test : 76.6393442623
+	- Iteration 90
+		 Fold 1
+			Accuracy on train : 68.0981595092
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 76.6990291262
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 74.8344370861
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 81.5533980583
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 71.4662982976
+			 Accuracy on test : 77.0491803279
+	- Iteration 91
+		 Fold 1
+			Accuracy on train : 68.0981595092
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 76.6990291262
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 76.1589403974
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.1285499533
+			 Accuracy on test : 76.6393442623
+	- Iteration 92
+		 Fold 1
+			Accuracy on train : 68.7116564417
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 76.6990291262
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 74.8344370861
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 71.7730467639
+			 Accuracy on test : 77.0491803279
+	- Iteration 93
+		 Fold 1
+			Accuracy on train : 68.0981595092
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 76.6990291262
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 71.7974241255
+			 Accuracy on test : 76.2295081967
+	- Iteration 94
+		 Fold 1
+			Accuracy on train : 68.0981595092
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 76.6990291262
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 82.5242718447
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 71.7974241255
+			 Accuracy on test : 76.2295081967
+	- Iteration 95
+		 Fold 1
+			Accuracy on train : 68.7116564417
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 82.5242718447
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 72.1041725917
+			 Accuracy on test : 76.6393442623
+	- Iteration 96
+		 Fold 1
+			Accuracy on train : 68.7116564417
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 77.6699029126
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 74.8344370861
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 71.7730467639
+			 Accuracy on test : 77.0491803279
+	- Iteration 97
+		 Fold 1
+			Accuracy on train : 69.9386503067
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 82.5242718447
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 72.7176695242
+			 Accuracy on test : 76.6393442623
+	- Iteration 98
+		 Fold 1
+			Accuracy on train : 69.3251533742
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.410921058
+			 Accuracy on test : 76.2295081967
+	- Iteration 99
+		 Fold 1
+			Accuracy on train : 69.9386503067
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 76.1589403974
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.048795352
+			 Accuracy on test : 76.2295081967
+	- Iteration 100
+		 Fold 1
+			Accuracy on train : 70.5521472393
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 76.1589403974
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 82.5242718447
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 73.3555438183
+			 Accuracy on test : 75.8196721311
+	- Iteration 101
+		 Fold 1
+			Accuracy on train : 69.9386503067
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 76.1589403974
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 73.048795352
+			 Accuracy on test : 76.2295081967
+	- Iteration 102
+		 Fold 1
+			Accuracy on train : 71.1656441718
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.3311664568
+			 Accuracy on test : 76.2295081967
+	- Iteration 103
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 104
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 105
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 106
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 107
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 108
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 109
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 110
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 111
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 112
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 113
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 114
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 115
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 116
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 117
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 118
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 119
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 120
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 121
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 122
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 123
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 124
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 125
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 126
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 127
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 128
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 129
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 130
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 131
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 132
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 133
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 134
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 135
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 136
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 137
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 138
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 139
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 140
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 141
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 142
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 143
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 144
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 145
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 146
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 147
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 148
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 149
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 150
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 151
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 152
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 153
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 154
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 155
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 156
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 157
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 158
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 159
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 160
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 161
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 162
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 163
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 164
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 165
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 166
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 167
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 168
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 169
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 170
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 171
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 172
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 173
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 174
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 175
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 176
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 177
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 178
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 179
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 180
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 181
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 182
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 183
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 184
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 185
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 186
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 187
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 188
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 189
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 190
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 191
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 192
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 193
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 194
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 195
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 196
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 197
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 198
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 199
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 200
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 201
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 202
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 203
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 204
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 205
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 206
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 207
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 208
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 209
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 210
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 211
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 212
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 213
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 214
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 215
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 216
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 217
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 218
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 219
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 220
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 221
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 222
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 223
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 224
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 225
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 226
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 227
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 228
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 229
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 230
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 231
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 232
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 233
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 234
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 235
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 236
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 237
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 238
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 239
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 240
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 241
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 242
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 243
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 244
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 245
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 246
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 247
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 248
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 249
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 250
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 251
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 252
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 253
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 254
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 255
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 256
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 257
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 258
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 259
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 260
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 261
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 262
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 263
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 264
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 265
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 266
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 267
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 268
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 269
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 270
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 271
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 272
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 273
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 274
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 275
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 276
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 277
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 278
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 279
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 280
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 281
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 282
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 283
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 284
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 285
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 286
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 287
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 288
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 289
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 290
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 291
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 292
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 293
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 294
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 295
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 296
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 297
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 298
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 299
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 300
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 301
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 302
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 303
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 304
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 305
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 306
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 307
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 308
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 309
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 310
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 311
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 312
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 313
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 314
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 315
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 316
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 317
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 318
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 319
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 320
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 321
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 322
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 323
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 324
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 325
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 326
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 327
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 328
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 329
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 330
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 331
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 332
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 333
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 334
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 335
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 336
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 337
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 338
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 339
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 340
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 341
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 342
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 343
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 344
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 345
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 346
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 347
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 348
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 349
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 350
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 351
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 352
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 353
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 354
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 355
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 356
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 357
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 358
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 359
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 360
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 361
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 362
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 363
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 364
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 365
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 366
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 367
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 368
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 369
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 370
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 371
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 372
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 373
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 374
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 375
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 376
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 377
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 378
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 379
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 380
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 381
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 382
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 383
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 384
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 385
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 386
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 387
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 388
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 389
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 390
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 391
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 392
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 393
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 394
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 395
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 396
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 397
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 398
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 399
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 400
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 401
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 402
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 403
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 404
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 405
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 406
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 407
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 408
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 409
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 410
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 411
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 412
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 413
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 414
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 415
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 416
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 417
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 418
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 419
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 420
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 421
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 422
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 423
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 424
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 425
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 426
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 427
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 428
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 429
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 430
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 431
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 432
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 433
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 434
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 435
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 436
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 437
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 438
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 439
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 440
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 441
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 442
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 443
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 444
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 445
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 446
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 447
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 448
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 449
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 450
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 451
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 452
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 453
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 454
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 455
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 456
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 457
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 458
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 459
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 460
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 461
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 462
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 463
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 464
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 465
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 466
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 467
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 468
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 469
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 470
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 471
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 472
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 473
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 474
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 475
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 476
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 477
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 478
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 479
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 480
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 481
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 482
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 483
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 484
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 485
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 486
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 487
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 488
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 489
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 490
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 491
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 492
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 493
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 494
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 495
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 496
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 497
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 498
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 499
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 500
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 501
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 502
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 503
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 504
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 505
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 506
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 507
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 508
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 509
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 510
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 511
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 512
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 513
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 514
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 515
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 516
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 517
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 518
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 519
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 520
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 521
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 522
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 523
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 524
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 525
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 526
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 527
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 528
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 529
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 530
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 531
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 532
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 533
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 534
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 535
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 536
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 537
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 538
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 539
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 540
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 541
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 542
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 543
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 544
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 545
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 546
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 547
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 548
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 549
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 550
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 551
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 552
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 553
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 554
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 555
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 556
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 557
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 558
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 559
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 560
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 561
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 562
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 563
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 564
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 565
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 566
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 567
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 568
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 569
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 570
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 571
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 572
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 573
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 574
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 575
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 576
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 577
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 578
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 579
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 580
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 581
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 582
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 583
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 584
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 585
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 586
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 587
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 588
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 589
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 590
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 591
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 592
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 593
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 594
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 595
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 596
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 597
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 598
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 599
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 600
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 601
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 602
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 603
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 604
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 605
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 606
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 607
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 608
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 609
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 610
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 611
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 612
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 613
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 614
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 615
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 616
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 617
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 618
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 619
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 620
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 621
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 622
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 623
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 624
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 625
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 626
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 627
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 628
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 629
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 630
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 631
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 632
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 633
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 634
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 635
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 636
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 637
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 638
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 639
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 640
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 641
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 642
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 643
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 644
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 645
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 646
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 647
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 648
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 649
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 650
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 651
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 652
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 653
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 654
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 655
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 656
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 657
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 658
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 659
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 660
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 661
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 662
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 663
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 664
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 665
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 666
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 667
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 668
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 669
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 670
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 671
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 672
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 673
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 674
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 675
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 676
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 677
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 678
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 679
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 680
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 681
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 682
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 683
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 684
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 685
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 686
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 687
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 688
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 689
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 690
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 691
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 692
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 693
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 694
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 695
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 696
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 697
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 698
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 699
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 700
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 701
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 702
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 703
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 704
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 705
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 706
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 707
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 708
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 709
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 710
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 711
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 712
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 713
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 714
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 715
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 716
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 717
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 718
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 719
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 720
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 721
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 722
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 723
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 724
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 725
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 726
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 727
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 728
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 729
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 730
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 731
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 732
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 733
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 734
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 735
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 736
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 737
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 738
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 739
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 740
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 741
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 742
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 743
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 744
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 745
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 746
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 747
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 748
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 749
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 750
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 751
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 752
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 753
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 754
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 755
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 756
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 757
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 758
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 759
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 760
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 761
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 762
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 763
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 764
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 765
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 766
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 767
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 768
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 769
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 770
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 771
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 772
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 773
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 774
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 775
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 776
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 777
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 778
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 779
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 780
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 781
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 782
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 783
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 784
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 785
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 786
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 787
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 788
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 789
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 790
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 791
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 792
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 793
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 794
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 795
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 796
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 797
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 798
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 799
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 800
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 801
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 802
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 803
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 804
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 805
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 806
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 807
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 808
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 809
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 810
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 811
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 812
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 813
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 814
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 815
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 816
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 817
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 818
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 819
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 820
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 821
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 822
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 823
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 824
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 825
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 826
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 827
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 828
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 829
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 830
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 831
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 832
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 833
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 834
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 835
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 836
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 837
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 838
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 839
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 840
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 841
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 842
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 843
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 844
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 845
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 846
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 847
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 848
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 849
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 850
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 851
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 852
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 853
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 854
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 855
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 856
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 857
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 858
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 859
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 860
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 861
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 862
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 863
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 864
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 865
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 866
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 867
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 868
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 869
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 870
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 871
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 872
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 873
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 874
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 875
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 876
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 877
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 878
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 879
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 880
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 881
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 882
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 883
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 884
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 885
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 886
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 887
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 888
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 889
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 890
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 891
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 892
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 893
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 894
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 895
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 896
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 897
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 898
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 899
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 900
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 901
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 902
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 903
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 904
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 905
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 906
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 907
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 908
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 909
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 910
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 911
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 912
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 913
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 914
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 915
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 916
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 917
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 918
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 919
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 920
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 921
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 922
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 923
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 924
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 925
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 926
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 927
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 928
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 929
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 930
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 931
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 932
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 933
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 934
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 935
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 936
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 937
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 938
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 939
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 940
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 941
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 942
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 943
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 944
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 945
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 946
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 947
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 948
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 949
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 950
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 951
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 952
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 953
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 954
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 955
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 956
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 957
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 958
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 959
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 960
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 961
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 962
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 963
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 964
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 965
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 966
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 967
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 968
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 969
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 970
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 971
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 972
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 973
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 974
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 975
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 976
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 977
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 978
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 979
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 980
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 981
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 982
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 983
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 984
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 985
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 986
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 987
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 988
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 989
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 990
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 991
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 992
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 993
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 994
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 995
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 996
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 997
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 998
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 999
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 1000
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+
+Computation time on 1 cores : 
+	Database extraction time : 0:00:00
+	                         Learn     Prediction
+	         Fold 1        0:07:17        0:00:14
+	         Fold 2        0:12:53        0:00:14
+	          Total        0:20:11        0:00:28
+	So a total classification time of 0:13:08.
+
+
+2016-08-24 10:01:21,935 INFO: Done:	 Result Analysis
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-100121Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-100121Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png
new file mode 100644
index 0000000000000000000000000000000000000000..450d6bb8864e93756a693840a8d4617a48cb2648
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-100121Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png differ
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-100121Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-100121Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt
new file mode 100644
index 0000000000000000000000000000000000000000..d4524b7cad5c93d0b97531bca46a172c9385b74c
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-100121Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt
@@ -0,0 +1,14060 @@
+		Result for Multiview classification with Mumbo
+
+Average accuracy :
+	-On Train : 73.3311664568
+	-On Test : 76.2295081967
+	-On Validation : 80.0970873786
+
+Dataset info :
+	-Database name : ModifiedMultiOmic
+	-Labels : No, Yes
+	-Views : Methyl, MiRNA, RNASEQ, Clinical
+	-2 folds
+	- Validation set length : 103 for learning rate : 0.7
+
+Classification configuration : 
+	-Algorithm used : Mumbo 
+	-Iterations : 1000
+	-Weak Classifiers : DecisionTree with depth 1.0,  sub-sampled at 0.006 on Methyl
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on MiRNA
+		-DecisionTree with depth 1.0,  sub-sampled at 0.007 on RNASEQ
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on Clinical
+
+ Mean average accuracies and stats for each fold : 
+	- Fold 0
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.0516503067485
+			- Percentage of time chosen : 0.926
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.0545460122699
+			- Percentage of time chosen : 0.048
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.0513374233129
+			- Percentage of time chosen : 0.007
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.0527116564417
+			- Percentage of time chosen : 0.019
+	- Fold 1
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.0529801324503
+			- Percentage of time chosen : 0.922
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.0560728476821
+			- Percentage of time chosen : 0.057
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.0528675496689
+			- Percentage of time chosen : 0.012
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.0512847682119
+			- Percentage of time chosen : 0.009
+
+ For each iteration : 
+	- Iteration 1
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 2
+		 Fold 1
+			Accuracy on train : 62.5766871166
+			Accuracy on test : 59.8360655738
+			Accuracy on validation : 52.427184466
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 61.4207938894
+			 Accuracy on test : 66.393442623
+	- Iteration 3
+		 Fold 1
+			Accuracy on train : 68.0981595092
+			Accuracy on test : 68.0327868852
+			Accuracy on validation : 64.0776699029
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.5099337748
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 70.804046642
+			 Accuracy on test : 70.9016393443
+	- Iteration 4
+		 Fold 1
+			Accuracy on train : 66.2576687117
+			Accuracy on test : 64.7540983607
+			Accuracy on validation : 62.1359223301
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 81.4569536424
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 74.7572815534
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.857311177
+			 Accuracy on test : 72.5409836066
+	- Iteration 5
+		 Fold 1
+			Accuracy on train : 69.3251533742
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 67.9611650485
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 84.1059602649
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 76.7155568196
+			 Accuracy on test : 78.2786885246
+	- Iteration 6
+		 Fold 1
+			Accuracy on train : 68.0981595092
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 68.932038835
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 84.1059602649
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 80.5825242718
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 76.1020598871
+			 Accuracy on test : 80.3278688525
+	- Iteration 7
+		 Fold 1
+			Accuracy on train : 73.6196319018
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 70.8737864078
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 83.4437086093
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.5316702556
+			 Accuracy on test : 79.0983606557
+	- Iteration 8
+		 Fold 1
+			Accuracy on train : 73.6196319018
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 72.8155339806
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 83.4437086093
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.5316702556
+			 Accuracy on test : 79.0983606557
+	- Iteration 9
+		 Fold 1
+			Accuracy on train : 76.0736196319
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 73.786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 84.1059602649
+			Accuracy on test : 85.2459016393
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.0897899484
+			 Accuracy on test : 81.1475409836
+	- Iteration 10
+		 Fold 1
+			Accuracy on train : 73.6196319018
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 70.8737864078
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 81.4569536424
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 80.5825242718
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 77.5382927721
+			 Accuracy on test : 78.2786885246
+	- Iteration 11
+		 Fold 1
+			Accuracy on train : 73.0061349693
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 72.8155339806
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 81.4569536424
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 77.2315443059
+			 Accuracy on test : 80.3278688525
+	- Iteration 12
+		 Fold 1
+			Accuracy on train : 70.5521472393
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 75.7281553398
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 76.821192053
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 73.6866696461
+			 Accuracy on test : 77.4590163934
+	- Iteration 13
+		 Fold 1
+			Accuracy on train : 73.0061349693
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 84.1059602649
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.5560476171
+			 Accuracy on test : 79.5081967213
+	- Iteration 14
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 82.119205298
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 77.2559216674
+			 Accuracy on test : 77.868852459
+	- Iteration 15
+		 Fold 1
+			Accuracy on train : 71.7791411043
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 72.8155339806
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 84.1059602649
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 77.9425506846
+			 Accuracy on test : 78.6885245902
+	- Iteration 16
+		 Fold 1
+			Accuracy on train : 71.1656441718
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 69.9029126214
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 84.7682119205
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 89.3203883495
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 77.9669280462
+			 Accuracy on test : 76.2295081967
+	- Iteration 17
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 70.8737864078
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 84.7682119205
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.5804249787
+			 Accuracy on test : 77.868852459
+	- Iteration 18
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 71.8446601942
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 85.4304635762
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 86.4077669903
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 78.9115508065
+			 Accuracy on test : 79.0983606557
+	- Iteration 19
+		 Fold 1
+			Accuracy on train : 74.8466257669
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 76.6990291262
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 85.4304635762
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.1385446715
+			 Accuracy on test : 77.868852459
+	- Iteration 20
+		 Fold 1
+			Accuracy on train : 74.8466257669
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 75.7281553398
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 86.0927152318
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.4696704993
+			 Accuracy on test : 76.6393442623
+	- Iteration 21
+		 Fold 1
+			Accuracy on train : 73.6196319018
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 85.4304635762
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.525047739
+			 Accuracy on test : 79.0983606557
+	- Iteration 22
+		 Fold 1
+			Accuracy on train : 76.6871165644
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 83.4437086093
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 88.3495145631
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 80.0654125868
+			 Accuracy on test : 77.0491803279
+	- Iteration 23
+		 Fold 1
+			Accuracy on train : 75.4601226994
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 77.6699029126
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 84.7682119205
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.11416731
+			 Accuracy on test : 78.2786885246
+	- Iteration 24
+		 Fold 1
+			Accuracy on train : 76.6871165644
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 84.1059602649
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.3965384147
+			 Accuracy on test : 77.0491803279
+	- Iteration 25
+		 Fold 1
+			Accuracy on train : 77.9141104294
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 84.7682119205
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 86.4077669903
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 81.341161175
+			 Accuracy on test : 77.4590163934
+	- Iteration 26
+		 Fold 1
+			Accuracy on train : 74.8466257669
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 84.7682119205
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.8074188437
+			 Accuracy on test : 77.0491803279
+	- Iteration 27
+		 Fold 1
+			Accuracy on train : 73.6196319018
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 82.7814569536
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.2005444277
+			 Accuracy on test : 76.6393442623
+	- Iteration 28
+		 Fold 1
+			Accuracy on train : 74.8466257669
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 83.4437086093
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 79.1451671881
+			 Accuracy on test : 77.4590163934
+	- Iteration 29
+		 Fold 1
+			Accuracy on train : 73.0061349693
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 84.1059602649
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.5560476171
+			 Accuracy on test : 77.868852459
+	- Iteration 30
+		 Fold 1
+			Accuracy on train : 74.8466257669
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 80.5825242718
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 84.7682119205
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 85.4368932039
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 79.8074188437
+			 Accuracy on test : 77.0491803279
+	- Iteration 31
+		 Fold 1
+			Accuracy on train : 74.8466257669
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 82.119205298
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 84.4660194175
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 78.4829155324
+			 Accuracy on test : 77.4590163934
+	- Iteration 32
+		 Fold 1
+			Accuracy on train : 74.8466257669
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 84.7682119205
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.8074188437
+			 Accuracy on test : 75.8196721311
+	- Iteration 33
+		 Fold 1
+			Accuracy on train : 74.2331288344
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 82.119205298
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.1761670662
+			 Accuracy on test : 77.868852459
+	- Iteration 34
+		 Fold 1
+			Accuracy on train : 74.8466257669
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 84.7682119205
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.8074188437
+			 Accuracy on test : 77.868852459
+	- Iteration 35
+		 Fold 1
+			Accuracy on train : 75.4601226994
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 84.7682119205
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.11416731
+			 Accuracy on test : 79.5081967213
+	- Iteration 36
+		 Fold 1
+			Accuracy on train : 74.8466257669
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 87.417218543
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 88.3495145631
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 81.131922155
+			 Accuracy on test : 78.6885245902
+	- Iteration 37
+		 Fold 1
+			Accuracy on train : 73.0061349693
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 83.4437086093
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.2249217893
+			 Accuracy on test : 79.9180327869
+	- Iteration 38
+		 Fold 1
+			Accuracy on train : 73.0061349693
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 86.7549668874
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 88.3495145631
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.8805509284
+			 Accuracy on test : 79.5081967213
+	- Iteration 39
+		 Fold 1
+			Accuracy on train : 74.2331288344
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 82.7814569536
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.507292894
+			 Accuracy on test : 79.0983606557
+	- Iteration 40
+		 Fold 1
+			Accuracy on train : 74.2331288344
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 82.7814569536
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 78.507292894
+			 Accuracy on test : 77.868852459
+	- Iteration 41
+		 Fold 1
+			Accuracy on train : 74.8466257669
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 82.7814569536
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.8140413603
+			 Accuracy on test : 79.5081967213
+	- Iteration 42
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 76.6990291262
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 81.4569536424
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 86.4077669903
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 76.9247958396
+			 Accuracy on test : 78.2786885246
+	- Iteration 43
+		 Fold 1
+			Accuracy on train : 73.6196319018
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 84.7682119205
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.1939219112
+			 Accuracy on test : 79.9180327869
+	- Iteration 44
+		 Fold 1
+			Accuracy on train : 73.6196319018
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 84.7682119205
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.1939219112
+			 Accuracy on test : 79.9180327869
+	- Iteration 45
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 76.6990291262
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 83.4437086093
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 87.3786407767
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 77.918173323
+			 Accuracy on test : 77.868852459
+	- Iteration 46
+		 Fold 1
+			Accuracy on train : 70.5521472393
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 76.6990291262
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 81.4569536424
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 76.0045504408
+			 Accuracy on test : 77.0491803279
+	- Iteration 47
+		 Fold 1
+			Accuracy on train : 71.1656441718
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 79.4701986755
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 75.3179214236
+			 Accuracy on test : 76.6393442623
+	- Iteration 48
+		 Fold 1
+			Accuracy on train : 71.1656441718
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.4701986755
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 75.3179214236
+			 Accuracy on test : 77.868852459
+	- Iteration 49
+		 Fold 1
+			Accuracy on train : 70.5521472393
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 78.8079470199
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 74.6800471296
+			 Accuracy on test : 77.0491803279
+	- Iteration 50
+		 Fold 1
+			Accuracy on train : 71.7791411043
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 78.8079470199
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 75.2935440621
+			 Accuracy on test : 77.4590163934
+	- Iteration 51
+		 Fold 1
+			Accuracy on train : 69.9386503067
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 76.6990291262
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.4701986755
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 74.7044244911
+			 Accuracy on test : 77.4590163934
+	- Iteration 52
+		 Fold 1
+			Accuracy on train : 70.5521472393
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 77.6699029126
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 78.1456953642
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 74.3489213018
+			 Accuracy on test : 77.4590163934
+	- Iteration 53
+		 Fold 1
+			Accuracy on train : 71.7791411043
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 78.1456953642
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 74.9624182343
+			 Accuracy on test : 76.2295081967
+	- Iteration 54
+		 Fold 1
+			Accuracy on train : 69.9386503067
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 76.821192053
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 84.4660194175
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.3799211799
+			 Accuracy on test : 77.4590163934
+	- Iteration 55
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 76.1589403974
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 74.2757892171
+			 Accuracy on test : 76.2295081967
+	- Iteration 56
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.5099337748
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 82.5242718447
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 72.9512859058
+			 Accuracy on test : 76.6393442623
+	- Iteration 57
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 73.9446633893
+			 Accuracy on test : 77.0491803279
+	- Iteration 58
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.5099337748
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.9512859058
+			 Accuracy on test : 77.0491803279
+	- Iteration 59
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 74.1721854305
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.2824117336
+			 Accuracy on test : 77.0491803279
+	- Iteration 60
+		 Fold 1
+			Accuracy on train : 73.0061349693
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 74.1721854305
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 73.5891601999
+			 Accuracy on test : 77.0491803279
+	- Iteration 61
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 74.1721854305
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 73.2824117336
+			 Accuracy on test : 77.0491803279
+	- Iteration 62
+		 Fold 1
+			Accuracy on train : 73.0061349693
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 74.1721854305
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 82.5242718447
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.5891601999
+			 Accuracy on test : 76.6393442623
+	- Iteration 63
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 74.1721854305
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 73.2824117336
+			 Accuracy on test : 78.2786885246
+	- Iteration 64
+		 Fold 1
+			Accuracy on train : 73.6196319018
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 80.5825242718
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 73.5099337748
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.5647828383
+			 Accuracy on test : 79.5081967213
+	- Iteration 65
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 82.5242718447
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 73.9446633893
+			 Accuracy on test : 79.5081967213
+	- Iteration 66
+		 Fold 1
+			Accuracy on train : 71.7791411043
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 76.821192053
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 83.4951456311
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 74.3001665786
+			 Accuracy on test : 78.6885245902
+	- Iteration 67
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 76.1589403974
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 74.2757892171
+			 Accuracy on test : 78.6885245902
+	- Iteration 68
+		 Fold 1
+			Accuracy on train : 71.1656441718
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 76.1589403974
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 82.5242718447
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 73.6622922846
+			 Accuracy on test : 78.6885245902
+	- Iteration 69
+		 Fold 1
+			Accuracy on train : 71.7791411043
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 76.821192053
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 74.3001665786
+			 Accuracy on test : 77.868852459
+	- Iteration 70
+		 Fold 1
+			Accuracy on train : 71.7791411043
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 74.8344370861
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.3067890952
+			 Accuracy on test : 77.868852459
+	- Iteration 71
+		 Fold 1
+			Accuracy on train : 72.3926380368
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 73.5099337748
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.9512859058
+			 Accuracy on test : 77.4590163934
+	- Iteration 72
+		 Fold 1
+			Accuracy on train : 71.1656441718
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 71.5231788079
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 71.3444114899
+			 Accuracy on test : 77.868852459
+	- Iteration 73
+		 Fold 1
+			Accuracy on train : 70.5521472393
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 69.5364238411
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 70.0442855402
+			 Accuracy on test : 76.2295081967
+	- Iteration 74
+		 Fold 1
+			Accuracy on train : 70.5521472393
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 72.8476821192
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 71.6999146792
+			 Accuracy on test : 77.0491803279
+	- Iteration 75
+		 Fold 1
+			Accuracy on train : 69.9386503067
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 72.1854304636
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 71.0620403852
+			 Accuracy on test : 76.6393442623
+	- Iteration 76
+		 Fold 1
+			Accuracy on train : 69.9386503067
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 72.8476821192
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 71.393166213
+			 Accuracy on test : 76.2295081967
+	- Iteration 77
+		 Fold 1
+			Accuracy on train : 69.3251533742
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 77.6699029126
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 72.1854304636
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 70.7552919189
+			 Accuracy on test : 76.2295081967
+	- Iteration 78
+		 Fold 1
+			Accuracy on train : 68.7116564417
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 76.6990291262
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 73.5099337748
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 80.5825242718
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 71.1107951083
+			 Accuracy on test : 76.6393442623
+	- Iteration 79
+		 Fold 1
+			Accuracy on train : 69.3251533742
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.410921058
+			 Accuracy on test : 77.0491803279
+	- Iteration 80
+		 Fold 1
+			Accuracy on train : 69.3251533742
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 74.1721854305
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 71.7486694023
+			 Accuracy on test : 76.2295081967
+	- Iteration 81
+		 Fold 1
+			Accuracy on train : 69.3251533742
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 77.6699029126
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 81.5533980583
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 72.410921058
+			 Accuracy on test : 77.4590163934
+	- Iteration 82
+		 Fold 1
+			Accuracy on train : 68.7116564417
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 74.8344370861
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 81.5533980583
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 71.7730467639
+			 Accuracy on test : 76.6393442623
+	- Iteration 83
+		 Fold 1
+			Accuracy on train : 68.7116564417
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 74.8344370861
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 81.5533980583
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 71.7730467639
+			 Accuracy on test : 77.0491803279
+	- Iteration 84
+		 Fold 1
+			Accuracy on train : 68.7116564417
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 77.6699029126
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.1041725917
+			 Accuracy on test : 76.6393442623
+	- Iteration 85
+		 Fold 1
+			Accuracy on train : 67.4846625767
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 76.6990291262
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 76.1589403974
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 71.821801487
+			 Accuracy on test : 76.2295081967
+	- Iteration 86
+		 Fold 1
+			Accuracy on train : 68.7116564417
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 74.1721854305
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 71.4419209361
+			 Accuracy on test : 76.2295081967
+	- Iteration 87
+		 Fold 1
+			Accuracy on train : 68.7116564417
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 76.821192053
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.7664242473
+			 Accuracy on test : 77.0491803279
+	- Iteration 88
+		 Fold 1
+			Accuracy on train : 68.7116564417
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 76.1589403974
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 72.4352984195
+			 Accuracy on test : 77.0491803279
+	- Iteration 89
+		 Fold 1
+			Accuracy on train : 68.7116564417
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.1041725917
+			 Accuracy on test : 76.6393442623
+	- Iteration 90
+		 Fold 1
+			Accuracy on train : 68.0981595092
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 76.6990291262
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 74.8344370861
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 81.5533980583
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 71.4662982976
+			 Accuracy on test : 77.0491803279
+	- Iteration 91
+		 Fold 1
+			Accuracy on train : 68.0981595092
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 76.6990291262
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 76.1589403974
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.1285499533
+			 Accuracy on test : 76.6393442623
+	- Iteration 92
+		 Fold 1
+			Accuracy on train : 68.7116564417
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 76.6990291262
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 74.8344370861
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 71.7730467639
+			 Accuracy on test : 77.0491803279
+	- Iteration 93
+		 Fold 1
+			Accuracy on train : 68.0981595092
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 76.6990291262
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 71.7974241255
+			 Accuracy on test : 76.2295081967
+	- Iteration 94
+		 Fold 1
+			Accuracy on train : 68.0981595092
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 76.6990291262
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 82.5242718447
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 71.7974241255
+			 Accuracy on test : 76.2295081967
+	- Iteration 95
+		 Fold 1
+			Accuracy on train : 68.7116564417
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 82.5242718447
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 72.1041725917
+			 Accuracy on test : 76.6393442623
+	- Iteration 96
+		 Fold 1
+			Accuracy on train : 68.7116564417
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 77.6699029126
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 74.8344370861
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 71.7730467639
+			 Accuracy on test : 77.0491803279
+	- Iteration 97
+		 Fold 1
+			Accuracy on train : 69.9386503067
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 82.5242718447
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 72.7176695242
+			 Accuracy on test : 76.6393442623
+	- Iteration 98
+		 Fold 1
+			Accuracy on train : 69.3251533742
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 72.410921058
+			 Accuracy on test : 76.2295081967
+	- Iteration 99
+		 Fold 1
+			Accuracy on train : 69.9386503067
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 76.1589403974
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.048795352
+			 Accuracy on test : 76.2295081967
+	- Iteration 100
+		 Fold 1
+			Accuracy on train : 70.5521472393
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 76.1589403974
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 82.5242718447
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 73.3555438183
+			 Accuracy on test : 75.8196721311
+	- Iteration 101
+		 Fold 1
+			Accuracy on train : 69.9386503067
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 76.1589403974
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 73.048795352
+			 Accuracy on test : 76.2295081967
+	- Iteration 102
+		 Fold 1
+			Accuracy on train : 71.1656441718
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 75.4966887417
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 73.3311664568
+			 Accuracy on test : 76.2295081967
+	- Iteration 103
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 104
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 105
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 106
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 107
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 108
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 109
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 110
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 111
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 112
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 113
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 114
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 115
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 116
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 117
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 118
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 119
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 120
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 121
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 122
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 123
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 124
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 125
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 126
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 127
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 128
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 129
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 130
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 131
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 132
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 133
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 134
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 135
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 136
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 137
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 138
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 139
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 140
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 141
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 142
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 143
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 144
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 145
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 146
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 147
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 148
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 149
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 150
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 151
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 152
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 153
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 154
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 155
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 156
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 157
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 158
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 159
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 160
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 161
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 162
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 163
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 164
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 165
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 166
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 167
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 168
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 169
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 170
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 171
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 172
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 173
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 174
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 175
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 176
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 177
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 178
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 179
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 180
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 181
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 182
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 183
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 184
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 185
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 186
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 187
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 188
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 189
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 190
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 191
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 192
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 193
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 194
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 195
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 196
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 197
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 198
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 199
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 200
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 201
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 202
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 203
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 204
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 205
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 206
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 207
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 208
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 209
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 210
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 211
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 212
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 213
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 214
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 215
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 216
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 217
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 218
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 219
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 220
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 221
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 222
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 223
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 224
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 225
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 226
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 227
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 228
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 229
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 230
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 231
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 232
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 233
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 234
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 235
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 236
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 237
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 238
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 239
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 240
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 241
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 242
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 243
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 244
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 245
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 246
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 247
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 248
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 249
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 250
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 251
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 252
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 253
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 254
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 255
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 256
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 257
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 258
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 259
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 260
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 261
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 262
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 263
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 264
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 265
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 266
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 267
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 268
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 269
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 270
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 271
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 272
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 273
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 274
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 275
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 276
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 277
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 278
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 279
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 280
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 281
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 282
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 283
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 284
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 285
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 286
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 287
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 288
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 289
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 290
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 291
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 292
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 293
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 294
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 295
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 296
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 297
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 298
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 299
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 300
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 301
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 302
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 303
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 304
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 305
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 306
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 307
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 308
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 309
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 310
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 311
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 312
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 313
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 314
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 315
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 316
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 317
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 318
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 319
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 320
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 321
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 322
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 323
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 324
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 325
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 326
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 327
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 328
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 329
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 330
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 331
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 332
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 333
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 334
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 335
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 336
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 337
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 338
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 339
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 340
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 341
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 342
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 343
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 344
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 345
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 346
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 347
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 348
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 349
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 350
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 351
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 352
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 353
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 354
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 355
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 356
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 357
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 358
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 359
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 360
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 361
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 362
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 363
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 364
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 365
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 366
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 367
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 368
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 369
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 370
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 371
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 372
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 373
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 374
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 375
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 376
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 377
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 378
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 379
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 380
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 381
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 382
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 383
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 384
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 385
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 386
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 387
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 388
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 389
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 390
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 391
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 392
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 393
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 394
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 395
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 396
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 397
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 398
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 399
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 400
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 401
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 402
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 403
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 404
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 405
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 406
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 407
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 408
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 409
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 410
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 411
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 412
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 413
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 414
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 415
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 416
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 417
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 418
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 419
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 420
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 421
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 422
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 423
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 424
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 425
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 426
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 427
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 428
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 429
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 430
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 431
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 432
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 433
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 434
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 435
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 436
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 437
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 438
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 439
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 440
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 441
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 442
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 443
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 444
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 445
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 446
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 447
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 448
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 449
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 450
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 451
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 452
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 453
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 454
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 455
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 456
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 457
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 458
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 459
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 460
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 461
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 462
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 463
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 464
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 465
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 466
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 467
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 468
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 469
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 470
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 471
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 472
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 473
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 474
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 475
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 476
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 477
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 478
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 479
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 480
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 481
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 482
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 483
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 484
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 485
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 486
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 487
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 488
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 489
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 490
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 491
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 492
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 493
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 494
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 495
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 496
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 497
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 498
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 499
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 500
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 501
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 502
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 503
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 504
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 505
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 506
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 507
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 508
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 509
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 510
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 511
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 512
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 513
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 514
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 515
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 516
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 517
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 518
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 519
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 520
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 521
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 522
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 523
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 524
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 525
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 526
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 527
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 528
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 529
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 530
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 531
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 532
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 533
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 534
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 535
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 536
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 537
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 538
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 539
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 540
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 541
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 542
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 543
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 544
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 545
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 546
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 547
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 548
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 549
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 550
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 551
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 552
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 553
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 554
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 555
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 556
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 557
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 558
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 559
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 560
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 561
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 562
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 563
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 564
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 565
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 566
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 567
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 568
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 569
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 570
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 571
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 572
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 573
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 574
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 575
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 576
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 577
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 578
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 579
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 580
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 581
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 582
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 583
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 584
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 585
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 586
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 587
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 588
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 589
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 590
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 591
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 592
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 593
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 594
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 595
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 596
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 597
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 598
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 599
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 600
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 601
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 602
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 603
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 604
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 605
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 606
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 607
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 608
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 609
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 610
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 611
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 612
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 613
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 614
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 615
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 616
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 617
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 618
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 619
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 620
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 621
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 622
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 623
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 624
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 625
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 626
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 627
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 628
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 629
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 630
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 631
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 632
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 633
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 634
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 635
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 636
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 637
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 638
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 639
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 640
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 641
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 642
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 643
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 644
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 645
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 646
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 647
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 648
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 649
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 650
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 651
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 652
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 653
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 654
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 655
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 656
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 657
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 658
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 659
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 660
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 661
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 662
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 663
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 664
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 665
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 666
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 667
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 668
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 669
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 670
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 671
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 672
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 673
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 674
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 675
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 676
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 677
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 678
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 679
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 680
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 681
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 682
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 683
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 684
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 685
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 686
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 687
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 688
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 689
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 690
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 691
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 692
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 693
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 694
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 695
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 696
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 697
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 698
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 699
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 700
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 701
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 702
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 703
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 704
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 705
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 706
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 707
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 708
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 709
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 710
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 711
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 712
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 713
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 714
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 715
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 716
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 717
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 718
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 719
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 720
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 721
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 722
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 723
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 724
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 725
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 726
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 727
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 728
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 729
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 730
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 731
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 732
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 733
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 734
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 735
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 736
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 737
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 738
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 739
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 740
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 741
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 742
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 743
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 744
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 745
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 746
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 747
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 748
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 749
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 750
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 751
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 752
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 753
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 754
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 755
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 756
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 757
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 758
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 759
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 760
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 761
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 762
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 763
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 764
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 765
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 766
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 767
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 768
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 769
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 770
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 771
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 772
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 773
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 774
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 775
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 776
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 777
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 778
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 779
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 780
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 781
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 782
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 783
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 784
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 785
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 786
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 787
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 788
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 789
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 790
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 791
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 792
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 793
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 794
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 795
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 796
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 797
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 798
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 799
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 800
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 801
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 802
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 803
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 804
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 805
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 806
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 807
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 808
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 809
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 810
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 811
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 812
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 813
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 814
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 815
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 816
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 817
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 818
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 819
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 820
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 821
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 822
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 823
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 824
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 825
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 826
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 827
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 828
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 829
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 830
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 831
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 832
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 833
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 834
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 835
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 836
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 837
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 838
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 839
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 840
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 841
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 842
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 843
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 844
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 845
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 846
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 847
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 848
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 849
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 850
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 851
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 852
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 853
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 854
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 855
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 856
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 857
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 858
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 859
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 860
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 861
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 862
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 863
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 864
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 865
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 866
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 867
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 868
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 869
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 870
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 871
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 872
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 873
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 874
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 875
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 876
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 877
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 878
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 879
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 880
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 881
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 882
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 883
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 884
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 885
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 886
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 887
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 888
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 889
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 890
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 891
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 892
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 893
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 894
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 895
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 896
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 897
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 898
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 899
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 900
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 901
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 902
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 903
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 904
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 905
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 906
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 907
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 908
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 909
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 910
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 911
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 912
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 913
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 914
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 915
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 916
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 917
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 918
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 919
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 920
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 921
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 922
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 923
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 924
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 925
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 926
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 927
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 928
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 929
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 930
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 931
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 932
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 933
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 934
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 935
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 936
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 937
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 938
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 939
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 940
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 941
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 942
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 943
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 944
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 945
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 946
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 947
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 948
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 949
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 950
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 951
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 952
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 953
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 954
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 955
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 956
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 957
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 958
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 959
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 960
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 961
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 962
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 963
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 964
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 965
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 966
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 967
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 968
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 969
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 970
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 971
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 972
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 973
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 974
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 975
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 976
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 977
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 978
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 979
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 980
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 981
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 982
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 983
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 984
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 985
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 986
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 987
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 988
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 989
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 990
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 991
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 992
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 993
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 994
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 995
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 996
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 997
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 998
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 999
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+	- Iteration 1000
+		 Fold 1
+			Accuracy on train : 63.1901840491
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 60.2649006623
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.7275423557
+			 Accuracy on test : 72.9508196721
+
+Computation time on 1 cores : 
+	Database extraction time : 0:00:00
+	                         Learn     Prediction
+	         Fold 1        0:07:17        0:00:14
+	         Fold 2        0:12:53        0:00:14
+	          Total        0:20:11        0:00:28
+	So a total classification time of 0:13:08.
+
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-110726-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-110726-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..31fcc1255c209af41f94916c315fd74958fdfdea
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-110726-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,390 @@
+2016-08-24 11:07:26,238 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 11:07:26,238 INFO: Info:	 Labels used: No, Yes
+2016-08-24 11:07:26,239 INFO: Info:	 Length of dataset:347
+2016-08-24 11:07:26,240 INFO: ### Main Programm for Multiview Classification
+2016-08-24 11:07:26,240 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 11:07:26,241 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 11:07:26,241 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 11:07:26,242 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 11:07:26,242 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 11:07:26,242 INFO: Done:	 Read Database Files
+2016-08-24 11:07:26,242 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 11:07:26,246 INFO: Done:	 Determine validation split
+2016-08-24 11:07:26,246 INFO: Start:	 Determine 2 folds
+2016-08-24 11:07:26,254 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 11:07:26,254 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 11:07:26,254 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 11:07:26,254 INFO: Done:	 Determine folds
+2016-08-24 11:07:26,254 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 11:07:26,254 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 11:07:26,254 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl_
+2016-08-24 11:07:33,791 DEBUG: 0.558270893372Poulet
+2016-08-24 11:07:33,791 DEBUG: 0.521268011527Poulet
+2016-08-24 11:07:33,791 DEBUG: 0.521556195965Poulet
+2016-08-24 11:07:33,792 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 11:07:33,792 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA__
+2016-08-24 11:07:35,798 DEBUG: 0.530893371758Poulet
+2016-08-24 11:07:35,798 DEBUG: 0.530720461095Poulet
+2016-08-24 11:07:35,798 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 11:07:35,799 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq_
+2016-08-24 11:07:52,803 DEBUG: 0.583227665706Poulet
+2016-08-24 11:07:52,803 DEBUG: 0.569798270893Poulet
+2016-08-24 11:07:52,803 DEBUG: 0.543746397695Poulet
+2016-08-24 11:07:52,803 DEBUG: 0.520749279539Poulet
+2016-08-24 11:07:52,803 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 11:07:52,804 DEBUG: 	Start:	 Gridsearch for DecisionTree on Clinic_
+2016-08-24 11:07:54,548 DEBUG: 0.559827089337Poulet
+2016-08-24 11:07:54,549 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 11:07:54,549 DEBUG: 	Start:	 Gridsearch for DecisionTree on MRNASeq
+2016-08-24 11:08:34,507 DEBUG: 0.561383285303Poulet
+2016-08-24 11:08:34,507 DEBUG: 0.549337175793Poulet
+2016-08-24 11:08:34,508 DEBUG: 0.511930835735Poulet
+2016-08-24 11:08:34,508 DEBUG: 0.514524495677Poulet
+2016-08-24 11:08:34,508 DEBUG: 0.514755043228Poulet
+2016-08-24 11:08:34,512 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 11:08:34,512 INFO: Done:	 Gridsearching best settings for monoview classifiers
+2016-08-24 11:08:34,512 INFO: 	Start:	 Fold number 1
+2016-08-24 11:08:36,691 DEBUG: 		Start:	 Iteration 1
+2016-08-24 11:08:36,707 DEBUG: 			View 0 : 0.620253164557
+2016-08-24 11:08:36,715 DEBUG: 			View 1 : 0.26582278481
+2016-08-24 11:08:36,744 DEBUG: 			View 2 : 0.620253164557
+2016-08-24 11:08:36,751 DEBUG: 			View 3 : 0.569620253165
+2016-08-24 11:08:36,793 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:08:36,864 DEBUG: 		Start:	 Iteration 2
+2016-08-24 11:08:36,881 DEBUG: 			View 0 : 0.436708860759
+2016-08-24 11:08:36,888 DEBUG: 			View 1 : 0.481012658228
+2016-08-24 11:08:36,925 DEBUG: 			View 2 : 0.405063291139
+2016-08-24 11:08:36,932 DEBUG: 			View 3 : 0.626582278481
+2016-08-24 11:08:36,977 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:08:37,106 DEBUG: 		Start:	 Iteration 3
+2016-08-24 11:08:37,122 DEBUG: 			View 0 : 0.53164556962
+2016-08-24 11:08:37,130 DEBUG: 			View 1 : 0.626582278481
+2016-08-24 11:08:37,168 DEBUG: 			View 2 : 0.518987341772
+2016-08-24 11:08:37,176 DEBUG: 			View 3 : 0.575949367089
+2016-08-24 11:08:37,230 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:08:37,420 DEBUG: 		Start:	 Iteration 4
+2016-08-24 11:08:37,437 DEBUG: 			View 0 : 0.677215189873
+2016-08-24 11:08:37,445 DEBUG: 			View 1 : 0.588607594937
+2016-08-24 11:08:37,482 DEBUG: 			View 2 : 0.436708860759
+2016-08-24 11:08:37,489 DEBUG: 			View 3 : 0.411392405063
+2016-08-24 11:08:37,546 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:08:37,798 DEBUG: 		Start:	 Iteration 5
+2016-08-24 11:08:37,815 DEBUG: 			View 0 : 0.506329113924
+2016-08-24 11:08:37,823 DEBUG: 			View 1 : 0.474683544304
+2016-08-24 11:08:37,861 DEBUG: 			View 2 : 0.392405063291
+2016-08-24 11:08:37,868 DEBUG: 			View 3 : 0.436708860759
+2016-08-24 11:08:37,927 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:08:38,240 DEBUG: 		Start:	 Iteration 6
+2016-08-24 11:08:38,256 DEBUG: 			View 0 : 0.449367088608
+2016-08-24 11:08:38,264 DEBUG: 			View 1 : 0.626582278481
+2016-08-24 11:08:38,302 DEBUG: 			View 2 : 0.417721518987
+2016-08-24 11:08:38,309 DEBUG: 			View 3 : 0.53164556962
+2016-08-24 11:08:38,371 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:08:38,740 DEBUG: 		Start:	 Iteration 7
+2016-08-24 11:08:38,756 DEBUG: 			View 0 : 0.443037974684
+2016-08-24 11:08:38,764 DEBUG: 			View 1 : 0.487341772152
+2016-08-24 11:08:38,800 DEBUG: 			View 2 : 0.582278481013
+2016-08-24 11:08:38,808 DEBUG: 			View 3 : 0.512658227848
+2016-08-24 11:08:38,871 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:08:39,315 DEBUG: 		Start:	 Iteration 8
+2016-08-24 11:08:39,332 DEBUG: 			View 0 : 0.417721518987
+2016-08-24 11:08:39,339 DEBUG: 			View 1 : 0.462025316456
+2016-08-24 11:08:39,377 DEBUG: 			View 2 : 0.474683544304
+2016-08-24 11:08:39,384 DEBUG: 			View 3 : 0.556962025316
+2016-08-24 11:08:39,450 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:08:39,972 DEBUG: 		Start:	 Iteration 9
+2016-08-24 11:08:39,990 DEBUG: 			View 0 : 0.5
+2016-08-24 11:08:39,998 DEBUG: 			View 1 : 0.651898734177
+2016-08-24 11:08:40,037 DEBUG: 			View 2 : 0.537974683544
+2016-08-24 11:08:40,045 DEBUG: 			View 3 : 0.392405063291
+2016-08-24 11:08:40,115 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:08:40,698 DEBUG: 		Start:	 Iteration 10
+2016-08-24 11:08:40,715 DEBUG: 			View 0 : 0.594936708861
+2016-08-24 11:08:40,723 DEBUG: 			View 1 : 0.354430379747
+2016-08-24 11:08:40,760 DEBUG: 			View 2 : 0.613924050633
+2016-08-24 11:08:40,768 DEBUG: 			View 3 : 0.544303797468
+2016-08-24 11:08:40,837 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:08:41,469 DEBUG: 		Start:	 Iteration 11
+2016-08-24 11:08:41,485 DEBUG: 			View 0 : 0.367088607595
+2016-08-24 11:08:41,493 DEBUG: 			View 1 : 0.658227848101
+2016-08-24 11:08:41,530 DEBUG: 			View 2 : 0.537974683544
+2016-08-24 11:08:41,537 DEBUG: 			View 3 : 0.582278481013
+2016-08-24 11:08:41,610 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:08:42,303 DEBUG: 		Start:	 Iteration 12
+2016-08-24 11:08:42,319 DEBUG: 			View 0 : 0.424050632911
+2016-08-24 11:08:42,327 DEBUG: 			View 1 : 0.373417721519
+2016-08-24 11:08:42,364 DEBUG: 			View 2 : 0.462025316456
+2016-08-24 11:08:42,371 DEBUG: 			View 3 : 0.588607594937
+2016-08-24 11:08:42,445 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:08:43,193 DEBUG: 		Start:	 Iteration 13
+2016-08-24 11:08:43,209 DEBUG: 			View 0 : 0.474683544304
+2016-08-24 11:08:43,217 DEBUG: 			View 1 : 0.575949367089
+2016-08-24 11:08:43,253 DEBUG: 			View 2 : 0.411392405063
+2016-08-24 11:08:43,261 DEBUG: 			View 3 : 0.386075949367
+2016-08-24 11:08:43,339 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:08:44,142 DEBUG: 		Start:	 Iteration 14
+2016-08-24 11:08:44,159 DEBUG: 			View 0 : 0.620253164557
+2016-08-24 11:08:44,166 DEBUG: 			View 1 : 0.493670886076
+2016-08-24 11:08:44,203 DEBUG: 			View 2 : 0.575949367089
+2016-08-24 11:08:44,211 DEBUG: 			View 3 : 0.658227848101
+2016-08-24 11:08:44,291 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:08:45,149 DEBUG: 		Start:	 Iteration 15
+2016-08-24 11:08:45,165 DEBUG: 			View 0 : 0.518987341772
+2016-08-24 11:08:45,173 DEBUG: 			View 1 : 0.46835443038
+2016-08-24 11:08:45,210 DEBUG: 			View 2 : 0.392405063291
+2016-08-24 11:08:45,218 DEBUG: 			View 3 : 0.443037974684
+2016-08-24 11:08:45,299 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:08:46,226 DEBUG: 		Start:	 Iteration 16
+2016-08-24 11:08:46,243 DEBUG: 			View 0 : 0.556962025316
+2016-08-24 11:08:46,251 DEBUG: 			View 1 : 0.398734177215
+2016-08-24 11:08:46,287 DEBUG: 			View 2 : 0.550632911392
+2016-08-24 11:08:46,294 DEBUG: 			View 3 : 0.664556962025
+2016-08-24 11:08:46,380 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:08:47,364 DEBUG: 		Start:	 Iteration 17
+2016-08-24 11:08:47,380 DEBUG: 			View 0 : 0.626582278481
+2016-08-24 11:08:47,389 DEBUG: 			View 1 : 0.506329113924
+2016-08-24 11:08:47,428 DEBUG: 			View 2 : 0.474683544304
+2016-08-24 11:08:47,436 DEBUG: 			View 3 : 0.455696202532
+2016-08-24 11:08:47,522 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:08:48,613 DEBUG: 		Start:	 Iteration 18
+2016-08-24 11:08:48,629 DEBUG: 			View 0 : 0.525316455696
+2016-08-24 11:08:48,636 DEBUG: 			View 1 : 0.715189873418
+2016-08-24 11:08:48,673 DEBUG: 			View 2 : 0.386075949367
+2016-08-24 11:08:48,681 DEBUG: 			View 3 : 0.455696202532
+2016-08-24 11:08:48,770 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:08:49,927 DEBUG: 		Start:	 Iteration 19
+2016-08-24 11:08:49,947 DEBUG: 			View 0 : 0.550632911392
+2016-08-24 11:08:49,955 DEBUG: 			View 1 : 0.569620253165
+2016-08-24 11:08:49,992 DEBUG: 			View 2 : 0.405063291139
+2016-08-24 11:08:50,000 DEBUG: 			View 3 : 0.575949367089
+2016-08-24 11:08:50,090 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:08:51,285 DEBUG: 		Start:	 Iteration 20
+2016-08-24 11:08:51,304 DEBUG: 			View 0 : 0.424050632911
+2016-08-24 11:08:51,313 DEBUG: 			View 1 : 0.354430379747
+2016-08-24 11:08:51,355 DEBUG: 			View 2 : 0.474683544304
+2016-08-24 11:08:51,363 DEBUG: 			View 3 : 0.436708860759
+2016-08-24 11:08:51,363 WARNING: WARNING:	All bad for iteration 19
+2016-08-24 11:08:51,460 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:08:52,684 DEBUG: 		Start:	 Iteration 21
+2016-08-24 11:08:52,701 DEBUG: 			View 0 : 0.563291139241
+2016-08-24 11:08:52,708 DEBUG: 			View 1 : 0.29746835443
+2016-08-24 11:08:52,745 DEBUG: 			View 2 : 0.487341772152
+2016-08-24 11:08:52,753 DEBUG: 			View 3 : 0.462025316456
+2016-08-24 11:08:52,849 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:08:54,166 DEBUG: 		Start:	 Iteration 22
+2016-08-24 11:08:54,182 DEBUG: 			View 0 : 0.563291139241
+2016-08-24 11:08:54,190 DEBUG: 			View 1 : 0.392405063291
+2016-08-24 11:08:54,232 DEBUG: 			View 2 : 0.518987341772
+2016-08-24 11:08:54,239 DEBUG: 			View 3 : 0.658227848101
+2016-08-24 11:08:54,339 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:08:55,764 DEBUG: 		Start:	 Iteration 23
+2016-08-24 11:08:55,784 DEBUG: 			View 0 : 0.405063291139
+2016-08-24 11:08:55,796 DEBUG: 			View 1 : 0.696202531646
+2016-08-24 11:08:55,833 DEBUG: 			View 2 : 0.512658227848
+2016-08-24 11:08:55,840 DEBUG: 			View 3 : 0.481012658228
+2016-08-24 11:08:55,941 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:08:57,391 DEBUG: 		Start:	 Iteration 24
+2016-08-24 11:08:57,408 DEBUG: 			View 0 : 0.563291139241
+2016-08-24 11:08:57,416 DEBUG: 			View 1 : 0.512658227848
+2016-08-24 11:08:57,455 DEBUG: 			View 2 : 0.626582278481
+2016-08-24 11:08:57,465 DEBUG: 			View 3 : 0.556962025316
+2016-08-24 11:08:57,578 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:08:59,113 DEBUG: 		Start:	 Iteration 25
+2016-08-24 11:08:59,129 DEBUG: 			View 0 : 0.462025316456
+2016-08-24 11:08:59,137 DEBUG: 			View 1 : 0.626582278481
+2016-08-24 11:08:59,174 DEBUG: 			View 2 : 0.462025316456
+2016-08-24 11:08:59,181 DEBUG: 			View 3 : 0.474683544304
+2016-08-24 11:08:59,294 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:09:00,911 DEBUG: 		Start:	 Iteration 26
+2016-08-24 11:09:00,929 DEBUG: 			View 0 : 0.316455696203
+2016-08-24 11:09:00,937 DEBUG: 			View 1 : 0.29746835443
+2016-08-24 11:09:00,974 DEBUG: 			View 2 : 0.632911392405
+2016-08-24 11:09:00,981 DEBUG: 			View 3 : 0.544303797468
+2016-08-24 11:09:01,092 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:09:02,722 DEBUG: 		Start:	 Iteration 27
+2016-08-24 11:09:02,739 DEBUG: 			View 0 : 0.53164556962
+2016-08-24 11:09:02,747 DEBUG: 			View 1 : 0.620253164557
+2016-08-24 11:09:02,783 DEBUG: 			View 2 : 0.594936708861
+2016-08-24 11:09:02,791 DEBUG: 			View 3 : 0.53164556962
+2016-08-24 11:09:02,898 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:09:04,562 DEBUG: 		Start:	 Iteration 28
+2016-08-24 11:09:04,579 DEBUG: 			View 0 : 0.398734177215
+2016-08-24 11:09:04,587 DEBUG: 			View 1 : 0.487341772152
+2016-08-24 11:09:04,623 DEBUG: 			View 2 : 0.449367088608
+2016-08-24 11:09:04,631 DEBUG: 			View 3 : 0.537974683544
+2016-08-24 11:09:04,742 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:09:06,650 DEBUG: 		Start:	 Iteration 29
+2016-08-24 11:09:06,666 DEBUG: 			View 0 : 0.544303797468
+2016-08-24 11:09:06,674 DEBUG: 			View 1 : 0.708860759494
+2016-08-24 11:09:06,711 DEBUG: 			View 2 : 0.462025316456
+2016-08-24 11:09:06,719 DEBUG: 			View 3 : 0.575949367089
+2016-08-24 11:09:06,836 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:09:08,697 DEBUG: 		Start:	 Iteration 30
+2016-08-24 11:09:08,714 DEBUG: 			View 0 : 0.46835443038
+2016-08-24 11:09:08,721 DEBUG: 			View 1 : 0.512658227848
+2016-08-24 11:09:08,759 DEBUG: 			View 2 : 0.424050632911
+2016-08-24 11:09:08,766 DEBUG: 			View 3 : 0.462025316456
+2016-08-24 11:09:08,882 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:09:10,855 DEBUG: 		Start:	 Iteration 31
+2016-08-24 11:09:10,874 DEBUG: 			View 0 : 0.563291139241
+2016-08-24 11:09:10,882 DEBUG: 			View 1 : 0.335443037975
+2016-08-24 11:09:10,922 DEBUG: 			View 2 : 0.512658227848
+2016-08-24 11:09:10,930 DEBUG: 			View 3 : 0.487341772152
+2016-08-24 11:09:11,065 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:09:13,022 DEBUG: 		Start:	 Iteration 32
+2016-08-24 11:09:13,039 DEBUG: 			View 0 : 0.424050632911
+2016-08-24 11:09:13,047 DEBUG: 			View 1 : 0.632911392405
+2016-08-24 11:09:13,089 DEBUG: 			View 2 : 0.474683544304
+2016-08-24 11:09:13,097 DEBUG: 			View 3 : 0.582278481013
+2016-08-24 11:09:13,225 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:09:15,276 DEBUG: 		Start:	 Iteration 33
+2016-08-24 11:09:15,292 DEBUG: 			View 0 : 0.493670886076
+2016-08-24 11:09:15,300 DEBUG: 			View 1 : 0.651898734177
+2016-08-24 11:09:15,340 DEBUG: 			View 2 : 0.462025316456
+2016-08-24 11:09:15,349 DEBUG: 			View 3 : 0.367088607595
+2016-08-24 11:09:15,480 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:09:17,640 DEBUG: 		Start:	 Iteration 34
+2016-08-24 11:09:17,656 DEBUG: 			View 0 : 0.455696202532
+2016-08-24 11:09:17,664 DEBUG: 			View 1 : 0.79746835443
+2016-08-24 11:09:17,701 DEBUG: 			View 2 : 0.594936708861
+2016-08-24 11:09:17,708 DEBUG: 			View 3 : 0.594936708861
+2016-08-24 11:09:17,832 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:09:19,911 DEBUG: 		Start:	 Iteration 35
+2016-08-24 11:09:19,928 DEBUG: 			View 0 : 0.575949367089
+2016-08-24 11:09:19,935 DEBUG: 			View 1 : 0.601265822785
+2016-08-24 11:09:19,971 DEBUG: 			View 2 : 0.613924050633
+2016-08-24 11:09:19,979 DEBUG: 			View 3 : 0.443037974684
+2016-08-24 11:09:20,105 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:09:22,296 DEBUG: 		Start:	 Iteration 36
+2016-08-24 11:09:22,312 DEBUG: 			View 0 : 0.639240506329
+2016-08-24 11:09:22,320 DEBUG: 			View 1 : 0.550632911392
+2016-08-24 11:09:22,357 DEBUG: 			View 2 : 0.424050632911
+2016-08-24 11:09:22,365 DEBUG: 			View 3 : 0.474683544304
+2016-08-24 11:09:22,498 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:09:24,768 DEBUG: 		Start:	 Iteration 37
+2016-08-24 11:09:24,785 DEBUG: 			View 0 : 0.455696202532
+2016-08-24 11:09:24,792 DEBUG: 			View 1 : 0.677215189873
+2016-08-24 11:09:24,831 DEBUG: 			View 2 : 0.46835443038
+2016-08-24 11:09:24,838 DEBUG: 			View 3 : 0.518987341772
+2016-08-24 11:09:24,970 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:09:27,288 DEBUG: 		Start:	 Iteration 38
+2016-08-24 11:09:27,305 DEBUG: 			View 0 : 0.411392405063
+2016-08-24 11:09:27,313 DEBUG: 			View 1 : 0.46835443038
+2016-08-24 11:09:27,350 DEBUG: 			View 2 : 0.436708860759
+2016-08-24 11:09:27,357 DEBUG: 			View 3 : 0.474683544304
+2016-08-24 11:09:27,358 WARNING: WARNING:	All bad for iteration 37
+2016-08-24 11:09:27,495 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:09:29,938 DEBUG: 		Start:	 Iteration 39
+2016-08-24 11:09:29,954 DEBUG: 			View 0 : 0.563291139241
+2016-08-24 11:09:29,962 DEBUG: 			View 1 : 0.379746835443
+2016-08-24 11:09:29,998 DEBUG: 			View 2 : 0.430379746835
+2016-08-24 11:09:30,006 DEBUG: 			View 3 : 0.443037974684
+2016-08-24 11:09:30,143 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:09:32,730 DEBUG: 		Start:	 Iteration 40
+2016-08-24 11:09:32,748 DEBUG: 			View 0 : 0.462025316456
+2016-08-24 11:09:32,755 DEBUG: 			View 1 : 0.626582278481
+2016-08-24 11:09:32,797 DEBUG: 			View 2 : 0.411392405063
+2016-08-24 11:09:32,804 DEBUG: 			View 3 : 0.53164556962
+2016-08-24 11:09:32,941 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:09:35,450 DEBUG: 		Start:	 Iteration 41
+2016-08-24 11:09:35,467 DEBUG: 			View 0 : 0.556962025316
+2016-08-24 11:09:35,474 DEBUG: 			View 1 : 0.620253164557
+2016-08-24 11:09:35,511 DEBUG: 			View 2 : 0.443037974684
+2016-08-24 11:09:35,518 DEBUG: 			View 3 : 0.594936708861
+2016-08-24 11:09:35,658 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:09:38,266 DEBUG: 		Start:	 Iteration 42
+2016-08-24 11:09:38,283 DEBUG: 			View 0 : 0.632911392405
+2016-08-24 11:09:38,290 DEBUG: 			View 1 : 0.582278481013
+2016-08-24 11:09:38,328 DEBUG: 			View 2 : 0.550632911392
+2016-08-24 11:09:38,335 DEBUG: 			View 3 : 0.398734177215
+2016-08-24 11:09:38,481 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:09:41,096 DEBUG: 		Start:	 Iteration 43
+2016-08-24 11:09:41,113 DEBUG: 			View 0 : 0.430379746835
+2016-08-24 11:09:41,121 DEBUG: 			View 1 : 0.613924050633
+2016-08-24 11:09:41,158 DEBUG: 			View 2 : 0.474683544304
+2016-08-24 11:09:41,165 DEBUG: 			View 3 : 0.512658227848
+2016-08-24 11:09:41,315 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:09:43,945 DEBUG: 		Start:	 Iteration 44
+2016-08-24 11:09:43,961 DEBUG: 			View 0 : 0.462025316456
+2016-08-24 11:09:43,969 DEBUG: 			View 1 : 0.537974683544
+2016-08-24 11:09:44,024 DEBUG: 			View 2 : 0.594936708861
+2016-08-24 11:09:44,038 DEBUG: 			View 3 : 0.411392405063
+2016-08-24 11:09:44,211 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:09:46,944 DEBUG: 		Start:	 Iteration 45
+2016-08-24 11:09:46,961 DEBUG: 			View 0 : 0.53164556962
+2016-08-24 11:09:46,968 DEBUG: 			View 1 : 0.626582278481
+2016-08-24 11:09:47,006 DEBUG: 			View 2 : 0.506329113924
+2016-08-24 11:09:47,014 DEBUG: 			View 3 : 0.462025316456
+2016-08-24 11:09:47,164 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:09:49,893 DEBUG: 		Start:	 Iteration 46
+2016-08-24 11:09:49,910 DEBUG: 			View 0 : 0.348101265823
+2016-08-24 11:09:49,917 DEBUG: 			View 1 : 0.607594936709
+2016-08-24 11:09:49,954 DEBUG: 			View 2 : 0.632911392405
+2016-08-24 11:09:49,962 DEBUG: 			View 3 : 0.556962025316
+2016-08-24 11:09:50,111 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:09:52,926 DEBUG: 		Start:	 Iteration 47
+2016-08-24 11:09:52,943 DEBUG: 			View 0 : 0.518987341772
+2016-08-24 11:09:52,951 DEBUG: 			View 1 : 0.664556962025
+2016-08-24 11:09:52,987 DEBUG: 			View 2 : 0.417721518987
+2016-08-24 11:09:52,995 DEBUG: 			View 3 : 0.582278481013
+2016-08-24 11:09:53,147 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:09:56,001 DEBUG: 		Start:	 Iteration 48
+2016-08-24 11:09:56,017 DEBUG: 			View 0 : 0.487341772152
+2016-08-24 11:09:56,025 DEBUG: 			View 1 : 0.689873417722
+2016-08-24 11:09:56,063 DEBUG: 			View 2 : 0.411392405063
+2016-08-24 11:09:56,071 DEBUG: 			View 3 : 0.449367088608
+2016-08-24 11:09:56,226 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:09:59,142 DEBUG: 		Start:	 Iteration 49
+2016-08-24 11:09:59,158 DEBUG: 			View 0 : 0.360759493671
+2016-08-24 11:09:59,166 DEBUG: 			View 1 : 0.392405063291
+2016-08-24 11:09:59,202 DEBUG: 			View 2 : 0.398734177215
+2016-08-24 11:09:59,210 DEBUG: 			View 3 : 0.607594936709
+2016-08-24 11:09:59,368 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:10:02,340 DEBUG: 		Start:	 Iteration 50
+2016-08-24 11:10:02,356 DEBUG: 			View 0 : 0.518987341772
+2016-08-24 11:10:02,364 DEBUG: 			View 1 : 0.5
+2016-08-24 11:10:02,400 DEBUG: 			View 2 : 0.430379746835
+2016-08-24 11:10:02,408 DEBUG: 			View 3 : 0.556962025316
+2016-08-24 11:10:02,569 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:10:05,711 DEBUG: 		Start:	 Iteration 51
+2016-08-24 11:10:05,734 DEBUG: 			View 0 : 0.518987341772
+2016-08-24 11:10:05,747 DEBUG: 			View 1 : 0.373417721519
+2016-08-24 11:10:05,793 DEBUG: 			View 2 : 0.518987341772
+2016-08-24 11:10:05,801 DEBUG: 			View 3 : 0.556962025316
+2016-08-24 11:10:05,984 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:10:09,117 DEBUG: 		Start:	 Iteration 52
+2016-08-24 11:10:09,133 DEBUG: 			View 0 : 0.430379746835
+2016-08-24 11:10:09,141 DEBUG: 			View 1 : 0.645569620253
+2016-08-24 11:10:09,178 DEBUG: 			View 2 : 0.556962025316
+2016-08-24 11:10:09,185 DEBUG: 			View 3 : 0.658227848101
+2016-08-24 11:10:09,351 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:10:12,580 DEBUG: 		Start:	 Iteration 53
+2016-08-24 11:10:12,600 DEBUG: 			View 0 : 0.550632911392
+2016-08-24 11:10:12,609 DEBUG: 			View 1 : 0.639240506329
+2016-08-24 11:10:12,649 DEBUG: 			View 2 : 0.525316455696
+2016-08-24 11:10:12,657 DEBUG: 			View 3 : 0.487341772152
+2016-08-24 11:10:12,836 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:10:16,117 DEBUG: 		Start:	 Iteration 54
+2016-08-24 11:10:16,135 DEBUG: 			View 0 : 0.481012658228
+2016-08-24 11:10:16,143 DEBUG: 			View 1 : 0.430379746835
+2016-08-24 11:10:16,180 DEBUG: 			View 2 : 0.607594936709
+2016-08-24 11:10:16,187 DEBUG: 			View 3 : 0.582278481013
+2016-08-24 11:10:16,358 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:10:19,696 DEBUG: 		Start:	 Iteration 55
+2016-08-24 11:10:19,712 DEBUG: 			View 0 : 0.594936708861
+2016-08-24 11:10:19,720 DEBUG: 			View 1 : 0.607594936709
+2016-08-24 11:10:19,756 DEBUG: 			View 2 : 0.512658227848
+2016-08-24 11:10:19,764 DEBUG: 			View 3 : 0.5
+2016-08-24 11:10:19,935 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:10:23,272 DEBUG: 		Start:	 Iteration 56
+2016-08-24 11:10:23,289 DEBUG: 			View 0 : 0.563291139241
+2016-08-24 11:10:23,297 DEBUG: 			View 1 : 0.405063291139
+2016-08-24 11:10:23,334 DEBUG: 			View 2 : 0.575949367089
+2016-08-24 11:10:23,341 DEBUG: 			View 3 : 0.594936708861
+2016-08-24 11:10:23,515 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:10:26,942 DEBUG: 		Start:	 Iteration 57
+2016-08-24 11:10:26,959 DEBUG: 			View 0 : 0.481012658228
+2016-08-24 11:10:26,966 DEBUG: 			View 1 : 0.5
+2016-08-24 11:10:27,003 DEBUG: 			View 2 : 0.512658227848
+2016-08-24 11:10:27,011 DEBUG: 			View 3 : 0.563291139241
+2016-08-24 11:10:27,189 DEBUG: 			 Best view : 		Clinic_
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-111030-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-111030-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..eef88fa91eec1a705104f8e957e945116b464be1
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-111030-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,32 @@
+2016-08-24 11:10:30,661 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 11:10:30,661 INFO: Info:	 Labels used: No, Yes
+2016-08-24 11:10:30,662 INFO: Info:	 Length of dataset:347
+2016-08-24 11:10:30,663 INFO: ### Main Programm for Multiview Classification
+2016-08-24 11:10:30,663 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 11:10:30,664 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 11:10:30,664 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 11:10:30,664 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 11:10:30,665 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 11:10:30,665 INFO: Done:	 Read Database Files
+2016-08-24 11:10:30,665 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 11:10:30,668 INFO: Done:	 Determine validation split
+2016-08-24 11:10:30,669 INFO: Start:	 Determine 2 folds
+2016-08-24 11:10:30,679 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 11:10:30,679 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 11:10:30,679 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 11:10:30,679 INFO: Done:	 Determine folds
+2016-08-24 11:10:30,679 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 11:10:30,679 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 11:10:30,679 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl_
+2016-08-24 11:10:38,124 DEBUG: 	Info:	 Best Reslut : 0.515158501441
+2016-08-24 11:10:38,124 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 11:10:38,125 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA__
+2016-08-24 11:10:40,053 DEBUG: 	Info:	 Best Reslut : 0.546397694524
+2016-08-24 11:10:40,053 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 11:10:40,053 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq_
+2016-08-24 11:10:57,326 DEBUG: 	Info:	 Best Reslut : 0.501268011527
+2016-08-24 11:10:57,327 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 11:10:57,327 DEBUG: 	Start:	 Gridsearch for DecisionTree on Clinic_
+2016-08-24 11:10:59,071 DEBUG: 	Info:	 Best Reslut : 0.510086455331
+2016-08-24 11:10:59,072 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 11:10:59,072 DEBUG: 	Start:	 Gridsearch for DecisionTree on MRNASeq
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-111136-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-111136-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..30b218573d57c9089f6b925e93d4e4a0f0836842
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-111136-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,391 @@
+2016-08-24 11:11:36,038 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 11:11:36,039 INFO: Info:	 Labels used: No, Yes
+2016-08-24 11:11:36,039 INFO: Info:	 Length of dataset:347
+2016-08-24 11:11:36,040 INFO: ### Main Programm for Multiview Classification
+2016-08-24 11:11:36,041 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 11:11:36,041 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 11:11:36,041 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 11:11:36,042 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 11:11:36,042 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 11:11:36,042 INFO: Done:	 Read Database Files
+2016-08-24 11:11:36,043 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 11:11:36,046 INFO: Done:	 Determine validation split
+2016-08-24 11:11:36,046 INFO: Start:	 Determine 2 folds
+2016-08-24 11:11:36,054 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 11:11:36,054 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 11:11:36,054 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 11:11:36,054 INFO: Done:	 Determine folds
+2016-08-24 11:11:36,054 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 11:11:36,054 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 11:11:36,055 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl_
+2016-08-24 11:11:43,470 DEBUG: 		Info:	 Best Reslut : 0.506570605187
+2016-08-24 11:11:43,470 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 11:11:43,470 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA__
+2016-08-24 11:11:45,393 DEBUG: 		Info:	 Best Reslut : 0.596080691643
+2016-08-24 11:11:45,393 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 11:11:45,394 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq_
+2016-08-24 11:12:02,118 DEBUG: 		Info:	 Best Reslut : 0.520922190202
+2016-08-24 11:12:02,119 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 11:12:02,119 DEBUG: 	Start:	 Gridsearch for DecisionTree on Clinic_
+2016-08-24 11:12:03,876 DEBUG: 		Info:	 Best Reslut : 0.504553314121
+2016-08-24 11:12:03,877 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 11:12:03,877 DEBUG: 	Start:	 Gridsearch for DecisionTree on MRNASeq
+2016-08-24 11:12:41,748 DEBUG: 		Info:	 Best Reslut : 0.515216138329
+2016-08-24 11:12:41,749 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 11:12:41,749 INFO: Done:	 Gridsearching best settings for monoview classifiers
+2016-08-24 11:12:41,749 INFO: 	Start:	 Fold number 1
+2016-08-24 11:12:43,406 DEBUG: 		Start:	 Iteration 1
+2016-08-24 11:12:43,425 DEBUG: 			View 0 : 0.639240506329
+2016-08-24 11:12:43,433 DEBUG: 			View 1 : 0.620253164557
+2016-08-24 11:12:43,471 DEBUG: 			View 2 : 0.474683544304
+2016-08-24 11:12:43,479 DEBUG: 			View 3 : 0.379746835443
+2016-08-24 11:12:43,520 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:12:43,596 DEBUG: 		Start:	 Iteration 2
+2016-08-24 11:12:43,614 DEBUG: 			View 0 : 0.620253164557
+2016-08-24 11:12:43,621 DEBUG: 			View 1 : 0.398734177215
+2016-08-24 11:12:43,658 DEBUG: 			View 2 : 0.398734177215
+2016-08-24 11:12:43,666 DEBUG: 			View 3 : 0.518987341772
+2016-08-24 11:12:43,711 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:12:43,849 DEBUG: 		Start:	 Iteration 3
+2016-08-24 11:12:43,866 DEBUG: 			View 0 : 0.569620253165
+2016-08-24 11:12:43,874 DEBUG: 			View 1 : 0.436708860759
+2016-08-24 11:12:43,911 DEBUG: 			View 2 : 0.411392405063
+2016-08-24 11:12:43,918 DEBUG: 			View 3 : 0.430379746835
+2016-08-24 11:12:43,972 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:12:44,173 DEBUG: 		Start:	 Iteration 4
+2016-08-24 11:12:44,189 DEBUG: 			View 0 : 0.575949367089
+2016-08-24 11:12:44,197 DEBUG: 			View 1 : 0.512658227848
+2016-08-24 11:12:44,234 DEBUG: 			View 2 : 0.474683544304
+2016-08-24 11:12:44,242 DEBUG: 			View 3 : 0.411392405063
+2016-08-24 11:12:44,298 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:12:44,560 DEBUG: 		Start:	 Iteration 5
+2016-08-24 11:12:44,576 DEBUG: 			View 0 : 0.759493670886
+2016-08-24 11:12:44,584 DEBUG: 			View 1 : 0.569620253165
+2016-08-24 11:12:44,621 DEBUG: 			View 2 : 0.398734177215
+2016-08-24 11:12:44,628 DEBUG: 			View 3 : 0.518987341772
+2016-08-24 11:12:44,687 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:12:45,011 DEBUG: 		Start:	 Iteration 6
+2016-08-24 11:12:45,027 DEBUG: 			View 0 : 0.474683544304
+2016-08-24 11:12:45,035 DEBUG: 			View 1 : 0.46835443038
+2016-08-24 11:12:45,072 DEBUG: 			View 2 : 0.601265822785
+2016-08-24 11:12:45,080 DEBUG: 			View 3 : 0.53164556962
+2016-08-24 11:12:45,140 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:12:45,549 DEBUG: 		Start:	 Iteration 7
+2016-08-24 11:12:45,565 DEBUG: 			View 0 : 0.620253164557
+2016-08-24 11:12:45,574 DEBUG: 			View 1 : 0.392405063291
+2016-08-24 11:12:45,610 DEBUG: 			View 2 : 0.53164556962
+2016-08-24 11:12:45,618 DEBUG: 			View 3 : 0.5
+2016-08-24 11:12:45,681 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:12:46,144 DEBUG: 		Start:	 Iteration 8
+2016-08-24 11:12:46,161 DEBUG: 			View 0 : 0.449367088608
+2016-08-24 11:12:46,169 DEBUG: 			View 1 : 0.436708860759
+2016-08-24 11:12:46,205 DEBUG: 			View 2 : 0.525316455696
+2016-08-24 11:12:46,213 DEBUG: 			View 3 : 0.506329113924
+2016-08-24 11:12:46,277 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:12:46,809 DEBUG: 		Start:	 Iteration 9
+2016-08-24 11:12:46,825 DEBUG: 			View 0 : 0.487341772152
+2016-08-24 11:12:46,833 DEBUG: 			View 1 : 0.658227848101
+2016-08-24 11:12:46,870 DEBUG: 			View 2 : 0.462025316456
+2016-08-24 11:12:46,877 DEBUG: 			View 3 : 0.481012658228
+2016-08-24 11:12:46,944 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:12:47,535 DEBUG: 		Start:	 Iteration 10
+2016-08-24 11:12:47,552 DEBUG: 			View 0 : 0.474683544304
+2016-08-24 11:12:47,560 DEBUG: 			View 1 : 0.588607594937
+2016-08-24 11:12:47,596 DEBUG: 			View 2 : 0.411392405063
+2016-08-24 11:12:47,604 DEBUG: 			View 3 : 0.525316455696
+2016-08-24 11:12:47,673 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:12:48,319 DEBUG: 		Start:	 Iteration 11
+2016-08-24 11:12:48,336 DEBUG: 			View 0 : 0.46835443038
+2016-08-24 11:12:48,344 DEBUG: 			View 1 : 0.639240506329
+2016-08-24 11:12:48,380 DEBUG: 			View 2 : 0.537974683544
+2016-08-24 11:12:48,388 DEBUG: 			View 3 : 0.53164556962
+2016-08-24 11:12:48,460 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:12:49,176 DEBUG: 		Start:	 Iteration 12
+2016-08-24 11:12:49,193 DEBUG: 			View 0 : 0.411392405063
+2016-08-24 11:12:49,201 DEBUG: 			View 1 : 0.626582278481
+2016-08-24 11:12:49,239 DEBUG: 			View 2 : 0.379746835443
+2016-08-24 11:12:49,247 DEBUG: 			View 3 : 0.607594936709
+2016-08-24 11:12:49,323 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:12:50,095 DEBUG: 		Start:	 Iteration 13
+2016-08-24 11:12:50,112 DEBUG: 			View 0 : 0.46835443038
+2016-08-24 11:12:50,120 DEBUG: 			View 1 : 0.405063291139
+2016-08-24 11:12:50,157 DEBUG: 			View 2 : 0.474683544304
+2016-08-24 11:12:50,165 DEBUG: 			View 3 : 0.582278481013
+2016-08-24 11:12:50,241 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:12:51,101 DEBUG: 		Start:	 Iteration 14
+2016-08-24 11:12:51,117 DEBUG: 			View 0 : 0.569620253165
+2016-08-24 11:12:51,125 DEBUG: 			View 1 : 0.594936708861
+2016-08-24 11:12:51,162 DEBUG: 			View 2 : 0.424050632911
+2016-08-24 11:12:51,170 DEBUG: 			View 3 : 0.392405063291
+2016-08-24 11:12:51,248 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:12:52,146 DEBUG: 		Start:	 Iteration 15
+2016-08-24 11:12:52,163 DEBUG: 			View 0 : 0.594936708861
+2016-08-24 11:12:52,171 DEBUG: 			View 1 : 0.651898734177
+2016-08-24 11:12:52,208 DEBUG: 			View 2 : 0.411392405063
+2016-08-24 11:12:52,215 DEBUG: 			View 3 : 0.5
+2016-08-24 11:12:52,297 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:12:53,236 DEBUG: 		Start:	 Iteration 16
+2016-08-24 11:12:53,252 DEBUG: 			View 0 : 0.386075949367
+2016-08-24 11:12:53,260 DEBUG: 			View 1 : 0.518987341772
+2016-08-24 11:12:53,297 DEBUG: 			View 2 : 0.588607594937
+2016-08-24 11:12:53,305 DEBUG: 			View 3 : 0.53164556962
+2016-08-24 11:12:53,388 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:12:54,407 DEBUG: 		Start:	 Iteration 17
+2016-08-24 11:12:54,424 DEBUG: 			View 0 : 0.626582278481
+2016-08-24 11:12:54,432 DEBUG: 			View 1 : 0.550632911392
+2016-08-24 11:12:54,469 DEBUG: 			View 2 : 0.5
+2016-08-24 11:12:54,476 DEBUG: 			View 3 : 0.373417721519
+2016-08-24 11:12:54,562 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:12:55,640 DEBUG: 		Start:	 Iteration 18
+2016-08-24 11:12:55,657 DEBUG: 			View 0 : 0.424050632911
+2016-08-24 11:12:55,665 DEBUG: 			View 1 : 0.398734177215
+2016-08-24 11:12:55,701 DEBUG: 			View 2 : 0.658227848101
+2016-08-24 11:12:55,709 DEBUG: 			View 3 : 0.525316455696
+2016-08-24 11:12:55,796 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:12:56,943 DEBUG: 		Start:	 Iteration 19
+2016-08-24 11:12:56,960 DEBUG: 			View 0 : 0.556962025316
+2016-08-24 11:12:56,968 DEBUG: 			View 1 : 0.392405063291
+2016-08-24 11:12:57,005 DEBUG: 			View 2 : 0.613924050633
+2016-08-24 11:12:57,013 DEBUG: 			View 3 : 0.677215189873
+2016-08-24 11:12:57,105 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:12:58,305 DEBUG: 		Start:	 Iteration 20
+2016-08-24 11:12:58,322 DEBUG: 			View 0 : 0.417721518987
+2016-08-24 11:12:58,330 DEBUG: 			View 1 : 0.436708860759
+2016-08-24 11:12:58,367 DEBUG: 			View 2 : 0.411392405063
+2016-08-24 11:12:58,374 DEBUG: 			View 3 : 0.443037974684
+2016-08-24 11:12:58,374 WARNING: WARNING:	All bad for iteration 19
+2016-08-24 11:12:58,467 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:12:59,738 DEBUG: 		Start:	 Iteration 21
+2016-08-24 11:12:59,755 DEBUG: 			View 0 : 0.430379746835
+2016-08-24 11:12:59,763 DEBUG: 			View 1 : 0.506329113924
+2016-08-24 11:12:59,800 DEBUG: 			View 2 : 0.493670886076
+2016-08-24 11:12:59,807 DEBUG: 			View 3 : 0.632911392405
+2016-08-24 11:12:59,904 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:13:01,234 DEBUG: 		Start:	 Iteration 22
+2016-08-24 11:13:01,251 DEBUG: 			View 0 : 0.462025316456
+2016-08-24 11:13:01,259 DEBUG: 			View 1 : 0.506329113924
+2016-08-24 11:13:01,296 DEBUG: 			View 2 : 0.620253164557
+2016-08-24 11:13:01,304 DEBUG: 			View 3 : 0.575949367089
+2016-08-24 11:13:01,401 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:13:02,803 DEBUG: 		Start:	 Iteration 23
+2016-08-24 11:13:02,820 DEBUG: 			View 0 : 0.607594936709
+2016-08-24 11:13:02,828 DEBUG: 			View 1 : 0.518987341772
+2016-08-24 11:13:02,866 DEBUG: 			View 2 : 0.436708860759
+2016-08-24 11:13:02,874 DEBUG: 			View 3 : 0.436708860759
+2016-08-24 11:13:02,973 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:13:04,490 DEBUG: 		Start:	 Iteration 24
+2016-08-24 11:13:04,508 DEBUG: 			View 0 : 0.316455696203
+2016-08-24 11:13:04,515 DEBUG: 			View 1 : 0.373417721519
+2016-08-24 11:13:04,552 DEBUG: 			View 2 : 0.588607594937
+2016-08-24 11:13:04,560 DEBUG: 			View 3 : 0.487341772152
+2016-08-24 11:13:04,661 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:13:06,180 DEBUG: 		Start:	 Iteration 25
+2016-08-24 11:13:06,198 DEBUG: 			View 0 : 0.569620253165
+2016-08-24 11:13:06,206 DEBUG: 			View 1 : 0.436708860759
+2016-08-24 11:13:06,243 DEBUG: 			View 2 : 0.556962025316
+2016-08-24 11:13:06,250 DEBUG: 			View 3 : 0.392405063291
+2016-08-24 11:13:06,355 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:13:07,932 DEBUG: 		Start:	 Iteration 26
+2016-08-24 11:13:07,948 DEBUG: 			View 0 : 0.512658227848
+2016-08-24 11:13:07,956 DEBUG: 			View 1 : 0.689873417722
+2016-08-24 11:13:07,993 DEBUG: 			View 2 : 0.537974683544
+2016-08-24 11:13:08,001 DEBUG: 			View 3 : 0.417721518987
+2016-08-24 11:13:08,107 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:13:09,754 DEBUG: 		Start:	 Iteration 27
+2016-08-24 11:13:09,770 DEBUG: 			View 0 : 0.462025316456
+2016-08-24 11:13:09,778 DEBUG: 			View 1 : 0.588607594937
+2016-08-24 11:13:09,815 DEBUG: 			View 2 : 0.607594936709
+2016-08-24 11:13:09,823 DEBUG: 			View 3 : 0.46835443038
+2016-08-24 11:13:09,931 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:13:11,652 DEBUG: 		Start:	 Iteration 28
+2016-08-24 11:13:11,668 DEBUG: 			View 0 : 0.588607594937
+2016-08-24 11:13:11,676 DEBUG: 			View 1 : 0.569620253165
+2016-08-24 11:13:11,714 DEBUG: 			View 2 : 0.582278481013
+2016-08-24 11:13:11,722 DEBUG: 			View 3 : 0.537974683544
+2016-08-24 11:13:11,832 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:13:13,601 DEBUG: 		Start:	 Iteration 29
+2016-08-24 11:13:13,617 DEBUG: 			View 0 : 0.645569620253
+2016-08-24 11:13:13,625 DEBUG: 			View 1 : 0.5
+2016-08-24 11:13:13,663 DEBUG: 			View 2 : 0.556962025316
+2016-08-24 11:13:13,670 DEBUG: 			View 3 : 0.645569620253
+2016-08-24 11:13:13,786 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:13:15,623 DEBUG: 		Start:	 Iteration 30
+2016-08-24 11:13:15,640 DEBUG: 			View 0 : 0.518987341772
+2016-08-24 11:13:15,648 DEBUG: 			View 1 : 0.46835443038
+2016-08-24 11:13:15,685 DEBUG: 			View 2 : 0.506329113924
+2016-08-24 11:13:15,693 DEBUG: 			View 3 : 0.481012658228
+2016-08-24 11:13:15,810 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:13:17,695 DEBUG: 		Start:	 Iteration 31
+2016-08-24 11:13:17,711 DEBUG: 			View 0 : 0.645569620253
+2016-08-24 11:13:17,719 DEBUG: 			View 1 : 0.544303797468
+2016-08-24 11:13:17,755 DEBUG: 			View 2 : 0.493670886076
+2016-08-24 11:13:17,763 DEBUG: 			View 3 : 0.386075949367
+2016-08-24 11:13:17,880 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:13:19,816 DEBUG: 		Start:	 Iteration 32
+2016-08-24 11:13:19,832 DEBUG: 			View 0 : 0.436708860759
+2016-08-24 11:13:19,840 DEBUG: 			View 1 : 0.430379746835
+2016-08-24 11:13:19,877 DEBUG: 			View 2 : 0.569620253165
+2016-08-24 11:13:19,885 DEBUG: 			View 3 : 0.563291139241
+2016-08-24 11:13:20,004 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:13:21,998 DEBUG: 		Start:	 Iteration 33
+2016-08-24 11:13:22,015 DEBUG: 			View 0 : 0.487341772152
+2016-08-24 11:13:22,023 DEBUG: 			View 1 : 0.417721518987
+2016-08-24 11:13:22,060 DEBUG: 			View 2 : 0.506329113924
+2016-08-24 11:13:22,067 DEBUG: 			View 3 : 0.556962025316
+2016-08-24 11:13:22,189 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:13:24,238 DEBUG: 		Start:	 Iteration 34
+2016-08-24 11:13:24,255 DEBUG: 			View 0 : 0.582278481013
+2016-08-24 11:13:24,263 DEBUG: 			View 1 : 0.348101265823
+2016-08-24 11:13:24,299 DEBUG: 			View 2 : 0.462025316456
+2016-08-24 11:13:24,307 DEBUG: 			View 3 : 0.525316455696
+2016-08-24 11:13:24,431 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:13:26,552 DEBUG: 		Start:	 Iteration 35
+2016-08-24 11:13:26,568 DEBUG: 			View 0 : 0.367088607595
+2016-08-24 11:13:26,576 DEBUG: 			View 1 : 0.588607594937
+2016-08-24 11:13:26,613 DEBUG: 			View 2 : 0.398734177215
+2016-08-24 11:13:26,621 DEBUG: 			View 3 : 0.563291139241
+2016-08-24 11:13:26,747 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:13:28,935 DEBUG: 		Start:	 Iteration 36
+2016-08-24 11:13:28,952 DEBUG: 			View 0 : 0.575949367089
+2016-08-24 11:13:28,960 DEBUG: 			View 1 : 0.518987341772
+2016-08-24 11:13:28,997 DEBUG: 			View 2 : 0.537974683544
+2016-08-24 11:13:29,004 DEBUG: 			View 3 : 0.46835443038
+2016-08-24 11:13:29,132 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:13:31,405 DEBUG: 		Start:	 Iteration 37
+2016-08-24 11:13:31,423 DEBUG: 			View 0 : 0.569620253165
+2016-08-24 11:13:31,431 DEBUG: 			View 1 : 0.556962025316
+2016-08-24 11:13:31,468 DEBUG: 			View 2 : 0.424050632911
+2016-08-24 11:13:31,476 DEBUG: 			View 3 : 0.563291139241
+2016-08-24 11:13:31,606 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:13:33,902 DEBUG: 		Start:	 Iteration 38
+2016-08-24 11:13:33,919 DEBUG: 			View 0 : 0.601265822785
+2016-08-24 11:13:33,927 DEBUG: 			View 1 : 0.367088607595
+2016-08-24 11:13:33,963 DEBUG: 			View 2 : 0.392405063291
+2016-08-24 11:13:33,971 DEBUG: 			View 3 : 0.639240506329
+2016-08-24 11:13:34,104 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:13:36,607 DEBUG: 		Start:	 Iteration 39
+2016-08-24 11:13:36,624 DEBUG: 			View 0 : 0.360759493671
+2016-08-24 11:13:36,631 DEBUG: 			View 1 : 0.405063291139
+2016-08-24 11:13:36,668 DEBUG: 			View 2 : 0.411392405063
+2016-08-24 11:13:36,676 DEBUG: 			View 3 : 0.575949367089
+2016-08-24 11:13:36,811 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:13:39,566 DEBUG: 		Start:	 Iteration 40
+2016-08-24 11:13:39,594 DEBUG: 			View 0 : 0.550632911392
+2016-08-24 11:13:39,608 DEBUG: 			View 1 : 0.449367088608
+2016-08-24 11:13:39,662 DEBUG: 			View 2 : 0.474683544304
+2016-08-24 11:13:39,675 DEBUG: 			View 3 : 0.493670886076
+2016-08-24 11:13:39,892 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:13:42,508 DEBUG: 		Start:	 Iteration 41
+2016-08-24 11:13:42,525 DEBUG: 			View 0 : 0.46835443038
+2016-08-24 11:13:42,533 DEBUG: 			View 1 : 0.506329113924
+2016-08-24 11:13:42,570 DEBUG: 			View 2 : 0.506329113924
+2016-08-24 11:13:42,578 DEBUG: 			View 3 : 0.53164556962
+2016-08-24 11:13:42,720 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:13:45,271 DEBUG: 		Start:	 Iteration 42
+2016-08-24 11:13:45,289 DEBUG: 			View 0 : 0.53164556962
+2016-08-24 11:13:45,297 DEBUG: 			View 1 : 0.670886075949
+2016-08-24 11:13:45,334 DEBUG: 			View 2 : 0.537974683544
+2016-08-24 11:13:45,342 DEBUG: 			View 3 : 0.436708860759
+2016-08-24 11:13:45,484 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:13:48,085 DEBUG: 		Start:	 Iteration 43
+2016-08-24 11:13:48,102 DEBUG: 			View 0 : 0.443037974684
+2016-08-24 11:13:48,110 DEBUG: 			View 1 : 0.607594936709
+2016-08-24 11:13:48,147 DEBUG: 			View 2 : 0.487341772152
+2016-08-24 11:13:48,155 DEBUG: 			View 3 : 0.424050632911
+2016-08-24 11:13:48,299 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:13:50,954 DEBUG: 		Start:	 Iteration 44
+2016-08-24 11:13:50,970 DEBUG: 			View 0 : 0.443037974684
+2016-08-24 11:13:50,978 DEBUG: 			View 1 : 0.537974683544
+2016-08-24 11:13:51,016 DEBUG: 			View 2 : 0.481012658228
+2016-08-24 11:13:51,024 DEBUG: 			View 3 : 0.537974683544
+2016-08-24 11:13:51,170 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:13:53,901 DEBUG: 		Start:	 Iteration 45
+2016-08-24 11:13:53,918 DEBUG: 			View 0 : 0.474683544304
+2016-08-24 11:13:53,926 DEBUG: 			View 1 : 0.664556962025
+2016-08-24 11:13:53,963 DEBUG: 			View 2 : 0.443037974684
+2016-08-24 11:13:53,971 DEBUG: 			View 3 : 0.632911392405
+2016-08-24 11:13:54,120 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:13:57,012 DEBUG: 		Start:	 Iteration 46
+2016-08-24 11:13:57,030 DEBUG: 			View 0 : 0.411392405063
+2016-08-24 11:13:57,038 DEBUG: 			View 1 : 0.727848101266
+2016-08-24 11:13:57,077 DEBUG: 			View 2 : 0.436708860759
+2016-08-24 11:13:57,085 DEBUG: 			View 3 : 0.474683544304
+2016-08-24 11:13:57,239 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:14:00,114 DEBUG: 		Start:	 Iteration 47
+2016-08-24 11:14:00,131 DEBUG: 			View 0 : 0.487341772152
+2016-08-24 11:14:00,138 DEBUG: 			View 1 : 0.607594936709
+2016-08-24 11:14:00,175 DEBUG: 			View 2 : 0.449367088608
+2016-08-24 11:14:00,183 DEBUG: 			View 3 : 0.525316455696
+2016-08-24 11:14:00,338 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:14:03,280 DEBUG: 		Start:	 Iteration 48
+2016-08-24 11:14:03,297 DEBUG: 			View 0 : 0.544303797468
+2016-08-24 11:14:03,304 DEBUG: 			View 1 : 0.613924050633
+2016-08-24 11:14:03,341 DEBUG: 			View 2 : 0.518987341772
+2016-08-24 11:14:03,349 DEBUG: 			View 3 : 0.436708860759
+2016-08-24 11:14:03,509 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:14:06,498 DEBUG: 		Start:	 Iteration 49
+2016-08-24 11:14:06,514 DEBUG: 			View 0 : 0.392405063291
+2016-08-24 11:14:06,522 DEBUG: 			View 1 : 0.721518987342
+2016-08-24 11:14:06,559 DEBUG: 			View 2 : 0.405063291139
+2016-08-24 11:14:06,567 DEBUG: 			View 3 : 0.518987341772
+2016-08-24 11:14:06,728 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:14:09,769 DEBUG: 		Start:	 Iteration 50
+2016-08-24 11:14:09,789 DEBUG: 			View 0 : 0.462025316456
+2016-08-24 11:14:09,797 DEBUG: 			View 1 : 0.53164556962
+2016-08-24 11:14:09,839 DEBUG: 			View 2 : 0.53164556962
+2016-08-24 11:14:09,848 DEBUG: 			View 3 : 0.525316455696
+2016-08-24 11:14:10,022 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:14:13,136 DEBUG: 		Start:	 Iteration 51
+2016-08-24 11:14:13,152 DEBUG: 			View 0 : 0.582278481013
+2016-08-24 11:14:13,160 DEBUG: 			View 1 : 0.46835443038
+2016-08-24 11:14:13,197 DEBUG: 			View 2 : 0.563291139241
+2016-08-24 11:14:13,205 DEBUG: 			View 3 : 0.518987341772
+2016-08-24 11:14:13,366 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:14:16,488 DEBUG: 		Start:	 Iteration 52
+2016-08-24 11:14:16,505 DEBUG: 			View 0 : 0.373417721519
+2016-08-24 11:14:16,513 DEBUG: 			View 1 : 0.518987341772
+2016-08-24 11:14:16,550 DEBUG: 			View 2 : 0.386075949367
+2016-08-24 11:14:16,558 DEBUG: 			View 3 : 0.487341772152
+2016-08-24 11:14:16,722 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:14:19,893 DEBUG: 		Start:	 Iteration 53
+2016-08-24 11:14:19,910 DEBUG: 			View 0 : 0.563291139241
+2016-08-24 11:14:19,917 DEBUG: 			View 1 : 0.53164556962
+2016-08-24 11:14:19,954 DEBUG: 			View 2 : 0.537974683544
+2016-08-24 11:14:19,961 DEBUG: 			View 3 : 0.550632911392
+2016-08-24 11:14:20,128 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:14:23,363 DEBUG: 		Start:	 Iteration 54
+2016-08-24 11:14:23,380 DEBUG: 			View 0 : 0.613924050633
+2016-08-24 11:14:23,388 DEBUG: 			View 1 : 0.455696202532
+2016-08-24 11:14:23,425 DEBUG: 			View 2 : 0.601265822785
+2016-08-24 11:14:23,433 DEBUG: 			View 3 : 0.436708860759
+2016-08-24 11:14:23,601 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:14:26,896 DEBUG: 		Start:	 Iteration 55
+2016-08-24 11:14:26,913 DEBUG: 			View 0 : 0.493670886076
+2016-08-24 11:14:26,921 DEBUG: 			View 1 : 0.626582278481
+2016-08-24 11:14:26,958 DEBUG: 			View 2 : 0.455696202532
+2016-08-24 11:14:26,965 DEBUG: 			View 3 : 0.398734177215
+2016-08-24 11:14:27,137 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:14:30,496 DEBUG: 		Start:	 Iteration 56
+2016-08-24 11:14:30,513 DEBUG: 			View 0 : 0.550632911392
+2016-08-24 11:14:30,521 DEBUG: 			View 1 : 0.664556962025
+2016-08-24 11:14:30,558 DEBUG: 			View 2 : 0.588607594937
+2016-08-24 11:14:30,565 DEBUG: 			View 3 : 0.645569620253
+2016-08-24 11:14:30,739 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:14:34,390 DEBUG: 		Start:	 Iteration 57
+2016-08-24 11:14:34,414 DEBUG: 			View 0 : 0.506329113924
+2016-08-24 11:14:34,422 DEBUG: 			View 1 : 0.512658227848
+2016-08-24 11:14:34,460 DEBUG: 			View 2 : 0.46835443038
+2016-08-24 11:14:34,468 DEBUG: 			View 3 : 0.569620253165
+2016-08-24 11:14:34,648 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:14:38,374 DEBUG: 		Start:	 Iteration 58
+2016-08-24 11:14:38,391 DEBUG: 			View 0 : 0.639240506329
+2016-08-24 11:14:38,399 DEBUG: 			View 1 : 0.651898734177
+2016-08-24 11:14:38,436 DEBUG: 			View 2 : 0.398734177215
+2016-08-24 11:14:38,444 DEBUG: 			View 3 : 0.556962025316
+2016-08-24 11:14:38,627 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:14:42,400 DEBUG: 		Start:	 Iteration 59
+2016-08-24 11:14:42,419 DEBUG: 			View 0 : 0.620253164557
+2016-08-24 11:14:42,428 DEBUG: 			View 1 : 0.677215189873
+2016-08-24 11:14:42,471 DEBUG: 			View 2 : 0.411392405063
+2016-08-24 11:14:42,480 DEBUG: 			View 3 : 0.512658227848
+2016-08-24 11:14:42,689 DEBUG: 			 Best view : 		MiRNA__
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-111445-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-111445-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..52ce30c5ad85ac008cf378c0daf65475f8d8d800
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-111445-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,15314 @@
+2016-08-24 11:14:45,495 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 11:14:45,495 INFO: Info:	 Labels used: No, Yes
+2016-08-24 11:14:45,496 INFO: Info:	 Length of dataset:347
+2016-08-24 11:14:45,497 INFO: ### Main Programm for Multiview Classification
+2016-08-24 11:14:45,498 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 11:14:45,498 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 11:14:45,499 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 11:14:45,499 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 11:14:45,500 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 11:14:45,500 INFO: Done:	 Read Database Files
+2016-08-24 11:14:45,500 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 11:14:45,506 INFO: Done:	 Determine validation split
+2016-08-24 11:14:45,506 INFO: Start:	 Determine 2 folds
+2016-08-24 11:14:45,517 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 11:14:45,517 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 11:14:45,517 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 11:14:45,517 INFO: Done:	 Determine folds
+2016-08-24 11:14:45,518 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 11:14:45,518 INFO: 	Start:	 Fold number 1
+2016-08-24 11:14:47,122 DEBUG: 		Start:	 Iteration 1
+2016-08-24 11:14:47,138 DEBUG: 			View 0 : 0.372670807453
+2016-08-24 11:14:47,146 DEBUG: 			View 1 : 0.627329192547
+2016-08-24 11:14:47,177 DEBUG: 			View 2 : 0.372670807453
+2016-08-24 11:14:47,185 DEBUG: 			View 3 : 0.627329192547
+2016-08-24 11:14:47,227 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:14:47,301 DEBUG: 		Start:	 Iteration 2
+2016-08-24 11:14:47,320 DEBUG: 			View 0 : 0.608695652174
+2016-08-24 11:14:47,328 DEBUG: 			View 1 : 0.726708074534
+2016-08-24 11:14:47,423 DEBUG: 			View 2 : 0.627329192547
+2016-08-24 11:14:47,432 DEBUG: 			View 3 : 0.683229813665
+2016-08-24 11:14:47,478 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:14:47,611 DEBUG: 		Start:	 Iteration 3
+2016-08-24 11:14:47,629 DEBUG: 			View 0 : 0.552795031056
+2016-08-24 11:14:47,637 DEBUG: 			View 1 : 0.645962732919
+2016-08-24 11:14:47,759 DEBUG: 			View 2 : 0.534161490683
+2016-08-24 11:14:47,771 DEBUG: 			View 3 : 0.633540372671
+2016-08-24 11:14:47,849 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:14:48,046 DEBUG: 		Start:	 Iteration 4
+2016-08-24 11:14:48,064 DEBUG: 			View 0 : 0.577639751553
+2016-08-24 11:14:48,072 DEBUG: 			View 1 : 0.391304347826
+2016-08-24 11:14:48,164 DEBUG: 			View 2 : 0.527950310559
+2016-08-24 11:14:48,172 DEBUG: 			View 3 : 0.55900621118
+2016-08-24 11:14:48,228 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:14:48,495 DEBUG: 		Start:	 Iteration 5
+2016-08-24 11:14:48,513 DEBUG: 			View 0 : 0.453416149068
+2016-08-24 11:14:48,521 DEBUG: 			View 1 : 0.689440993789
+2016-08-24 11:14:48,604 DEBUG: 			View 2 : 0.484472049689
+2016-08-24 11:14:48,612 DEBUG: 			View 3 : 0.577639751553
+2016-08-24 11:14:48,670 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:14:48,996 DEBUG: 		Start:	 Iteration 6
+2016-08-24 11:14:49,014 DEBUG: 			View 0 : 0.596273291925
+2016-08-24 11:14:49,021 DEBUG: 			View 1 : 0.645962732919
+2016-08-24 11:14:49,113 DEBUG: 			View 2 : 0.577639751553
+2016-08-24 11:14:49,121 DEBUG: 			View 3 : 0.608695652174
+2016-08-24 11:14:49,182 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:14:49,566 DEBUG: 		Start:	 Iteration 7
+2016-08-24 11:14:49,584 DEBUG: 			View 0 : 0.509316770186
+2016-08-24 11:14:49,592 DEBUG: 			View 1 : 0.72049689441
+2016-08-24 11:14:49,679 DEBUG: 			View 2 : 0.577639751553
+2016-08-24 11:14:49,687 DEBUG: 			View 3 : 0.546583850932
+2016-08-24 11:14:49,750 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:14:50,217 DEBUG: 		Start:	 Iteration 8
+2016-08-24 11:14:50,235 DEBUG: 			View 0 : 0.540372670807
+2016-08-24 11:14:50,243 DEBUG: 			View 1 : 0.639751552795
+2016-08-24 11:14:50,331 DEBUG: 			View 2 : 0.577639751553
+2016-08-24 11:14:50,339 DEBUG: 			View 3 : 0.621118012422
+2016-08-24 11:14:50,404 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:14:50,908 DEBUG: 		Start:	 Iteration 9
+2016-08-24 11:14:50,926 DEBUG: 			View 0 : 0.614906832298
+2016-08-24 11:14:50,934 DEBUG: 			View 1 : 0.571428571429
+2016-08-24 11:14:51,028 DEBUG: 			View 2 : 0.55900621118
+2016-08-24 11:14:51,036 DEBUG: 			View 3 : 0.565217391304
+2016-08-24 11:14:51,104 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:14:51,669 DEBUG: 		Start:	 Iteration 10
+2016-08-24 11:14:51,687 DEBUG: 			View 0 : 0.608695652174
+2016-08-24 11:14:51,695 DEBUG: 			View 1 : 0.689440993789
+2016-08-24 11:14:51,787 DEBUG: 			View 2 : 0.540372670807
+2016-08-24 11:14:51,795 DEBUG: 			View 3 : 0.639751552795
+2016-08-24 11:14:51,865 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:14:52,493 DEBUG: 		Start:	 Iteration 11
+2016-08-24 11:14:52,511 DEBUG: 			View 0 : 0.596273291925
+2016-08-24 11:14:52,519 DEBUG: 			View 1 : 0.465838509317
+2016-08-24 11:14:52,606 DEBUG: 			View 2 : 0.565217391304
+2016-08-24 11:14:52,614 DEBUG: 			View 3 : 0.490683229814
+2016-08-24 11:14:52,687 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:14:53,382 DEBUG: 		Start:	 Iteration 12
+2016-08-24 11:14:53,401 DEBUG: 			View 0 : 0.378881987578
+2016-08-24 11:14:53,409 DEBUG: 			View 1 : 0.614906832298
+2016-08-24 11:14:53,498 DEBUG: 			View 2 : 0.55900621118
+2016-08-24 11:14:53,506 DEBUG: 			View 3 : 0.633540372671
+2016-08-24 11:14:53,580 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:14:54,336 DEBUG: 		Start:	 Iteration 13
+2016-08-24 11:14:54,354 DEBUG: 			View 0 : 0.689440993789
+2016-08-24 11:14:54,362 DEBUG: 			View 1 : 0.577639751553
+2016-08-24 11:14:54,450 DEBUG: 			View 2 : 0.596273291925
+2016-08-24 11:14:54,458 DEBUG: 			View 3 : 0.683229813665
+2016-08-24 11:14:54,535 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:14:55,380 DEBUG: 		Start:	 Iteration 14
+2016-08-24 11:14:55,399 DEBUG: 			View 0 : 0.459627329193
+2016-08-24 11:14:55,408 DEBUG: 			View 1 : 0.546583850932
+2016-08-24 11:14:55,511 DEBUG: 			View 2 : 0.608695652174
+2016-08-24 11:14:55,520 DEBUG: 			View 3 : 0.621118012422
+2016-08-24 11:14:55,597 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:14:56,463 DEBUG: 		Start:	 Iteration 15
+2016-08-24 11:14:56,480 DEBUG: 			View 0 : 0.515527950311
+2016-08-24 11:14:56,488 DEBUG: 			View 1 : 0.633540372671
+2016-08-24 11:14:56,580 DEBUG: 			View 2 : 0.527950310559
+2016-08-24 11:14:56,588 DEBUG: 			View 3 : 0.484472049689
+2016-08-24 11:14:56,668 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:14:57,608 DEBUG: 		Start:	 Iteration 16
+2016-08-24 11:14:57,628 DEBUG: 			View 0 : 0.484472049689
+2016-08-24 11:14:57,637 DEBUG: 			View 1 : 0.596273291925
+2016-08-24 11:14:57,734 DEBUG: 			View 2 : 0.608695652174
+2016-08-24 11:14:57,742 DEBUG: 			View 3 : 0.627329192547
+2016-08-24 11:14:57,824 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:14:58,815 DEBUG: 		Start:	 Iteration 17
+2016-08-24 11:14:58,833 DEBUG: 			View 0 : 0.459627329193
+2016-08-24 11:14:58,841 DEBUG: 			View 1 : 0.67701863354
+2016-08-24 11:14:58,934 DEBUG: 			View 2 : 0.621118012422
+2016-08-24 11:14:58,942 DEBUG: 			View 3 : 0.590062111801
+2016-08-24 11:14:59,028 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:15:00,093 DEBUG: 		Start:	 Iteration 18
+2016-08-24 11:15:00,112 DEBUG: 			View 0 : 0.67701863354
+2016-08-24 11:15:00,120 DEBUG: 			View 1 : 0.608695652174
+2016-08-24 11:15:00,210 DEBUG: 			View 2 : 0.515527950311
+2016-08-24 11:15:00,217 DEBUG: 			View 3 : 0.708074534161
+2016-08-24 11:15:00,304 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:15:01,416 DEBUG: 		Start:	 Iteration 19
+2016-08-24 11:15:01,434 DEBUG: 			View 0 : 0.546583850932
+2016-08-24 11:15:01,442 DEBUG: 			View 1 : 0.701863354037
+2016-08-24 11:15:01,534 DEBUG: 			View 2 : 0.590062111801
+2016-08-24 11:15:01,542 DEBUG: 			View 3 : 0.639751552795
+2016-08-24 11:15:01,631 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:15:02,804 DEBUG: 		Start:	 Iteration 20
+2016-08-24 11:15:02,826 DEBUG: 			View 0 : 0.484472049689
+2016-08-24 11:15:02,834 DEBUG: 			View 1 : 0.490683229814
+2016-08-24 11:15:02,941 DEBUG: 			View 2 : 0.577639751553
+2016-08-24 11:15:02,949 DEBUG: 			View 3 : 0.608695652174
+2016-08-24 11:15:03,045 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:15:04,267 DEBUG: 		Start:	 Iteration 21
+2016-08-24 11:15:04,286 DEBUG: 			View 0 : 0.621118012422
+2016-08-24 11:15:04,294 DEBUG: 			View 1 : 0.521739130435
+2016-08-24 11:15:04,382 DEBUG: 			View 2 : 0.60248447205
+2016-08-24 11:15:04,389 DEBUG: 			View 3 : 0.633540372671
+2016-08-24 11:15:04,483 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:15:05,775 DEBUG: 		Start:	 Iteration 22
+2016-08-24 11:15:05,793 DEBUG: 			View 0 : 0.540372670807
+2016-08-24 11:15:05,801 DEBUG: 			View 1 : 0.658385093168
+2016-08-24 11:15:05,889 DEBUG: 			View 2 : 0.608695652174
+2016-08-24 11:15:05,898 DEBUG: 			View 3 : 0.527950310559
+2016-08-24 11:15:05,993 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:15:07,339 DEBUG: 		Start:	 Iteration 23
+2016-08-24 11:15:07,357 DEBUG: 			View 0 : 0.571428571429
+2016-08-24 11:15:07,364 DEBUG: 			View 1 : 0.534161490683
+2016-08-24 11:15:07,454 DEBUG: 			View 2 : 0.627329192547
+2016-08-24 11:15:07,462 DEBUG: 			View 3 : 0.72049689441
+2016-08-24 11:15:07,560 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:15:08,965 DEBUG: 		Start:	 Iteration 24
+2016-08-24 11:15:08,983 DEBUG: 			View 0 : 0.478260869565
+2016-08-24 11:15:08,990 DEBUG: 			View 1 : 0.39751552795
+2016-08-24 11:15:09,083 DEBUG: 			View 2 : 0.577639751553
+2016-08-24 11:15:09,091 DEBUG: 			View 3 : 0.614906832298
+2016-08-24 11:15:09,192 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:15:10,667 DEBUG: 		Start:	 Iteration 25
+2016-08-24 11:15:10,685 DEBUG: 			View 0 : 0.621118012422
+2016-08-24 11:15:10,692 DEBUG: 			View 1 : 0.385093167702
+2016-08-24 11:15:10,784 DEBUG: 			View 2 : 0.565217391304
+2016-08-24 11:15:10,791 DEBUG: 			View 3 : 0.552795031056
+2016-08-24 11:15:10,893 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:15:12,414 DEBUG: 		Start:	 Iteration 26
+2016-08-24 11:15:12,433 DEBUG: 			View 0 : 0.633540372671
+2016-08-24 11:15:12,440 DEBUG: 			View 1 : 0.577639751553
+2016-08-24 11:15:12,533 DEBUG: 			View 2 : 0.527950310559
+2016-08-24 11:15:12,541 DEBUG: 			View 3 : 0.67701863354
+2016-08-24 11:15:12,652 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:15:14,242 DEBUG: 		Start:	 Iteration 27
+2016-08-24 11:15:14,260 DEBUG: 			View 0 : 0.55900621118
+2016-08-24 11:15:14,268 DEBUG: 			View 1 : 0.614906832298
+2016-08-24 11:15:14,363 DEBUG: 			View 2 : 0.546583850932
+2016-08-24 11:15:14,371 DEBUG: 			View 3 : 0.546583850932
+2016-08-24 11:15:14,477 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:15:16,122 DEBUG: 		Start:	 Iteration 28
+2016-08-24 11:15:16,140 DEBUG: 			View 0 : 0.583850931677
+2016-08-24 11:15:16,148 DEBUG: 			View 1 : 0.645962732919
+2016-08-24 11:15:16,243 DEBUG: 			View 2 : 0.565217391304
+2016-08-24 11:15:16,251 DEBUG: 			View 3 : 0.571428571429
+2016-08-24 11:15:16,360 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:15:18,074 DEBUG: 		Start:	 Iteration 29
+2016-08-24 11:15:18,092 DEBUG: 			View 0 : 0.608695652174
+2016-08-24 11:15:18,100 DEBUG: 			View 1 : 0.627329192547
+2016-08-24 11:15:18,193 DEBUG: 			View 2 : 0.521739130435
+2016-08-24 11:15:18,201 DEBUG: 			View 3 : 0.664596273292
+2016-08-24 11:15:18,311 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:15:20,068 DEBUG: 		Start:	 Iteration 30
+2016-08-24 11:15:20,087 DEBUG: 			View 0 : 0.540372670807
+2016-08-24 11:15:20,095 DEBUG: 			View 1 : 0.639751552795
+2016-08-24 11:15:20,193 DEBUG: 			View 2 : 0.552795031056
+2016-08-24 11:15:20,201 DEBUG: 			View 3 : 0.627329192547
+2016-08-24 11:15:20,319 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:15:22,144 DEBUG: 		Start:	 Iteration 31
+2016-08-24 11:15:22,161 DEBUG: 			View 0 : 0.490683229814
+2016-08-24 11:15:22,169 DEBUG: 			View 1 : 0.360248447205
+2016-08-24 11:15:22,259 DEBUG: 			View 2 : 0.55900621118
+2016-08-24 11:15:22,267 DEBUG: 			View 3 : 0.534161490683
+2016-08-24 11:15:22,383 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:15:24,278 DEBUG: 		Start:	 Iteration 32
+2016-08-24 11:15:24,297 DEBUG: 			View 0 : 0.534161490683
+2016-08-24 11:15:24,305 DEBUG: 			View 1 : 0.627329192547
+2016-08-24 11:15:24,397 DEBUG: 			View 2 : 0.639751552795
+2016-08-24 11:15:24,405 DEBUG: 			View 3 : 0.60248447205
+2016-08-24 11:15:24,524 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:15:26,504 DEBUG: 		Start:	 Iteration 33
+2016-08-24 11:15:26,522 DEBUG: 			View 0 : 0.472049689441
+2016-08-24 11:15:26,529 DEBUG: 			View 1 : 0.639751552795
+2016-08-24 11:15:26,621 DEBUG: 			View 2 : 0.503105590062
+2016-08-24 11:15:26,629 DEBUG: 			View 3 : 0.664596273292
+2016-08-24 11:15:26,748 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:15:28,792 DEBUG: 		Start:	 Iteration 34
+2016-08-24 11:15:28,809 DEBUG: 			View 0 : 0.583850931677
+2016-08-24 11:15:28,817 DEBUG: 			View 1 : 0.55900621118
+2016-08-24 11:15:28,909 DEBUG: 			View 2 : 0.577639751553
+2016-08-24 11:15:28,917 DEBUG: 			View 3 : 0.621118012422
+2016-08-24 11:15:29,040 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:15:31,128 DEBUG: 		Start:	 Iteration 35
+2016-08-24 11:15:31,146 DEBUG: 			View 0 : 0.490683229814
+2016-08-24 11:15:31,153 DEBUG: 			View 1 : 0.571428571429
+2016-08-24 11:15:31,241 DEBUG: 			View 2 : 0.652173913043
+2016-08-24 11:15:31,248 DEBUG: 			View 3 : 0.596273291925
+2016-08-24 11:15:31,372 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:15:33,543 DEBUG: 		Start:	 Iteration 36
+2016-08-24 11:15:33,561 DEBUG: 			View 0 : 0.614906832298
+2016-08-24 11:15:33,568 DEBUG: 			View 1 : 0.614906832298
+2016-08-24 11:15:33,651 DEBUG: 			View 2 : 0.515527950311
+2016-08-24 11:15:33,659 DEBUG: 			View 3 : 0.565217391304
+2016-08-24 11:15:33,785 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:15:36,019 DEBUG: 		Start:	 Iteration 37
+2016-08-24 11:15:36,037 DEBUG: 			View 0 : 0.757763975155
+2016-08-24 11:15:36,045 DEBUG: 			View 1 : 0.60248447205
+2016-08-24 11:15:36,132 DEBUG: 			View 2 : 0.577639751553
+2016-08-24 11:15:36,140 DEBUG: 			View 3 : 0.490683229814
+2016-08-24 11:15:36,269 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:15:38,554 DEBUG: 		Start:	 Iteration 38
+2016-08-24 11:15:38,572 DEBUG: 			View 0 : 0.552795031056
+2016-08-24 11:15:38,579 DEBUG: 			View 1 : 0.683229813665
+2016-08-24 11:15:38,669 DEBUG: 			View 2 : 0.534161490683
+2016-08-24 11:15:38,677 DEBUG: 			View 3 : 0.571428571429
+2016-08-24 11:15:38,808 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:15:41,153 DEBUG: 		Start:	 Iteration 39
+2016-08-24 11:15:41,170 DEBUG: 			View 0 : 0.652173913043
+2016-08-24 11:15:41,178 DEBUG: 			View 1 : 0.658385093168
+2016-08-24 11:15:41,265 DEBUG: 			View 2 : 0.658385093168
+2016-08-24 11:15:41,273 DEBUG: 			View 3 : 0.596273291925
+2016-08-24 11:15:41,405 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:15:43,837 DEBUG: 		Start:	 Iteration 40
+2016-08-24 11:15:43,854 DEBUG: 			View 0 : 0.633540372671
+2016-08-24 11:15:43,862 DEBUG: 			View 1 : 0.39751552795
+2016-08-24 11:15:43,951 DEBUG: 			View 2 : 0.55900621118
+2016-08-24 11:15:43,959 DEBUG: 			View 3 : 0.590062111801
+2016-08-24 11:15:44,094 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:15:46,579 DEBUG: 		Start:	 Iteration 41
+2016-08-24 11:15:46,597 DEBUG: 			View 0 : 0.552795031056
+2016-08-24 11:15:46,605 DEBUG: 			View 1 : 0.639751552795
+2016-08-24 11:15:46,694 DEBUG: 			View 2 : 0.60248447205
+2016-08-24 11:15:46,702 DEBUG: 			View 3 : 0.478260869565
+2016-08-24 11:15:46,839 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:15:49,378 DEBUG: 		Start:	 Iteration 42
+2016-08-24 11:15:49,396 DEBUG: 			View 0 : 0.565217391304
+2016-08-24 11:15:49,404 DEBUG: 			View 1 : 0.596273291925
+2016-08-24 11:15:49,491 DEBUG: 			View 2 : 0.608695652174
+2016-08-24 11:15:49,499 DEBUG: 			View 3 : 0.608695652174
+2016-08-24 11:15:49,638 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:15:52,257 DEBUG: 		Start:	 Iteration 43
+2016-08-24 11:15:52,275 DEBUG: 			View 0 : 0.701863354037
+2016-08-24 11:15:52,283 DEBUG: 			View 1 : 0.645962732919
+2016-08-24 11:15:52,377 DEBUG: 			View 2 : 0.627329192547
+2016-08-24 11:15:52,385 DEBUG: 			View 3 : 0.608695652174
+2016-08-24 11:15:52,526 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:15:55,194 DEBUG: 		Start:	 Iteration 44
+2016-08-24 11:15:55,213 DEBUG: 			View 0 : 0.472049689441
+2016-08-24 11:15:55,221 DEBUG: 			View 1 : 0.496894409938
+2016-08-24 11:15:55,316 DEBUG: 			View 2 : 0.509316770186
+2016-08-24 11:15:55,324 DEBUG: 			View 3 : 0.552795031056
+2016-08-24 11:15:55,466 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:15:58,192 DEBUG: 		Start:	 Iteration 45
+2016-08-24 11:15:58,210 DEBUG: 			View 0 : 0.484472049689
+2016-08-24 11:15:58,217 DEBUG: 			View 1 : 0.621118012422
+2016-08-24 11:15:58,311 DEBUG: 			View 2 : 0.583850931677
+2016-08-24 11:15:58,318 DEBUG: 			View 3 : 0.583850931677
+2016-08-24 11:15:58,464 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:16:01,240 DEBUG: 		Start:	 Iteration 46
+2016-08-24 11:16:01,258 DEBUG: 			View 0 : 0.60248447205
+2016-08-24 11:16:01,265 DEBUG: 			View 1 : 0.639751552795
+2016-08-24 11:16:01,360 DEBUG: 			View 2 : 0.565217391304
+2016-08-24 11:16:01,368 DEBUG: 			View 3 : 0.521739130435
+2016-08-24 11:16:01,516 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:16:04,354 DEBUG: 		Start:	 Iteration 47
+2016-08-24 11:16:04,372 DEBUG: 			View 0 : 0.639751552795
+2016-08-24 11:16:04,380 DEBUG: 			View 1 : 0.633540372671
+2016-08-24 11:16:04,472 DEBUG: 			View 2 : 0.521739130435
+2016-08-24 11:16:04,480 DEBUG: 			View 3 : 0.490683229814
+2016-08-24 11:16:04,629 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:16:07,543 DEBUG: 		Start:	 Iteration 48
+2016-08-24 11:16:07,561 DEBUG: 			View 0 : 0.577639751553
+2016-08-24 11:16:07,569 DEBUG: 			View 1 : 0.633540372671
+2016-08-24 11:16:07,661 DEBUG: 			View 2 : 0.60248447205
+2016-08-24 11:16:07,669 DEBUG: 			View 3 : 0.596273291925
+2016-08-24 11:16:07,822 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:16:10,789 DEBUG: 		Start:	 Iteration 49
+2016-08-24 11:16:10,807 DEBUG: 			View 0 : 0.453416149068
+2016-08-24 11:16:10,814 DEBUG: 			View 1 : 0.571428571429
+2016-08-24 11:16:10,907 DEBUG: 			View 2 : 0.639751552795
+2016-08-24 11:16:10,915 DEBUG: 			View 3 : 0.633540372671
+2016-08-24 11:16:11,069 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:16:14,095 DEBUG: 		Start:	 Iteration 50
+2016-08-24 11:16:14,112 DEBUG: 			View 0 : 0.670807453416
+2016-08-24 11:16:14,120 DEBUG: 			View 1 : 0.664596273292
+2016-08-24 11:16:14,200 DEBUG: 			View 2 : 0.596273291925
+2016-08-24 11:16:14,208 DEBUG: 			View 3 : 0.60248447205
+2016-08-24 11:16:14,365 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:16:17,472 DEBUG: 		Start:	 Iteration 51
+2016-08-24 11:16:17,490 DEBUG: 			View 0 : 0.652173913043
+2016-08-24 11:16:17,498 DEBUG: 			View 1 : 0.416149068323
+2016-08-24 11:16:17,602 DEBUG: 			View 2 : 0.484472049689
+2016-08-24 11:16:17,610 DEBUG: 			View 3 : 0.621118012422
+2016-08-24 11:16:17,772 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:16:20,914 DEBUG: 		Start:	 Iteration 52
+2016-08-24 11:16:20,932 DEBUG: 			View 0 : 0.689440993789
+2016-08-24 11:16:20,940 DEBUG: 			View 1 : 0.627329192547
+2016-08-24 11:16:21,034 DEBUG: 			View 2 : 0.552795031056
+2016-08-24 11:16:21,041 DEBUG: 			View 3 : 0.490683229814
+2016-08-24 11:16:21,205 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:16:24,426 DEBUG: 		Start:	 Iteration 53
+2016-08-24 11:16:24,443 DEBUG: 			View 0 : 0.565217391304
+2016-08-24 11:16:24,451 DEBUG: 			View 1 : 0.658385093168
+2016-08-24 11:16:24,538 DEBUG: 			View 2 : 0.590062111801
+2016-08-24 11:16:24,546 DEBUG: 			View 3 : 0.534161490683
+2016-08-24 11:16:24,710 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:16:27,999 DEBUG: 		Start:	 Iteration 54
+2016-08-24 11:16:28,017 DEBUG: 			View 0 : 0.577639751553
+2016-08-24 11:16:28,025 DEBUG: 			View 1 : 0.434782608696
+2016-08-24 11:16:28,116 DEBUG: 			View 2 : 0.552795031056
+2016-08-24 11:16:28,124 DEBUG: 			View 3 : 0.534161490683
+2016-08-24 11:16:28,291 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:16:31,633 DEBUG: 		Start:	 Iteration 55
+2016-08-24 11:16:31,650 DEBUG: 			View 0 : 0.434782608696
+2016-08-24 11:16:31,658 DEBUG: 			View 1 : 0.645962732919
+2016-08-24 11:16:31,746 DEBUG: 			View 2 : 0.577639751553
+2016-08-24 11:16:31,754 DEBUG: 			View 3 : 0.689440993789
+2016-08-24 11:16:31,923 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:16:35,333 DEBUG: 		Start:	 Iteration 56
+2016-08-24 11:16:35,351 DEBUG: 			View 0 : 0.614906832298
+2016-08-24 11:16:35,359 DEBUG: 			View 1 : 0.857142857143
+2016-08-24 11:16:35,449 DEBUG: 			View 2 : 0.546583850932
+2016-08-24 11:16:35,456 DEBUG: 			View 3 : 0.627329192547
+2016-08-24 11:16:35,627 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:16:39,082 DEBUG: 		Start:	 Iteration 57
+2016-08-24 11:16:39,100 DEBUG: 			View 0 : 0.527950310559
+2016-08-24 11:16:39,108 DEBUG: 			View 1 : 0.434782608696
+2016-08-24 11:16:39,201 DEBUG: 			View 2 : 0.621118012422
+2016-08-24 11:16:39,209 DEBUG: 			View 3 : 0.590062111801
+2016-08-24 11:16:39,381 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:16:42,922 DEBUG: 		Start:	 Iteration 58
+2016-08-24 11:16:42,940 DEBUG: 			View 0 : 0.540372670807
+2016-08-24 11:16:42,948 DEBUG: 			View 1 : 0.534161490683
+2016-08-24 11:16:43,034 DEBUG: 			View 2 : 0.565217391304
+2016-08-24 11:16:43,041 DEBUG: 			View 3 : 0.490683229814
+2016-08-24 11:16:43,217 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:16:46,827 DEBUG: 		Start:	 Iteration 59
+2016-08-24 11:16:46,845 DEBUG: 			View 0 : 0.55900621118
+2016-08-24 11:16:46,853 DEBUG: 			View 1 : 0.639751552795
+2016-08-24 11:16:46,947 DEBUG: 			View 2 : 0.627329192547
+2016-08-24 11:16:46,955 DEBUG: 			View 3 : 0.590062111801
+2016-08-24 11:16:47,141 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:16:50,821 DEBUG: 		Start:	 Iteration 60
+2016-08-24 11:16:50,841 DEBUG: 			View 0 : 0.608695652174
+2016-08-24 11:16:50,848 DEBUG: 			View 1 : 0.478260869565
+2016-08-24 11:16:50,938 DEBUG: 			View 2 : 0.596273291925
+2016-08-24 11:16:50,947 DEBUG: 			View 3 : 0.55900621118
+2016-08-24 11:16:51,127 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:16:54,882 DEBUG: 		Start:	 Iteration 61
+2016-08-24 11:16:54,900 DEBUG: 			View 0 : 0.403726708075
+2016-08-24 11:16:54,908 DEBUG: 			View 1 : 0.652173913043
+2016-08-24 11:16:54,998 DEBUG: 			View 2 : 0.60248447205
+2016-08-24 11:16:55,006 DEBUG: 			View 3 : 0.658385093168
+2016-08-24 11:16:55,186 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:16:58,982 DEBUG: 		Start:	 Iteration 62
+2016-08-24 11:16:59,000 DEBUG: 			View 0 : 0.509316770186
+2016-08-24 11:16:59,008 DEBUG: 			View 1 : 0.72049689441
+2016-08-24 11:16:59,102 DEBUG: 			View 2 : 0.633540372671
+2016-08-24 11:16:59,110 DEBUG: 			View 3 : 0.67701863354
+2016-08-24 11:16:59,295 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:17:03,161 DEBUG: 		Start:	 Iteration 63
+2016-08-24 11:17:03,179 DEBUG: 			View 0 : 0.527950310559
+2016-08-24 11:17:03,187 DEBUG: 			View 1 : 0.484472049689
+2016-08-24 11:17:03,278 DEBUG: 			View 2 : 0.596273291925
+2016-08-24 11:17:03,286 DEBUG: 			View 3 : 0.639751552795
+2016-08-24 11:17:03,471 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:17:07,398 DEBUG: 		Start:	 Iteration 64
+2016-08-24 11:17:07,416 DEBUG: 			View 0 : 0.546583850932
+2016-08-24 11:17:07,425 DEBUG: 			View 1 : 0.633540372671
+2016-08-24 11:17:07,518 DEBUG: 			View 2 : 0.633540372671
+2016-08-24 11:17:07,526 DEBUG: 			View 3 : 0.509316770186
+2016-08-24 11:17:07,715 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:17:11,730 DEBUG: 		Start:	 Iteration 65
+2016-08-24 11:17:11,749 DEBUG: 			View 0 : 0.447204968944
+2016-08-24 11:17:11,757 DEBUG: 			View 1 : 0.496894409938
+2016-08-24 11:17:11,849 DEBUG: 			View 2 : 0.614906832298
+2016-08-24 11:17:11,857 DEBUG: 			View 3 : 0.503105590062
+2016-08-24 11:17:12,055 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:17:16,117 DEBUG: 		Start:	 Iteration 66
+2016-08-24 11:17:16,135 DEBUG: 			View 0 : 0.534161490683
+2016-08-24 11:17:16,143 DEBUG: 			View 1 : 0.614906832298
+2016-08-24 11:17:16,223 DEBUG: 			View 2 : 0.621118012422
+2016-08-24 11:17:16,231 DEBUG: 			View 3 : 0.683229813665
+2016-08-24 11:17:16,425 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:17:20,587 DEBUG: 		Start:	 Iteration 67
+2016-08-24 11:17:20,604 DEBUG: 			View 0 : 0.428571428571
+2016-08-24 11:17:20,612 DEBUG: 			View 1 : 0.496894409938
+2016-08-24 11:17:20,705 DEBUG: 			View 2 : 0.645962732919
+2016-08-24 11:17:20,713 DEBUG: 			View 3 : 0.60248447205
+2016-08-24 11:17:20,908 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:17:25,155 DEBUG: 		Start:	 Iteration 68
+2016-08-24 11:17:25,173 DEBUG: 			View 0 : 0.534161490683
+2016-08-24 11:17:25,181 DEBUG: 			View 1 : 0.664596273292
+2016-08-24 11:17:25,267 DEBUG: 			View 2 : 0.627329192547
+2016-08-24 11:17:25,275 DEBUG: 			View 3 : 0.670807453416
+2016-08-24 11:17:25,469 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:17:29,738 DEBUG: 		Start:	 Iteration 69
+2016-08-24 11:17:29,756 DEBUG: 			View 0 : 0.465838509317
+2016-08-24 11:17:29,764 DEBUG: 			View 1 : 0.633540372671
+2016-08-24 11:17:29,858 DEBUG: 			View 2 : 0.652173913043
+2016-08-24 11:17:29,866 DEBUG: 			View 3 : 0.608695652174
+2016-08-24 11:17:30,064 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:17:34,406 DEBUG: 		Start:	 Iteration 70
+2016-08-24 11:17:34,424 DEBUG: 			View 0 : 0.552795031056
+2016-08-24 11:17:34,432 DEBUG: 			View 1 : 0.596273291925
+2016-08-24 11:17:34,520 DEBUG: 			View 2 : 0.627329192547
+2016-08-24 11:17:34,528 DEBUG: 			View 3 : 0.608695652174
+2016-08-24 11:17:34,727 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:17:39,117 DEBUG: 		Start:	 Iteration 71
+2016-08-24 11:17:39,135 DEBUG: 			View 0 : 0.565217391304
+2016-08-24 11:17:39,143 DEBUG: 			View 1 : 0.515527950311
+2016-08-24 11:17:39,228 DEBUG: 			View 2 : 0.546583850932
+2016-08-24 11:17:39,236 DEBUG: 			View 3 : 0.621118012422
+2016-08-24 11:17:39,489 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:17:43,962 DEBUG: 		Start:	 Iteration 72
+2016-08-24 11:17:43,980 DEBUG: 			View 0 : 0.621118012422
+2016-08-24 11:17:43,987 DEBUG: 			View 1 : 0.565217391304
+2016-08-24 11:17:44,079 DEBUG: 			View 2 : 0.55900621118
+2016-08-24 11:17:44,088 DEBUG: 			View 3 : 0.577639751553
+2016-08-24 11:17:44,293 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:17:48,830 DEBUG: 		Start:	 Iteration 73
+2016-08-24 11:17:48,850 DEBUG: 			View 0 : 0.67701863354
+2016-08-24 11:17:48,860 DEBUG: 			View 1 : 0.540372670807
+2016-08-24 11:17:48,961 DEBUG: 			View 2 : 0.590062111801
+2016-08-24 11:17:48,968 DEBUG: 			View 3 : 0.633540372671
+2016-08-24 11:17:49,176 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:17:53,775 DEBUG: 		Start:	 Iteration 74
+2016-08-24 11:17:53,793 DEBUG: 			View 0 : 0.453416149068
+2016-08-24 11:17:53,800 DEBUG: 			View 1 : 0.652173913043
+2016-08-24 11:17:53,889 DEBUG: 			View 2 : 0.60248447205
+2016-08-24 11:17:53,897 DEBUG: 			View 3 : 0.503105590062
+2016-08-24 11:17:54,119 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:17:58,762 DEBUG: 		Start:	 Iteration 75
+2016-08-24 11:17:58,780 DEBUG: 			View 0 : 0.503105590062
+2016-08-24 11:17:58,788 DEBUG: 			View 1 : 0.627329192547
+2016-08-24 11:17:58,880 DEBUG: 			View 2 : 0.652173913043
+2016-08-24 11:17:58,888 DEBUG: 			View 3 : 0.670807453416
+2016-08-24 11:17:59,101 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:18:03,812 DEBUG: 		Start:	 Iteration 76
+2016-08-24 11:18:03,829 DEBUG: 			View 0 : 0.478260869565
+2016-08-24 11:18:03,837 DEBUG: 			View 1 : 0.627329192547
+2016-08-24 11:18:03,929 DEBUG: 			View 2 : 0.596273291925
+2016-08-24 11:18:03,937 DEBUG: 			View 3 : 0.521739130435
+2016-08-24 11:18:04,151 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:18:08,927 DEBUG: 		Start:	 Iteration 77
+2016-08-24 11:18:08,945 DEBUG: 			View 0 : 0.509316770186
+2016-08-24 11:18:08,953 DEBUG: 			View 1 : 0.465838509317
+2016-08-24 11:18:09,049 DEBUG: 			View 2 : 0.515527950311
+2016-08-24 11:18:09,057 DEBUG: 			View 3 : 0.552795031056
+2016-08-24 11:18:09,272 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:18:14,096 DEBUG: 		Start:	 Iteration 78
+2016-08-24 11:18:14,114 DEBUG: 			View 0 : 0.496894409938
+2016-08-24 11:18:14,122 DEBUG: 			View 1 : 0.614906832298
+2016-08-24 11:18:14,216 DEBUG: 			View 2 : 0.540372670807
+2016-08-24 11:18:14,223 DEBUG: 			View 3 : 0.583850931677
+2016-08-24 11:18:14,442 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:18:19,347 DEBUG: 		Start:	 Iteration 79
+2016-08-24 11:18:19,365 DEBUG: 			View 0 : 0.608695652174
+2016-08-24 11:18:19,373 DEBUG: 			View 1 : 0.726708074534
+2016-08-24 11:18:19,461 DEBUG: 			View 2 : 0.621118012422
+2016-08-24 11:18:19,469 DEBUG: 			View 3 : 0.664596273292
+2016-08-24 11:18:19,693 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:18:24,651 DEBUG: 		Start:	 Iteration 80
+2016-08-24 11:18:24,669 DEBUG: 			View 0 : 0.546583850932
+2016-08-24 11:18:24,676 DEBUG: 			View 1 : 0.633540372671
+2016-08-24 11:18:24,765 DEBUG: 			View 2 : 0.503105590062
+2016-08-24 11:18:24,773 DEBUG: 			View 3 : 0.670807453416
+2016-08-24 11:18:24,993 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:18:30,011 DEBUG: 		Start:	 Iteration 81
+2016-08-24 11:18:30,030 DEBUG: 			View 0 : 0.490683229814
+2016-08-24 11:18:30,038 DEBUG: 			View 1 : 0.577639751553
+2016-08-24 11:18:30,128 DEBUG: 			View 2 : 0.55900621118
+2016-08-24 11:18:30,137 DEBUG: 			View 3 : 0.596273291925
+2016-08-24 11:18:30,364 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:18:35,443 DEBUG: 		Start:	 Iteration 82
+2016-08-24 11:18:35,462 DEBUG: 			View 0 : 0.527950310559
+2016-08-24 11:18:35,470 DEBUG: 			View 1 : 0.608695652174
+2016-08-24 11:18:35,558 DEBUG: 			View 2 : 0.552795031056
+2016-08-24 11:18:35,567 DEBUG: 			View 3 : 0.652173913043
+2016-08-24 11:18:35,795 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:18:40,943 DEBUG: 		Start:	 Iteration 83
+2016-08-24 11:18:40,961 DEBUG: 			View 0 : 0.689440993789
+2016-08-24 11:18:40,969 DEBUG: 			View 1 : 0.658385093168
+2016-08-24 11:18:41,058 DEBUG: 			View 2 : 0.521739130435
+2016-08-24 11:18:41,066 DEBUG: 			View 3 : 0.645962732919
+2016-08-24 11:18:41,297 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:18:46,494 DEBUG: 		Start:	 Iteration 84
+2016-08-24 11:18:46,512 DEBUG: 			View 0 : 0.55900621118
+2016-08-24 11:18:46,520 DEBUG: 			View 1 : 0.652173913043
+2016-08-24 11:18:46,614 DEBUG: 			View 2 : 0.608695652174
+2016-08-24 11:18:46,622 DEBUG: 			View 3 : 0.546583850932
+2016-08-24 11:18:46,855 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:18:52,119 DEBUG: 		Start:	 Iteration 85
+2016-08-24 11:18:52,137 DEBUG: 			View 0 : 0.515527950311
+2016-08-24 11:18:52,144 DEBUG: 			View 1 : 0.453416149068
+2016-08-24 11:18:52,235 DEBUG: 			View 2 : 0.633540372671
+2016-08-24 11:18:52,243 DEBUG: 			View 3 : 0.577639751553
+2016-08-24 11:18:52,479 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:18:57,816 DEBUG: 		Start:	 Iteration 86
+2016-08-24 11:18:57,834 DEBUG: 			View 0 : 0.614906832298
+2016-08-24 11:18:57,842 DEBUG: 			View 1 : 0.608695652174
+2016-08-24 11:18:57,936 DEBUG: 			View 2 : 0.670807453416
+2016-08-24 11:18:57,944 DEBUG: 			View 3 : 0.608695652174
+2016-08-24 11:18:58,180 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:19:03,593 DEBUG: 		Start:	 Iteration 87
+2016-08-24 11:19:03,611 DEBUG: 			View 0 : 0.60248447205
+2016-08-24 11:19:03,619 DEBUG: 			View 1 : 0.608695652174
+2016-08-24 11:19:03,713 DEBUG: 			View 2 : 0.627329192547
+2016-08-24 11:19:03,721 DEBUG: 			View 3 : 0.521739130435
+2016-08-24 11:19:03,959 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:19:09,435 DEBUG: 		Start:	 Iteration 88
+2016-08-24 11:19:09,453 DEBUG: 			View 0 : 0.664596273292
+2016-08-24 11:19:09,461 DEBUG: 			View 1 : 0.534161490683
+2016-08-24 11:19:09,553 DEBUG: 			View 2 : 0.55900621118
+2016-08-24 11:19:09,560 DEBUG: 			View 3 : 0.596273291925
+2016-08-24 11:19:09,799 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:19:15,336 DEBUG: 		Start:	 Iteration 89
+2016-08-24 11:19:15,355 DEBUG: 			View 0 : 0.527950310559
+2016-08-24 11:19:15,363 DEBUG: 			View 1 : 0.515527950311
+2016-08-24 11:19:15,465 DEBUG: 			View 2 : 0.633540372671
+2016-08-24 11:19:15,473 DEBUG: 			View 3 : 0.652173913043
+2016-08-24 11:19:15,721 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:19:21,322 DEBUG: 		Start:	 Iteration 90
+2016-08-24 11:19:21,340 DEBUG: 			View 0 : 0.478260869565
+2016-08-24 11:19:21,348 DEBUG: 			View 1 : 0.670807453416
+2016-08-24 11:19:21,443 DEBUG: 			View 2 : 0.60248447205
+2016-08-24 11:19:21,450 DEBUG: 			View 3 : 0.577639751553
+2016-08-24 11:19:21,697 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:19:27,356 DEBUG: 		Start:	 Iteration 91
+2016-08-24 11:19:27,374 DEBUG: 			View 0 : 0.521739130435
+2016-08-24 11:19:27,382 DEBUG: 			View 1 : 0.496894409938
+2016-08-24 11:19:27,473 DEBUG: 			View 2 : 0.627329192547
+2016-08-24 11:19:27,481 DEBUG: 			View 3 : 0.527950310559
+2016-08-24 11:19:27,732 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:19:33,475 DEBUG: 		Start:	 Iteration 92
+2016-08-24 11:19:33,493 DEBUG: 			View 0 : 0.546583850932
+2016-08-24 11:19:33,501 DEBUG: 			View 1 : 0.55900621118
+2016-08-24 11:19:33,591 DEBUG: 			View 2 : 0.627329192547
+2016-08-24 11:19:33,600 DEBUG: 			View 3 : 0.583850931677
+2016-08-24 11:19:33,851 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:19:39,661 DEBUG: 		Start:	 Iteration 93
+2016-08-24 11:19:39,679 DEBUG: 			View 0 : 0.590062111801
+2016-08-24 11:19:39,687 DEBUG: 			View 1 : 0.708074534161
+2016-08-24 11:19:39,775 DEBUG: 			View 2 : 0.521739130435
+2016-08-24 11:19:39,783 DEBUG: 			View 3 : 0.546583850932
+2016-08-24 11:19:40,039 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:19:45,933 DEBUG: 		Start:	 Iteration 94
+2016-08-24 11:19:45,951 DEBUG: 			View 0 : 0.645962732919
+2016-08-24 11:19:45,959 DEBUG: 			View 1 : 0.409937888199
+2016-08-24 11:19:46,043 DEBUG: 			View 2 : 0.55900621118
+2016-08-24 11:19:46,051 DEBUG: 			View 3 : 0.639751552795
+2016-08-24 11:19:46,302 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:19:52,252 DEBUG: 		Start:	 Iteration 95
+2016-08-24 11:19:52,270 DEBUG: 			View 0 : 0.583850931677
+2016-08-24 11:19:52,278 DEBUG: 			View 1 : 0.552795031056
+2016-08-24 11:19:52,367 DEBUG: 			View 2 : 0.552795031056
+2016-08-24 11:19:52,375 DEBUG: 			View 3 : 0.596273291925
+2016-08-24 11:19:52,642 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:19:58,625 DEBUG: 		Start:	 Iteration 96
+2016-08-24 11:19:58,643 DEBUG: 			View 0 : 0.540372670807
+2016-08-24 11:19:58,651 DEBUG: 			View 1 : 0.496894409938
+2016-08-24 11:19:58,742 DEBUG: 			View 2 : 0.60248447205
+2016-08-24 11:19:58,749 DEBUG: 			View 3 : 0.465838509317
+2016-08-24 11:19:59,007 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:20:05,084 DEBUG: 		Start:	 Iteration 97
+2016-08-24 11:20:05,103 DEBUG: 			View 0 : 0.577639751553
+2016-08-24 11:20:05,111 DEBUG: 			View 1 : 0.683229813665
+2016-08-24 11:20:05,209 DEBUG: 			View 2 : 0.509316770186
+2016-08-24 11:20:05,217 DEBUG: 			View 3 : 0.590062111801
+2016-08-24 11:20:05,489 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:20:11,716 DEBUG: 		Start:	 Iteration 98
+2016-08-24 11:20:11,734 DEBUG: 			View 0 : 0.571428571429
+2016-08-24 11:20:11,743 DEBUG: 			View 1 : 0.621118012422
+2016-08-24 11:20:11,834 DEBUG: 			View 2 : 0.621118012422
+2016-08-24 11:20:11,842 DEBUG: 			View 3 : 0.478260869565
+2016-08-24 11:20:12,104 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:20:18,337 DEBUG: 		Start:	 Iteration 99
+2016-08-24 11:20:18,355 DEBUG: 			View 0 : 0.596273291925
+2016-08-24 11:20:18,363 DEBUG: 			View 1 : 0.621118012422
+2016-08-24 11:20:18,460 DEBUG: 			View 2 : 0.571428571429
+2016-08-24 11:20:18,468 DEBUG: 			View 3 : 0.55900621118
+2016-08-24 11:20:18,734 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:20:25,017 DEBUG: 		Start:	 Iteration 100
+2016-08-24 11:20:25,036 DEBUG: 			View 0 : 0.403726708075
+2016-08-24 11:20:25,044 DEBUG: 			View 1 : 0.590062111801
+2016-08-24 11:20:25,138 DEBUG: 			View 2 : 0.60248447205
+2016-08-24 11:20:25,146 DEBUG: 			View 3 : 0.540372670807
+2016-08-24 11:20:25,413 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:20:31,776 DEBUG: 		Start:	 Iteration 101
+2016-08-24 11:20:31,794 DEBUG: 			View 0 : 0.496894409938
+2016-08-24 11:20:31,802 DEBUG: 			View 1 : 0.714285714286
+2016-08-24 11:20:31,895 DEBUG: 			View 2 : 0.503105590062
+2016-08-24 11:20:31,902 DEBUG: 			View 3 : 0.496894409938
+2016-08-24 11:20:32,172 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:20:38,807 DEBUG: 		Start:	 Iteration 102
+2016-08-24 11:20:38,831 DEBUG: 			View 0 : 0.695652173913
+2016-08-24 11:20:38,843 DEBUG: 			View 1 : 0.403726708075
+2016-08-24 11:20:38,958 DEBUG: 			View 2 : 0.496894409938
+2016-08-24 11:20:38,968 DEBUG: 			View 3 : 0.683229813665
+2016-08-24 11:20:39,249 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:20:45,713 INFO: 	Start: 	 Classification
+2016-08-24 11:21:01,314 INFO: 	Done: 	 Fold number 1
+2016-08-24 11:21:01,314 INFO: 	Start:	 Fold number 2
+2016-08-24 11:21:02,941 DEBUG: 		Start:	 Iteration 1
+2016-08-24 11:21:02,957 DEBUG: 			View 0 : 0.615384615385
+2016-08-24 11:21:02,965 DEBUG: 			View 1 : 0.615384615385
+2016-08-24 11:21:03,052 DEBUG: 			View 2 : 0.615384615385
+2016-08-24 11:21:03,060 DEBUG: 			View 3 : 0.615384615385
+2016-08-24 11:21:03,101 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:21:03,178 DEBUG: 		Start:	 Iteration 2
+2016-08-24 11:21:03,195 DEBUG: 			View 0 : 0.557692307692
+2016-08-24 11:21:03,203 DEBUG: 			View 1 : 0.455128205128
+2016-08-24 11:21:03,294 DEBUG: 			View 2 : 0.576923076923
+2016-08-24 11:21:03,301 DEBUG: 			View 3 : 0.608974358974
+2016-08-24 11:21:03,347 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:21:03,483 DEBUG: 		Start:	 Iteration 3
+2016-08-24 11:21:03,501 DEBUG: 			View 0 : 0.487179487179
+2016-08-24 11:21:03,509 DEBUG: 			View 1 : 0.570512820513
+2016-08-24 11:21:03,594 DEBUG: 			View 2 : 0.442307692308
+2016-08-24 11:21:03,602 DEBUG: 			View 3 : 0.474358974359
+2016-08-24 11:21:03,656 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:21:03,847 DEBUG: 		Start:	 Iteration 4
+2016-08-24 11:21:03,863 DEBUG: 			View 0 : 0.487179487179
+2016-08-24 11:21:03,871 DEBUG: 			View 1 : 0.628205128205
+2016-08-24 11:21:03,953 DEBUG: 			View 2 : 0.564102564103
+2016-08-24 11:21:03,961 DEBUG: 			View 3 : 0.673076923077
+2016-08-24 11:21:04,015 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:21:04,261 DEBUG: 		Start:	 Iteration 5
+2016-08-24 11:21:04,278 DEBUG: 			View 0 : 0.467948717949
+2016-08-24 11:21:04,285 DEBUG: 			View 1 : 0.384615384615
+2016-08-24 11:21:04,372 DEBUG: 			View 2 : 0.589743589744
+2016-08-24 11:21:04,380 DEBUG: 			View 3 : 0.583333333333
+2016-08-24 11:21:04,437 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:21:04,758 DEBUG: 		Start:	 Iteration 6
+2016-08-24 11:21:04,775 DEBUG: 			View 0 : 0.74358974359
+2016-08-24 11:21:04,783 DEBUG: 			View 1 : 0.538461538462
+2016-08-24 11:21:04,865 DEBUG: 			View 2 : 0.608974358974
+2016-08-24 11:21:04,873 DEBUG: 			View 3 : 0.544871794872
+2016-08-24 11:21:04,933 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:21:05,314 DEBUG: 		Start:	 Iteration 7
+2016-08-24 11:21:05,331 DEBUG: 			View 0 : 0.50641025641
+2016-08-24 11:21:05,338 DEBUG: 			View 1 : 0.628205128205
+2016-08-24 11:21:05,422 DEBUG: 			View 2 : 0.5
+2016-08-24 11:21:05,430 DEBUG: 			View 3 : 0.641025641026
+2016-08-24 11:21:05,491 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:21:05,935 DEBUG: 		Start:	 Iteration 8
+2016-08-24 11:21:05,952 DEBUG: 			View 0 : 0.487179487179
+2016-08-24 11:21:05,959 DEBUG: 			View 1 : 0.596153846154
+2016-08-24 11:21:06,054 DEBUG: 			View 2 : 0.564102564103
+2016-08-24 11:21:06,063 DEBUG: 			View 3 : 0.557692307692
+2016-08-24 11:21:06,129 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:21:06,623 DEBUG: 		Start:	 Iteration 9
+2016-08-24 11:21:06,639 DEBUG: 			View 0 : 0.487179487179
+2016-08-24 11:21:06,647 DEBUG: 			View 1 : 0.596153846154
+2016-08-24 11:21:06,724 DEBUG: 			View 2 : 0.564102564103
+2016-08-24 11:21:06,731 DEBUG: 			View 3 : 0.596153846154
+2016-08-24 11:21:06,797 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:21:07,345 DEBUG: 		Start:	 Iteration 10
+2016-08-24 11:21:07,367 DEBUG: 			View 0 : 0.653846153846
+2016-08-24 11:21:07,375 DEBUG: 			View 1 : 0.608974358974
+2016-08-24 11:21:07,458 DEBUG: 			View 2 : 0.634615384615
+2016-08-24 11:21:07,466 DEBUG: 			View 3 : 0.673076923077
+2016-08-24 11:21:07,533 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:21:08,137 DEBUG: 		Start:	 Iteration 11
+2016-08-24 11:21:08,153 DEBUG: 			View 0 : 0.49358974359
+2016-08-24 11:21:08,162 DEBUG: 			View 1 : 0.24358974359
+2016-08-24 11:21:08,271 DEBUG: 			View 2 : 0.519230769231
+2016-08-24 11:21:08,280 DEBUG: 			View 3 : 0.634615384615
+2016-08-24 11:21:08,355 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:21:09,028 DEBUG: 		Start:	 Iteration 12
+2016-08-24 11:21:09,044 DEBUG: 			View 0 : 0.602564102564
+2016-08-24 11:21:09,051 DEBUG: 			View 1 : 0.564102564103
+2016-08-24 11:21:09,139 DEBUG: 			View 2 : 0.557692307692
+2016-08-24 11:21:09,146 DEBUG: 			View 3 : 0.583333333333
+2016-08-24 11:21:09,228 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:21:09,951 DEBUG: 		Start:	 Iteration 13
+2016-08-24 11:21:09,968 DEBUG: 			View 0 : 0.679487179487
+2016-08-24 11:21:09,976 DEBUG: 			View 1 : 0.615384615385
+2016-08-24 11:21:10,058 DEBUG: 			View 2 : 0.596153846154
+2016-08-24 11:21:10,066 DEBUG: 			View 3 : 0.570512820513
+2016-08-24 11:21:10,140 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:21:10,927 DEBUG: 		Start:	 Iteration 14
+2016-08-24 11:21:10,943 DEBUG: 			View 0 : 0.564102564103
+2016-08-24 11:21:10,952 DEBUG: 			View 1 : 0.621794871795
+2016-08-24 11:21:11,038 DEBUG: 			View 2 : 0.557692307692
+2016-08-24 11:21:11,045 DEBUG: 			View 3 : 0.602564102564
+2016-08-24 11:21:11,122 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:21:11,968 DEBUG: 		Start:	 Iteration 15
+2016-08-24 11:21:11,985 DEBUG: 			View 0 : 0.551282051282
+2016-08-24 11:21:11,992 DEBUG: 			View 1 : 0.634615384615
+2016-08-24 11:21:12,074 DEBUG: 			View 2 : 0.467948717949
+2016-08-24 11:21:12,082 DEBUG: 			View 3 : 0.596153846154
+2016-08-24 11:21:12,161 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:21:13,061 DEBUG: 		Start:	 Iteration 16
+2016-08-24 11:21:13,078 DEBUG: 			View 0 : 0.679487179487
+2016-08-24 11:21:13,086 DEBUG: 			View 1 : 0.403846153846
+2016-08-24 11:21:13,172 DEBUG: 			View 2 : 0.628205128205
+2016-08-24 11:21:13,180 DEBUG: 			View 3 : 0.544871794872
+2016-08-24 11:21:13,262 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:21:14,233 DEBUG: 		Start:	 Iteration 17
+2016-08-24 11:21:14,250 DEBUG: 			View 0 : 0.621794871795
+2016-08-24 11:21:14,258 DEBUG: 			View 1 : 0.673076923077
+2016-08-24 11:21:14,340 DEBUG: 			View 2 : 0.602564102564
+2016-08-24 11:21:14,348 DEBUG: 			View 3 : 0.608974358974
+2016-08-24 11:21:14,431 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:21:15,447 DEBUG: 		Start:	 Iteration 18
+2016-08-24 11:21:15,464 DEBUG: 			View 0 : 0.557692307692
+2016-08-24 11:21:15,471 DEBUG: 			View 1 : 0.641025641026
+2016-08-24 11:21:15,573 DEBUG: 			View 2 : 0.551282051282
+2016-08-24 11:21:15,582 DEBUG: 			View 3 : 0.608974358974
+2016-08-24 11:21:15,675 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:21:16,754 DEBUG: 		Start:	 Iteration 19
+2016-08-24 11:21:16,770 DEBUG: 			View 0 : 0.461538461538
+2016-08-24 11:21:16,777 DEBUG: 			View 1 : 0.647435897436
+2016-08-24 11:21:16,859 DEBUG: 			View 2 : 0.538461538462
+2016-08-24 11:21:16,866 DEBUG: 			View 3 : 0.551282051282
+2016-08-24 11:21:16,954 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:21:18,089 DEBUG: 		Start:	 Iteration 20
+2016-08-24 11:21:18,105 DEBUG: 			View 0 : 0.551282051282
+2016-08-24 11:21:18,113 DEBUG: 			View 1 : 0.371794871795
+2016-08-24 11:21:18,193 DEBUG: 			View 2 : 0.666666666667
+2016-08-24 11:21:18,201 DEBUG: 			View 3 : 0.596153846154
+2016-08-24 11:21:18,291 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:21:19,495 DEBUG: 		Start:	 Iteration 21
+2016-08-24 11:21:19,512 DEBUG: 			View 0 : 0.365384615385
+2016-08-24 11:21:19,520 DEBUG: 			View 1 : 0.576923076923
+2016-08-24 11:21:19,609 DEBUG: 			View 2 : 0.557692307692
+2016-08-24 11:21:19,616 DEBUG: 			View 3 : 0.608974358974
+2016-08-24 11:21:19,709 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:21:20,977 DEBUG: 		Start:	 Iteration 22
+2016-08-24 11:21:20,994 DEBUG: 			View 0 : 0.660256410256
+2016-08-24 11:21:21,002 DEBUG: 			View 1 : 0.782051282051
+2016-08-24 11:21:21,090 DEBUG: 			View 2 : 0.602564102564
+2016-08-24 11:21:21,097 DEBUG: 			View 3 : 0.538461538462
+2016-08-24 11:21:21,191 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:21:22,497 DEBUG: 		Start:	 Iteration 23
+2016-08-24 11:21:22,514 DEBUG: 			View 0 : 0.474358974359
+2016-08-24 11:21:22,522 DEBUG: 			View 1 : 0.314102564103
+2016-08-24 11:21:22,598 DEBUG: 			View 2 : 0.50641025641
+2016-08-24 11:21:22,605 DEBUG: 			View 3 : 0.602564102564
+2016-08-24 11:21:22,701 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:21:24,095 DEBUG: 		Start:	 Iteration 24
+2016-08-24 11:21:24,112 DEBUG: 			View 0 : 0.551282051282
+2016-08-24 11:21:24,120 DEBUG: 			View 1 : 0.429487179487
+2016-08-24 11:21:24,205 DEBUG: 			View 2 : 0.621794871795
+2016-08-24 11:21:24,214 DEBUG: 			View 3 : 0.653846153846
+2016-08-24 11:21:24,312 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:21:25,747 DEBUG: 		Start:	 Iteration 25
+2016-08-24 11:21:25,764 DEBUG: 			View 0 : 0.570512820513
+2016-08-24 11:21:25,772 DEBUG: 			View 1 : 0.519230769231
+2016-08-24 11:21:25,855 DEBUG: 			View 2 : 0.621794871795
+2016-08-24 11:21:25,863 DEBUG: 			View 3 : 0.596153846154
+2016-08-24 11:21:25,963 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:21:27,457 DEBUG: 		Start:	 Iteration 26
+2016-08-24 11:21:27,473 DEBUG: 			View 0 : 0.557692307692
+2016-08-24 11:21:27,481 DEBUG: 			View 1 : 0.378205128205
+2016-08-24 11:21:27,564 DEBUG: 			View 2 : 0.576923076923
+2016-08-24 11:21:27,572 DEBUG: 			View 3 : 0.692307692308
+2016-08-24 11:21:27,675 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:21:29,220 DEBUG: 		Start:	 Iteration 27
+2016-08-24 11:21:29,236 DEBUG: 			View 0 : 0.474358974359
+2016-08-24 11:21:29,244 DEBUG: 			View 1 : 0.564102564103
+2016-08-24 11:21:29,327 DEBUG: 			View 2 : 0.570512820513
+2016-08-24 11:21:29,335 DEBUG: 			View 3 : 0.564102564103
+2016-08-24 11:21:29,440 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:21:31,047 DEBUG: 		Start:	 Iteration 28
+2016-08-24 11:21:31,063 DEBUG: 			View 0 : 0.429487179487
+2016-08-24 11:21:31,071 DEBUG: 			View 1 : 0.75
+2016-08-24 11:21:31,155 DEBUG: 			View 2 : 0.564102564103
+2016-08-24 11:21:31,162 DEBUG: 			View 3 : 0.602564102564
+2016-08-24 11:21:31,270 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:21:32,931 DEBUG: 		Start:	 Iteration 29
+2016-08-24 11:21:32,947 DEBUG: 			View 0 : 0.544871794872
+2016-08-24 11:21:32,955 DEBUG: 			View 1 : 0.576923076923
+2016-08-24 11:21:33,041 DEBUG: 			View 2 : 0.49358974359
+2016-08-24 11:21:33,049 DEBUG: 			View 3 : 0.5
+2016-08-24 11:21:33,161 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:21:34,897 DEBUG: 		Start:	 Iteration 30
+2016-08-24 11:21:34,914 DEBUG: 			View 0 : 0.615384615385
+2016-08-24 11:21:34,921 DEBUG: 			View 1 : 0.621794871795
+2016-08-24 11:21:35,009 DEBUG: 			View 2 : 0.448717948718
+2016-08-24 11:21:35,016 DEBUG: 			View 3 : 0.538461538462
+2016-08-24 11:21:35,130 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:21:36,907 DEBUG: 		Start:	 Iteration 31
+2016-08-24 11:21:36,923 DEBUG: 			View 0 : 0.480769230769
+2016-08-24 11:21:36,931 DEBUG: 			View 1 : 0.570512820513
+2016-08-24 11:21:37,013 DEBUG: 			View 2 : 0.589743589744
+2016-08-24 11:21:37,020 DEBUG: 			View 3 : 0.608974358974
+2016-08-24 11:21:37,135 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:21:38,986 DEBUG: 		Start:	 Iteration 32
+2016-08-24 11:21:39,003 DEBUG: 			View 0 : 0.410256410256
+2016-08-24 11:21:39,011 DEBUG: 			View 1 : 0.666666666667
+2016-08-24 11:21:39,094 DEBUG: 			View 2 : 0.570512820513
+2016-08-24 11:21:39,103 DEBUG: 			View 3 : 0.519230769231
+2016-08-24 11:21:39,220 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:21:41,118 DEBUG: 		Start:	 Iteration 33
+2016-08-24 11:21:41,134 DEBUG: 			View 0 : 0.339743589744
+2016-08-24 11:21:41,142 DEBUG: 			View 1 : 0.525641025641
+2016-08-24 11:21:41,217 DEBUG: 			View 2 : 0.551282051282
+2016-08-24 11:21:41,225 DEBUG: 			View 3 : 0.442307692308
+2016-08-24 11:21:41,344 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:21:43,320 DEBUG: 		Start:	 Iteration 34
+2016-08-24 11:21:43,336 DEBUG: 			View 0 : 0.519230769231
+2016-08-24 11:21:43,344 DEBUG: 			View 1 : 0.448717948718
+2016-08-24 11:21:43,426 DEBUG: 			View 2 : 0.628205128205
+2016-08-24 11:21:43,434 DEBUG: 			View 3 : 0.487179487179
+2016-08-24 11:21:43,554 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:21:45,593 DEBUG: 		Start:	 Iteration 35
+2016-08-24 11:21:45,609 DEBUG: 			View 0 : 0.487179487179
+2016-08-24 11:21:45,617 DEBUG: 			View 1 : 0.673076923077
+2016-08-24 11:21:45,699 DEBUG: 			View 2 : 0.583333333333
+2016-08-24 11:21:45,707 DEBUG: 			View 3 : 0.576923076923
+2016-08-24 11:21:45,831 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:21:47,920 DEBUG: 		Start:	 Iteration 36
+2016-08-24 11:21:47,936 DEBUG: 			View 0 : 0.416666666667
+2016-08-24 11:21:47,944 DEBUG: 			View 1 : 0.435897435897
+2016-08-24 11:21:48,029 DEBUG: 			View 2 : 0.570512820513
+2016-08-24 11:21:48,037 DEBUG: 			View 3 : 0.679487179487
+2016-08-24 11:21:48,164 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:21:50,319 DEBUG: 		Start:	 Iteration 37
+2016-08-24 11:21:50,335 DEBUG: 			View 0 : 0.525641025641
+2016-08-24 11:21:50,343 DEBUG: 			View 1 : 0.602564102564
+2016-08-24 11:21:50,429 DEBUG: 			View 2 : 0.615384615385
+2016-08-24 11:21:50,437 DEBUG: 			View 3 : 0.608974358974
+2016-08-24 11:21:50,563 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:21:52,782 DEBUG: 		Start:	 Iteration 38
+2016-08-24 11:21:52,799 DEBUG: 			View 0 : 0.480769230769
+2016-08-24 11:21:52,807 DEBUG: 			View 1 : 0.576923076923
+2016-08-24 11:21:52,889 DEBUG: 			View 2 : 0.570512820513
+2016-08-24 11:21:52,896 DEBUG: 			View 3 : 0.532051282051
+2016-08-24 11:21:53,028 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:21:55,289 DEBUG: 		Start:	 Iteration 39
+2016-08-24 11:21:55,306 DEBUG: 			View 0 : 0.410256410256
+2016-08-24 11:21:55,314 DEBUG: 			View 1 : 0.557692307692
+2016-08-24 11:21:55,401 DEBUG: 			View 2 : 0.570512820513
+2016-08-24 11:21:55,409 DEBUG: 			View 3 : 0.532051282051
+2016-08-24 11:21:55,541 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:21:57,876 DEBUG: 		Start:	 Iteration 40
+2016-08-24 11:21:57,892 DEBUG: 			View 0 : 0.423076923077
+2016-08-24 11:21:57,900 DEBUG: 			View 1 : 0.50641025641
+2016-08-24 11:21:57,985 DEBUG: 			View 2 : 0.602564102564
+2016-08-24 11:21:57,993 DEBUG: 			View 3 : 0.5
+2016-08-24 11:21:58,126 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:22:00,528 DEBUG: 		Start:	 Iteration 41
+2016-08-24 11:22:00,545 DEBUG: 			View 0 : 0.711538461538
+2016-08-24 11:22:00,552 DEBUG: 			View 1 : 0.641025641026
+2016-08-24 11:22:00,634 DEBUG: 			View 2 : 0.634615384615
+2016-08-24 11:22:00,642 DEBUG: 			View 3 : 0.621794871795
+2016-08-24 11:22:00,779 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:22:03,239 DEBUG: 		Start:	 Iteration 42
+2016-08-24 11:22:03,255 DEBUG: 			View 0 : 0.480769230769
+2016-08-24 11:22:03,263 DEBUG: 			View 1 : 0.551282051282
+2016-08-24 11:22:03,353 DEBUG: 			View 2 : 0.544871794872
+2016-08-24 11:22:03,360 DEBUG: 			View 3 : 0.666666666667
+2016-08-24 11:22:03,500 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:22:06,015 DEBUG: 		Start:	 Iteration 43
+2016-08-24 11:22:06,031 DEBUG: 			View 0 : 0.551282051282
+2016-08-24 11:22:06,039 DEBUG: 			View 1 : 0.564102564103
+2016-08-24 11:22:06,124 DEBUG: 			View 2 : 0.551282051282
+2016-08-24 11:22:06,132 DEBUG: 			View 3 : 0.641025641026
+2016-08-24 11:22:06,271 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:22:08,861 DEBUG: 		Start:	 Iteration 44
+2016-08-24 11:22:08,878 DEBUG: 			View 0 : 0.416666666667
+2016-08-24 11:22:08,885 DEBUG: 			View 1 : 0.647435897436
+2016-08-24 11:22:08,969 DEBUG: 			View 2 : 0.628205128205
+2016-08-24 11:22:08,976 DEBUG: 			View 3 : 0.660256410256
+2016-08-24 11:22:09,120 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:22:11,751 DEBUG: 		Start:	 Iteration 45
+2016-08-24 11:22:11,767 DEBUG: 			View 0 : 0.557692307692
+2016-08-24 11:22:11,775 DEBUG: 			View 1 : 0.365384615385
+2016-08-24 11:22:11,864 DEBUG: 			View 2 : 0.583333333333
+2016-08-24 11:22:11,871 DEBUG: 			View 3 : 0.525641025641
+2016-08-24 11:22:12,016 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:22:14,742 DEBUG: 		Start:	 Iteration 46
+2016-08-24 11:22:14,758 DEBUG: 			View 0 : 0.570512820513
+2016-08-24 11:22:14,766 DEBUG: 			View 1 : 0.602564102564
+2016-08-24 11:22:14,854 DEBUG: 			View 2 : 0.564102564103
+2016-08-24 11:22:14,861 DEBUG: 			View 3 : 0.628205128205
+2016-08-24 11:22:15,009 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:22:17,777 DEBUG: 		Start:	 Iteration 47
+2016-08-24 11:22:17,794 DEBUG: 			View 0 : 0.480769230769
+2016-08-24 11:22:17,802 DEBUG: 			View 1 : 0.320512820513
+2016-08-24 11:22:17,884 DEBUG: 			View 2 : 0.49358974359
+2016-08-24 11:22:17,891 DEBUG: 			View 3 : 0.461538461538
+2016-08-24 11:22:17,891 WARNING: WARNING:	All bad for iteration 46
+2016-08-24 11:22:18,042 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:22:20,878 DEBUG: 		Start:	 Iteration 48
+2016-08-24 11:22:20,895 DEBUG: 			View 0 : 0.544871794872
+2016-08-24 11:22:20,902 DEBUG: 			View 1 : 0.397435897436
+2016-08-24 11:22:20,985 DEBUG: 			View 2 : 0.589743589744
+2016-08-24 11:22:20,993 DEBUG: 			View 3 : 0.621794871795
+2016-08-24 11:22:21,144 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:22:24,050 DEBUG: 		Start:	 Iteration 49
+2016-08-24 11:22:24,066 DEBUG: 			View 0 : 0.589743589744
+2016-08-24 11:22:24,074 DEBUG: 			View 1 : 0.333333333333
+2016-08-24 11:22:24,159 DEBUG: 			View 2 : 0.544871794872
+2016-08-24 11:22:24,166 DEBUG: 			View 3 : 0.512820512821
+2016-08-24 11:22:24,321 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:22:27,282 DEBUG: 		Start:	 Iteration 50
+2016-08-24 11:22:27,298 DEBUG: 			View 0 : 0.50641025641
+2016-08-24 11:22:27,306 DEBUG: 			View 1 : 0.576923076923
+2016-08-24 11:22:27,388 DEBUG: 			View 2 : 0.583333333333
+2016-08-24 11:22:27,396 DEBUG: 			View 3 : 0.589743589744
+2016-08-24 11:22:27,554 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:22:30,568 DEBUG: 		Start:	 Iteration 51
+2016-08-24 11:22:30,585 DEBUG: 			View 0 : 0.429487179487
+2016-08-24 11:22:30,592 DEBUG: 			View 1 : 0.423076923077
+2016-08-24 11:22:30,681 DEBUG: 			View 2 : 0.596153846154
+2016-08-24 11:22:30,688 DEBUG: 			View 3 : 0.583333333333
+2016-08-24 11:22:30,847 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:22:33,933 DEBUG: 		Start:	 Iteration 52
+2016-08-24 11:22:33,950 DEBUG: 			View 0 : 0.570512820513
+2016-08-24 11:22:33,957 DEBUG: 			View 1 : 0.653846153846
+2016-08-24 11:22:34,040 DEBUG: 			View 2 : 0.615384615385
+2016-08-24 11:22:34,048 DEBUG: 			View 3 : 0.49358974359
+2016-08-24 11:22:34,211 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:22:37,353 DEBUG: 		Start:	 Iteration 53
+2016-08-24 11:22:37,370 DEBUG: 			View 0 : 0.538461538462
+2016-08-24 11:22:37,378 DEBUG: 			View 1 : 0.628205128205
+2016-08-24 11:22:37,465 DEBUG: 			View 2 : 0.653846153846
+2016-08-24 11:22:37,473 DEBUG: 			View 3 : 0.525641025641
+2016-08-24 11:22:37,635 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:22:40,837 DEBUG: 		Start:	 Iteration 54
+2016-08-24 11:22:40,854 DEBUG: 			View 0 : 0.589743589744
+2016-08-24 11:22:40,862 DEBUG: 			View 1 : 0.448717948718
+2016-08-24 11:22:40,943 DEBUG: 			View 2 : 0.50641025641
+2016-08-24 11:22:40,951 DEBUG: 			View 3 : 0.583333333333
+2016-08-24 11:22:41,117 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:22:44,382 DEBUG: 		Start:	 Iteration 55
+2016-08-24 11:22:44,398 DEBUG: 			View 0 : 0.634615384615
+2016-08-24 11:22:44,406 DEBUG: 			View 1 : 0.551282051282
+2016-08-24 11:22:44,485 DEBUG: 			View 2 : 0.564102564103
+2016-08-24 11:22:44,493 DEBUG: 			View 3 : 0.448717948718
+2016-08-24 11:22:44,658 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:22:47,984 DEBUG: 		Start:	 Iteration 56
+2016-08-24 11:22:48,000 DEBUG: 			View 0 : 0.544871794872
+2016-08-24 11:22:48,008 DEBUG: 			View 1 : 0.666666666667
+2016-08-24 11:22:48,091 DEBUG: 			View 2 : 0.525641025641
+2016-08-24 11:22:48,099 DEBUG: 			View 3 : 0.589743589744
+2016-08-24 11:22:48,265 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:22:51,652 DEBUG: 		Start:	 Iteration 57
+2016-08-24 11:22:51,668 DEBUG: 			View 0 : 0.583333333333
+2016-08-24 11:22:51,676 DEBUG: 			View 1 : 0.397435897436
+2016-08-24 11:22:51,769 DEBUG: 			View 2 : 0.519230769231
+2016-08-24 11:22:51,776 DEBUG: 			View 3 : 0.538461538462
+2016-08-24 11:22:51,945 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:22:55,390 DEBUG: 		Start:	 Iteration 58
+2016-08-24 11:22:55,406 DEBUG: 			View 0 : 0.403846153846
+2016-08-24 11:22:55,414 DEBUG: 			View 1 : 0.410256410256
+2016-08-24 11:22:55,502 DEBUG: 			View 2 : 0.551282051282
+2016-08-24 11:22:55,510 DEBUG: 			View 3 : 0.602564102564
+2016-08-24 11:22:55,681 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:22:59,217 DEBUG: 		Start:	 Iteration 59
+2016-08-24 11:22:59,234 DEBUG: 			View 0 : 0.474358974359
+2016-08-24 11:22:59,242 DEBUG: 			View 1 : 0.512820512821
+2016-08-24 11:22:59,326 DEBUG: 			View 2 : 0.608974358974
+2016-08-24 11:22:59,333 DEBUG: 			View 3 : 0.512820512821
+2016-08-24 11:22:59,507 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:23:03,084 DEBUG: 		Start:	 Iteration 60
+2016-08-24 11:23:03,101 DEBUG: 			View 0 : 0.397435897436
+2016-08-24 11:23:03,110 DEBUG: 			View 1 : 0.455128205128
+2016-08-24 11:23:03,196 DEBUG: 			View 2 : 0.653846153846
+2016-08-24 11:23:03,204 DEBUG: 			View 3 : 0.570512820513
+2016-08-24 11:23:03,381 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:23:07,042 DEBUG: 		Start:	 Iteration 61
+2016-08-24 11:23:07,059 DEBUG: 			View 0 : 0.705128205128
+2016-08-24 11:23:07,066 DEBUG: 			View 1 : 0.442307692308
+2016-08-24 11:23:07,154 DEBUG: 			View 2 : 0.557692307692
+2016-08-24 11:23:07,162 DEBUG: 			View 3 : 0.621794871795
+2016-08-24 11:23:07,340 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:23:11,059 DEBUG: 		Start:	 Iteration 62
+2016-08-24 11:23:11,075 DEBUG: 			View 0 : 0.391025641026
+2016-08-24 11:23:11,083 DEBUG: 			View 1 : 0.666666666667
+2016-08-24 11:23:11,180 DEBUG: 			View 2 : 0.532051282051
+2016-08-24 11:23:11,188 DEBUG: 			View 3 : 0.570512820513
+2016-08-24 11:23:11,379 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:23:15,148 DEBUG: 		Start:	 Iteration 63
+2016-08-24 11:23:15,164 DEBUG: 			View 0 : 0.384615384615
+2016-08-24 11:23:15,172 DEBUG: 			View 1 : 0.532051282051
+2016-08-24 11:23:15,256 DEBUG: 			View 2 : 0.49358974359
+2016-08-24 11:23:15,263 DEBUG: 			View 3 : 0.653846153846
+2016-08-24 11:23:15,447 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:23:19,280 DEBUG: 		Start:	 Iteration 64
+2016-08-24 11:23:19,296 DEBUG: 			View 0 : 0.551282051282
+2016-08-24 11:23:19,304 DEBUG: 			View 1 : 0.679487179487
+2016-08-24 11:23:19,391 DEBUG: 			View 2 : 0.551282051282
+2016-08-24 11:23:19,398 DEBUG: 			View 3 : 0.583333333333
+2016-08-24 11:23:19,582 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:23:23,489 DEBUG: 		Start:	 Iteration 65
+2016-08-24 11:23:23,505 DEBUG: 			View 0 : 0.583333333333
+2016-08-24 11:23:23,513 DEBUG: 			View 1 : 0.525641025641
+2016-08-24 11:23:23,597 DEBUG: 			View 2 : 0.602564102564
+2016-08-24 11:23:23,604 DEBUG: 			View 3 : 0.602564102564
+2016-08-24 11:23:23,795 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:23:27,722 DEBUG: 		Start:	 Iteration 66
+2016-08-24 11:23:27,739 DEBUG: 			View 0 : 0.538461538462
+2016-08-24 11:23:27,746 DEBUG: 			View 1 : 0.538461538462
+2016-08-24 11:23:27,833 DEBUG: 			View 2 : 0.525641025641
+2016-08-24 11:23:27,840 DEBUG: 			View 3 : 0.5
+2016-08-24 11:23:28,046 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:23:32,077 DEBUG: 		Start:	 Iteration 67
+2016-08-24 11:23:32,094 DEBUG: 			View 0 : 0.403846153846
+2016-08-24 11:23:32,102 DEBUG: 			View 1 : 0.49358974359
+2016-08-24 11:23:32,186 DEBUG: 			View 2 : 0.448717948718
+2016-08-24 11:23:32,194 DEBUG: 			View 3 : 0.615384615385
+2016-08-24 11:23:32,386 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:23:36,441 DEBUG: 		Start:	 Iteration 68
+2016-08-24 11:23:36,458 DEBUG: 			View 0 : 0.660256410256
+2016-08-24 11:23:36,466 DEBUG: 			View 1 : 0.339743589744
+2016-08-24 11:23:36,553 DEBUG: 			View 2 : 0.621794871795
+2016-08-24 11:23:36,560 DEBUG: 			View 3 : 0.685897435897
+2016-08-24 11:23:36,754 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:23:40,869 DEBUG: 		Start:	 Iteration 69
+2016-08-24 11:23:40,885 DEBUG: 			View 0 : 0.602564102564
+2016-08-24 11:23:40,893 DEBUG: 			View 1 : 0.442307692308
+2016-08-24 11:23:40,971 DEBUG: 			View 2 : 0.570512820513
+2016-08-24 11:23:40,979 DEBUG: 			View 3 : 0.596153846154
+2016-08-24 11:23:41,173 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:23:45,325 DEBUG: 		Start:	 Iteration 70
+2016-08-24 11:23:45,341 DEBUG: 			View 0 : 0.435897435897
+2016-08-24 11:23:45,349 DEBUG: 			View 1 : 0.525641025641
+2016-08-24 11:23:45,436 DEBUG: 			View 2 : 0.525641025641
+2016-08-24 11:23:45,443 DEBUG: 			View 3 : 0.621794871795
+2016-08-24 11:23:45,641 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:23:49,870 DEBUG: 		Start:	 Iteration 71
+2016-08-24 11:23:49,887 DEBUG: 			View 0 : 0.551282051282
+2016-08-24 11:23:49,895 DEBUG: 			View 1 : 0.621794871795
+2016-08-24 11:23:49,978 DEBUG: 			View 2 : 0.538461538462
+2016-08-24 11:23:49,986 DEBUG: 			View 3 : 0.634615384615
+2016-08-24 11:23:50,196 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:23:54,507 DEBUG: 		Start:	 Iteration 72
+2016-08-24 11:23:54,523 DEBUG: 			View 0 : 0.512820512821
+2016-08-24 11:23:54,531 DEBUG: 			View 1 : 0.455128205128
+2016-08-24 11:23:54,611 DEBUG: 			View 2 : 0.532051282051
+2016-08-24 11:23:54,619 DEBUG: 			View 3 : 0.551282051282
+2016-08-24 11:23:54,820 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:23:59,164 DEBUG: 		Start:	 Iteration 73
+2016-08-24 11:23:59,180 DEBUG: 			View 0 : 0.416666666667
+2016-08-24 11:23:59,188 DEBUG: 			View 1 : 0.474358974359
+2016-08-24 11:23:59,273 DEBUG: 			View 2 : 0.5
+2016-08-24 11:23:59,280 DEBUG: 			View 3 : 0.525641025641
+2016-08-24 11:23:59,485 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:24:03,917 DEBUG: 		Start:	 Iteration 74
+2016-08-24 11:24:03,934 DEBUG: 			View 0 : 0.564102564103
+2016-08-24 11:24:03,942 DEBUG: 			View 1 : 0.698717948718
+2016-08-24 11:24:04,029 DEBUG: 			View 2 : 0.564102564103
+2016-08-24 11:24:04,037 DEBUG: 			View 3 : 0.5
+2016-08-24 11:24:04,257 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:24:08,879 DEBUG: 		Start:	 Iteration 75
+2016-08-24 11:24:08,896 DEBUG: 			View 0 : 0.647435897436
+2016-08-24 11:24:08,904 DEBUG: 			View 1 : 0.397435897436
+2016-08-24 11:24:08,992 DEBUG: 			View 2 : 0.589743589744
+2016-08-24 11:24:09,000 DEBUG: 			View 3 : 0.583333333333
+2016-08-24 11:24:09,218 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:24:13,834 DEBUG: 		Start:	 Iteration 76
+2016-08-24 11:24:13,851 DEBUG: 			View 0 : 0.564102564103
+2016-08-24 11:24:13,859 DEBUG: 			View 1 : 0.75
+2016-08-24 11:24:13,949 DEBUG: 			View 2 : 0.551282051282
+2016-08-24 11:24:13,957 DEBUG: 			View 3 : 0.602564102564
+2016-08-24 11:24:14,181 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:24:18,999 DEBUG: 		Start:	 Iteration 77
+2016-08-24 11:24:19,016 DEBUG: 			View 0 : 0.641025641026
+2016-08-24 11:24:19,023 DEBUG: 			View 1 : 0.673076923077
+2016-08-24 11:24:19,111 DEBUG: 			View 2 : 0.519230769231
+2016-08-24 11:24:19,119 DEBUG: 			View 3 : 0.544871794872
+2016-08-24 11:24:19,332 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:24:24,134 DEBUG: 		Start:	 Iteration 78
+2016-08-24 11:24:24,151 DEBUG: 			View 0 : 0.397435897436
+2016-08-24 11:24:24,159 DEBUG: 			View 1 : 0.282051282051
+2016-08-24 11:24:24,256 DEBUG: 			View 2 : 0.589743589744
+2016-08-24 11:24:24,264 DEBUG: 			View 3 : 0.653846153846
+2016-08-24 11:24:24,481 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:24:29,491 DEBUG: 		Start:	 Iteration 79
+2016-08-24 11:24:29,508 DEBUG: 			View 0 : 0.487179487179
+2016-08-24 11:24:29,516 DEBUG: 			View 1 : 0.564102564103
+2016-08-24 11:24:29,610 DEBUG: 			View 2 : 0.512820512821
+2016-08-24 11:24:29,618 DEBUG: 			View 3 : 0.621794871795
+2016-08-24 11:24:29,840 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:24:34,815 DEBUG: 		Start:	 Iteration 80
+2016-08-24 11:24:34,835 DEBUG: 			View 0 : 0.435897435897
+2016-08-24 11:24:34,844 DEBUG: 			View 1 : 0.711538461538
+2016-08-24 11:24:34,954 DEBUG: 			View 2 : 0.544871794872
+2016-08-24 11:24:34,964 DEBUG: 			View 3 : 0.551282051282
+2016-08-24 11:24:35,235 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:24:40,456 DEBUG: 		Start:	 Iteration 81
+2016-08-24 11:24:40,474 DEBUG: 			View 0 : 0.576923076923
+2016-08-24 11:24:40,483 DEBUG: 			View 1 : 0.346153846154
+2016-08-24 11:24:40,571 DEBUG: 			View 2 : 0.557692307692
+2016-08-24 11:24:40,579 DEBUG: 			View 3 : 0.608974358974
+2016-08-24 11:24:40,814 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:24:45,879 DEBUG: 		Start:	 Iteration 82
+2016-08-24 11:24:45,896 DEBUG: 			View 0 : 0.474358974359
+2016-08-24 11:24:45,905 DEBUG: 			View 1 : 0.50641025641
+2016-08-24 11:24:45,988 DEBUG: 			View 2 : 0.653846153846
+2016-08-24 11:24:45,996 DEBUG: 			View 3 : 0.641025641026
+2016-08-24 11:24:46,222 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:24:51,238 DEBUG: 		Start:	 Iteration 83
+2016-08-24 11:24:51,255 DEBUG: 			View 0 : 0.544871794872
+2016-08-24 11:24:51,264 DEBUG: 			View 1 : 0.692307692308
+2016-08-24 11:24:51,355 DEBUG: 			View 2 : 0.576923076923
+2016-08-24 11:24:51,363 DEBUG: 			View 3 : 0.602564102564
+2016-08-24 11:24:51,591 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:24:56,849 DEBUG: 		Start:	 Iteration 84
+2016-08-24 11:24:56,866 DEBUG: 			View 0 : 0.602564102564
+2016-08-24 11:24:56,873 DEBUG: 			View 1 : 0.320512820513
+2016-08-24 11:24:56,962 DEBUG: 			View 2 : 0.647435897436
+2016-08-24 11:24:56,970 DEBUG: 			View 3 : 0.576923076923
+2016-08-24 11:24:57,226 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:25:02,537 DEBUG: 		Start:	 Iteration 85
+2016-08-24 11:25:02,553 DEBUG: 			View 0 : 0.525641025641
+2016-08-24 11:25:02,561 DEBUG: 			View 1 : 0.615384615385
+2016-08-24 11:25:02,650 DEBUG: 			View 2 : 0.519230769231
+2016-08-24 11:25:02,657 DEBUG: 			View 3 : 0.660256410256
+2016-08-24 11:25:02,885 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:25:08,095 DEBUG: 		Start:	 Iteration 86
+2016-08-24 11:25:08,112 DEBUG: 			View 0 : 0.647435897436
+2016-08-24 11:25:08,120 DEBUG: 			View 1 : 0.525641025641
+2016-08-24 11:25:08,210 DEBUG: 			View 2 : 0.557692307692
+2016-08-24 11:25:08,218 DEBUG: 			View 3 : 0.641025641026
+2016-08-24 11:25:08,454 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:25:13,805 DEBUG: 		Start:	 Iteration 87
+2016-08-24 11:25:13,829 DEBUG: 			View 0 : 0.480769230769
+2016-08-24 11:25:13,844 DEBUG: 			View 1 : 0.628205128205
+2016-08-24 11:25:13,984 DEBUG: 			View 2 : 0.564102564103
+2016-08-24 11:25:13,998 DEBUG: 			View 3 : 0.49358974359
+2016-08-24 11:25:14,388 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:25:19,842 DEBUG: 		Start:	 Iteration 88
+2016-08-24 11:25:19,859 DEBUG: 			View 0 : 0.583333333333
+2016-08-24 11:25:19,867 DEBUG: 			View 1 : 0.480769230769
+2016-08-24 11:25:19,951 DEBUG: 			View 2 : 0.551282051282
+2016-08-24 11:25:19,959 DEBUG: 			View 3 : 0.628205128205
+2016-08-24 11:25:20,266 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:25:25,733 DEBUG: 		Start:	 Iteration 89
+2016-08-24 11:25:25,749 DEBUG: 			View 0 : 0.544871794872
+2016-08-24 11:25:25,757 DEBUG: 			View 1 : 0.634615384615
+2016-08-24 11:25:25,843 DEBUG: 			View 2 : 0.50641025641
+2016-08-24 11:25:25,851 DEBUG: 			View 3 : 0.49358974359
+2016-08-24 11:25:26,091 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:25:31,511 DEBUG: 		Start:	 Iteration 90
+2016-08-24 11:25:31,527 DEBUG: 			View 0 : 0.615384615385
+2016-08-24 11:25:31,535 DEBUG: 			View 1 : 0.685897435897
+2016-08-24 11:25:31,618 DEBUG: 			View 2 : 0.519230769231
+2016-08-24 11:25:31,626 DEBUG: 			View 3 : 0.564102564103
+2016-08-24 11:25:31,867 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:25:37,241 DEBUG: 		Start:	 Iteration 91
+2016-08-24 11:25:37,257 DEBUG: 			View 0 : 0.50641025641
+2016-08-24 11:25:37,265 DEBUG: 			View 1 : 0.692307692308
+2016-08-24 11:25:37,352 DEBUG: 			View 2 : 0.557692307692
+2016-08-24 11:25:37,360 DEBUG: 			View 3 : 0.538461538462
+2016-08-24 11:25:37,600 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:25:43,043 DEBUG: 		Start:	 Iteration 92
+2016-08-24 11:25:43,059 DEBUG: 			View 0 : 0.544871794872
+2016-08-24 11:25:43,067 DEBUG: 			View 1 : 0.474358974359
+2016-08-24 11:25:43,154 DEBUG: 			View 2 : 0.615384615385
+2016-08-24 11:25:43,162 DEBUG: 			View 3 : 0.634615384615
+2016-08-24 11:25:43,406 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:25:48,939 DEBUG: 		Start:	 Iteration 93
+2016-08-24 11:25:48,956 DEBUG: 			View 0 : 0.538461538462
+2016-08-24 11:25:48,964 DEBUG: 			View 1 : 0.589743589744
+2016-08-24 11:25:49,051 DEBUG: 			View 2 : 0.621794871795
+2016-08-24 11:25:49,058 DEBUG: 			View 3 : 0.570512820513
+2016-08-24 11:25:49,305 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:25:54,890 DEBUG: 		Start:	 Iteration 94
+2016-08-24 11:25:54,907 DEBUG: 			View 0 : 0.435897435897
+2016-08-24 11:25:54,914 DEBUG: 			View 1 : 0.589743589744
+2016-08-24 11:25:54,997 DEBUG: 			View 2 : 0.5
+2016-08-24 11:25:55,004 DEBUG: 			View 3 : 0.608974358974
+2016-08-24 11:25:55,251 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:26:01,345 DEBUG: 		Start:	 Iteration 95
+2016-08-24 11:26:01,363 DEBUG: 			View 0 : 0.570512820513
+2016-08-24 11:26:01,371 DEBUG: 			View 1 : 0.448717948718
+2016-08-24 11:26:01,460 DEBUG: 			View 2 : 0.564102564103
+2016-08-24 11:26:01,468 DEBUG: 			View 3 : 0.544871794872
+2016-08-24 11:26:01,722 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:26:07,817 DEBUG: 		Start:	 Iteration 96
+2016-08-24 11:26:07,833 DEBUG: 			View 0 : 0.602564102564
+2016-08-24 11:26:07,841 DEBUG: 			View 1 : 0.410256410256
+2016-08-24 11:26:07,923 DEBUG: 			View 2 : 0.641025641026
+2016-08-24 11:26:07,931 DEBUG: 			View 3 : 0.653846153846
+2016-08-24 11:26:08,195 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:26:14,008 DEBUG: 		Start:	 Iteration 97
+2016-08-24 11:26:14,024 DEBUG: 			View 0 : 0.596153846154
+2016-08-24 11:26:14,032 DEBUG: 			View 1 : 0.384615384615
+2016-08-24 11:26:14,119 DEBUG: 			View 2 : 0.519230769231
+2016-08-24 11:26:14,126 DEBUG: 			View 3 : 0.621794871795
+2016-08-24 11:26:14,382 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:26:20,301 DEBUG: 		Start:	 Iteration 98
+2016-08-24 11:26:20,318 DEBUG: 			View 0 : 0.621794871795
+2016-08-24 11:26:20,326 DEBUG: 			View 1 : 0.391025641026
+2016-08-24 11:26:20,418 DEBUG: 			View 2 : 0.596153846154
+2016-08-24 11:26:20,426 DEBUG: 			View 3 : 0.653846153846
+2016-08-24 11:26:20,686 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:26:26,648 DEBUG: 		Start:	 Iteration 99
+2016-08-24 11:26:26,664 DEBUG: 			View 0 : 0.615384615385
+2016-08-24 11:26:26,672 DEBUG: 			View 1 : 0.391025641026
+2016-08-24 11:26:26,757 DEBUG: 			View 2 : 0.544871794872
+2016-08-24 11:26:26,765 DEBUG: 			View 3 : 0.628205128205
+2016-08-24 11:26:27,027 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:26:33,016 DEBUG: 		Start:	 Iteration 100
+2016-08-24 11:26:33,032 DEBUG: 			View 0 : 0.628205128205
+2016-08-24 11:26:33,040 DEBUG: 			View 1 : 0.602564102564
+2016-08-24 11:26:33,124 DEBUG: 			View 2 : 0.480769230769
+2016-08-24 11:26:33,132 DEBUG: 			View 3 : 0.647435897436
+2016-08-24 11:26:33,395 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:26:39,429 DEBUG: 		Start:	 Iteration 101
+2016-08-24 11:26:39,446 DEBUG: 			View 0 : 0.717948717949
+2016-08-24 11:26:39,453 DEBUG: 			View 1 : 0.634615384615
+2016-08-24 11:26:39,539 DEBUG: 			View 2 : 0.589743589744
+2016-08-24 11:26:39,546 DEBUG: 			View 3 : 0.628205128205
+2016-08-24 11:26:39,811 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:26:46,118 DEBUG: 		Start:	 Iteration 102
+2016-08-24 11:26:46,139 DEBUG: 			View 0 : 0.615384615385
+2016-08-24 11:26:46,148 DEBUG: 			View 1 : 0.628205128205
+2016-08-24 11:26:46,237 DEBUG: 			View 2 : 0.551282051282
+2016-08-24 11:26:46,244 DEBUG: 			View 3 : 0.634615384615
+2016-08-24 11:26:46,518 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:26:52,740 INFO: 	Start: 	 Classification
+2016-08-24 11:27:08,084 INFO: 	Done: 	 Fold number 2
+2016-08-24 11:27:08,084 INFO: Done:	 Classification
+2016-08-24 11:27:08,084 INFO: Info:	 Time for Classification: 742[s]
+2016-08-24 11:27:08,084 INFO: Start:	 Result Analysis for Mumbo
+2016-08-24 11:27:43,126 INFO: 		Result for Multiview classification with Mumbo
+
+Average accuracy :
+	-On Train : 79.5150501672
+	-On Test : 79.9180327869
+	-On Validation : 83.9805825243
+
+Dataset info :
+	-Database name : ModifiedMultiOmic
+	-Labels : No, Yes
+	-Views : Methyl, MiRNA, RNASEQ, Clinical
+	-2 folds
+	- Validation set length : 103 for learning rate : 0.7
+
+Classification configuration : 
+	-Algorithm used : Mumbo 
+	-Iterations : 1000
+	-Weak Classifiers : DecisionTree with depth 1,  sub-sampled at 0.02 on Methyl
+		-DecisionTree with depth 1,  sub-sampled at 0.02 on MiRNA
+		-DecisionTree with depth 1,  sub-sampled at 0.1 on RNASEQ
+		-DecisionTree with depth 2,  sub-sampled at 0.1 on Clinical
+
+ Mean average accuracies and stats for each fold : 
+	- Fold 0
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.0566086956522
+			- Percentage of time chosen : 0.91
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.0601552795031
+			- Percentage of time chosen : 0.031
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.0589378881988
+			- Percentage of time chosen : 0.021
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.0603664596273
+			- Percentage of time chosen : 0.038
+	- Fold 1
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.0546346153846
+			- Percentage of time chosen : 0.909
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.05475
+			- Percentage of time chosen : 0.028
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.0575833333333
+			- Percentage of time chosen : 0.015
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.0597243589744
+			- Percentage of time chosen : 0.048
+
+ For each iteration : 
+	- Iteration 1
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 2
+		 Fold 1
+			Accuracy on train : 72.6708074534
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 60.8974358974
+			Accuracy on test : 53.2786885246
+			Accuracy on validation : 63.1067961165
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 66.7841216754
+			 Accuracy on test : 65.5737704918
+	- Iteration 3
+		 Fold 1
+			Accuracy on train : 72.6708074534
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 60.8974358974
+			Accuracy on test : 53.2786885246
+			Accuracy on validation : 63.1067961165
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 66.7841216754
+			 Accuracy on test : 65.5737704918
+	- Iteration 4
+		 Fold 1
+			Accuracy on train : 72.6708074534
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 66.0256410256
+			Accuracy on test : 59.0163934426
+			Accuracy on validation : 65.0485436893
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 69.3482242395
+			 Accuracy on test : 70.9016393443
+	- Iteration 5
+		 Fold 1
+			Accuracy on train : 71.4285714286
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 69.2307692308
+			Accuracy on test : 63.9344262295
+			Accuracy on validation : 66.0194174757
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 70.3296703297
+			 Accuracy on test : 72.5409836066
+	- Iteration 6
+		 Fold 1
+			Accuracy on train : 71.4285714286
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 76.6990291262
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 78.8461538462
+			Accuracy on test : 69.6721311475
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 75.1373626374
+			 Accuracy on test : 75.4098360656
+	- Iteration 7
+		 Fold 1
+			Accuracy on train : 75.7763975155
+			Accuracy on test : 85.2459016393
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 78.2051282051
+			Accuracy on test : 72.131147541
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 76.9907628603
+			 Accuracy on test : 78.6885245902
+	- Iteration 8
+		 Fold 1
+			Accuracy on train : 75.1552795031
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 77.6699029126
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 78.2051282051
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 76.6802038541
+			 Accuracy on test : 76.6393442623
+	- Iteration 9
+		 Fold 1
+			Accuracy on train : 73.9130434783
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 76.6990291262
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.4871794872
+			Accuracy on test : 72.131147541
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 76.7001114827
+			 Accuracy on test : 76.2295081967
+	- Iteration 10
+		 Fold 1
+			Accuracy on train : 75.7763975155
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 75.641025641
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 75.7087115783
+			 Accuracy on test : 77.868852459
+	- Iteration 11
+		 Fold 1
+			Accuracy on train : 75.7763975155
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 74.7572815534
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 76.9230769231
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 76.3497372193
+			 Accuracy on test : 78.6885245902
+	- Iteration 12
+		 Fold 1
+			Accuracy on train : 76.397515528
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 76.6990291262
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 75.641025641
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 76.0192705845
+			 Accuracy on test : 79.0983606557
+	- Iteration 13
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 77.5641025641
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 80.5825242718
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 77.9124860647
+			 Accuracy on test : 77.868852459
+	- Iteration 14
+		 Fold 1
+			Accuracy on train : 77.0186335404
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 77.5641025641
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 77.2913680522
+			 Accuracy on test : 77.4590163934
+	- Iteration 15
+		 Fold 1
+			Accuracy on train : 76.397515528
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 75.641025641
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 76.0192705845
+			 Accuracy on test : 79.0983606557
+	- Iteration 16
+		 Fold 1
+			Accuracy on train : 75.7763975155
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 77.6699029126
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 80.1282051282
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 77.9523013219
+			 Accuracy on test : 79.5081967213
+	- Iteration 17
+		 Fold 1
+			Accuracy on train : 76.397515528
+			Accuracy on test : 85.2459016393
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 78.2051282051
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 77.3013218665
+			 Accuracy on test : 82.7868852459
+	- Iteration 18
+		 Fold 1
+			Accuracy on train : 77.0186335404
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.4871794872
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.2529065138
+			 Accuracy on test : 82.3770491803
+	- Iteration 19
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 81.4102564103
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.8355629877
+			 Accuracy on test : 82.7868852459
+	- Iteration 20
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 80.1282051282
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 81.5533980583
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 79.1945373467
+			 Accuracy on test : 81.1475409836
+	- Iteration 21
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 85.2459016393
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.4871794872
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.8740245262
+			 Accuracy on test : 83.1967213115
+	- Iteration 22
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 77.5641025641
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 77.6019270584
+			 Accuracy on test : 83.606557377
+	- Iteration 23
+		 Fold 1
+			Accuracy on train : 79.5031055901
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 82.5242718447
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 75.641025641
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 77.5720656155
+			 Accuracy on test : 81.9672131148
+	- Iteration 24
+		 Fold 1
+			Accuracy on train : 79.5031055901
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 82.5242718447
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 77.5641025641
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 81.5533980583
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.5336040771
+			 Accuracy on test : 82.7868852459
+	- Iteration 25
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 80.5825242718
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 79.4871794872
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.8740245262
+			 Accuracy on test : 81.9672131148
+	- Iteration 26
+		 Fold 1
+			Accuracy on train : 78.8819875776
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 82.5242718447
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 80.1282051282
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 81.5533980583
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.5050963529
+			 Accuracy on test : 82.7868852459
+	- Iteration 27
+		 Fold 1
+			Accuracy on train : 79.5031055901
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 82.0512820513
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.7771938207
+			 Accuracy on test : 82.7868852459
+	- Iteration 28
+		 Fold 1
+			Accuracy on train : 78.8819875776
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 85.8974358974
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 82.3897117375
+			 Accuracy on test : 81.1475409836
+	- Iteration 29
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.4865424431
+			 Accuracy on test : 81.9672131148
+	- Iteration 30
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 82.0512820513
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.1560758082
+			 Accuracy on test : 81.9672131148
+	- Iteration 31
+		 Fold 1
+			Accuracy on train : 76.397515528
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 78.640776699
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 82.0512820513
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.2243987896
+			 Accuracy on test : 81.1475409836
+	- Iteration 32
+		 Fold 1
+			Accuracy on train : 77.0186335404
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 78.640776699
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 82.6923076923
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.8554706163
+			 Accuracy on test : 81.9672131148
+	- Iteration 33
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 82.0512820513
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 80.1560758082
+			 Accuracy on test : 80.3278688525
+	- Iteration 34
+		 Fold 1
+			Accuracy on train : 77.0186335404
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 80.4964962574
+			 Accuracy on test : 80.737704918
+	- Iteration 35
+		 Fold 1
+			Accuracy on train : 76.397515528
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 77.6699029126
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 82.0512820513
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.2243987896
+			 Accuracy on test : 79.9180327869
+	- Iteration 36
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 82.0512820513
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.1560758082
+			 Accuracy on test : 80.737704918
+	- Iteration 37
+		 Fold 1
+			Accuracy on train : 79.5031055901
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 81.7387322822
+			 Accuracy on test : 81.1475409836
+	- Iteration 38
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 82.6923076923
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.4765886288
+			 Accuracy on test : 80.737704918
+	- Iteration 39
+		 Fold 1
+			Accuracy on train : 77.0186335404
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 81.5533980583
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 82.6923076923
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 79.8554706163
+			 Accuracy on test : 81.5573770492
+	- Iteration 40
+		 Fold 1
+			Accuracy on train : 78.8819875776
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 81.1076604555
+			 Accuracy on test : 81.1475409836
+	- Iteration 41
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 86.4077669903
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 80.4865424431
+			 Accuracy on test : 80.737704918
+	- Iteration 42
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 81.5533980583
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.4865424431
+			 Accuracy on test : 80.3278688525
+	- Iteration 43
+		 Fold 1
+			Accuracy on train : 80.7453416149
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 82.5242718447
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 85.2564102564
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 83.0008759357
+			 Accuracy on test : 80.737704918
+	- Iteration 44
+		 Fold 1
+			Accuracy on train : 78.8819875776
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 82.5242718447
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 85.2564102564
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 82.069198917
+			 Accuracy on test : 80.737704918
+	- Iteration 45
+		 Fold 1
+			Accuracy on train : 78.8819875776
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 84.6153846154
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 81.7486860965
+			 Accuracy on test : 81.1475409836
+	- Iteration 46
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 85.8974358974
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 81.7685937251
+			 Accuracy on test : 81.9672131148
+	- Iteration 47
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 80.5825242718
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 85.8974358974
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 87.3786407767
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 82.0791527313
+			 Accuracy on test : 81.1475409836
+	- Iteration 48
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 86.5384615385
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 88.3495145631
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 82.0891065456
+			 Accuracy on test : 80.737704918
+	- Iteration 49
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 85.8974358974
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 87.3786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 81.7685937251
+			 Accuracy on test : 80.3278688525
+	- Iteration 50
+		 Fold 1
+			Accuracy on train : 77.0186335404
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 85.2564102564
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 81.1375218984
+			 Accuracy on test : 79.5081967213
+	- Iteration 51
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 81.1176142698
+			 Accuracy on test : 80.3278688525
+	- Iteration 52
+		 Fold 1
+			Accuracy on train : 77.0186335404
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.4964962574
+			 Accuracy on test : 79.9180327869
+	- Iteration 53
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 80.8070552636
+			 Accuracy on test : 80.737704918
+	- Iteration 54
+		 Fold 1
+			Accuracy on train : 75.7763975155
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.5548654244
+			 Accuracy on test : 80.3278688525
+	- Iteration 55
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 81.5533980583
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 85.2564102564
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 81.4480809046
+			 Accuracy on test : 79.0983606557
+	- Iteration 56
+		 Fold 1
+			Accuracy on train : 81.3664596273
+			Accuracy on test : 86.0655737705
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 82.6704093008
+			 Accuracy on test : 82.3770491803
+	- Iteration 57
+		 Fold 1
+			Accuracy on train : 81.3664596273
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 86.4077669903
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 82.6704093008
+			 Accuracy on test : 81.9672131148
+	- Iteration 58
+		 Fold 1
+			Accuracy on train : 80.1242236025
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 81.5533980583
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 81.7287784679
+			 Accuracy on test : 81.1475409836
+	- Iteration 59
+		 Fold 1
+			Accuracy on train : 80.1242236025
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 81.5533980583
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 82.0492912884
+			 Accuracy on test : 81.1475409836
+	- Iteration 60
+		 Fold 1
+			Accuracy on train : 79.5031055901
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 81.5533980583
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 81.4182194617
+			 Accuracy on test : 82.3770491803
+	- Iteration 61
+		 Fold 1
+			Accuracy on train : 80.7453416149
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 84.4660194175
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 82.3598502946
+			 Accuracy on test : 82.7868852459
+	- Iteration 62
+		 Fold 1
+			Accuracy on train : 81.3664596273
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 82.3498964803
+			 Accuracy on test : 82.3770491803
+	- Iteration 63
+		 Fold 1
+			Accuracy on train : 79.5031055901
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 82.6923076923
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 81.0977066412
+			 Accuracy on test : 81.5573770492
+	- Iteration 64
+		 Fold 1
+			Accuracy on train : 80.7453416149
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 82.0512820513
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 81.3983118331
+			 Accuracy on test : 81.9672131148
+	- Iteration 65
+		 Fold 1
+			Accuracy on train : 80.1242236025
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 81.4102564103
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.7672400064
+			 Accuracy on test : 81.1475409836
+	- Iteration 66
+		 Fold 1
+			Accuracy on train : 80.7453416149
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 82.0512820513
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 81.3983118331
+			 Accuracy on test : 81.9672131148
+	- Iteration 67
+		 Fold 1
+			Accuracy on train : 80.7453416149
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 80.7692307692
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.7572861921
+			 Accuracy on test : 80.3278688525
+	- Iteration 68
+		 Fold 1
+			Accuracy on train : 82.6086956522
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 82.6923076923
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 82.6505016722
+			 Accuracy on test : 81.9672131148
+	- Iteration 69
+		 Fold 1
+			Accuracy on train : 82.6086956522
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 83.2915273133
+			 Accuracy on test : 81.5573770492
+	- Iteration 70
+		 Fold 1
+			Accuracy on train : 83.2298136646
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 83.6020863195
+			 Accuracy on test : 81.9672131148
+	- Iteration 71
+		 Fold 1
+			Accuracy on train : 83.2298136646
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 84.6153846154
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 83.92259914
+			 Accuracy on test : 81.5573770492
+	- Iteration 72
+		 Fold 1
+			Accuracy on train : 83.2298136646
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 85.4368932039
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 83.6020863195
+			 Accuracy on test : 81.5573770492
+	- Iteration 73
+		 Fold 1
+			Accuracy on train : 82.6086956522
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 82.6923076923
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 82.6505016722
+			 Accuracy on test : 81.9672131148
+	- Iteration 74
+		 Fold 1
+			Accuracy on train : 80.7453416149
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 82.0393374741
+			 Accuracy on test : 81.5573770492
+	- Iteration 75
+		 Fold 1
+			Accuracy on train : 83.2298136646
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 82.0512820513
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 83.4951456311
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 82.6405478579
+			 Accuracy on test : 81.9672131148
+	- Iteration 76
+		 Fold 1
+			Accuracy on train : 81.3664596273
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 82.6704093008
+			 Accuracy on test : 80.737704918
+	- Iteration 77
+		 Fold 1
+			Accuracy on train : 81.9875776398
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 82.6923076923
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 82.339942666
+			 Accuracy on test : 80.737704918
+	- Iteration 78
+		 Fold 1
+			Accuracy on train : 81.9875776398
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 82.6923076923
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 82.339942666
+			 Accuracy on test : 80.737704918
+	- Iteration 79
+		 Fold 1
+			Accuracy on train : 80.1242236025
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 81.7287784679
+			 Accuracy on test : 81.1475409836
+	- Iteration 80
+		 Fold 1
+			Accuracy on train : 80.7453416149
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 82.3598502946
+			 Accuracy on test : 81.1475409836
+	- Iteration 81
+		 Fold 1
+			Accuracy on train : 80.1242236025
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 81.7287784679
+			 Accuracy on test : 81.5573770492
+	- Iteration 82
+		 Fold 1
+			Accuracy on train : 80.7453416149
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 81.4102564103
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 81.0777990126
+			 Accuracy on test : 80.737704918
+	- Iteration 83
+		 Fold 1
+			Accuracy on train : 80.1242236025
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 81.7287784679
+			 Accuracy on test : 81.1475409836
+	- Iteration 84
+		 Fold 1
+			Accuracy on train : 81.3664596273
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 81.4102564103
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 81.3883580188
+			 Accuracy on test : 80.3278688525
+	- Iteration 85
+		 Fold 1
+			Accuracy on train : 79.5031055901
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 82.0512820513
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.7771938207
+			 Accuracy on test : 79.9180327869
+	- Iteration 86
+		 Fold 1
+			Accuracy on train : 79.5031055901
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 82.0512820513
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.7771938207
+			 Accuracy on test : 80.3278688525
+	- Iteration 87
+		 Fold 1
+			Accuracy on train : 78.8819875776
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 80.7692307692
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.8256091734
+			 Accuracy on test : 79.9180327869
+	- Iteration 88
+		 Fold 1
+			Accuracy on train : 79.5031055901
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 80.7692307692
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.1361681796
+			 Accuracy on test : 79.9180327869
+	- Iteration 89
+		 Fold 1
+			Accuracy on train : 78.8819875776
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 80.1282051282
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.5050963529
+			 Accuracy on test : 79.9180327869
+	- Iteration 90
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 80.1282051282
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.1945373467
+			 Accuracy on test : 79.9180327869
+	- Iteration 91
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 79.4871794872
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.8740245262
+			 Accuracy on test : 79.5081967213
+	- Iteration 92
+		 Fold 1
+			Accuracy on train : 78.8819875776
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 79.4871794872
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.1845835324
+			 Accuracy on test : 80.737704918
+	- Iteration 93
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 79.4871794872
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 78.8740245262
+			 Accuracy on test : 79.5081967213
+	- Iteration 94
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 82.5242718447
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.4871794872
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.56346552
+			 Accuracy on test : 79.5081967213
+	- Iteration 95
+		 Fold 1
+			Accuracy on train : 77.0186335404
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 81.5533980583
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 80.1282051282
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.5734193343
+			 Accuracy on test : 79.5081967213
+	- Iteration 96
+		 Fold 1
+			Accuracy on train : 76.397515528
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 81.5533980583
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 79.4871794872
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 77.9423475076
+			 Accuracy on test : 79.0983606557
+	- Iteration 97
+		 Fold 1
+			Accuracy on train : 75.7763975155
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 80.1282051282
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 77.9523013219
+			 Accuracy on test : 78.2786885246
+	- Iteration 98
+		 Fold 1
+			Accuracy on train : 76.397515528
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 78.2051282051
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 82.5242718447
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 77.3013218665
+			 Accuracy on test : 78.6885245902
+	- Iteration 99
+		 Fold 1
+			Accuracy on train : 75.7763975155
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 78.8461538462
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 77.3112756808
+			 Accuracy on test : 78.2786885246
+	- Iteration 100
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 79.4871794872
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.56346552
+			 Accuracy on test : 79.0983606557
+	- Iteration 101
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 81.4102564103
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 79.5250039815
+			 Accuracy on test : 79.9180327869
+	- Iteration 102
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 80.7692307692
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.5150501672
+			 Accuracy on test : 79.9180327869
+	- Iteration 103
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 104
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 105
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 106
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 107
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 108
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 109
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 110
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 111
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 112
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 113
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 114
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 115
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 116
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 117
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 118
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 119
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 120
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 121
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 122
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 123
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 124
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 125
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 126
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 127
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 128
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 129
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 130
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 131
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 132
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 133
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 134
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 135
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 136
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 137
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 138
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 139
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 140
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 141
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 142
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 143
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 144
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 145
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 146
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 147
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 148
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 149
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 150
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 151
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 152
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 153
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 154
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 155
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 156
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 157
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 158
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 159
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 160
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 161
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 162
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 163
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 164
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 165
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 166
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 167
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 168
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 169
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 170
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 171
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 172
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 173
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 174
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 175
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 176
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 177
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 178
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 179
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 180
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 181
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 182
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 183
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 184
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 185
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 186
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 187
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 188
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 189
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 190
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 191
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 192
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 193
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 194
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 195
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 196
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 197
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 198
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 199
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 200
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 201
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 202
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 203
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 204
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 205
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 206
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 207
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 208
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 209
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 210
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 211
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 212
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 213
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 214
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 215
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 216
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 217
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 218
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 219
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 220
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 221
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 222
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 223
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 224
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 225
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 226
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 227
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 228
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 229
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 230
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 231
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 232
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 233
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 234
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 235
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 236
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 237
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 238
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 239
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 240
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 241
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 242
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 243
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 244
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 245
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 246
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 247
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 248
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 249
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 250
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 251
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 252
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 253
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 254
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 255
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 256
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 257
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 258
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 259
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 260
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 261
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 262
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 263
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 264
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 265
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 266
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 267
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 268
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 269
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 270
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 271
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 272
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 273
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 274
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 275
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 276
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 277
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 278
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 279
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 280
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 281
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 282
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 283
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 284
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 285
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 286
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 287
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 288
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 289
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 290
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 291
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 292
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 293
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 294
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 295
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 296
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 297
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 298
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 299
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 300
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 301
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 302
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 303
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 304
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 305
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 306
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 307
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 308
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 309
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 310
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 311
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 312
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 313
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 314
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 315
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 316
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 317
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 318
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 319
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 320
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 321
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 322
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 323
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 324
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 325
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 326
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 327
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 328
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 329
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 330
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 331
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 332
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 333
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 334
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 335
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 336
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 337
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 338
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 339
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 340
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 341
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 342
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 343
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 344
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 345
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 346
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 347
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 348
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 349
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 350
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 351
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 352
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 353
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 354
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 355
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 356
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 357
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 358
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 359
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 360
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 361
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 362
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 363
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 364
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 365
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 366
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 367
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 368
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 369
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 370
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 371
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 372
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 373
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 374
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 375
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 376
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 377
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 378
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 379
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 380
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 381
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 382
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 383
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 384
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 385
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 386
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 387
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 388
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 389
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 390
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 391
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 392
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 393
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 394
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 395
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 396
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 397
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 398
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 399
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 400
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 401
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 402
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 403
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 404
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 405
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 406
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 407
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 408
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 409
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 410
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 411
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 412
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 413
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 414
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 415
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 416
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 417
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 418
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 419
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 420
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 421
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 422
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 423
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 424
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 425
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 426
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 427
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 428
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 429
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 430
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 431
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 432
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 433
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 434
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 435
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 436
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 437
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 438
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 439
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 440
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 441
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 442
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 443
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 444
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 445
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 446
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 447
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 448
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 449
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 450
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 451
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 452
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 453
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 454
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 455
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 456
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 457
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 458
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 459
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 460
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 461
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 462
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 463
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 464
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 465
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 466
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 467
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 468
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 469
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 470
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 471
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 472
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 473
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 474
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 475
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 476
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 477
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 478
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 479
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 480
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 481
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 482
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 483
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 484
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 485
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 486
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 487
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 488
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 489
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 490
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 491
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 492
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 493
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 494
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 495
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 496
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 497
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 498
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 499
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 500
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 501
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 502
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 503
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 504
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 505
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 506
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 507
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 508
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 509
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 510
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 511
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 512
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 513
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 514
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 515
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 516
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 517
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 518
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 519
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 520
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 521
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 522
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 523
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 524
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 525
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 526
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 527
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 528
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 529
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 530
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 531
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 532
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 533
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 534
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 535
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 536
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 537
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 538
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 539
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 540
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 541
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 542
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 543
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 544
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 545
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 546
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 547
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 548
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 549
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 550
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 551
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 552
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 553
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 554
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 555
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 556
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 557
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 558
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 559
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 560
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 561
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 562
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 563
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 564
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 565
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 566
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 567
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 568
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 569
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 570
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 571
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 572
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 573
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 574
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 575
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 576
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 577
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 578
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 579
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 580
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 581
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 582
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 583
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 584
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 585
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 586
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 587
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 588
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 589
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 590
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 591
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 592
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 593
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 594
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 595
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 596
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 597
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 598
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 599
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 600
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 601
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 602
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 603
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 604
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 605
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 606
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 607
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 608
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 609
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 610
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 611
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 612
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 613
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 614
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 615
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 616
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 617
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 618
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 619
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 620
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 621
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 622
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 623
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 624
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 625
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 626
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 627
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 628
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 629
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 630
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 631
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 632
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 633
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 634
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 635
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 636
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 637
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 638
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 639
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 640
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 641
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 642
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 643
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 644
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 645
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 646
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 647
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 648
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 649
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 650
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 651
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 652
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 653
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 654
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 655
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 656
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 657
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 658
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 659
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 660
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 661
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 662
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 663
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 664
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 665
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 666
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 667
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 668
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 669
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 670
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 671
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 672
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 673
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 674
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 675
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 676
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 677
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 678
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 679
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 680
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 681
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 682
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 683
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 684
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 685
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 686
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 687
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 688
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 689
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 690
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 691
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 692
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 693
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 694
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 695
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 696
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 697
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 698
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 699
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 700
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 701
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 702
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 703
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 704
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 705
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 706
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 707
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 708
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 709
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 710
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 711
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 712
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 713
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 714
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 715
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 716
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 717
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 718
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 719
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 720
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 721
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 722
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 723
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 724
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 725
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 726
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 727
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 728
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 729
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 730
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 731
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 732
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 733
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 734
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 735
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 736
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 737
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 738
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 739
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 740
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 741
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 742
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 743
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 744
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 745
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 746
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 747
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 748
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 749
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 750
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 751
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 752
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 753
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 754
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 755
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 756
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 757
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 758
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 759
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 760
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 761
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 762
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 763
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 764
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 765
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 766
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 767
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 768
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 769
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 770
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 771
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 772
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 773
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 774
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 775
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 776
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 777
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 778
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 779
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 780
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 781
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 782
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 783
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 784
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 785
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 786
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 787
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 788
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 789
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 790
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 791
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 792
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 793
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 794
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 795
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 796
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 797
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 798
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 799
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 800
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 801
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 802
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 803
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 804
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 805
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 806
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 807
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 808
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 809
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 810
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 811
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 812
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 813
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 814
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 815
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 816
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 817
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 818
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 819
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 820
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 821
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 822
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 823
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 824
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 825
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 826
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 827
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 828
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 829
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 830
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 831
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 832
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 833
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 834
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 835
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 836
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 837
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 838
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 839
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 840
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 841
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 842
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 843
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 844
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 845
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 846
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 847
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 848
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 849
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 850
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 851
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 852
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 853
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 854
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 855
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 856
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 857
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 858
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 859
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 860
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 861
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 862
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 863
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 864
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 865
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 866
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 867
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 868
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 869
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 870
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 871
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 872
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 873
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 874
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 875
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 876
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 877
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 878
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 879
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 880
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 881
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 882
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 883
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 884
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 885
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 886
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 887
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 888
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 889
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 890
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 891
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 892
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 893
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 894
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 895
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 896
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 897
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 898
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 899
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 900
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 901
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 902
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 903
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 904
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 905
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 906
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 907
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 908
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 909
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 910
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 911
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 912
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 913
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 914
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 915
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 916
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 917
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 918
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 919
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 920
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 921
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 922
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 923
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 924
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 925
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 926
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 927
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 928
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 929
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 930
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 931
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 932
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 933
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 934
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 935
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 936
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 937
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 938
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 939
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 940
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 941
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 942
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 943
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 944
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 945
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 946
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 947
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 948
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 949
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 950
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 951
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 952
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 953
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 954
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 955
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 956
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 957
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 958
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 959
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 960
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 961
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 962
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 963
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 964
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 965
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 966
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 967
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 968
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 969
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 970
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 971
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 972
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 973
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 974
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 975
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 976
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 977
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 978
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 979
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 980
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 981
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 982
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 983
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 984
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 985
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 986
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 987
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 988
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 989
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 990
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 991
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 992
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 993
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 994
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 995
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 996
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 997
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 998
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 999
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 1000
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+
+Computation time on 1 cores : 
+	Database extraction time : 0:00:00
+	                         Learn     Prediction
+	         Fold 1        0:06:00        0:00:15
+	         Fold 2        0:12:07        0:00:15
+	          Total        0:18:07        0:00:30
+	So a total classification time of 0:12:22.
+
+
+2016-08-24 11:27:43,912 INFO: Done:	 Result Analysis
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-112743Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-112743Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png
new file mode 100644
index 0000000000000000000000000000000000000000..99905780bc6d41f53313eea5bf9caed8e7a46e4f
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-112743Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png differ
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-112743Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-112743Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt
new file mode 100644
index 0000000000000000000000000000000000000000..31e85005079d3bdf782c4b00392bcf1ae5018187
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-112743Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt
@@ -0,0 +1,14060 @@
+		Result for Multiview classification with Mumbo
+
+Average accuracy :
+	-On Train : 79.5150501672
+	-On Test : 79.9180327869
+	-On Validation : 83.9805825243
+
+Dataset info :
+	-Database name : ModifiedMultiOmic
+	-Labels : No, Yes
+	-Views : Methyl, MiRNA, RNASEQ, Clinical
+	-2 folds
+	- Validation set length : 103 for learning rate : 0.7
+
+Classification configuration : 
+	-Algorithm used : Mumbo 
+	-Iterations : 1000
+	-Weak Classifiers : DecisionTree with depth 1,  sub-sampled at 0.02 on Methyl
+		-DecisionTree with depth 1,  sub-sampled at 0.02 on MiRNA
+		-DecisionTree with depth 1,  sub-sampled at 0.1 on RNASEQ
+		-DecisionTree with depth 2,  sub-sampled at 0.1 on Clinical
+
+ Mean average accuracies and stats for each fold : 
+	- Fold 0
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.0566086956522
+			- Percentage of time chosen : 0.91
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.0601552795031
+			- Percentage of time chosen : 0.031
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.0589378881988
+			- Percentage of time chosen : 0.021
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.0603664596273
+			- Percentage of time chosen : 0.038
+	- Fold 1
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.0546346153846
+			- Percentage of time chosen : 0.909
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.05475
+			- Percentage of time chosen : 0.028
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.0575833333333
+			- Percentage of time chosen : 0.015
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.0597243589744
+			- Percentage of time chosen : 0.048
+
+ For each iteration : 
+	- Iteration 1
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 2
+		 Fold 1
+			Accuracy on train : 72.6708074534
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 60.8974358974
+			Accuracy on test : 53.2786885246
+			Accuracy on validation : 63.1067961165
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 66.7841216754
+			 Accuracy on test : 65.5737704918
+	- Iteration 3
+		 Fold 1
+			Accuracy on train : 72.6708074534
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 74.7572815534
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 60.8974358974
+			Accuracy on test : 53.2786885246
+			Accuracy on validation : 63.1067961165
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 66.7841216754
+			 Accuracy on test : 65.5737704918
+	- Iteration 4
+		 Fold 1
+			Accuracy on train : 72.6708074534
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 77.6699029126
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 66.0256410256
+			Accuracy on test : 59.0163934426
+			Accuracy on validation : 65.0485436893
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 69.3482242395
+			 Accuracy on test : 70.9016393443
+	- Iteration 5
+		 Fold 1
+			Accuracy on train : 71.4285714286
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 69.2307692308
+			Accuracy on test : 63.9344262295
+			Accuracy on validation : 66.0194174757
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 70.3296703297
+			 Accuracy on test : 72.5409836066
+	- Iteration 6
+		 Fold 1
+			Accuracy on train : 71.4285714286
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 76.6990291262
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 78.8461538462
+			Accuracy on test : 69.6721311475
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 75.1373626374
+			 Accuracy on test : 75.4098360656
+	- Iteration 7
+		 Fold 1
+			Accuracy on train : 75.7763975155
+			Accuracy on test : 85.2459016393
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 78.2051282051
+			Accuracy on test : 72.131147541
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 76.9907628603
+			 Accuracy on test : 78.6885245902
+	- Iteration 8
+		 Fold 1
+			Accuracy on train : 75.1552795031
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 77.6699029126
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 78.2051282051
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 76.6802038541
+			 Accuracy on test : 76.6393442623
+	- Iteration 9
+		 Fold 1
+			Accuracy on train : 73.9130434783
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 76.6990291262
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.4871794872
+			Accuracy on test : 72.131147541
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 76.7001114827
+			 Accuracy on test : 76.2295081967
+	- Iteration 10
+		 Fold 1
+			Accuracy on train : 75.7763975155
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 75.641025641
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 75.7087115783
+			 Accuracy on test : 77.868852459
+	- Iteration 11
+		 Fold 1
+			Accuracy on train : 75.7763975155
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 74.7572815534
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 76.9230769231
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 76.3497372193
+			 Accuracy on test : 78.6885245902
+	- Iteration 12
+		 Fold 1
+			Accuracy on train : 76.397515528
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 76.6990291262
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 75.641025641
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 76.0192705845
+			 Accuracy on test : 79.0983606557
+	- Iteration 13
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 77.5641025641
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 80.5825242718
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 77.9124860647
+			 Accuracy on test : 77.868852459
+	- Iteration 14
+		 Fold 1
+			Accuracy on train : 77.0186335404
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 77.5641025641
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 77.2913680522
+			 Accuracy on test : 77.4590163934
+	- Iteration 15
+		 Fold 1
+			Accuracy on train : 76.397515528
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 75.641025641
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 77.6699029126
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 76.0192705845
+			 Accuracy on test : 79.0983606557
+	- Iteration 16
+		 Fold 1
+			Accuracy on train : 75.7763975155
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 77.6699029126
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 80.1282051282
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 77.9523013219
+			 Accuracy on test : 79.5081967213
+	- Iteration 17
+		 Fold 1
+			Accuracy on train : 76.397515528
+			Accuracy on test : 85.2459016393
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 78.2051282051
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 77.3013218665
+			 Accuracy on test : 82.7868852459
+	- Iteration 18
+		 Fold 1
+			Accuracy on train : 77.0186335404
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.4871794872
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.2529065138
+			 Accuracy on test : 82.3770491803
+	- Iteration 19
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 81.4102564103
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.8355629877
+			 Accuracy on test : 82.7868852459
+	- Iteration 20
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 80.1282051282
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 81.5533980583
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 79.1945373467
+			 Accuracy on test : 81.1475409836
+	- Iteration 21
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 85.2459016393
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.4871794872
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.8740245262
+			 Accuracy on test : 83.1967213115
+	- Iteration 22
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 77.5641025641
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 77.6019270584
+			 Accuracy on test : 83.606557377
+	- Iteration 23
+		 Fold 1
+			Accuracy on train : 79.5031055901
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 82.5242718447
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 75.641025641
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 77.5720656155
+			 Accuracy on test : 81.9672131148
+	- Iteration 24
+		 Fold 1
+			Accuracy on train : 79.5031055901
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 82.5242718447
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 77.5641025641
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 81.5533980583
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.5336040771
+			 Accuracy on test : 82.7868852459
+	- Iteration 25
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 80.5825242718
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 79.4871794872
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.8740245262
+			 Accuracy on test : 81.9672131148
+	- Iteration 26
+		 Fold 1
+			Accuracy on train : 78.8819875776
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 82.5242718447
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 80.1282051282
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 81.5533980583
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.5050963529
+			 Accuracy on test : 82.7868852459
+	- Iteration 27
+		 Fold 1
+			Accuracy on train : 79.5031055901
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 82.0512820513
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.7771938207
+			 Accuracy on test : 82.7868852459
+	- Iteration 28
+		 Fold 1
+			Accuracy on train : 78.8819875776
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 85.8974358974
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 82.3897117375
+			 Accuracy on test : 81.1475409836
+	- Iteration 29
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.4865424431
+			 Accuracy on test : 81.9672131148
+	- Iteration 30
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 82.0512820513
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.1560758082
+			 Accuracy on test : 81.9672131148
+	- Iteration 31
+		 Fold 1
+			Accuracy on train : 76.397515528
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 78.640776699
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 82.0512820513
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.2243987896
+			 Accuracy on test : 81.1475409836
+	- Iteration 32
+		 Fold 1
+			Accuracy on train : 77.0186335404
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 78.640776699
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 82.6923076923
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.8554706163
+			 Accuracy on test : 81.9672131148
+	- Iteration 33
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 82.0512820513
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 80.1560758082
+			 Accuracy on test : 80.3278688525
+	- Iteration 34
+		 Fold 1
+			Accuracy on train : 77.0186335404
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 78.640776699
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 80.4964962574
+			 Accuracy on test : 80.737704918
+	- Iteration 35
+		 Fold 1
+			Accuracy on train : 76.397515528
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 77.6699029126
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 82.0512820513
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.2243987896
+			 Accuracy on test : 79.9180327869
+	- Iteration 36
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 82.0512820513
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.1560758082
+			 Accuracy on test : 80.737704918
+	- Iteration 37
+		 Fold 1
+			Accuracy on train : 79.5031055901
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 81.7387322822
+			 Accuracy on test : 81.1475409836
+	- Iteration 38
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 82.6923076923
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.4765886288
+			 Accuracy on test : 80.737704918
+	- Iteration 39
+		 Fold 1
+			Accuracy on train : 77.0186335404
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 81.5533980583
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 82.6923076923
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 79.8554706163
+			 Accuracy on test : 81.5573770492
+	- Iteration 40
+		 Fold 1
+			Accuracy on train : 78.8819875776
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 81.1076604555
+			 Accuracy on test : 81.1475409836
+	- Iteration 41
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 86.4077669903
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 80.4865424431
+			 Accuracy on test : 80.737704918
+	- Iteration 42
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 81.5533980583
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.4865424431
+			 Accuracy on test : 80.3278688525
+	- Iteration 43
+		 Fold 1
+			Accuracy on train : 80.7453416149
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 82.5242718447
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 85.2564102564
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 83.0008759357
+			 Accuracy on test : 80.737704918
+	- Iteration 44
+		 Fold 1
+			Accuracy on train : 78.8819875776
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 82.5242718447
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 85.2564102564
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 82.069198917
+			 Accuracy on test : 80.737704918
+	- Iteration 45
+		 Fold 1
+			Accuracy on train : 78.8819875776
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 84.6153846154
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 81.7486860965
+			 Accuracy on test : 81.1475409836
+	- Iteration 46
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 79.6116504854
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 85.8974358974
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 81.7685937251
+			 Accuracy on test : 81.9672131148
+	- Iteration 47
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 80.5825242718
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 85.8974358974
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 87.3786407767
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 82.0791527313
+			 Accuracy on test : 81.1475409836
+	- Iteration 48
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 86.5384615385
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 88.3495145631
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 82.0891065456
+			 Accuracy on test : 80.737704918
+	- Iteration 49
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 85.8974358974
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 87.3786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 81.7685937251
+			 Accuracy on test : 80.3278688525
+	- Iteration 50
+		 Fold 1
+			Accuracy on train : 77.0186335404
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 79.6116504854
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 85.2564102564
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 81.1375218984
+			 Accuracy on test : 79.5081967213
+	- Iteration 51
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 81.1176142698
+			 Accuracy on test : 80.3278688525
+	- Iteration 52
+		 Fold 1
+			Accuracy on train : 77.0186335404
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.4964962574
+			 Accuracy on test : 79.9180327869
+	- Iteration 53
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 80.8070552636
+			 Accuracy on test : 80.737704918
+	- Iteration 54
+		 Fold 1
+			Accuracy on train : 75.7763975155
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 78.640776699
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.5548654244
+			 Accuracy on test : 80.3278688525
+	- Iteration 55
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 81.5533980583
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 85.2564102564
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 81.4480809046
+			 Accuracy on test : 79.0983606557
+	- Iteration 56
+		 Fold 1
+			Accuracy on train : 81.3664596273
+			Accuracy on test : 86.0655737705
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 82.6704093008
+			 Accuracy on test : 82.3770491803
+	- Iteration 57
+		 Fold 1
+			Accuracy on train : 81.3664596273
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 86.4077669903
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 82.6704093008
+			 Accuracy on test : 81.9672131148
+	- Iteration 58
+		 Fold 1
+			Accuracy on train : 80.1242236025
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 81.5533980583
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 81.7287784679
+			 Accuracy on test : 81.1475409836
+	- Iteration 59
+		 Fold 1
+			Accuracy on train : 80.1242236025
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 81.5533980583
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 82.0492912884
+			 Accuracy on test : 81.1475409836
+	- Iteration 60
+		 Fold 1
+			Accuracy on train : 79.5031055901
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 81.5533980583
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 81.4182194617
+			 Accuracy on test : 82.3770491803
+	- Iteration 61
+		 Fold 1
+			Accuracy on train : 80.7453416149
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 84.4660194175
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 82.3598502946
+			 Accuracy on test : 82.7868852459
+	- Iteration 62
+		 Fold 1
+			Accuracy on train : 81.3664596273
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 82.3498964803
+			 Accuracy on test : 82.3770491803
+	- Iteration 63
+		 Fold 1
+			Accuracy on train : 79.5031055901
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 82.6923076923
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 81.0977066412
+			 Accuracy on test : 81.5573770492
+	- Iteration 64
+		 Fold 1
+			Accuracy on train : 80.7453416149
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 82.0512820513
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 81.3983118331
+			 Accuracy on test : 81.9672131148
+	- Iteration 65
+		 Fold 1
+			Accuracy on train : 80.1242236025
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 81.4102564103
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.7672400064
+			 Accuracy on test : 81.1475409836
+	- Iteration 66
+		 Fold 1
+			Accuracy on train : 80.7453416149
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 82.0512820513
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 81.3983118331
+			 Accuracy on test : 81.9672131148
+	- Iteration 67
+		 Fold 1
+			Accuracy on train : 80.7453416149
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 80.7692307692
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.7572861921
+			 Accuracy on test : 80.3278688525
+	- Iteration 68
+		 Fold 1
+			Accuracy on train : 82.6086956522
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 82.6923076923
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 82.6505016722
+			 Accuracy on test : 81.9672131148
+	- Iteration 69
+		 Fold 1
+			Accuracy on train : 82.6086956522
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 83.2915273133
+			 Accuracy on test : 81.5573770492
+	- Iteration 70
+		 Fold 1
+			Accuracy on train : 83.2298136646
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 83.6020863195
+			 Accuracy on test : 81.9672131148
+	- Iteration 71
+		 Fold 1
+			Accuracy on train : 83.2298136646
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 84.6153846154
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 83.92259914
+			 Accuracy on test : 81.5573770492
+	- Iteration 72
+		 Fold 1
+			Accuracy on train : 83.2298136646
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 85.4368932039
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 83.6020863195
+			 Accuracy on test : 81.5573770492
+	- Iteration 73
+		 Fold 1
+			Accuracy on train : 82.6086956522
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 82.6923076923
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 82.6505016722
+			 Accuracy on test : 81.9672131148
+	- Iteration 74
+		 Fold 1
+			Accuracy on train : 80.7453416149
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 82.0393374741
+			 Accuracy on test : 81.5573770492
+	- Iteration 75
+		 Fold 1
+			Accuracy on train : 83.2298136646
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 82.0512820513
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 83.4951456311
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 82.6405478579
+			 Accuracy on test : 81.9672131148
+	- Iteration 76
+		 Fold 1
+			Accuracy on train : 81.3664596273
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 82.6704093008
+			 Accuracy on test : 80.737704918
+	- Iteration 77
+		 Fold 1
+			Accuracy on train : 81.9875776398
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 82.6923076923
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 82.339942666
+			 Accuracy on test : 80.737704918
+	- Iteration 78
+		 Fold 1
+			Accuracy on train : 81.9875776398
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 82.6923076923
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 82.339942666
+			 Accuracy on test : 80.737704918
+	- Iteration 79
+		 Fold 1
+			Accuracy on train : 80.1242236025
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 81.7287784679
+			 Accuracy on test : 81.1475409836
+	- Iteration 80
+		 Fold 1
+			Accuracy on train : 80.7453416149
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 83.9743589744
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 82.3598502946
+			 Accuracy on test : 81.1475409836
+	- Iteration 81
+		 Fold 1
+			Accuracy on train : 80.1242236025
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 81.7287784679
+			 Accuracy on test : 81.5573770492
+	- Iteration 82
+		 Fold 1
+			Accuracy on train : 80.7453416149
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 81.4102564103
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 81.0777990126
+			 Accuracy on test : 80.737704918
+	- Iteration 83
+		 Fold 1
+			Accuracy on train : 80.1242236025
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 83.3333333333
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 81.7287784679
+			 Accuracy on test : 81.1475409836
+	- Iteration 84
+		 Fold 1
+			Accuracy on train : 81.3664596273
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 81.4102564103
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 81.3883580188
+			 Accuracy on test : 80.3278688525
+	- Iteration 85
+		 Fold 1
+			Accuracy on train : 79.5031055901
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 82.0512820513
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.7771938207
+			 Accuracy on test : 79.9180327869
+	- Iteration 86
+		 Fold 1
+			Accuracy on train : 79.5031055901
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 82.0512820513
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.7771938207
+			 Accuracy on test : 80.3278688525
+	- Iteration 87
+		 Fold 1
+			Accuracy on train : 78.8819875776
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 80.7692307692
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.8256091734
+			 Accuracy on test : 79.9180327869
+	- Iteration 88
+		 Fold 1
+			Accuracy on train : 79.5031055901
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 80.7692307692
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.1361681796
+			 Accuracy on test : 79.9180327869
+	- Iteration 89
+		 Fold 1
+			Accuracy on train : 78.8819875776
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 80.1282051282
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.5050963529
+			 Accuracy on test : 79.9180327869
+	- Iteration 90
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 80.1282051282
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.1945373467
+			 Accuracy on test : 79.9180327869
+	- Iteration 91
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 79.4871794872
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.8740245262
+			 Accuracy on test : 79.5081967213
+	- Iteration 92
+		 Fold 1
+			Accuracy on train : 78.8819875776
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 79.4871794872
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.1845835324
+			 Accuracy on test : 80.737704918
+	- Iteration 93
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 79.4871794872
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 78.8740245262
+			 Accuracy on test : 79.5081967213
+	- Iteration 94
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 82.5242718447
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.4871794872
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.56346552
+			 Accuracy on test : 79.5081967213
+	- Iteration 95
+		 Fold 1
+			Accuracy on train : 77.0186335404
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 81.5533980583
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 80.1282051282
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.5734193343
+			 Accuracy on test : 79.5081967213
+	- Iteration 96
+		 Fold 1
+			Accuracy on train : 76.397515528
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 81.5533980583
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 79.4871794872
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 77.9423475076
+			 Accuracy on test : 79.0983606557
+	- Iteration 97
+		 Fold 1
+			Accuracy on train : 75.7763975155
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 80.1282051282
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 77.9523013219
+			 Accuracy on test : 78.2786885246
+	- Iteration 98
+		 Fold 1
+			Accuracy on train : 76.397515528
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 78.2051282051
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 82.5242718447
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 77.3013218665
+			 Accuracy on test : 78.6885245902
+	- Iteration 99
+		 Fold 1
+			Accuracy on train : 75.7763975155
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 78.8461538462
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 77.3112756808
+			 Accuracy on test : 78.2786885246
+	- Iteration 100
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 79.4871794872
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.56346552
+			 Accuracy on test : 79.0983606557
+	- Iteration 101
+		 Fold 1
+			Accuracy on train : 77.6397515528
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 81.4102564103
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 79.5250039815
+			 Accuracy on test : 79.9180327869
+	- Iteration 102
+		 Fold 1
+			Accuracy on train : 78.2608695652
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 80.7692307692
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.5150501672
+			 Accuracy on test : 79.9180327869
+	- Iteration 103
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 104
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 105
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 106
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 107
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 108
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 109
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 110
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 111
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 112
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 113
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 114
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 115
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 116
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 117
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 118
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 119
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 120
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 121
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 122
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 123
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 124
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 125
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 126
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 127
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 128
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 129
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 130
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 131
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 132
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 133
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 134
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 135
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 136
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 137
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 138
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 139
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 140
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 141
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 142
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 143
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 144
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 145
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 146
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 147
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 148
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 149
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 150
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 151
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 152
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 153
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 154
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 155
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 156
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 157
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 158
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 159
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 160
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 161
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 162
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 163
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 164
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 165
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 166
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 167
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 168
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 169
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 170
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 171
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 172
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 173
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 174
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 175
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 176
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 177
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 178
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 179
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 180
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 181
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 182
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 183
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 184
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 185
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 186
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 187
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 188
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 189
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 190
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 191
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 192
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 193
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 194
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 195
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 196
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 197
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 198
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 199
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 200
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 201
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 202
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 203
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 204
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 205
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 206
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 207
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 208
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 209
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 210
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 211
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 212
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 213
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 214
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 215
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 216
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 217
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 218
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 219
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 220
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 221
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 222
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 223
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 224
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 225
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 226
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 227
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 228
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 229
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 230
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 231
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 232
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 233
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 234
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 235
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 236
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 237
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 238
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 239
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 240
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 241
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 242
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 243
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 244
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 245
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 246
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 247
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 248
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 249
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 250
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 251
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 252
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 253
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 254
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 255
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 256
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 257
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 258
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 259
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 260
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 261
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 262
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 263
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 264
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 265
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 266
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 267
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 268
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 269
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 270
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 271
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 272
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 273
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 274
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 275
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 276
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 277
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 278
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 279
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 280
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 281
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 282
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 283
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 284
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 285
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 286
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 287
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 288
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 289
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 290
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 291
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 292
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 293
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 294
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 295
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 296
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 297
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 298
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 299
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 300
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 301
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 302
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 303
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 304
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 305
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 306
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 307
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 308
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 309
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 310
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 311
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 312
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 313
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 314
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 315
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 316
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 317
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 318
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 319
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 320
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 321
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 322
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 323
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 324
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 325
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 326
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 327
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 328
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 329
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 330
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 331
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 332
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 333
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 334
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 335
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 336
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 337
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 338
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 339
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 340
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 341
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 342
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 343
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 344
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 345
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 346
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 347
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 348
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 349
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 350
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 351
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 352
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 353
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 354
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 355
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 356
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 357
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 358
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 359
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 360
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 361
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 362
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 363
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 364
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 365
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 366
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 367
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 368
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 369
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 370
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 371
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 372
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 373
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 374
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 375
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 376
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 377
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 378
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 379
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 380
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 381
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 382
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 383
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 384
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 385
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 386
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 387
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 388
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 389
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 390
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 391
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 392
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 393
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 394
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 395
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 396
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 397
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 398
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 399
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 400
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 401
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 402
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 403
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 404
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 405
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 406
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 407
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 408
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 409
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 410
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 411
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 412
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 413
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 414
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 415
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 416
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 417
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 418
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 419
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 420
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 421
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 422
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 423
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 424
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 425
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 426
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 427
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 428
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 429
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 430
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 431
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 432
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 433
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 434
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 435
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 436
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 437
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 438
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 439
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 440
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 441
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 442
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 443
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 444
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 445
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 446
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 447
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 448
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 449
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 450
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 451
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 452
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 453
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 454
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 455
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 456
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 457
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 458
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 459
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 460
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 461
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 462
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 463
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 464
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 465
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 466
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 467
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 468
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 469
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 470
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 471
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 472
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 473
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 474
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 475
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 476
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 477
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 478
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 479
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 480
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 481
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 482
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 483
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 484
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 485
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 486
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 487
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 488
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 489
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 490
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 491
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 492
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 493
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 494
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 495
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 496
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 497
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 498
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 499
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 500
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 501
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 502
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 503
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 504
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 505
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 506
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 507
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 508
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 509
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 510
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 511
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 512
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 513
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 514
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 515
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 516
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 517
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 518
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 519
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 520
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 521
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 522
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 523
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 524
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 525
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 526
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 527
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 528
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 529
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 530
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 531
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 532
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 533
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 534
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 535
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 536
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 537
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 538
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 539
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 540
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 541
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 542
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 543
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 544
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 545
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 546
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 547
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 548
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 549
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 550
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 551
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 552
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 553
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 554
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 555
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 556
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 557
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 558
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 559
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 560
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 561
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 562
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 563
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 564
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 565
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 566
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 567
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 568
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 569
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 570
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 571
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 572
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 573
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 574
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 575
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 576
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 577
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 578
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 579
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 580
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 581
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 582
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 583
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 584
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 585
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 586
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 587
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 588
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 589
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 590
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 591
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 592
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 593
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 594
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 595
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 596
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 597
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 598
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 599
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 600
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 601
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 602
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 603
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 604
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 605
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 606
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 607
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 608
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 609
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 610
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 611
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 612
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 613
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 614
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 615
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 616
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 617
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 618
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 619
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 620
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 621
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 622
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 623
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 624
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 625
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 626
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 627
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 628
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 629
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 630
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 631
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 632
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 633
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 634
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 635
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 636
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 637
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 638
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 639
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 640
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 641
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 642
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 643
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 644
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 645
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 646
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 647
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 648
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 649
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 650
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 651
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 652
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 653
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 654
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 655
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 656
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 657
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 658
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 659
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 660
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 661
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 662
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 663
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 664
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 665
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 666
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 667
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 668
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 669
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 670
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 671
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 672
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 673
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 674
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 675
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 676
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 677
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 678
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 679
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 680
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 681
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 682
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 683
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 684
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 685
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 686
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 687
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 688
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 689
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 690
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 691
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 692
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 693
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 694
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 695
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 696
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 697
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 698
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 699
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 700
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 701
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 702
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 703
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 704
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 705
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 706
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 707
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 708
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 709
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 710
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 711
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 712
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 713
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 714
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 715
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 716
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 717
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 718
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 719
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 720
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 721
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 722
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 723
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 724
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 725
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 726
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 727
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 728
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 729
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 730
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 731
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 732
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 733
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 734
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 735
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 736
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 737
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 738
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 739
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 740
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 741
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 742
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 743
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 744
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 745
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 746
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 747
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 748
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 749
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 750
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 751
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 752
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 753
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 754
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 755
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 756
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 757
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 758
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 759
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 760
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 761
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 762
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 763
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 764
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 765
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 766
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 767
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 768
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 769
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 770
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 771
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 772
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 773
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 774
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 775
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 776
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 777
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 778
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 779
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 780
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 781
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 782
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 783
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 784
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 785
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 786
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 787
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 788
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 789
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 790
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 791
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 792
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 793
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 794
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 795
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 796
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 797
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 798
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 799
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 800
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 801
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 802
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 803
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 804
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 805
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 806
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 807
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 808
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 809
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 810
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 811
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 812
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 813
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 814
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 815
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 816
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 817
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 818
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 819
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 820
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 821
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 822
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 823
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 824
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 825
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 826
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 827
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 828
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 829
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 830
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 831
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 832
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 833
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 834
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 835
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 836
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 837
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 838
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 839
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 840
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 841
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 842
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 843
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 844
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 845
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 846
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 847
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 848
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 849
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 850
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 851
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 852
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 853
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 854
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 855
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 856
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 857
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 858
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 859
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 860
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 861
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 862
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 863
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 864
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 865
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 866
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 867
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 868
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 869
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 870
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 871
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 872
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 873
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 874
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 875
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 876
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 877
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 878
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 879
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 880
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 881
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 882
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 883
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 884
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 885
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 886
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 887
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 888
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 889
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 890
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 891
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 892
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 893
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 894
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 895
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 896
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 897
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 898
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 899
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 900
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 901
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 902
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 903
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 904
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 905
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 906
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 907
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 908
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 909
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 910
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 911
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 912
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 913
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 914
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 915
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 916
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 917
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 918
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 919
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 920
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 921
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 922
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 923
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 924
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 925
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 926
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 927
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 928
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 929
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 930
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 931
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 932
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 933
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 934
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 935
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 936
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 937
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 938
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 939
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 940
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 941
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 942
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 943
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 944
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 945
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 946
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 947
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 948
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 949
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 950
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 951
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 952
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 953
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 954
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 955
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 956
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 957
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 958
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 959
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 960
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 961
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 962
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 963
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 964
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 965
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 966
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 967
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 968
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 969
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 970
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 971
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 972
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 973
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 974
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 975
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 976
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 977
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 978
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 979
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 980
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 981
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 982
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 983
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 984
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 985
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 986
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 987
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 988
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 989
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 990
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 991
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 992
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 993
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 994
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 995
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 996
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 997
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 998
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 999
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+	- Iteration 1000
+		 Fold 1
+			Accuracy on train : 62.7329192547
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 61.5384615385
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 62.1356903966
+			 Accuracy on test : 72.9508196721
+
+Computation time on 1 cores : 
+	Database extraction time : 0:00:00
+	                         Learn     Prediction
+	         Fold 1        0:06:00        0:00:15
+	         Fold 2        0:12:07        0:00:15
+	          Total        0:18:07        0:00:30
+	So a total classification time of 0:12:22.
+
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-112821-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-112821-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..302346851e6600ebdbd9a107dfcbfbaaf71ece9d
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-112821-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,15313 @@
+2016-08-24 11:28:21,898 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 11:28:21,899 INFO: Info:	 Labels used: No, Yes
+2016-08-24 11:28:21,899 INFO: Info:	 Length of dataset:347
+2016-08-24 11:28:21,900 INFO: ### Main Programm for Multiview Classification
+2016-08-24 11:28:21,900 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 11:28:21,901 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 11:28:21,901 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 11:28:21,902 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 11:28:21,902 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 11:28:21,902 INFO: Done:	 Read Database Files
+2016-08-24 11:28:21,902 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 11:28:21,906 INFO: Done:	 Determine validation split
+2016-08-24 11:28:21,906 INFO: Start:	 Determine 2 folds
+2016-08-24 11:28:21,916 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 11:28:21,916 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 11:28:21,916 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 11:28:21,916 INFO: Done:	 Determine folds
+2016-08-24 11:28:21,917 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 11:28:21,917 INFO: 	Start:	 Fold number 1
+2016-08-24 11:28:23,496 DEBUG: 		Start:	 Iteration 1
+2016-08-24 11:28:23,512 DEBUG: 			View 0 : 0.612903225806
+2016-08-24 11:28:23,520 DEBUG: 			View 1 : 0.387096774194
+2016-08-24 11:28:23,602 DEBUG: 			View 2 : 0.535483870968
+2016-08-24 11:28:23,609 DEBUG: 			View 3 : 0.612903225806
+2016-08-24 11:28:23,651 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:28:23,726 DEBUG: 		Start:	 Iteration 2
+2016-08-24 11:28:23,743 DEBUG: 			View 0 : 0.529032258065
+2016-08-24 11:28:23,750 DEBUG: 			View 1 : 0.651612903226
+2016-08-24 11:28:23,835 DEBUG: 			View 2 : 0.638709677419
+2016-08-24 11:28:23,842 DEBUG: 			View 3 : 0.606451612903
+2016-08-24 11:28:23,893 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:28:24,028 DEBUG: 		Start:	 Iteration 3
+2016-08-24 11:28:24,045 DEBUG: 			View 0 : 0.522580645161
+2016-08-24 11:28:24,052 DEBUG: 			View 1 : 0.374193548387
+2016-08-24 11:28:24,136 DEBUG: 			View 2 : 0.593548387097
+2016-08-24 11:28:24,143 DEBUG: 			View 3 : 0.61935483871
+2016-08-24 11:28:24,196 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:28:24,408 DEBUG: 		Start:	 Iteration 4
+2016-08-24 11:28:24,425 DEBUG: 			View 0 : 0.716129032258
+2016-08-24 11:28:24,432 DEBUG: 			View 1 : 0.451612903226
+2016-08-24 11:28:24,522 DEBUG: 			View 2 : 0.535483870968
+2016-08-24 11:28:24,529 DEBUG: 			View 3 : 0.664516129032
+2016-08-24 11:28:24,584 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:28:24,852 DEBUG: 		Start:	 Iteration 5
+2016-08-24 11:28:24,869 DEBUG: 			View 0 : 0.477419354839
+2016-08-24 11:28:24,876 DEBUG: 			View 1 : 0.516129032258
+2016-08-24 11:28:24,963 DEBUG: 			View 2 : 0.548387096774
+2016-08-24 11:28:24,970 DEBUG: 			View 3 : 0.561290322581
+2016-08-24 11:28:25,026 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:28:25,368 DEBUG: 		Start:	 Iteration 6
+2016-08-24 11:28:25,384 DEBUG: 			View 0 : 0.535483870968
+2016-08-24 11:28:25,391 DEBUG: 			View 1 : 0.606451612903
+2016-08-24 11:28:25,478 DEBUG: 			View 2 : 0.612903225806
+2016-08-24 11:28:25,486 DEBUG: 			View 3 : 0.522580645161
+2016-08-24 11:28:25,545 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:28:25,960 DEBUG: 		Start:	 Iteration 7
+2016-08-24 11:28:25,978 DEBUG: 			View 0 : 0.574193548387
+2016-08-24 11:28:25,986 DEBUG: 			View 1 : 0.406451612903
+2016-08-24 11:28:26,082 DEBUG: 			View 2 : 0.612903225806
+2016-08-24 11:28:26,090 DEBUG: 			View 3 : 0.503225806452
+2016-08-24 11:28:26,151 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:28:26,626 DEBUG: 		Start:	 Iteration 8
+2016-08-24 11:28:26,642 DEBUG: 			View 0 : 0.522580645161
+2016-08-24 11:28:26,649 DEBUG: 			View 1 : 0.451612903226
+2016-08-24 11:28:26,737 DEBUG: 			View 2 : 0.529032258065
+2016-08-24 11:28:26,744 DEBUG: 			View 3 : 0.632258064516
+2016-08-24 11:28:26,806 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:28:27,336 DEBUG: 		Start:	 Iteration 9
+2016-08-24 11:28:27,352 DEBUG: 			View 0 : 0.509677419355
+2016-08-24 11:28:27,360 DEBUG: 			View 1 : 0.522580645161
+2016-08-24 11:28:27,449 DEBUG: 			View 2 : 0.632258064516
+2016-08-24 11:28:27,457 DEBUG: 			View 3 : 0.58064516129
+2016-08-24 11:28:27,521 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:28:28,127 DEBUG: 		Start:	 Iteration 10
+2016-08-24 11:28:28,145 DEBUG: 			View 0 : 0.483870967742
+2016-08-24 11:28:28,154 DEBUG: 			View 1 : 0.658064516129
+2016-08-24 11:28:28,254 DEBUG: 			View 2 : 0.612903225806
+2016-08-24 11:28:28,261 DEBUG: 			View 3 : 0.664516129032
+2016-08-24 11:28:28,331 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:28:28,997 DEBUG: 		Start:	 Iteration 11
+2016-08-24 11:28:29,013 DEBUG: 			View 0 : 0.574193548387
+2016-08-24 11:28:29,020 DEBUG: 			View 1 : 0.425806451613
+2016-08-24 11:28:29,110 DEBUG: 			View 2 : 0.535483870968
+2016-08-24 11:28:29,117 DEBUG: 			View 3 : 0.703225806452
+2016-08-24 11:28:29,188 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:28:29,912 DEBUG: 		Start:	 Iteration 12
+2016-08-24 11:28:29,928 DEBUG: 			View 0 : 0.529032258065
+2016-08-24 11:28:29,935 DEBUG: 			View 1 : 0.6
+2016-08-24 11:28:30,025 DEBUG: 			View 2 : 0.574193548387
+2016-08-24 11:28:30,032 DEBUG: 			View 3 : 0.574193548387
+2016-08-24 11:28:30,104 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:28:30,883 DEBUG: 		Start:	 Iteration 13
+2016-08-24 11:28:30,899 DEBUG: 			View 0 : 0.593548387097
+2016-08-24 11:28:30,906 DEBUG: 			View 1 : 0.690322580645
+2016-08-24 11:28:30,992 DEBUG: 			View 2 : 0.625806451613
+2016-08-24 11:28:31,000 DEBUG: 			View 3 : 0.612903225806
+2016-08-24 11:28:31,073 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:28:31,913 DEBUG: 		Start:	 Iteration 14
+2016-08-24 11:28:31,929 DEBUG: 			View 0 : 0.367741935484
+2016-08-24 11:28:31,937 DEBUG: 			View 1 : 0.748387096774
+2016-08-24 11:28:32,026 DEBUG: 			View 2 : 0.548387096774
+2016-08-24 11:28:32,034 DEBUG: 			View 3 : 0.58064516129
+2016-08-24 11:28:32,109 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:28:33,005 DEBUG: 		Start:	 Iteration 15
+2016-08-24 11:28:33,022 DEBUG: 			View 0 : 0.587096774194
+2016-08-24 11:28:33,030 DEBUG: 			View 1 : 0.61935483871
+2016-08-24 11:28:33,117 DEBUG: 			View 2 : 0.645161290323
+2016-08-24 11:28:33,124 DEBUG: 			View 3 : 0.529032258065
+2016-08-24 11:28:33,204 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:28:34,201 DEBUG: 		Start:	 Iteration 16
+2016-08-24 11:28:34,217 DEBUG: 			View 0 : 0.561290322581
+2016-08-24 11:28:34,225 DEBUG: 			View 1 : 0.593548387097
+2016-08-24 11:28:34,309 DEBUG: 			View 2 : 0.483870967742
+2016-08-24 11:28:34,317 DEBUG: 			View 3 : 0.541935483871
+2016-08-24 11:28:34,396 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:28:35,410 DEBUG: 		Start:	 Iteration 17
+2016-08-24 11:28:35,426 DEBUG: 			View 0 : 0.393548387097
+2016-08-24 11:28:35,434 DEBUG: 			View 1 : 0.606451612903
+2016-08-24 11:28:35,523 DEBUG: 			View 2 : 0.535483870968
+2016-08-24 11:28:35,531 DEBUG: 			View 3 : 0.645161290323
+2016-08-24 11:28:35,625 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:28:36,717 DEBUG: 		Start:	 Iteration 18
+2016-08-24 11:28:36,733 DEBUG: 			View 0 : 0.593548387097
+2016-08-24 11:28:36,741 DEBUG: 			View 1 : 0.722580645161
+2016-08-24 11:28:36,818 DEBUG: 			View 2 : 0.490322580645
+2016-08-24 11:28:36,826 DEBUG: 			View 3 : 0.554838709677
+2016-08-24 11:28:36,912 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:28:38,050 DEBUG: 		Start:	 Iteration 19
+2016-08-24 11:28:38,066 DEBUG: 			View 0 : 0.522580645161
+2016-08-24 11:28:38,073 DEBUG: 			View 1 : 0.670967741935
+2016-08-24 11:28:38,158 DEBUG: 			View 2 : 0.645161290323
+2016-08-24 11:28:38,165 DEBUG: 			View 3 : 0.561290322581
+2016-08-24 11:28:38,252 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:28:39,447 DEBUG: 		Start:	 Iteration 20
+2016-08-24 11:28:39,463 DEBUG: 			View 0 : 0.451612903226
+2016-08-24 11:28:39,471 DEBUG: 			View 1 : 0.554838709677
+2016-08-24 11:28:39,555 DEBUG: 			View 2 : 0.458064516129
+2016-08-24 11:28:39,563 DEBUG: 			View 3 : 0.61935483871
+2016-08-24 11:28:39,654 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:28:40,935 DEBUG: 		Start:	 Iteration 21
+2016-08-24 11:28:40,951 DEBUG: 			View 0 : 0.470967741935
+2016-08-24 11:28:40,959 DEBUG: 			View 1 : 0.374193548387
+2016-08-24 11:28:41,040 DEBUG: 			View 2 : 0.574193548387
+2016-08-24 11:28:41,047 DEBUG: 			View 3 : 0.548387096774
+2016-08-24 11:28:41,139 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:28:42,447 DEBUG: 		Start:	 Iteration 22
+2016-08-24 11:28:42,463 DEBUG: 			View 0 : 0.509677419355
+2016-08-24 11:28:42,471 DEBUG: 			View 1 : 0.367741935484
+2016-08-24 11:28:42,555 DEBUG: 			View 2 : 0.593548387097
+2016-08-24 11:28:42,562 DEBUG: 			View 3 : 0.516129032258
+2016-08-24 11:28:42,655 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:28:44,058 DEBUG: 		Start:	 Iteration 23
+2016-08-24 11:28:44,075 DEBUG: 			View 0 : 0.483870967742
+2016-08-24 11:28:44,083 DEBUG: 			View 1 : 0.651612903226
+2016-08-24 11:28:44,169 DEBUG: 			View 2 : 0.451612903226
+2016-08-24 11:28:44,177 DEBUG: 			View 3 : 0.529032258065
+2016-08-24 11:28:44,273 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:28:45,721 DEBUG: 		Start:	 Iteration 24
+2016-08-24 11:28:45,737 DEBUG: 			View 0 : 0.548387096774
+2016-08-24 11:28:45,744 DEBUG: 			View 1 : 0.645161290323
+2016-08-24 11:28:45,834 DEBUG: 			View 2 : 0.61935483871
+2016-08-24 11:28:45,842 DEBUG: 			View 3 : 0.574193548387
+2016-08-24 11:28:45,941 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:28:47,449 DEBUG: 		Start:	 Iteration 25
+2016-08-24 11:28:47,465 DEBUG: 			View 0 : 0.445161290323
+2016-08-24 11:28:47,473 DEBUG: 			View 1 : 0.78064516129
+2016-08-24 11:28:47,558 DEBUG: 			View 2 : 0.464516129032
+2016-08-24 11:28:47,565 DEBUG: 			View 3 : 0.593548387097
+2016-08-24 11:28:47,664 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:28:49,222 DEBUG: 		Start:	 Iteration 26
+2016-08-24 11:28:49,238 DEBUG: 			View 0 : 0.458064516129
+2016-08-24 11:28:49,246 DEBUG: 			View 1 : 0.367741935484
+2016-08-24 11:28:49,329 DEBUG: 			View 2 : 0.625806451613
+2016-08-24 11:28:49,336 DEBUG: 			View 3 : 0.606451612903
+2016-08-24 11:28:49,437 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:28:51,077 DEBUG: 		Start:	 Iteration 27
+2016-08-24 11:28:51,093 DEBUG: 			View 0 : 0.561290322581
+2016-08-24 11:28:51,101 DEBUG: 			View 1 : 0.632258064516
+2016-08-24 11:28:51,190 DEBUG: 			View 2 : 0.6
+2016-08-24 11:28:51,198 DEBUG: 			View 3 : 0.548387096774
+2016-08-24 11:28:51,304 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:28:53,003 DEBUG: 		Start:	 Iteration 28
+2016-08-24 11:28:53,020 DEBUG: 			View 0 : 0.432258064516
+2016-08-24 11:28:53,027 DEBUG: 			View 1 : 0.516129032258
+2016-08-24 11:28:53,119 DEBUG: 			View 2 : 0.670967741935
+2016-08-24 11:28:53,127 DEBUG: 			View 3 : 0.574193548387
+2016-08-24 11:28:53,232 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:28:55,010 DEBUG: 		Start:	 Iteration 29
+2016-08-24 11:28:55,026 DEBUG: 			View 0 : 0.541935483871
+2016-08-24 11:28:55,034 DEBUG: 			View 1 : 0.61935483871
+2016-08-24 11:28:55,121 DEBUG: 			View 2 : 0.6
+2016-08-24 11:28:55,129 DEBUG: 			View 3 : 0.529032258065
+2016-08-24 11:28:55,237 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:28:57,054 DEBUG: 		Start:	 Iteration 30
+2016-08-24 11:28:57,070 DEBUG: 			View 0 : 0.483870967742
+2016-08-24 11:28:57,077 DEBUG: 			View 1 : 0.612903225806
+2016-08-24 11:28:57,163 DEBUG: 			View 2 : 0.61935483871
+2016-08-24 11:28:57,171 DEBUG: 			View 3 : 0.548387096774
+2016-08-24 11:28:57,280 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:28:59,182 DEBUG: 		Start:	 Iteration 31
+2016-08-24 11:28:59,199 DEBUG: 			View 0 : 0.477419354839
+2016-08-24 11:28:59,206 DEBUG: 			View 1 : 0.309677419355
+2016-08-24 11:28:59,297 DEBUG: 			View 2 : 0.696774193548
+2016-08-24 11:28:59,305 DEBUG: 			View 3 : 0.541935483871
+2016-08-24 11:28:59,417 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:29:01,454 DEBUG: 		Start:	 Iteration 32
+2016-08-24 11:29:01,470 DEBUG: 			View 0 : 0.464516129032
+2016-08-24 11:29:01,478 DEBUG: 			View 1 : 0.612903225806
+2016-08-24 11:29:01,566 DEBUG: 			View 2 : 0.6
+2016-08-24 11:29:01,574 DEBUG: 			View 3 : 0.664516129032
+2016-08-24 11:29:01,689 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:29:03,714 DEBUG: 		Start:	 Iteration 33
+2016-08-24 11:29:03,731 DEBUG: 			View 0 : 0.529032258065
+2016-08-24 11:29:03,738 DEBUG: 			View 1 : 0.425806451613
+2016-08-24 11:29:03,820 DEBUG: 			View 2 : 0.567741935484
+2016-08-24 11:29:03,828 DEBUG: 			View 3 : 0.548387096774
+2016-08-24 11:29:03,944 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:29:06,096 DEBUG: 		Start:	 Iteration 34
+2016-08-24 11:29:06,113 DEBUG: 			View 0 : 0.464516129032
+2016-08-24 11:29:06,120 DEBUG: 			View 1 : 0.425806451613
+2016-08-24 11:29:06,208 DEBUG: 			View 2 : 0.658064516129
+2016-08-24 11:29:06,216 DEBUG: 			View 3 : 0.593548387097
+2016-08-24 11:29:06,335 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:29:08,524 DEBUG: 		Start:	 Iteration 35
+2016-08-24 11:29:08,541 DEBUG: 			View 0 : 0.490322580645
+2016-08-24 11:29:08,549 DEBUG: 			View 1 : 0.690322580645
+2016-08-24 11:29:08,633 DEBUG: 			View 2 : 0.606451612903
+2016-08-24 11:29:08,640 DEBUG: 			View 3 : 0.574193548387
+2016-08-24 11:29:08,763 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:29:11,058 DEBUG: 		Start:	 Iteration 36
+2016-08-24 11:29:11,074 DEBUG: 			View 0 : 0.6
+2016-08-24 11:29:11,082 DEBUG: 			View 1 : 0.696774193548
+2016-08-24 11:29:11,172 DEBUG: 			View 2 : 0.612903225806
+2016-08-24 11:29:11,180 DEBUG: 			View 3 : 0.561290322581
+2016-08-24 11:29:11,304 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:29:13,640 DEBUG: 		Start:	 Iteration 37
+2016-08-24 11:29:13,658 DEBUG: 			View 0 : 0.406451612903
+2016-08-24 11:29:13,666 DEBUG: 			View 1 : 0.703225806452
+2016-08-24 11:29:13,752 DEBUG: 			View 2 : 0.477419354839
+2016-08-24 11:29:13,760 DEBUG: 			View 3 : 0.61935483871
+2016-08-24 11:29:13,893 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:29:16,252 DEBUG: 		Start:	 Iteration 38
+2016-08-24 11:29:16,268 DEBUG: 			View 0 : 0.522580645161
+2016-08-24 11:29:16,276 DEBUG: 			View 1 : 0.664516129032
+2016-08-24 11:29:16,361 DEBUG: 			View 2 : 0.625806451613
+2016-08-24 11:29:16,368 DEBUG: 			View 3 : 0.470967741935
+2016-08-24 11:29:16,496 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:29:18,908 DEBUG: 		Start:	 Iteration 39
+2016-08-24 11:29:18,925 DEBUG: 			View 0 : 0.432258064516
+2016-08-24 11:29:18,933 DEBUG: 			View 1 : 0.387096774194
+2016-08-24 11:29:19,021 DEBUG: 			View 2 : 0.561290322581
+2016-08-24 11:29:19,028 DEBUG: 			View 3 : 0.529032258065
+2016-08-24 11:29:19,157 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:29:21,647 DEBUG: 		Start:	 Iteration 40
+2016-08-24 11:29:21,664 DEBUG: 			View 0 : 0.432258064516
+2016-08-24 11:29:21,672 DEBUG: 			View 1 : 0.638709677419
+2016-08-24 11:29:21,753 DEBUG: 			View 2 : 0.574193548387
+2016-08-24 11:29:21,760 DEBUG: 			View 3 : 0.61935483871
+2016-08-24 11:29:21,893 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:29:24,420 DEBUG: 		Start:	 Iteration 41
+2016-08-24 11:29:24,437 DEBUG: 			View 0 : 0.529032258065
+2016-08-24 11:29:24,444 DEBUG: 			View 1 : 0.529032258065
+2016-08-24 11:29:24,533 DEBUG: 			View 2 : 0.567741935484
+2016-08-24 11:29:24,541 DEBUG: 			View 3 : 0.548387096774
+2016-08-24 11:29:24,674 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:29:27,267 DEBUG: 		Start:	 Iteration 42
+2016-08-24 11:29:27,286 DEBUG: 			View 0 : 0.6
+2016-08-24 11:29:27,295 DEBUG: 			View 1 : 0.574193548387
+2016-08-24 11:29:27,398 DEBUG: 			View 2 : 0.651612903226
+2016-08-24 11:29:27,406 DEBUG: 			View 3 : 0.587096774194
+2016-08-24 11:29:27,542 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:29:30,222 DEBUG: 		Start:	 Iteration 43
+2016-08-24 11:29:30,239 DEBUG: 			View 0 : 0.58064516129
+2016-08-24 11:29:30,247 DEBUG: 			View 1 : 0.632258064516
+2016-08-24 11:29:30,332 DEBUG: 			View 2 : 0.458064516129
+2016-08-24 11:29:30,340 DEBUG: 			View 3 : 0.529032258065
+2016-08-24 11:29:30,478 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:29:33,211 DEBUG: 		Start:	 Iteration 44
+2016-08-24 11:29:33,227 DEBUG: 			View 0 : 0.451612903226
+2016-08-24 11:29:33,235 DEBUG: 			View 1 : 0.445161290323
+2016-08-24 11:29:33,317 DEBUG: 			View 2 : 0.606451612903
+2016-08-24 11:29:33,325 DEBUG: 			View 3 : 0.593548387097
+2016-08-24 11:29:33,463 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:29:36,284 DEBUG: 		Start:	 Iteration 45
+2016-08-24 11:29:36,300 DEBUG: 			View 0 : 0.587096774194
+2016-08-24 11:29:36,308 DEBUG: 			View 1 : 0.309677419355
+2016-08-24 11:29:36,388 DEBUG: 			View 2 : 0.548387096774
+2016-08-24 11:29:36,396 DEBUG: 			View 3 : 0.658064516129
+2016-08-24 11:29:36,539 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:29:39,404 DEBUG: 		Start:	 Iteration 46
+2016-08-24 11:29:39,421 DEBUG: 			View 0 : 0.529032258065
+2016-08-24 11:29:39,429 DEBUG: 			View 1 : 0.658064516129
+2016-08-24 11:29:39,515 DEBUG: 			View 2 : 0.574193548387
+2016-08-24 11:29:39,523 DEBUG: 			View 3 : 0.651612903226
+2016-08-24 11:29:39,668 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:29:42,602 DEBUG: 		Start:	 Iteration 47
+2016-08-24 11:29:42,619 DEBUG: 			View 0 : 0.677419354839
+2016-08-24 11:29:42,627 DEBUG: 			View 1 : 0.412903225806
+2016-08-24 11:29:42,714 DEBUG: 			View 2 : 0.587096774194
+2016-08-24 11:29:42,722 DEBUG: 			View 3 : 0.522580645161
+2016-08-24 11:29:42,870 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:29:45,843 DEBUG: 		Start:	 Iteration 48
+2016-08-24 11:29:45,860 DEBUG: 			View 0 : 0.696774193548
+2016-08-24 11:29:45,868 DEBUG: 			View 1 : 0.470967741935
+2016-08-24 11:29:45,957 DEBUG: 			View 2 : 0.535483870968
+2016-08-24 11:29:45,964 DEBUG: 			View 3 : 0.541935483871
+2016-08-24 11:29:46,113 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:29:49,139 DEBUG: 		Start:	 Iteration 49
+2016-08-24 11:29:49,155 DEBUG: 			View 0 : 0.458064516129
+2016-08-24 11:29:49,162 DEBUG: 			View 1 : 0.709677419355
+2016-08-24 11:29:49,245 DEBUG: 			View 2 : 0.522580645161
+2016-08-24 11:29:49,253 DEBUG: 			View 3 : 0.483870967742
+2016-08-24 11:29:49,402 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:29:52,569 DEBUG: 		Start:	 Iteration 50
+2016-08-24 11:29:52,586 DEBUG: 			View 0 : 0.529032258065
+2016-08-24 11:29:52,593 DEBUG: 			View 1 : 0.483870967742
+2016-08-24 11:29:52,683 DEBUG: 			View 2 : 0.632258064516
+2016-08-24 11:29:52,690 DEBUG: 			View 3 : 0.561290322581
+2016-08-24 11:29:52,844 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:29:56,008 DEBUG: 		Start:	 Iteration 51
+2016-08-24 11:29:56,024 DEBUG: 			View 0 : 0.451612903226
+2016-08-24 11:29:56,032 DEBUG: 			View 1 : 0.464516129032
+2016-08-24 11:29:56,114 DEBUG: 			View 2 : 0.6
+2016-08-24 11:29:56,121 DEBUG: 			View 3 : 0.606451612903
+2016-08-24 11:29:56,275 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:29:59,511 DEBUG: 		Start:	 Iteration 52
+2016-08-24 11:29:59,528 DEBUG: 			View 0 : 0.438709677419
+2016-08-24 11:29:59,536 DEBUG: 			View 1 : 0.341935483871
+2016-08-24 11:29:59,622 DEBUG: 			View 2 : 0.541935483871
+2016-08-24 11:29:59,630 DEBUG: 			View 3 : 0.6
+2016-08-24 11:29:59,790 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:30:03,108 DEBUG: 		Start:	 Iteration 53
+2016-08-24 11:30:03,124 DEBUG: 			View 0 : 0.535483870968
+2016-08-24 11:30:03,132 DEBUG: 			View 1 : 0.509677419355
+2016-08-24 11:30:03,214 DEBUG: 			View 2 : 0.529032258065
+2016-08-24 11:30:03,222 DEBUG: 			View 3 : 0.61935483871
+2016-08-24 11:30:03,380 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:30:06,727 DEBUG: 		Start:	 Iteration 54
+2016-08-24 11:30:06,744 DEBUG: 			View 0 : 0.709677419355
+2016-08-24 11:30:06,751 DEBUG: 			View 1 : 0.296774193548
+2016-08-24 11:30:06,839 DEBUG: 			View 2 : 0.606451612903
+2016-08-24 11:30:06,847 DEBUG: 			View 3 : 0.606451612903
+2016-08-24 11:30:07,009 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:30:10,403 DEBUG: 		Start:	 Iteration 55
+2016-08-24 11:30:10,420 DEBUG: 			View 0 : 0.58064516129
+2016-08-24 11:30:10,427 DEBUG: 			View 1 : 0.470967741935
+2016-08-24 11:30:10,505 DEBUG: 			View 2 : 0.638709677419
+2016-08-24 11:30:10,513 DEBUG: 			View 3 : 0.574193548387
+2016-08-24 11:30:10,676 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:30:14,163 DEBUG: 		Start:	 Iteration 56
+2016-08-24 11:30:14,180 DEBUG: 			View 0 : 0.509677419355
+2016-08-24 11:30:14,188 DEBUG: 			View 1 : 0.58064516129
+2016-08-24 11:30:14,275 DEBUG: 			View 2 : 0.58064516129
+2016-08-24 11:30:14,282 DEBUG: 			View 3 : 0.535483870968
+2016-08-24 11:30:14,450 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:30:17,979 DEBUG: 		Start:	 Iteration 57
+2016-08-24 11:30:17,995 DEBUG: 			View 0 : 0.529032258065
+2016-08-24 11:30:18,003 DEBUG: 			View 1 : 0.632258064516
+2016-08-24 11:30:18,090 DEBUG: 			View 2 : 0.61935483871
+2016-08-24 11:30:18,097 DEBUG: 			View 3 : 0.567741935484
+2016-08-24 11:30:18,264 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:30:21,936 DEBUG: 		Start:	 Iteration 58
+2016-08-24 11:30:21,952 DEBUG: 			View 0 : 0.477419354839
+2016-08-24 11:30:21,960 DEBUG: 			View 1 : 0.535483870968
+2016-08-24 11:30:22,050 DEBUG: 			View 2 : 0.574193548387
+2016-08-24 11:30:22,057 DEBUG: 			View 3 : 0.567741935484
+2016-08-24 11:30:22,232 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:30:25,881 DEBUG: 		Start:	 Iteration 59
+2016-08-24 11:30:25,897 DEBUG: 			View 0 : 0.561290322581
+2016-08-24 11:30:25,905 DEBUG: 			View 1 : 0.638709677419
+2016-08-24 11:30:25,992 DEBUG: 			View 2 : 0.509677419355
+2016-08-24 11:30:25,999 DEBUG: 			View 3 : 0.58064516129
+2016-08-24 11:30:26,171 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:30:29,897 DEBUG: 		Start:	 Iteration 60
+2016-08-24 11:30:29,913 DEBUG: 			View 0 : 0.561290322581
+2016-08-24 11:30:29,921 DEBUG: 			View 1 : 0.683870967742
+2016-08-24 11:30:30,001 DEBUG: 			View 2 : 0.587096774194
+2016-08-24 11:30:30,009 DEBUG: 			View 3 : 0.574193548387
+2016-08-24 11:30:30,182 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:30:33,969 DEBUG: 		Start:	 Iteration 61
+2016-08-24 11:30:33,985 DEBUG: 			View 0 : 0.509677419355
+2016-08-24 11:30:33,992 DEBUG: 			View 1 : 0.509677419355
+2016-08-24 11:30:34,074 DEBUG: 			View 2 : 0.606451612903
+2016-08-24 11:30:34,082 DEBUG: 			View 3 : 0.625806451613
+2016-08-24 11:30:34,259 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:30:38,085 DEBUG: 		Start:	 Iteration 62
+2016-08-24 11:30:38,101 DEBUG: 			View 0 : 0.470967741935
+2016-08-24 11:30:38,109 DEBUG: 			View 1 : 0.664516129032
+2016-08-24 11:30:38,192 DEBUG: 			View 2 : 0.58064516129
+2016-08-24 11:30:38,200 DEBUG: 			View 3 : 0.612903225806
+2016-08-24 11:30:38,380 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:30:42,275 DEBUG: 		Start:	 Iteration 63
+2016-08-24 11:30:42,291 DEBUG: 			View 0 : 0.412903225806
+2016-08-24 11:30:42,299 DEBUG: 			View 1 : 0.483870967742
+2016-08-24 11:30:42,383 DEBUG: 			View 2 : 0.625806451613
+2016-08-24 11:30:42,391 DEBUG: 			View 3 : 0.58064516129
+2016-08-24 11:30:42,575 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:30:46,590 DEBUG: 		Start:	 Iteration 64
+2016-08-24 11:30:46,606 DEBUG: 			View 0 : 0.470967741935
+2016-08-24 11:30:46,614 DEBUG: 			View 1 : 0.509677419355
+2016-08-24 11:30:46,697 DEBUG: 			View 2 : 0.567741935484
+2016-08-24 11:30:46,705 DEBUG: 			View 3 : 0.470967741935
+2016-08-24 11:30:46,888 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:30:50,945 DEBUG: 		Start:	 Iteration 65
+2016-08-24 11:30:50,962 DEBUG: 			View 0 : 0.451612903226
+2016-08-24 11:30:50,970 DEBUG: 			View 1 : 0.470967741935
+2016-08-24 11:30:51,059 DEBUG: 			View 2 : 0.670967741935
+2016-08-24 11:30:51,066 DEBUG: 			View 3 : 0.522580645161
+2016-08-24 11:30:51,256 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:30:55,362 DEBUG: 		Start:	 Iteration 66
+2016-08-24 11:30:55,379 DEBUG: 			View 0 : 0.464516129032
+2016-08-24 11:30:55,386 DEBUG: 			View 1 : 0.645161290323
+2016-08-24 11:30:55,475 DEBUG: 			View 2 : 0.612903225806
+2016-08-24 11:30:55,482 DEBUG: 			View 3 : 0.664516129032
+2016-08-24 11:30:55,671 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:30:59,825 DEBUG: 		Start:	 Iteration 67
+2016-08-24 11:30:59,842 DEBUG: 			View 0 : 0.438709677419
+2016-08-24 11:30:59,850 DEBUG: 			View 1 : 0.541935483871
+2016-08-24 11:30:59,940 DEBUG: 			View 2 : 0.567741935484
+2016-08-24 11:30:59,948 DEBUG: 			View 3 : 0.664516129032
+2016-08-24 11:31:00,148 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:31:04,865 DEBUG: 		Start:	 Iteration 68
+2016-08-24 11:31:04,891 DEBUG: 			View 0 : 0.425806451613
+2016-08-24 11:31:04,906 DEBUG: 			View 1 : 0.677419354839
+2016-08-24 11:31:05,061 DEBUG: 			View 2 : 0.567741935484
+2016-08-24 11:31:05,070 DEBUG: 			View 3 : 0.664516129032
+2016-08-24 11:31:05,287 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:31:09,748 DEBUG: 		Start:	 Iteration 69
+2016-08-24 11:31:09,764 DEBUG: 			View 0 : 0.477419354839
+2016-08-24 11:31:09,772 DEBUG: 			View 1 : 0.722580645161
+2016-08-24 11:31:09,851 DEBUG: 			View 2 : 0.670967741935
+2016-08-24 11:31:09,859 DEBUG: 			View 3 : 0.541935483871
+2016-08-24 11:31:10,056 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:31:14,381 DEBUG: 		Start:	 Iteration 70
+2016-08-24 11:31:14,397 DEBUG: 			View 0 : 0.522580645161
+2016-08-24 11:31:14,405 DEBUG: 			View 1 : 0.638709677419
+2016-08-24 11:31:14,494 DEBUG: 			View 2 : 0.587096774194
+2016-08-24 11:31:14,502 DEBUG: 			View 3 : 0.503225806452
+2016-08-24 11:31:14,698 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:31:19,091 DEBUG: 		Start:	 Iteration 71
+2016-08-24 11:31:19,107 DEBUG: 			View 0 : 0.425806451613
+2016-08-24 11:31:19,114 DEBUG: 			View 1 : 0.612903225806
+2016-08-24 11:31:19,197 DEBUG: 			View 2 : 0.567741935484
+2016-08-24 11:31:19,204 DEBUG: 			View 3 : 0.574193548387
+2016-08-24 11:31:19,401 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:31:23,780 DEBUG: 		Start:	 Iteration 72
+2016-08-24 11:31:23,796 DEBUG: 			View 0 : 0.645161290323
+2016-08-24 11:31:23,804 DEBUG: 			View 1 : 0.477419354839
+2016-08-24 11:31:23,885 DEBUG: 			View 2 : 0.574193548387
+2016-08-24 11:31:23,893 DEBUG: 			View 3 : 0.561290322581
+2016-08-24 11:31:24,092 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:31:28,523 DEBUG: 		Start:	 Iteration 73
+2016-08-24 11:31:28,539 DEBUG: 			View 0 : 0.483870967742
+2016-08-24 11:31:28,546 DEBUG: 			View 1 : 0.593548387097
+2016-08-24 11:31:28,627 DEBUG: 			View 2 : 0.516129032258
+2016-08-24 11:31:28,635 DEBUG: 			View 3 : 0.541935483871
+2016-08-24 11:31:28,834 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:31:33,348 DEBUG: 		Start:	 Iteration 74
+2016-08-24 11:31:33,364 DEBUG: 			View 0 : 0.548387096774
+2016-08-24 11:31:33,372 DEBUG: 			View 1 : 0.277419354839
+2016-08-24 11:31:33,458 DEBUG: 			View 2 : 0.645161290323
+2016-08-24 11:31:33,465 DEBUG: 			View 3 : 0.477419354839
+2016-08-24 11:31:33,668 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:31:38,258 DEBUG: 		Start:	 Iteration 75
+2016-08-24 11:31:38,274 DEBUG: 			View 0 : 0.529032258065
+2016-08-24 11:31:38,282 DEBUG: 			View 1 : 0.625806451613
+2016-08-24 11:31:38,355 DEBUG: 			View 2 : 0.61935483871
+2016-08-24 11:31:38,363 DEBUG: 			View 3 : 0.541935483871
+2016-08-24 11:31:38,568 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:31:43,214 DEBUG: 		Start:	 Iteration 76
+2016-08-24 11:31:43,230 DEBUG: 			View 0 : 0.58064516129
+2016-08-24 11:31:43,237 DEBUG: 			View 1 : 0.606451612903
+2016-08-24 11:31:43,323 DEBUG: 			View 2 : 0.612903225806
+2016-08-24 11:31:43,331 DEBUG: 			View 3 : 0.61935483871
+2016-08-24 11:31:43,535 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:31:48,374 DEBUG: 		Start:	 Iteration 77
+2016-08-24 11:31:48,393 DEBUG: 			View 0 : 0.451612903226
+2016-08-24 11:31:48,401 DEBUG: 			View 1 : 0.690322580645
+2016-08-24 11:31:48,503 DEBUG: 			View 2 : 0.6
+2016-08-24 11:31:48,512 DEBUG: 			View 3 : 0.548387096774
+2016-08-24 11:31:48,755 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:31:53,654 DEBUG: 		Start:	 Iteration 78
+2016-08-24 11:31:53,671 DEBUG: 			View 0 : 0.593548387097
+2016-08-24 11:31:53,678 DEBUG: 			View 1 : 0.632258064516
+2016-08-24 11:31:53,760 DEBUG: 			View 2 : 0.612903225806
+2016-08-24 11:31:53,767 DEBUG: 			View 3 : 0.541935483871
+2016-08-24 11:31:53,976 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:31:58,943 DEBUG: 		Start:	 Iteration 79
+2016-08-24 11:31:58,960 DEBUG: 			View 0 : 0.503225806452
+2016-08-24 11:31:58,967 DEBUG: 			View 1 : 0.458064516129
+2016-08-24 11:31:59,055 DEBUG: 			View 2 : 0.632258064516
+2016-08-24 11:31:59,063 DEBUG: 			View 3 : 0.61935483871
+2016-08-24 11:31:59,276 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:32:04,163 DEBUG: 		Start:	 Iteration 80
+2016-08-24 11:32:04,180 DEBUG: 			View 0 : 0.529032258065
+2016-08-24 11:32:04,187 DEBUG: 			View 1 : 0.361290322581
+2016-08-24 11:32:04,275 DEBUG: 			View 2 : 0.645161290323
+2016-08-24 11:32:04,283 DEBUG: 			View 3 : 0.522580645161
+2016-08-24 11:32:04,495 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:32:09,481 DEBUG: 		Start:	 Iteration 81
+2016-08-24 11:32:09,498 DEBUG: 			View 0 : 0.541935483871
+2016-08-24 11:32:09,506 DEBUG: 			View 1 : 0.374193548387
+2016-08-24 11:32:09,589 DEBUG: 			View 2 : 0.593548387097
+2016-08-24 11:32:09,596 DEBUG: 			View 3 : 0.587096774194
+2016-08-24 11:32:09,813 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:32:14,844 DEBUG: 		Start:	 Iteration 82
+2016-08-24 11:32:14,860 DEBUG: 			View 0 : 0.445161290323
+2016-08-24 11:32:14,868 DEBUG: 			View 1 : 0.503225806452
+2016-08-24 11:32:14,955 DEBUG: 			View 2 : 0.490322580645
+2016-08-24 11:32:14,962 DEBUG: 			View 3 : 0.6
+2016-08-24 11:32:15,180 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:32:20,296 DEBUG: 		Start:	 Iteration 83
+2016-08-24 11:32:20,314 DEBUG: 			View 0 : 0.574193548387
+2016-08-24 11:32:20,322 DEBUG: 			View 1 : 0.367741935484
+2016-08-24 11:32:20,411 DEBUG: 			View 2 : 0.625806451613
+2016-08-24 11:32:20,419 DEBUG: 			View 3 : 0.535483870968
+2016-08-24 11:32:20,648 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:32:25,914 DEBUG: 		Start:	 Iteration 84
+2016-08-24 11:32:25,931 DEBUG: 			View 0 : 0.509677419355
+2016-08-24 11:32:25,939 DEBUG: 			View 1 : 0.554838709677
+2016-08-24 11:32:26,026 DEBUG: 			View 2 : 0.645161290323
+2016-08-24 11:32:26,034 DEBUG: 			View 3 : 0.612903225806
+2016-08-24 11:32:26,264 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:32:31,908 DEBUG: 		Start:	 Iteration 85
+2016-08-24 11:32:31,927 DEBUG: 			View 0 : 0.541935483871
+2016-08-24 11:32:31,936 DEBUG: 			View 1 : 0.509677419355
+2016-08-24 11:32:32,032 DEBUG: 			View 2 : 0.490322580645
+2016-08-24 11:32:32,039 DEBUG: 			View 3 : 0.529032258065
+2016-08-24 11:32:32,270 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:32:37,729 DEBUG: 		Start:	 Iteration 86
+2016-08-24 11:32:37,746 DEBUG: 			View 0 : 0.561290322581
+2016-08-24 11:32:37,753 DEBUG: 			View 1 : 0.612903225806
+2016-08-24 11:32:37,838 DEBUG: 			View 2 : 0.58064516129
+2016-08-24 11:32:37,845 DEBUG: 			View 3 : 0.61935483871
+2016-08-24 11:32:38,074 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:32:43,440 DEBUG: 		Start:	 Iteration 87
+2016-08-24 11:32:43,456 DEBUG: 			View 0 : 0.587096774194
+2016-08-24 11:32:43,464 DEBUG: 			View 1 : 0.490322580645
+2016-08-24 11:32:43,550 DEBUG: 			View 2 : 0.529032258065
+2016-08-24 11:32:43,558 DEBUG: 			View 3 : 0.606451612903
+2016-08-24 11:32:43,788 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:32:49,211 DEBUG: 		Start:	 Iteration 88
+2016-08-24 11:32:49,227 DEBUG: 			View 0 : 0.651612903226
+2016-08-24 11:32:49,235 DEBUG: 			View 1 : 0.483870967742
+2016-08-24 11:32:49,320 DEBUG: 			View 2 : 0.593548387097
+2016-08-24 11:32:49,327 DEBUG: 			View 3 : 0.625806451613
+2016-08-24 11:32:49,559 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:32:55,079 DEBUG: 		Start:	 Iteration 89
+2016-08-24 11:32:55,096 DEBUG: 			View 0 : 0.374193548387
+2016-08-24 11:32:55,104 DEBUG: 			View 1 : 0.625806451613
+2016-08-24 11:32:55,192 DEBUG: 			View 2 : 0.425806451613
+2016-08-24 11:32:55,199 DEBUG: 			View 3 : 0.61935483871
+2016-08-24 11:32:55,438 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:33:01,001 DEBUG: 		Start:	 Iteration 90
+2016-08-24 11:33:01,018 DEBUG: 			View 0 : 0.470967741935
+2016-08-24 11:33:01,025 DEBUG: 			View 1 : 0.683870967742
+2016-08-24 11:33:01,113 DEBUG: 			View 2 : 0.567741935484
+2016-08-24 11:33:01,120 DEBUG: 			View 3 : 0.529032258065
+2016-08-24 11:33:01,356 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:33:06,992 DEBUG: 		Start:	 Iteration 91
+2016-08-24 11:33:07,008 DEBUG: 			View 0 : 0.606451612903
+2016-08-24 11:33:07,016 DEBUG: 			View 1 : 0.625806451613
+2016-08-24 11:33:07,101 DEBUG: 			View 2 : 0.587096774194
+2016-08-24 11:33:07,109 DEBUG: 			View 3 : 0.606451612903
+2016-08-24 11:33:07,353 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:33:13,195 DEBUG: 		Start:	 Iteration 92
+2016-08-24 11:33:13,212 DEBUG: 			View 0 : 0.425806451613
+2016-08-24 11:33:13,219 DEBUG: 			View 1 : 0.348387096774
+2016-08-24 11:33:13,311 DEBUG: 			View 2 : 0.529032258065
+2016-08-24 11:33:13,318 DEBUG: 			View 3 : 0.587096774194
+2016-08-24 11:33:13,560 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:33:19,527 DEBUG: 		Start:	 Iteration 93
+2016-08-24 11:33:19,543 DEBUG: 			View 0 : 0.496774193548
+2016-08-24 11:33:19,551 DEBUG: 			View 1 : 0.612903225806
+2016-08-24 11:33:19,634 DEBUG: 			View 2 : 0.58064516129
+2016-08-24 11:33:19,641 DEBUG: 			View 3 : 0.554838709677
+2016-08-24 11:33:19,896 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:33:25,762 DEBUG: 		Start:	 Iteration 94
+2016-08-24 11:33:25,778 DEBUG: 			View 0 : 0.445161290323
+2016-08-24 11:33:25,786 DEBUG: 			View 1 : 0.632258064516
+2016-08-24 11:33:25,869 DEBUG: 			View 2 : 0.574193548387
+2016-08-24 11:33:25,876 DEBUG: 			View 3 : 0.522580645161
+2016-08-24 11:33:26,123 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:33:32,162 DEBUG: 		Start:	 Iteration 95
+2016-08-24 11:33:32,179 DEBUG: 			View 0 : 0.458064516129
+2016-08-24 11:33:32,187 DEBUG: 			View 1 : 0.638709677419
+2016-08-24 11:33:32,281 DEBUG: 			View 2 : 0.561290322581
+2016-08-24 11:33:32,288 DEBUG: 			View 3 : 0.6
+2016-08-24 11:33:32,548 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:33:38,564 DEBUG: 		Start:	 Iteration 96
+2016-08-24 11:33:38,581 DEBUG: 			View 0 : 0.574193548387
+2016-08-24 11:33:38,588 DEBUG: 			View 1 : 0.367741935484
+2016-08-24 11:33:38,674 DEBUG: 			View 2 : 0.645161290323
+2016-08-24 11:33:38,681 DEBUG: 			View 3 : 0.670967741935
+2016-08-24 11:33:38,933 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:33:45,058 DEBUG: 		Start:	 Iteration 97
+2016-08-24 11:33:45,076 DEBUG: 			View 0 : 0.61935483871
+2016-08-24 11:33:45,084 DEBUG: 			View 1 : 0.658064516129
+2016-08-24 11:33:45,175 DEBUG: 			View 2 : 0.593548387097
+2016-08-24 11:33:45,182 DEBUG: 			View 3 : 0.541935483871
+2016-08-24 11:33:45,439 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:33:51,666 DEBUG: 		Start:	 Iteration 98
+2016-08-24 11:33:51,683 DEBUG: 			View 0 : 0.477419354839
+2016-08-24 11:33:51,691 DEBUG: 			View 1 : 0.587096774194
+2016-08-24 11:33:51,786 DEBUG: 			View 2 : 0.548387096774
+2016-08-24 11:33:51,794 DEBUG: 			View 3 : 0.638709677419
+2016-08-24 11:33:52,065 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:33:58,218 DEBUG: 		Start:	 Iteration 99
+2016-08-24 11:33:58,235 DEBUG: 			View 0 : 0.464516129032
+2016-08-24 11:33:58,243 DEBUG: 			View 1 : 0.470967741935
+2016-08-24 11:33:58,334 DEBUG: 			View 2 : 0.554838709677
+2016-08-24 11:33:58,342 DEBUG: 			View 3 : 0.567741935484
+2016-08-24 11:33:58,600 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:34:04,934 DEBUG: 		Start:	 Iteration 100
+2016-08-24 11:34:04,950 DEBUG: 			View 0 : 0.432258064516
+2016-08-24 11:34:04,957 DEBUG: 			View 1 : 0.412903225806
+2016-08-24 11:34:05,039 DEBUG: 			View 2 : 0.561290322581
+2016-08-24 11:34:05,047 DEBUG: 			View 3 : 0.670967741935
+2016-08-24 11:34:05,308 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:34:11,557 DEBUG: 		Start:	 Iteration 101
+2016-08-24 11:34:11,573 DEBUG: 			View 0 : 0.548387096774
+2016-08-24 11:34:11,580 DEBUG: 			View 1 : 0.387096774194
+2016-08-24 11:34:11,669 DEBUG: 			View 2 : 0.541935483871
+2016-08-24 11:34:11,677 DEBUG: 			View 3 : 0.522580645161
+2016-08-24 11:34:11,937 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:34:18,573 DEBUG: 		Start:	 Iteration 102
+2016-08-24 11:34:18,595 DEBUG: 			View 0 : 0.625806451613
+2016-08-24 11:34:18,604 DEBUG: 			View 1 : 0.464516129032
+2016-08-24 11:34:18,708 DEBUG: 			View 2 : 0.606451612903
+2016-08-24 11:34:18,717 DEBUG: 			View 3 : 0.548387096774
+2016-08-24 11:34:19,004 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:34:25,229 INFO: 	Start: 	 Classification
+2016-08-24 11:34:40,414 INFO: 	Done: 	 Fold number 1
+2016-08-24 11:34:40,414 INFO: 	Start:	 Fold number 2
+2016-08-24 11:34:42,007 DEBUG: 		Start:	 Iteration 1
+2016-08-24 11:34:42,022 DEBUG: 			View 0 : 0.377358490566
+2016-08-24 11:34:42,029 DEBUG: 			View 1 : 0.622641509434
+2016-08-24 11:34:42,059 DEBUG: 			View 2 : 0.377358490566
+2016-08-24 11:34:42,067 DEBUG: 			View 3 : 0.377358490566
+2016-08-24 11:34:42,108 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:34:42,178 DEBUG: 		Start:	 Iteration 2
+2016-08-24 11:34:42,195 DEBUG: 			View 0 : 0.465408805031
+2016-08-24 11:34:42,202 DEBUG: 			View 1 : 0.471698113208
+2016-08-24 11:34:42,289 DEBUG: 			View 2 : 0.647798742138
+2016-08-24 11:34:42,297 DEBUG: 			View 3 : 0.477987421384
+2016-08-24 11:34:42,342 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:34:42,487 DEBUG: 		Start:	 Iteration 3
+2016-08-24 11:34:42,504 DEBUG: 			View 0 : 0.389937106918
+2016-08-24 11:34:42,511 DEBUG: 			View 1 : 0.553459119497
+2016-08-24 11:34:42,594 DEBUG: 			View 2 : 0.503144654088
+2016-08-24 11:34:42,602 DEBUG: 			View 3 : 0.534591194969
+2016-08-24 11:34:42,655 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:34:42,859 DEBUG: 		Start:	 Iteration 4
+2016-08-24 11:34:42,875 DEBUG: 			View 0 : 0.591194968553
+2016-08-24 11:34:42,883 DEBUG: 			View 1 : 0.603773584906
+2016-08-24 11:34:42,965 DEBUG: 			View 2 : 0.62893081761
+2016-08-24 11:34:42,973 DEBUG: 			View 3 : 0.666666666667
+2016-08-24 11:34:43,029 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:34:43,290 DEBUG: 		Start:	 Iteration 5
+2016-08-24 11:34:43,306 DEBUG: 			View 0 : 0.559748427673
+2016-08-24 11:34:43,314 DEBUG: 			View 1 : 0.446540880503
+2016-08-24 11:34:43,397 DEBUG: 			View 2 : 0.547169811321
+2016-08-24 11:34:43,404 DEBUG: 			View 3 : 0.59748427673
+2016-08-24 11:34:43,461 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:34:43,781 DEBUG: 		Start:	 Iteration 6
+2016-08-24 11:34:43,797 DEBUG: 			View 0 : 0.358490566038
+2016-08-24 11:34:43,805 DEBUG: 			View 1 : 0.698113207547
+2016-08-24 11:34:43,891 DEBUG: 			View 2 : 0.509433962264
+2016-08-24 11:34:43,899 DEBUG: 			View 3 : 0.528301886792
+2016-08-24 11:34:43,958 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:34:44,334 DEBUG: 		Start:	 Iteration 7
+2016-08-24 11:34:44,351 DEBUG: 			View 0 : 0.503144654088
+2016-08-24 11:34:44,358 DEBUG: 			View 1 : 0.635220125786
+2016-08-24 11:34:44,445 DEBUG: 			View 2 : 0.553459119497
+2016-08-24 11:34:44,453 DEBUG: 			View 3 : 0.660377358491
+2016-08-24 11:34:44,514 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:34:44,948 DEBUG: 		Start:	 Iteration 8
+2016-08-24 11:34:44,964 DEBUG: 			View 0 : 0.547169811321
+2016-08-24 11:34:44,972 DEBUG: 			View 1 : 0.465408805031
+2016-08-24 11:34:45,055 DEBUG: 			View 2 : 0.553459119497
+2016-08-24 11:34:45,063 DEBUG: 			View 3 : 0.647798742138
+2016-08-24 11:34:45,129 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:34:45,620 DEBUG: 		Start:	 Iteration 9
+2016-08-24 11:34:45,637 DEBUG: 			View 0 : 0.553459119497
+2016-08-24 11:34:45,644 DEBUG: 			View 1 : 0.446540880503
+2016-08-24 11:34:45,730 DEBUG: 			View 2 : 0.591194968553
+2016-08-24 11:34:45,738 DEBUG: 			View 3 : 0.553459119497
+2016-08-24 11:34:45,804 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:34:46,365 DEBUG: 		Start:	 Iteration 10
+2016-08-24 11:34:46,382 DEBUG: 			View 0 : 0.465408805031
+2016-08-24 11:34:46,389 DEBUG: 			View 1 : 0.465408805031
+2016-08-24 11:34:46,476 DEBUG: 			View 2 : 0.666666666667
+2016-08-24 11:34:46,484 DEBUG: 			View 3 : 0.553459119497
+2016-08-24 11:34:46,553 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:34:47,192 DEBUG: 		Start:	 Iteration 11
+2016-08-24 11:34:47,209 DEBUG: 			View 0 : 0.496855345912
+2016-08-24 11:34:47,216 DEBUG: 			View 1 : 0.672955974843
+2016-08-24 11:34:47,304 DEBUG: 			View 2 : 0.566037735849
+2016-08-24 11:34:47,312 DEBUG: 			View 3 : 0.578616352201
+2016-08-24 11:34:47,384 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:34:48,078 DEBUG: 		Start:	 Iteration 12
+2016-08-24 11:34:48,094 DEBUG: 			View 0 : 0.547169811321
+2016-08-24 11:34:48,102 DEBUG: 			View 1 : 0.320754716981
+2016-08-24 11:34:48,193 DEBUG: 			View 2 : 0.616352201258
+2016-08-24 11:34:48,201 DEBUG: 			View 3 : 0.522012578616
+2016-08-24 11:34:48,273 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:34:49,039 DEBUG: 		Start:	 Iteration 13
+2016-08-24 11:34:49,055 DEBUG: 			View 0 : 0.364779874214
+2016-08-24 11:34:49,063 DEBUG: 			View 1 : 0.641509433962
+2016-08-24 11:34:49,152 DEBUG: 			View 2 : 0.534591194969
+2016-08-24 11:34:49,159 DEBUG: 			View 3 : 0.584905660377
+2016-08-24 11:34:49,235 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:34:50,060 DEBUG: 		Start:	 Iteration 14
+2016-08-24 11:34:50,077 DEBUG: 			View 0 : 0.635220125786
+2016-08-24 11:34:50,084 DEBUG: 			View 1 : 0.691823899371
+2016-08-24 11:34:50,167 DEBUG: 			View 2 : 0.578616352201
+2016-08-24 11:34:50,174 DEBUG: 			View 3 : 0.528301886792
+2016-08-24 11:34:50,253 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:34:51,136 DEBUG: 		Start:	 Iteration 15
+2016-08-24 11:34:51,153 DEBUG: 			View 0 : 0.427672955975
+2016-08-24 11:34:51,161 DEBUG: 			View 1 : 0.62893081761
+2016-08-24 11:34:51,245 DEBUG: 			View 2 : 0.559748427673
+2016-08-24 11:34:51,252 DEBUG: 			View 3 : 0.616352201258
+2016-08-24 11:34:51,334 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:34:52,275 DEBUG: 		Start:	 Iteration 16
+2016-08-24 11:34:52,292 DEBUG: 			View 0 : 0.528301886792
+2016-08-24 11:34:52,300 DEBUG: 			View 1 : 0.672955974843
+2016-08-24 11:34:52,387 DEBUG: 			View 2 : 0.610062893082
+2016-08-24 11:34:52,395 DEBUG: 			View 3 : 0.540880503145
+2016-08-24 11:34:52,478 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:34:53,479 DEBUG: 		Start:	 Iteration 17
+2016-08-24 11:34:53,495 DEBUG: 			View 0 : 0.522012578616
+2016-08-24 11:34:53,503 DEBUG: 			View 1 : 0.471698113208
+2016-08-24 11:34:53,590 DEBUG: 			View 2 : 0.654088050314
+2016-08-24 11:34:53,597 DEBUG: 			View 3 : 0.566037735849
+2016-08-24 11:34:53,682 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:34:54,747 DEBUG: 		Start:	 Iteration 18
+2016-08-24 11:34:54,764 DEBUG: 			View 0 : 0.522012578616
+2016-08-24 11:34:54,771 DEBUG: 			View 1 : 0.522012578616
+2016-08-24 11:34:54,855 DEBUG: 			View 2 : 0.666666666667
+2016-08-24 11:34:54,863 DEBUG: 			View 3 : 0.528301886792
+2016-08-24 11:34:54,949 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:34:56,085 DEBUG: 		Start:	 Iteration 19
+2016-08-24 11:34:56,101 DEBUG: 			View 0 : 0.572327044025
+2016-08-24 11:34:56,109 DEBUG: 			View 1 : 0.616352201258
+2016-08-24 11:34:56,191 DEBUG: 			View 2 : 0.591194968553
+2016-08-24 11:34:56,198 DEBUG: 			View 3 : 0.591194968553
+2016-08-24 11:34:56,287 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:34:57,480 DEBUG: 		Start:	 Iteration 20
+2016-08-24 11:34:57,497 DEBUG: 			View 0 : 0.522012578616
+2016-08-24 11:34:57,504 DEBUG: 			View 1 : 0.51572327044
+2016-08-24 11:34:57,582 DEBUG: 			View 2 : 0.59748427673
+2016-08-24 11:34:57,590 DEBUG: 			View 3 : 0.647798742138
+2016-08-24 11:34:57,681 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:34:58,933 DEBUG: 		Start:	 Iteration 21
+2016-08-24 11:34:58,950 DEBUG: 			View 0 : 0.446540880503
+2016-08-24 11:34:58,958 DEBUG: 			View 1 : 0.691823899371
+2016-08-24 11:34:59,041 DEBUG: 			View 2 : 0.48427672956
+2016-08-24 11:34:59,048 DEBUG: 			View 3 : 0.666666666667
+2016-08-24 11:34:59,141 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:35:00,451 DEBUG: 		Start:	 Iteration 22
+2016-08-24 11:35:00,467 DEBUG: 			View 0 : 0.559748427673
+2016-08-24 11:35:00,474 DEBUG: 			View 1 : 0.654088050314
+2016-08-24 11:35:00,561 DEBUG: 			View 2 : 0.566037735849
+2016-08-24 11:35:00,569 DEBUG: 			View 3 : 0.578616352201
+2016-08-24 11:35:00,663 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:35:02,029 DEBUG: 		Start:	 Iteration 23
+2016-08-24 11:35:02,046 DEBUG: 			View 0 : 0.433962264151
+2016-08-24 11:35:02,053 DEBUG: 			View 1 : 0.616352201258
+2016-08-24 11:35:02,140 DEBUG: 			View 2 : 0.471698113208
+2016-08-24 11:35:02,147 DEBUG: 			View 3 : 0.584905660377
+2016-08-24 11:35:02,244 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:35:03,666 DEBUG: 		Start:	 Iteration 24
+2016-08-24 11:35:03,683 DEBUG: 			View 0 : 0.641509433962
+2016-08-24 11:35:03,690 DEBUG: 			View 1 : 0.654088050314
+2016-08-24 11:35:03,773 DEBUG: 			View 2 : 0.578616352201
+2016-08-24 11:35:03,781 DEBUG: 			View 3 : 0.59748427673
+2016-08-24 11:35:03,880 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:35:05,362 DEBUG: 		Start:	 Iteration 25
+2016-08-24 11:35:05,379 DEBUG: 			View 0 : 0.616352201258
+2016-08-24 11:35:05,386 DEBUG: 			View 1 : 0.622641509434
+2016-08-24 11:35:05,465 DEBUG: 			View 2 : 0.51572327044
+2016-08-24 11:35:05,472 DEBUG: 			View 3 : 0.666666666667
+2016-08-24 11:35:05,574 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:35:07,114 DEBUG: 		Start:	 Iteration 26
+2016-08-24 11:35:07,130 DEBUG: 			View 0 : 0.377358490566
+2016-08-24 11:35:07,138 DEBUG: 			View 1 : 0.660377358491
+2016-08-24 11:35:07,224 DEBUG: 			View 2 : 0.540880503145
+2016-08-24 11:35:07,232 DEBUG: 			View 3 : 0.654088050314
+2016-08-24 11:35:07,335 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:35:08,934 DEBUG: 		Start:	 Iteration 27
+2016-08-24 11:35:08,950 DEBUG: 			View 0 : 0.446540880503
+2016-08-24 11:35:08,958 DEBUG: 			View 1 : 0.691823899371
+2016-08-24 11:35:09,044 DEBUG: 			View 2 : 0.591194968553
+2016-08-24 11:35:09,052 DEBUG: 			View 3 : 0.566037735849
+2016-08-24 11:35:09,158 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:35:10,846 DEBUG: 		Start:	 Iteration 28
+2016-08-24 11:35:10,863 DEBUG: 			View 0 : 0.603773584906
+2016-08-24 11:35:10,870 DEBUG: 			View 1 : 0.51572327044
+2016-08-24 11:35:10,957 DEBUG: 			View 2 : 0.59748427673
+2016-08-24 11:35:10,964 DEBUG: 			View 3 : 0.62893081761
+2016-08-24 11:35:11,072 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:35:12,786 DEBUG: 		Start:	 Iteration 29
+2016-08-24 11:35:12,803 DEBUG: 			View 0 : 0.622641509434
+2016-08-24 11:35:12,810 DEBUG: 			View 1 : 0.729559748428
+2016-08-24 11:35:12,898 DEBUG: 			View 2 : 0.572327044025
+2016-08-24 11:35:12,905 DEBUG: 			View 3 : 0.559748427673
+2016-08-24 11:35:13,015 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:35:14,788 DEBUG: 		Start:	 Iteration 30
+2016-08-24 11:35:14,804 DEBUG: 			View 0 : 0.496855345912
+2016-08-24 11:35:14,812 DEBUG: 			View 1 : 0.320754716981
+2016-08-24 11:35:14,896 DEBUG: 			View 2 : 0.572327044025
+2016-08-24 11:35:14,903 DEBUG: 			View 3 : 0.635220125786
+2016-08-24 11:35:15,016 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:35:16,849 DEBUG: 		Start:	 Iteration 31
+2016-08-24 11:35:16,866 DEBUG: 			View 0 : 0.522012578616
+2016-08-24 11:35:16,874 DEBUG: 			View 1 : 0.465408805031
+2016-08-24 11:35:16,956 DEBUG: 			View 2 : 0.654088050314
+2016-08-24 11:35:16,964 DEBUG: 			View 3 : 0.622641509434
+2016-08-24 11:35:17,078 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:35:18,980 DEBUG: 		Start:	 Iteration 32
+2016-08-24 11:35:18,996 DEBUG: 			View 0 : 0.59748427673
+2016-08-24 11:35:19,004 DEBUG: 			View 1 : 0.477987421384
+2016-08-24 11:35:19,090 DEBUG: 			View 2 : 0.578616352201
+2016-08-24 11:35:19,098 DEBUG: 			View 3 : 0.528301886792
+2016-08-24 11:35:19,214 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:35:21,188 DEBUG: 		Start:	 Iteration 33
+2016-08-24 11:35:21,204 DEBUG: 			View 0 : 0.660377358491
+2016-08-24 11:35:21,211 DEBUG: 			View 1 : 0.566037735849
+2016-08-24 11:35:21,298 DEBUG: 			View 2 : 0.522012578616
+2016-08-24 11:35:21,306 DEBUG: 			View 3 : 0.62893081761
+2016-08-24 11:35:21,426 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:35:23,462 DEBUG: 		Start:	 Iteration 34
+2016-08-24 11:35:23,478 DEBUG: 			View 0 : 0.490566037736
+2016-08-24 11:35:23,485 DEBUG: 			View 1 : 0.345911949686
+2016-08-24 11:35:23,572 DEBUG: 			View 2 : 0.584905660377
+2016-08-24 11:35:23,580 DEBUG: 			View 3 : 0.610062893082
+2016-08-24 11:35:23,699 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:35:25,792 DEBUG: 		Start:	 Iteration 35
+2016-08-24 11:35:25,809 DEBUG: 			View 0 : 0.660377358491
+2016-08-24 11:35:25,816 DEBUG: 			View 1 : 0.528301886792
+2016-08-24 11:35:25,904 DEBUG: 			View 2 : 0.610062893082
+2016-08-24 11:35:25,912 DEBUG: 			View 3 : 0.654088050314
+2016-08-24 11:35:26,035 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:35:28,184 DEBUG: 		Start:	 Iteration 36
+2016-08-24 11:35:28,201 DEBUG: 			View 0 : 0.566037735849
+2016-08-24 11:35:28,208 DEBUG: 			View 1 : 0.62893081761
+2016-08-24 11:35:28,294 DEBUG: 			View 2 : 0.559748427673
+2016-08-24 11:35:28,302 DEBUG: 			View 3 : 0.59748427673
+2016-08-24 11:35:28,427 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:35:30,683 DEBUG: 		Start:	 Iteration 37
+2016-08-24 11:35:30,700 DEBUG: 			View 0 : 0.477987421384
+2016-08-24 11:35:30,707 DEBUG: 			View 1 : 0.471698113208
+2016-08-24 11:35:30,801 DEBUG: 			View 2 : 0.59748427673
+2016-08-24 11:35:30,809 DEBUG: 			View 3 : 0.616352201258
+2016-08-24 11:35:30,938 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:35:33,258 DEBUG: 		Start:	 Iteration 38
+2016-08-24 11:35:33,274 DEBUG: 			View 0 : 0.534591194969
+2016-08-24 11:35:33,282 DEBUG: 			View 1 : 0.748427672956
+2016-08-24 11:35:33,366 DEBUG: 			View 2 : 0.471698113208
+2016-08-24 11:35:33,374 DEBUG: 			View 3 : 0.584905660377
+2016-08-24 11:35:33,507 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:35:35,848 DEBUG: 		Start:	 Iteration 39
+2016-08-24 11:35:35,866 DEBUG: 			View 0 : 0.591194968553
+2016-08-24 11:35:35,875 DEBUG: 			View 1 : 0.509433962264
+2016-08-24 11:35:35,997 DEBUG: 			View 2 : 0.572327044025
+2016-08-24 11:35:36,007 DEBUG: 			View 3 : 0.610062893082
+2016-08-24 11:35:36,153 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:35:38,662 DEBUG: 		Start:	 Iteration 40
+2016-08-24 11:35:38,681 DEBUG: 			View 0 : 0.540880503145
+2016-08-24 11:35:38,689 DEBUG: 			View 1 : 0.622641509434
+2016-08-24 11:35:38,778 DEBUG: 			View 2 : 0.591194968553
+2016-08-24 11:35:38,786 DEBUG: 			View 3 : 0.578616352201
+2016-08-24 11:35:38,925 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:35:41,412 DEBUG: 		Start:	 Iteration 41
+2016-08-24 11:35:41,428 DEBUG: 			View 0 : 0.534591194969
+2016-08-24 11:35:41,436 DEBUG: 			View 1 : 0.345911949686
+2016-08-24 11:35:41,516 DEBUG: 			View 2 : 0.534591194969
+2016-08-24 11:35:41,524 DEBUG: 			View 3 : 0.534591194969
+2016-08-24 11:35:41,661 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:35:44,288 DEBUG: 		Start:	 Iteration 42
+2016-08-24 11:35:44,304 DEBUG: 			View 0 : 0.452830188679
+2016-08-24 11:35:44,312 DEBUG: 			View 1 : 0.723270440252
+2016-08-24 11:35:44,399 DEBUG: 			View 2 : 0.62893081761
+2016-08-24 11:35:44,407 DEBUG: 			View 3 : 0.729559748428
+2016-08-24 11:35:44,556 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:35:47,232 DEBUG: 		Start:	 Iteration 43
+2016-08-24 11:35:47,248 DEBUG: 			View 0 : 0.610062893082
+2016-08-24 11:35:47,256 DEBUG: 			View 1 : 0.528301886792
+2016-08-24 11:35:47,339 DEBUG: 			View 2 : 0.578616352201
+2016-08-24 11:35:47,346 DEBUG: 			View 3 : 0.591194968553
+2016-08-24 11:35:47,500 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:35:50,194 DEBUG: 		Start:	 Iteration 44
+2016-08-24 11:35:50,211 DEBUG: 			View 0 : 0.540880503145
+2016-08-24 11:35:50,218 DEBUG: 			View 1 : 0.48427672956
+2016-08-24 11:35:50,308 DEBUG: 			View 2 : 0.59748427673
+2016-08-24 11:35:50,317 DEBUG: 			View 3 : 0.572327044025
+2016-08-24 11:35:50,478 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:35:53,306 DEBUG: 		Start:	 Iteration 45
+2016-08-24 11:35:53,322 DEBUG: 			View 0 : 0.452830188679
+2016-08-24 11:35:53,330 DEBUG: 			View 1 : 0.641509433962
+2016-08-24 11:35:53,416 DEBUG: 			View 2 : 0.540880503145
+2016-08-24 11:35:53,424 DEBUG: 			View 3 : 0.572327044025
+2016-08-24 11:35:53,570 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:35:56,450 DEBUG: 		Start:	 Iteration 46
+2016-08-24 11:35:56,468 DEBUG: 			View 0 : 0.723270440252
+2016-08-24 11:35:56,476 DEBUG: 			View 1 : 0.534591194969
+2016-08-24 11:35:56,578 DEBUG: 			View 2 : 0.559748427673
+2016-08-24 11:35:56,587 DEBUG: 			View 3 : 0.547169811321
+2016-08-24 11:35:56,742 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:35:59,658 DEBUG: 		Start:	 Iteration 47
+2016-08-24 11:35:59,674 DEBUG: 			View 0 : 0.528301886792
+2016-08-24 11:35:59,682 DEBUG: 			View 1 : 0.446540880503
+2016-08-24 11:35:59,765 DEBUG: 			View 2 : 0.572327044025
+2016-08-24 11:35:59,772 DEBUG: 			View 3 : 0.534591194969
+2016-08-24 11:35:59,924 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:36:02,916 DEBUG: 		Start:	 Iteration 48
+2016-08-24 11:36:02,932 DEBUG: 			View 0 : 0.40251572327
+2016-08-24 11:36:02,940 DEBUG: 			View 1 : 0.641509433962
+2016-08-24 11:36:03,023 DEBUG: 			View 2 : 0.496855345912
+2016-08-24 11:36:03,031 DEBUG: 			View 3 : 0.459119496855
+2016-08-24 11:36:03,196 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:36:06,216 DEBUG: 		Start:	 Iteration 49
+2016-08-24 11:36:06,232 DEBUG: 			View 0 : 0.635220125786
+2016-08-24 11:36:06,240 DEBUG: 			View 1 : 0.314465408805
+2016-08-24 11:36:06,322 DEBUG: 			View 2 : 0.559748427673
+2016-08-24 11:36:06,330 DEBUG: 			View 3 : 0.59748427673
+2016-08-24 11:36:06,483 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:36:09,605 DEBUG: 		Start:	 Iteration 50
+2016-08-24 11:36:09,622 DEBUG: 			View 0 : 0.547169811321
+2016-08-24 11:36:09,629 DEBUG: 			View 1 : 0.51572327044
+2016-08-24 11:36:09,717 DEBUG: 			View 2 : 0.503144654088
+2016-08-24 11:36:09,725 DEBUG: 			View 3 : 0.465408805031
+2016-08-24 11:36:09,886 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:36:13,100 DEBUG: 		Start:	 Iteration 51
+2016-08-24 11:36:13,116 DEBUG: 			View 0 : 0.591194968553
+2016-08-24 11:36:13,124 DEBUG: 			View 1 : 0.320754716981
+2016-08-24 11:36:13,203 DEBUG: 			View 2 : 0.572327044025
+2016-08-24 11:36:13,211 DEBUG: 			View 3 : 0.59748427673
+2016-08-24 11:36:13,377 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:36:16,654 DEBUG: 		Start:	 Iteration 52
+2016-08-24 11:36:16,673 DEBUG: 			View 0 : 0.547169811321
+2016-08-24 11:36:16,682 DEBUG: 			View 1 : 0.37106918239
+2016-08-24 11:36:16,782 DEBUG: 			View 2 : 0.62893081761
+2016-08-24 11:36:16,789 DEBUG: 			View 3 : 0.566037735849
+2016-08-24 11:36:16,950 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:36:20,173 DEBUG: 		Start:	 Iteration 53
+2016-08-24 11:36:20,190 DEBUG: 			View 0 : 0.566037735849
+2016-08-24 11:36:20,197 DEBUG: 			View 1 : 0.647798742138
+2016-08-24 11:36:20,293 DEBUG: 			View 2 : 0.591194968553
+2016-08-24 11:36:20,300 DEBUG: 			View 3 : 0.572327044025
+2016-08-24 11:36:20,464 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:36:23,754 DEBUG: 		Start:	 Iteration 54
+2016-08-24 11:36:23,770 DEBUG: 			View 0 : 0.421383647799
+2016-08-24 11:36:23,778 DEBUG: 			View 1 : 0.566037735849
+2016-08-24 11:36:23,867 DEBUG: 			View 2 : 0.654088050314
+2016-08-24 11:36:23,875 DEBUG: 			View 3 : 0.691823899371
+2016-08-24 11:36:24,040 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:36:27,636 DEBUG: 		Start:	 Iteration 55
+2016-08-24 11:36:27,653 DEBUG: 			View 0 : 0.51572327044
+2016-08-24 11:36:27,661 DEBUG: 			View 1 : 0.320754716981
+2016-08-24 11:36:27,749 DEBUG: 			View 2 : 0.59748427673
+2016-08-24 11:36:27,756 DEBUG: 			View 3 : 0.641509433962
+2016-08-24 11:36:27,935 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:36:31,305 DEBUG: 		Start:	 Iteration 56
+2016-08-24 11:36:31,322 DEBUG: 			View 0 : 0.408805031447
+2016-08-24 11:36:31,329 DEBUG: 			View 1 : 0.452830188679
+2016-08-24 11:36:31,441 DEBUG: 			View 2 : 0.591194968553
+2016-08-24 11:36:31,448 DEBUG: 			View 3 : 0.654088050314
+2016-08-24 11:36:31,615 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:36:35,028 DEBUG: 		Start:	 Iteration 57
+2016-08-24 11:36:35,044 DEBUG: 			View 0 : 0.389937106918
+2016-08-24 11:36:35,052 DEBUG: 			View 1 : 0.364779874214
+2016-08-24 11:36:35,141 DEBUG: 			View 2 : 0.572327044025
+2016-08-24 11:36:35,148 DEBUG: 			View 3 : 0.59748427673
+2016-08-24 11:36:35,319 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:36:38,792 DEBUG: 		Start:	 Iteration 58
+2016-08-24 11:36:38,808 DEBUG: 			View 0 : 0.477987421384
+2016-08-24 11:36:38,816 DEBUG: 			View 1 : 0.522012578616
+2016-08-24 11:36:38,899 DEBUG: 			View 2 : 0.635220125786
+2016-08-24 11:36:38,906 DEBUG: 			View 3 : 0.540880503145
+2016-08-24 11:36:39,079 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:36:42,622 DEBUG: 		Start:	 Iteration 59
+2016-08-24 11:36:42,638 DEBUG: 			View 0 : 0.616352201258
+2016-08-24 11:36:42,645 DEBUG: 			View 1 : 0.616352201258
+2016-08-24 11:36:42,729 DEBUG: 			View 2 : 0.566037735849
+2016-08-24 11:36:42,736 DEBUG: 			View 3 : 0.509433962264
+2016-08-24 11:36:42,910 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:36:46,544 DEBUG: 		Start:	 Iteration 60
+2016-08-24 11:36:46,561 DEBUG: 			View 0 : 0.503144654088
+2016-08-24 11:36:46,569 DEBUG: 			View 1 : 0.528301886792
+2016-08-24 11:36:46,659 DEBUG: 			View 2 : 0.566037735849
+2016-08-24 11:36:46,667 DEBUG: 			View 3 : 0.584905660377
+2016-08-24 11:36:46,846 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:36:50,629 DEBUG: 		Start:	 Iteration 61
+2016-08-24 11:36:50,646 DEBUG: 			View 0 : 0.59748427673
+2016-08-24 11:36:50,654 DEBUG: 			View 1 : 0.647798742138
+2016-08-24 11:36:50,744 DEBUG: 			View 2 : 0.566037735849
+2016-08-24 11:36:50,752 DEBUG: 			View 3 : 0.584905660377
+2016-08-24 11:36:50,935 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:36:54,877 DEBUG: 		Start:	 Iteration 62
+2016-08-24 11:36:54,895 DEBUG: 			View 0 : 0.566037735849
+2016-08-24 11:36:54,903 DEBUG: 			View 1 : 0.786163522013
+2016-08-24 11:36:54,992 DEBUG: 			View 2 : 0.572327044025
+2016-08-24 11:36:55,000 DEBUG: 			View 3 : 0.603773584906
+2016-08-24 11:36:55,199 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:36:59,096 DEBUG: 		Start:	 Iteration 63
+2016-08-24 11:36:59,113 DEBUG: 			View 0 : 0.490566037736
+2016-08-24 11:36:59,121 DEBUG: 			View 1 : 0.710691823899
+2016-08-24 11:36:59,208 DEBUG: 			View 2 : 0.534591194969
+2016-08-24 11:36:59,216 DEBUG: 			View 3 : 0.566037735849
+2016-08-24 11:36:59,403 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:37:03,332 DEBUG: 		Start:	 Iteration 64
+2016-08-24 11:37:03,350 DEBUG: 			View 0 : 0.496855345912
+2016-08-24 11:37:03,358 DEBUG: 			View 1 : 0.603773584906
+2016-08-24 11:37:03,443 DEBUG: 			View 2 : 0.660377358491
+2016-08-24 11:37:03,450 DEBUG: 			View 3 : 0.547169811321
+2016-08-24 11:37:03,637 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:37:07,877 DEBUG: 		Start:	 Iteration 65
+2016-08-24 11:37:07,893 DEBUG: 			View 0 : 0.62893081761
+2016-08-24 11:37:07,901 DEBUG: 			View 1 : 0.37106918239
+2016-08-24 11:37:07,990 DEBUG: 			View 2 : 0.503144654088
+2016-08-24 11:37:07,998 DEBUG: 			View 3 : 0.572327044025
+2016-08-24 11:37:08,188 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:37:12,223 DEBUG: 		Start:	 Iteration 66
+2016-08-24 11:37:12,239 DEBUG: 			View 0 : 0.566037735849
+2016-08-24 11:37:12,247 DEBUG: 			View 1 : 0.440251572327
+2016-08-24 11:37:12,335 DEBUG: 			View 2 : 0.622641509434
+2016-08-24 11:37:12,343 DEBUG: 			View 3 : 0.647798742138
+2016-08-24 11:37:12,533 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:37:16,630 DEBUG: 		Start:	 Iteration 67
+2016-08-24 11:37:16,646 DEBUG: 			View 0 : 0.572327044025
+2016-08-24 11:37:16,654 DEBUG: 			View 1 : 0.559748427673
+2016-08-24 11:37:16,741 DEBUG: 			View 2 : 0.59748427673
+2016-08-24 11:37:16,749 DEBUG: 			View 3 : 0.616352201258
+2016-08-24 11:37:16,941 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:37:21,342 DEBUG: 		Start:	 Iteration 68
+2016-08-24 11:37:21,359 DEBUG: 			View 0 : 0.547169811321
+2016-08-24 11:37:21,367 DEBUG: 			View 1 : 0.48427672956
+2016-08-24 11:37:21,464 DEBUG: 			View 2 : 0.591194968553
+2016-08-24 11:37:21,472 DEBUG: 			View 3 : 0.710691823899
+2016-08-24 11:37:21,671 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:37:26,351 DEBUG: 		Start:	 Iteration 69
+2016-08-24 11:37:26,368 DEBUG: 			View 0 : 0.415094339623
+2016-08-24 11:37:26,376 DEBUG: 			View 1 : 0.603773584906
+2016-08-24 11:37:26,471 DEBUG: 			View 2 : 0.610062893082
+2016-08-24 11:37:26,479 DEBUG: 			View 3 : 0.547169811321
+2016-08-24 11:37:26,674 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:37:30,968 DEBUG: 		Start:	 Iteration 70
+2016-08-24 11:37:30,985 DEBUG: 			View 0 : 0.459119496855
+2016-08-24 11:37:30,993 DEBUG: 			View 1 : 0.471698113208
+2016-08-24 11:37:31,080 DEBUG: 			View 2 : 0.553459119497
+2016-08-24 11:37:31,088 DEBUG: 			View 3 : 0.547169811321
+2016-08-24 11:37:31,289 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:37:35,887 DEBUG: 		Start:	 Iteration 71
+2016-08-24 11:37:35,904 DEBUG: 			View 0 : 0.672955974843
+2016-08-24 11:37:35,912 DEBUG: 			View 1 : 0.446540880503
+2016-08-24 11:37:35,999 DEBUG: 			View 2 : 0.440251572327
+2016-08-24 11:37:36,009 DEBUG: 			View 3 : 0.59748427673
+2016-08-24 11:37:36,239 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:37:40,827 DEBUG: 		Start:	 Iteration 72
+2016-08-24 11:37:40,844 DEBUG: 			View 0 : 0.446540880503
+2016-08-24 11:37:40,852 DEBUG: 			View 1 : 0.389937106918
+2016-08-24 11:37:40,935 DEBUG: 			View 2 : 0.59748427673
+2016-08-24 11:37:40,943 DEBUG: 			View 3 : 0.559748427673
+2016-08-24 11:37:41,157 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:37:45,977 DEBUG: 		Start:	 Iteration 73
+2016-08-24 11:37:45,997 DEBUG: 			View 0 : 0.591194968553
+2016-08-24 11:37:46,007 DEBUG: 			View 1 : 0.610062893082
+2016-08-24 11:37:46,116 DEBUG: 			View 2 : 0.528301886792
+2016-08-24 11:37:46,124 DEBUG: 			View 3 : 0.62893081761
+2016-08-24 11:37:46,338 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:37:50,835 DEBUG: 		Start:	 Iteration 74
+2016-08-24 11:37:50,851 DEBUG: 			View 0 : 0.496855345912
+2016-08-24 11:37:50,859 DEBUG: 			View 1 : 0.40251572327
+2016-08-24 11:37:50,946 DEBUG: 			View 2 : 0.635220125786
+2016-08-24 11:37:50,955 DEBUG: 			View 3 : 0.559748427673
+2016-08-24 11:37:51,163 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:37:55,833 DEBUG: 		Start:	 Iteration 75
+2016-08-24 11:37:55,851 DEBUG: 			View 0 : 0.603773584906
+2016-08-24 11:37:55,859 DEBUG: 			View 1 : 0.396226415094
+2016-08-24 11:37:55,965 DEBUG: 			View 2 : 0.553459119497
+2016-08-24 11:37:55,973 DEBUG: 			View 3 : 0.465408805031
+2016-08-24 11:37:56,187 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:38:01,052 DEBUG: 		Start:	 Iteration 76
+2016-08-24 11:38:01,068 DEBUG: 			View 0 : 0.547169811321
+2016-08-24 11:38:01,076 DEBUG: 			View 1 : 0.685534591195
+2016-08-24 11:38:01,174 DEBUG: 			View 2 : 0.490566037736
+2016-08-24 11:38:01,183 DEBUG: 			View 3 : 0.540880503145
+2016-08-24 11:38:01,400 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:38:06,415 DEBUG: 		Start:	 Iteration 77
+2016-08-24 11:38:06,435 DEBUG: 			View 0 : 0.566037735849
+2016-08-24 11:38:06,449 DEBUG: 			View 1 : 0.522012578616
+2016-08-24 11:38:06,570 DEBUG: 			View 2 : 0.566037735849
+2016-08-24 11:38:06,579 DEBUG: 			View 3 : 0.584905660377
+2016-08-24 11:38:06,827 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:38:11,928 DEBUG: 		Start:	 Iteration 78
+2016-08-24 11:38:11,945 DEBUG: 			View 0 : 0.471698113208
+2016-08-24 11:38:11,953 DEBUG: 			View 1 : 0.584905660377
+2016-08-24 11:38:12,052 DEBUG: 			View 2 : 0.572327044025
+2016-08-24 11:38:12,062 DEBUG: 			View 3 : 0.622641509434
+2016-08-24 11:38:12,282 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:38:17,220 DEBUG: 		Start:	 Iteration 79
+2016-08-24 11:38:17,236 DEBUG: 			View 0 : 0.62893081761
+2016-08-24 11:38:17,244 DEBUG: 			View 1 : 0.622641509434
+2016-08-24 11:38:17,344 DEBUG: 			View 2 : 0.622641509434
+2016-08-24 11:38:17,354 DEBUG: 			View 3 : 0.540880503145
+2016-08-24 11:38:17,573 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:38:22,546 DEBUG: 		Start:	 Iteration 80
+2016-08-24 11:38:22,564 DEBUG: 			View 0 : 0.446540880503
+2016-08-24 11:38:22,573 DEBUG: 			View 1 : 0.622641509434
+2016-08-24 11:38:22,677 DEBUG: 			View 2 : 0.622641509434
+2016-08-24 11:38:22,686 DEBUG: 			View 3 : 0.496855345912
+2016-08-24 11:38:22,924 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:38:28,195 DEBUG: 		Start:	 Iteration 81
+2016-08-24 11:38:28,212 DEBUG: 			View 0 : 0.578616352201
+2016-08-24 11:38:28,220 DEBUG: 			View 1 : 0.641509433962
+2016-08-24 11:38:28,320 DEBUG: 			View 2 : 0.610062893082
+2016-08-24 11:38:28,329 DEBUG: 			View 3 : 0.547169811321
+2016-08-24 11:38:28,557 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:38:33,641 DEBUG: 		Start:	 Iteration 82
+2016-08-24 11:38:33,657 DEBUG: 			View 0 : 0.572327044025
+2016-08-24 11:38:33,665 DEBUG: 			View 1 : 0.477987421384
+2016-08-24 11:38:33,762 DEBUG: 			View 2 : 0.635220125786
+2016-08-24 11:38:33,771 DEBUG: 			View 3 : 0.59748427673
+2016-08-24 11:38:33,993 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:38:39,134 DEBUG: 		Start:	 Iteration 83
+2016-08-24 11:38:39,151 DEBUG: 			View 0 : 0.496855345912
+2016-08-24 11:38:39,159 DEBUG: 			View 1 : 0.62893081761
+2016-08-24 11:38:39,253 DEBUG: 			View 2 : 0.559748427673
+2016-08-24 11:38:39,263 DEBUG: 			View 3 : 0.559748427673
+2016-08-24 11:38:39,500 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:38:44,911 DEBUG: 		Start:	 Iteration 84
+2016-08-24 11:38:44,928 DEBUG: 			View 0 : 0.641509433962
+2016-08-24 11:38:44,936 DEBUG: 			View 1 : 0.540880503145
+2016-08-24 11:38:45,031 DEBUG: 			View 2 : 0.459119496855
+2016-08-24 11:38:45,040 DEBUG: 			View 3 : 0.635220125786
+2016-08-24 11:38:45,267 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:38:50,470 DEBUG: 		Start:	 Iteration 85
+2016-08-24 11:38:50,486 DEBUG: 			View 0 : 0.534591194969
+2016-08-24 11:38:50,494 DEBUG: 			View 1 : 0.566037735849
+2016-08-24 11:38:50,590 DEBUG: 			View 2 : 0.578616352201
+2016-08-24 11:38:50,599 DEBUG: 			View 3 : 0.522012578616
+2016-08-24 11:38:50,827 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:38:56,099 DEBUG: 		Start:	 Iteration 86
+2016-08-24 11:38:56,116 DEBUG: 			View 0 : 0.51572327044
+2016-08-24 11:38:56,123 DEBUG: 			View 1 : 0.767295597484
+2016-08-24 11:38:56,220 DEBUG: 			View 2 : 0.591194968553
+2016-08-24 11:38:56,229 DEBUG: 			View 3 : 0.679245283019
+2016-08-24 11:38:56,464 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:39:01,924 DEBUG: 		Start:	 Iteration 87
+2016-08-24 11:39:01,940 DEBUG: 			View 0 : 0.433962264151
+2016-08-24 11:39:01,948 DEBUG: 			View 1 : 0.389937106918
+2016-08-24 11:39:02,048 DEBUG: 			View 2 : 0.509433962264
+2016-08-24 11:39:02,057 DEBUG: 			View 3 : 0.635220125786
+2016-08-24 11:39:02,293 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:39:07,876 DEBUG: 		Start:	 Iteration 88
+2016-08-24 11:39:07,892 DEBUG: 			View 0 : 0.59748427673
+2016-08-24 11:39:07,900 DEBUG: 			View 1 : 0.622641509434
+2016-08-24 11:39:07,997 DEBUG: 			View 2 : 0.62893081761
+2016-08-24 11:39:08,006 DEBUG: 			View 3 : 0.547169811321
+2016-08-24 11:39:08,247 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:39:13,795 DEBUG: 		Start:	 Iteration 89
+2016-08-24 11:39:13,812 DEBUG: 			View 0 : 0.389937106918
+2016-08-24 11:39:13,820 DEBUG: 			View 1 : 0.433962264151
+2016-08-24 11:39:13,916 DEBUG: 			View 2 : 0.477987421384
+2016-08-24 11:39:13,925 DEBUG: 			View 3 : 0.509433962264
+2016-08-24 11:39:14,169 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:39:19,785 DEBUG: 		Start:	 Iteration 90
+2016-08-24 11:39:19,801 DEBUG: 			View 0 : 0.654088050314
+2016-08-24 11:39:19,809 DEBUG: 			View 1 : 0.654088050314
+2016-08-24 11:39:19,908 DEBUG: 			View 2 : 0.540880503145
+2016-08-24 11:39:19,918 DEBUG: 			View 3 : 0.654088050314
+2016-08-24 11:39:20,158 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:39:25,716 DEBUG: 		Start:	 Iteration 91
+2016-08-24 11:39:25,732 DEBUG: 			View 0 : 0.635220125786
+2016-08-24 11:39:25,740 DEBUG: 			View 1 : 0.547169811321
+2016-08-24 11:39:25,840 DEBUG: 			View 2 : 0.578616352201
+2016-08-24 11:39:25,849 DEBUG: 			View 3 : 0.635220125786
+2016-08-24 11:39:26,091 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:39:31,685 DEBUG: 		Start:	 Iteration 92
+2016-08-24 11:39:31,702 DEBUG: 			View 0 : 0.654088050314
+2016-08-24 11:39:31,709 DEBUG: 			View 1 : 0.685534591195
+2016-08-24 11:39:31,807 DEBUG: 			View 2 : 0.572327044025
+2016-08-24 11:39:31,816 DEBUG: 			View 3 : 0.578616352201
+2016-08-24 11:39:32,060 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:39:37,729 DEBUG: 		Start:	 Iteration 93
+2016-08-24 11:39:37,745 DEBUG: 			View 0 : 0.396226415094
+2016-08-24 11:39:37,753 DEBUG: 			View 1 : 0.62893081761
+2016-08-24 11:39:37,851 DEBUG: 			View 2 : 0.51572327044
+2016-08-24 11:39:37,861 DEBUG: 			View 3 : 0.635220125786
+2016-08-24 11:39:38,110 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:39:44,011 DEBUG: 		Start:	 Iteration 94
+2016-08-24 11:39:44,028 DEBUG: 			View 0 : 0.383647798742
+2016-08-24 11:39:44,036 DEBUG: 			View 1 : 0.591194968553
+2016-08-24 11:39:44,137 DEBUG: 			View 2 : 0.591194968553
+2016-08-24 11:39:44,146 DEBUG: 			View 3 : 0.660377358491
+2016-08-24 11:39:44,399 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:39:50,390 DEBUG: 		Start:	 Iteration 95
+2016-08-24 11:39:50,407 DEBUG: 			View 0 : 0.679245283019
+2016-08-24 11:39:50,415 DEBUG: 			View 1 : 0.345911949686
+2016-08-24 11:39:50,516 DEBUG: 			View 2 : 0.572327044025
+2016-08-24 11:39:50,525 DEBUG: 			View 3 : 0.660377358491
+2016-08-24 11:39:50,781 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:39:56,658 DEBUG: 		Start:	 Iteration 96
+2016-08-24 11:39:56,675 DEBUG: 			View 0 : 0.616352201258
+2016-08-24 11:39:56,682 DEBUG: 			View 1 : 0.660377358491
+2016-08-24 11:39:56,778 DEBUG: 			View 2 : 0.490566037736
+2016-08-24 11:39:56,787 DEBUG: 			View 3 : 0.59748427673
+2016-08-24 11:39:57,047 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:40:03,092 DEBUG: 		Start:	 Iteration 97
+2016-08-24 11:40:03,109 DEBUG: 			View 0 : 0.471698113208
+2016-08-24 11:40:03,117 DEBUG: 			View 1 : 0.433962264151
+2016-08-24 11:40:03,211 DEBUG: 			View 2 : 0.622641509434
+2016-08-24 11:40:03,220 DEBUG: 			View 3 : 0.578616352201
+2016-08-24 11:40:03,477 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:40:09,639 DEBUG: 		Start:	 Iteration 98
+2016-08-24 11:40:09,655 DEBUG: 			View 0 : 0.352201257862
+2016-08-24 11:40:09,663 DEBUG: 			View 1 : 0.584905660377
+2016-08-24 11:40:09,757 DEBUG: 			View 2 : 0.559748427673
+2016-08-24 11:40:09,766 DEBUG: 			View 3 : 0.62893081761
+2016-08-24 11:40:10,022 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:40:16,036 DEBUG: 		Start:	 Iteration 99
+2016-08-24 11:40:16,052 DEBUG: 			View 0 : 0.553459119497
+2016-08-24 11:40:16,060 DEBUG: 			View 1 : 0.591194968553
+2016-08-24 11:40:16,156 DEBUG: 			View 2 : 0.553459119497
+2016-08-24 11:40:16,165 DEBUG: 			View 3 : 0.547169811321
+2016-08-24 11:40:16,423 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:40:22,675 DEBUG: 		Start:	 Iteration 100
+2016-08-24 11:40:22,691 DEBUG: 			View 0 : 0.389937106918
+2016-08-24 11:40:22,698 DEBUG: 			View 1 : 0.433962264151
+2016-08-24 11:40:22,792 DEBUG: 			View 2 : 0.540880503145
+2016-08-24 11:40:22,801 DEBUG: 			View 3 : 0.572327044025
+2016-08-24 11:40:23,061 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:40:29,412 DEBUG: 		Start:	 Iteration 101
+2016-08-24 11:40:29,429 DEBUG: 			View 0 : 0.572327044025
+2016-08-24 11:40:29,437 DEBUG: 			View 1 : 0.578616352201
+2016-08-24 11:40:29,545 DEBUG: 			View 2 : 0.584905660377
+2016-08-24 11:40:29,554 DEBUG: 			View 3 : 0.584905660377
+2016-08-24 11:40:29,834 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:40:36,757 DEBUG: 		Start:	 Iteration 102
+2016-08-24 11:40:36,777 DEBUG: 			View 0 : 0.452830188679
+2016-08-24 11:40:36,787 DEBUG: 			View 1 : 0.345911949686
+2016-08-24 11:40:36,892 DEBUG: 			View 2 : 0.547169811321
+2016-08-24 11:40:36,903 DEBUG: 			View 3 : 0.553459119497
+2016-08-24 11:40:37,339 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:40:43,690 INFO: 	Start: 	 Classification
+2016-08-24 11:40:58,693 INFO: 	Done: 	 Fold number 2
+2016-08-24 11:40:58,693 INFO: Done:	 Classification
+2016-08-24 11:40:58,693 INFO: Info:	 Time for Classification: 756[s]
+2016-08-24 11:40:58,694 INFO: Start:	 Result Analysis for Mumbo
+2016-08-24 11:41:33,358 INFO: 		Result for Multiview classification with Mumbo
+
+Average accuracy :
+	-On Train : 78.9774802191
+	-On Test : 77.868852459
+	-On Validation : 85.9223300971
+
+Dataset info :
+	-Database name : ModifiedMultiOmic
+	-Labels : No, Yes
+	-Views : Methyl, MiRNA, RNASEQ, Clinical
+	-2 folds
+	- Validation set length : 103 for learning rate : 0.7
+
+Classification configuration : 
+	-Algorithm used : Mumbo 
+	-Iterations : 1000
+	-Weak Classifiers : DecisionTree with depth 1,  sub-sampled at 0.02 on Methyl
+		-DecisionTree with depth 1,  sub-sampled at 0.02 on MiRNA
+		-DecisionTree with depth 1,  sub-sampled at 0.1 on RNASEQ
+		-DecisionTree with depth 2,  sub-sampled at 0.1 on Clinical
+
+ Mean average accuracies and stats for each fold : 
+	- Fold 0
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.0527741935484
+			- Percentage of time chosen : 0.906
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.0553741935484
+			- Percentage of time chosen : 0.032
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.0591741935484
+			- Percentage of time chosen : 0.03
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.0589870967742
+			- Percentage of time chosen : 0.032
+	- Fold 1
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.0536855345912
+			- Percentage of time chosen : 0.904
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.0556855345912
+			- Percentage of time chosen : 0.033
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.0580943396226
+			- Percentage of time chosen : 0.022
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.0596918238994
+			- Percentage of time chosen : 0.041
+
+ For each iteration : 
+	- Iteration 1
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 2
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 64.7798742138
+			Accuracy on test : 65.5737704918
+			Accuracy on validation : 75.7281553398
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 63.0350983972
+			 Accuracy on test : 69.262295082
+	- Iteration 3
+		 Fold 1
+			Accuracy on train : 63.2258064516
+			Accuracy on test : 71.3114754098
+			Accuracy on validation : 74.7572815534
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 64.7798742138
+			Accuracy on test : 65.5737704918
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 64.0028403327
+			 Accuracy on test : 68.4426229508
+	- Iteration 4
+		 Fold 1
+			Accuracy on train : 63.2258064516
+			Accuracy on test : 72.131147541
+			Accuracy on validation : 74.7572815534
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 71.6981132075
+			Accuracy on test : 72.131147541
+			Accuracy on validation : 75.7281553398
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 67.4619598296
+			 Accuracy on test : 72.131147541
+	- Iteration 5
+		 Fold 1
+			Accuracy on train : 63.2258064516
+			Accuracy on test : 70.4918032787
+			Accuracy on validation : 72.8155339806
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 72.3270440252
+			Accuracy on test : 66.393442623
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 67.7764252384
+			 Accuracy on test : 68.4426229508
+	- Iteration 6
+		 Fold 1
+			Accuracy on train : 62.5806451613
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 74.7572815534
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 78.6163522013
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 70.5984986813
+			 Accuracy on test : 72.9508196721
+	- Iteration 7
+		 Fold 1
+			Accuracy on train : 64.5161290323
+			Accuracy on test : 72.131147541
+			Accuracy on validation : 75.7281553398
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 75.4716981132
+			Accuracy on test : 68.8524590164
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 69.9939135727
+			 Accuracy on test : 70.4918032787
+	- Iteration 8
+		 Fold 1
+			Accuracy on train : 66.4516129032
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 77.6699029126
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 80.5031446541
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 81.5533980583
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 73.4773787787
+			 Accuracy on test : 74.5901639344
+	- Iteration 9
+		 Fold 1
+			Accuracy on train : 70.3225806452
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 82.5242718447
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 77.358490566
+			Accuracy on test : 71.3114754098
+			Accuracy on validation : 81.5533980583
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 73.8405356056
+			 Accuracy on test : 73.3606557377
+	- Iteration 10
+		 Fold 1
+			Accuracy on train : 70.9677419355
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 81.5533980583
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 70.4918032787
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 75.1065124772
+			 Accuracy on test : 73.3606557377
+	- Iteration 11
+		 Fold 1
+			Accuracy on train : 76.1290322581
+			Accuracy on test : 71.3114754098
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 78.6163522013
+			Accuracy on test : 72.131147541
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 77.3726922297
+			 Accuracy on test : 71.7213114754
+	- Iteration 12
+		 Fold 1
+			Accuracy on train : 74.1935483871
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 77.358490566
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 75.7760194766
+			 Accuracy on test : 73.7704918033
+	- Iteration 13
+		 Fold 1
+			Accuracy on train : 74.8387096774
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 75.4716981132
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 75.1552038953
+			 Accuracy on test : 77.868852459
+	- Iteration 14
+		 Fold 1
+			Accuracy on train : 81.2903225806
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.2678027998
+			 Accuracy on test : 77.0491803279
+	- Iteration 15
+		 Fold 1
+			Accuracy on train : 79.3548387097
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 82.5242718447
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 82.3899371069
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.8723879083
+			 Accuracy on test : 79.0983606557
+	- Iteration 16
+		 Fold 1
+			Accuracy on train : 79.3548387097
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 85.534591195
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 82.4447149523
+			 Accuracy on test : 77.4590163934
+	- Iteration 17
+		 Fold 1
+			Accuracy on train : 81.935483871
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 80.9048488537
+			 Accuracy on test : 79.0983606557
+	- Iteration 18
+		 Fold 1
+			Accuracy on train : 82.5806451613
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 81.1320754717
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 81.8563603165
+			 Accuracy on test : 80.3278688525
+	- Iteration 19
+		 Fold 1
+			Accuracy on train : 81.935483871
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 77.358490566
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.6469872185
+			 Accuracy on test : 78.6885245902
+	- Iteration 20
+		 Fold 1
+			Accuracy on train : 81.2903225806
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 76.7295597484
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.0099411645
+			 Accuracy on test : 79.0983606557
+	- Iteration 21
+		 Fold 1
+			Accuracy on train : 80.0
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 78.6163522013
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.3081761006
+			 Accuracy on test : 79.0983606557
+	- Iteration 22
+		 Fold 1
+			Accuracy on train : 81.2903225806
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 77.9874213836
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.6388719821
+			 Accuracy on test : 78.2786885246
+	- Iteration 23
+		 Fold 1
+			Accuracy on train : 80.0
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 77.9874213836
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.9937106918
+			 Accuracy on test : 79.0983606557
+	- Iteration 24
+		 Fold 1
+			Accuracy on train : 79.3548387097
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 74.8427672956
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 77.0988030026
+			 Accuracy on test : 79.5081967213
+	- Iteration 25
+		 Fold 1
+			Accuracy on train : 83.8709677419
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 76.1006289308
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 82.5242718447
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.9857983364
+			 Accuracy on test : 81.5573770492
+	- Iteration 26
+		 Fold 1
+			Accuracy on train : 82.5806451613
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 76.7295597484
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.6551024549
+			 Accuracy on test : 80.3278688525
+	- Iteration 27
+		 Fold 1
+			Accuracy on train : 82.5806451613
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 77.358490566
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.9695678637
+			 Accuracy on test : 80.737704918
+	- Iteration 28
+		 Fold 1
+			Accuracy on train : 82.5806451613
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 76.7295597484
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.6551024549
+			 Accuracy on test : 79.9180327869
+	- Iteration 29
+		 Fold 1
+			Accuracy on train : 83.2258064516
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 76.1006289308
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.6632176912
+			 Accuracy on test : 80.737704918
+	- Iteration 30
+		 Fold 1
+			Accuracy on train : 83.8709677419
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 74.213836478
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 82.5242718447
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.04240211
+			 Accuracy on test : 80.3278688525
+	- Iteration 31
+		 Fold 1
+			Accuracy on train : 83.8709677419
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 76.7295597484
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 80.3002637452
+			 Accuracy on test : 80.737704918
+	- Iteration 32
+		 Fold 1
+			Accuracy on train : 83.8709677419
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 76.1006289308
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 79.9857983364
+			 Accuracy on test : 80.737704918
+	- Iteration 33
+		 Fold 1
+			Accuracy on train : 84.5161290323
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 87.3786407767
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 75.4716981132
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 79.9939135727
+			 Accuracy on test : 81.9672131148
+	- Iteration 34
+		 Fold 1
+			Accuracy on train : 84.5161290323
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 76.1006289308
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.3083789815
+			 Accuracy on test : 80.737704918
+	- Iteration 35
+		 Fold 1
+			Accuracy on train : 83.8709677419
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 77.358490566
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 82.5242718447
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.614729154
+			 Accuracy on test : 82.3770491803
+	- Iteration 36
+		 Fold 1
+			Accuracy on train : 84.5161290323
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 77.9874213836
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 81.251775208
+			 Accuracy on test : 81.9672131148
+	- Iteration 37
+		 Fold 1
+			Accuracy on train : 83.2258064516
+			Accuracy on test : 85.2459016393
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 77.9874213836
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.6066139176
+			 Accuracy on test : 81.9672131148
+	- Iteration 38
+		 Fold 1
+			Accuracy on train : 83.8709677419
+			Accuracy on test : 85.2459016393
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 77.9874213836
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.9291945628
+			 Accuracy on test : 83.1967213115
+	- Iteration 39
+		 Fold 1
+			Accuracy on train : 82.5806451613
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 77.9874213836
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.2840332725
+			 Accuracy on test : 81.5573770492
+	- Iteration 40
+		 Fold 1
+			Accuracy on train : 83.2258064516
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 77.9874213836
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.6066139176
+			 Accuracy on test : 81.5573770492
+	- Iteration 41
+		 Fold 1
+			Accuracy on train : 81.935483871
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 77.9874213836
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.9614526273
+			 Accuracy on test : 80.737704918
+	- Iteration 42
+		 Fold 1
+			Accuracy on train : 79.3548387097
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.3000608643
+			 Accuracy on test : 80.3278688525
+	- Iteration 43
+		 Fold 1
+			Accuracy on train : 81.935483871
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 78.6163522013
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.2759180361
+			 Accuracy on test : 79.9180327869
+	- Iteration 44
+		 Fold 1
+			Accuracy on train : 79.3548387097
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 79.6145262731
+			 Accuracy on test : 79.5081967213
+	- Iteration 45
+		 Fold 1
+			Accuracy on train : 81.935483871
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.9048488537
+			 Accuracy on test : 79.5081967213
+	- Iteration 46
+		 Fold 1
+			Accuracy on train : 80.6451612903
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 81.7610062893
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 87.3786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 81.2030837898
+			 Accuracy on test : 80.737704918
+	- Iteration 47
+		 Fold 1
+			Accuracy on train : 81.935483871
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 84.4660194175
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 81.7610062893
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 87.3786407767
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 81.8482450801
+			 Accuracy on test : 79.9180327869
+	- Iteration 48
+		 Fold 1
+			Accuracy on train : 81.935483871
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 80.5031446541
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 81.2193142625
+			 Accuracy on test : 80.737704918
+	- Iteration 49
+		 Fold 1
+			Accuracy on train : 81.2903225806
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 85.4368932039
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 80.2678027998
+			 Accuracy on test : 78.6885245902
+	- Iteration 50
+		 Fold 1
+			Accuracy on train : 81.935483871
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.5903834449
+			 Accuracy on test : 79.5081967213
+	- Iteration 51
+		 Fold 1
+			Accuracy on train : 81.2903225806
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.5822682086
+			 Accuracy on test : 79.0983606557
+	- Iteration 52
+		 Fold 1
+			Accuracy on train : 80.0
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 80.5031446541
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 80.251572327
+			 Accuracy on test : 79.9180327869
+	- Iteration 53
+		 Fold 1
+			Accuracy on train : 80.6451612903
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 81.1320754717
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 88.3495145631
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.888618381
+			 Accuracy on test : 79.9180327869
+	- Iteration 54
+		 Fold 1
+			Accuracy on train : 80.6451612903
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 85.4368932039
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.2596875634
+			 Accuracy on test : 80.3278688525
+	- Iteration 55
+		 Fold 1
+			Accuracy on train : 81.2903225806
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 81.7610062893
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 88.3495145631
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 81.525664435
+			 Accuracy on test : 80.3278688525
+	- Iteration 56
+		 Fold 1
+			Accuracy on train : 81.935483871
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.9048488537
+			 Accuracy on test : 79.9180327869
+	- Iteration 57
+		 Fold 1
+			Accuracy on train : 81.935483871
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.9048488537
+			 Accuracy on test : 79.0983606557
+	- Iteration 58
+		 Fold 1
+			Accuracy on train : 81.2903225806
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 80.5822682086
+			 Accuracy on test : 80.3278688525
+	- Iteration 59
+		 Fold 1
+			Accuracy on train : 80.6451612903
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.9452221546
+			 Accuracy on test : 79.5081967213
+	- Iteration 60
+		 Fold 1
+			Accuracy on train : 79.3548387097
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.6145262731
+			 Accuracy on test : 79.9180327869
+	- Iteration 61
+		 Fold 1
+			Accuracy on train : 79.3548387097
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 77.9874213836
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.6711300467
+			 Accuracy on test : 78.6885245902
+	- Iteration 62
+		 Fold 1
+			Accuracy on train : 78.7096774194
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.9774802191
+			 Accuracy on test : 79.5081967213
+	- Iteration 63
+		 Fold 1
+			Accuracy on train : 77.4193548387
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 88.3495145631
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.3323189288
+			 Accuracy on test : 79.5081967213
+	- Iteration 64
+		 Fold 1
+			Accuracy on train : 78.7096774194
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 78.6163522013
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 87.3786407767
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 78.6630148103
+			 Accuracy on test : 79.5081967213
+	- Iteration 65
+		 Fold 1
+			Accuracy on train : 77.4193548387
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 87.3786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 78.6467843376
+			 Accuracy on test : 79.9180327869
+	- Iteration 66
+		 Fold 1
+			Accuracy on train : 80.0
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 88.3495145631
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.9371069182
+			 Accuracy on test : 79.5081967213
+	- Iteration 67
+		 Fold 1
+			Accuracy on train : 78.7096774194
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.9774802191
+			 Accuracy on test : 78.6885245902
+	- Iteration 68
+		 Fold 1
+			Accuracy on train : 79.3548387097
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 80.5031446541
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 88.3495145631
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.9289916819
+			 Accuracy on test : 79.5081967213
+	- Iteration 69
+		 Fold 1
+			Accuracy on train : 80.6451612903
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 81.1320754717
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 89.3203883495
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.888618381
+			 Accuracy on test : 79.9180327869
+	- Iteration 70
+		 Fold 1
+			Accuracy on train : 79.3548387097
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 81.1320754717
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 89.3203883495
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 80.2434570907
+			 Accuracy on test : 79.5081967213
+	- Iteration 71
+		 Fold 1
+			Accuracy on train : 80.0
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 80.5031446541
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 88.3495145631
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 80.251572327
+			 Accuracy on test : 79.5081967213
+	- Iteration 72
+		 Fold 1
+			Accuracy on train : 80.0
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 85.4368932039
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 88.3495145631
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 79.9371069182
+			 Accuracy on test : 79.0983606557
+	- Iteration 73
+		 Fold 1
+			Accuracy on train : 78.7096774194
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 80.5031446541
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 88.3495145631
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.6064110367
+			 Accuracy on test : 79.5081967213
+	- Iteration 74
+		 Fold 1
+			Accuracy on train : 77.4193548387
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 78.6163522013
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 88.3495145631
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 78.01785352
+			 Accuracy on test : 79.0983606557
+	- Iteration 75
+		 Fold 1
+			Accuracy on train : 80.0
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 78.6163522013
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 79.3081761006
+			 Accuracy on test : 79.0983606557
+	- Iteration 76
+		 Fold 1
+			Accuracy on train : 76.7741935484
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.3242036924
+			 Accuracy on test : 79.0983606557
+	- Iteration 77
+		 Fold 1
+			Accuracy on train : 76.7741935484
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.0097382836
+			 Accuracy on test : 79.5081967213
+	- Iteration 78
+		 Fold 1
+			Accuracy on train : 76.7741935484
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 80.5031446541
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 89.3203883495
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.6386691012
+			 Accuracy on test : 79.5081967213
+	- Iteration 79
+		 Fold 1
+			Accuracy on train : 76.1290322581
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 88.3495145631
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 77.6871576385
+			 Accuracy on test : 79.0983606557
+	- Iteration 80
+		 Fold 1
+			Accuracy on train : 76.7741935484
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 80.5031446541
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 88.3495145631
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 78.6386691012
+			 Accuracy on test : 78.6885245902
+	- Iteration 81
+		 Fold 1
+			Accuracy on train : 76.1290322581
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 78.6163522013
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 77.3726922297
+			 Accuracy on test : 78.6885245902
+	- Iteration 82
+		 Fold 1
+			Accuracy on train : 76.7741935484
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 78.6163522013
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 77.6952728748
+			 Accuracy on test : 78.6885245902
+	- Iteration 83
+		 Fold 1
+			Accuracy on train : 77.4193548387
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 76.1006289308
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 76.7599918848
+			 Accuracy on test : 79.0983606557
+	- Iteration 84
+		 Fold 1
+			Accuracy on train : 76.7741935484
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 76.7295597484
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 76.7518766484
+			 Accuracy on test : 78.6885245902
+	- Iteration 85
+		 Fold 1
+			Accuracy on train : 74.8387096774
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 77.358490566
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 76.0986001217
+			 Accuracy on test : 78.6885245902
+	- Iteration 86
+		 Fold 1
+			Accuracy on train : 74.8387096774
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 88.3495145631
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 77.0419963481
+			 Accuracy on test : 78.2786885246
+	- Iteration 87
+		 Fold 1
+			Accuracy on train : 74.1935483871
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 77.9874213836
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 76.0904848854
+			 Accuracy on test : 78.2786885246
+	- Iteration 88
+		 Fold 1
+			Accuracy on train : 75.4838709677
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 83.4951456311
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 77.9874213836
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 76.7356461757
+			 Accuracy on test : 78.6885245902
+	- Iteration 89
+		 Fold 1
+			Accuracy on train : 75.4838709677
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 78.6163522013
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 77.0501115845
+			 Accuracy on test : 78.2786885246
+	- Iteration 90
+		 Fold 1
+			Accuracy on train : 75.4838709677
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 77.6790424021
+			 Accuracy on test : 78.2786885246
+	- Iteration 91
+		 Fold 1
+			Accuracy on train : 75.4838709677
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 77.6790424021
+			 Accuracy on test : 78.2786885246
+	- Iteration 92
+		 Fold 1
+			Accuracy on train : 76.1290322581
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 80.5031446541
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 88.3495145631
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.3160884561
+			 Accuracy on test : 78.6885245902
+	- Iteration 93
+		 Fold 1
+			Accuracy on train : 76.1290322581
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 81.1320754717
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 89.3203883495
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.6305538649
+			 Accuracy on test : 78.6885245902
+	- Iteration 94
+		 Fold 1
+			Accuracy on train : 75.4838709677
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 81.1320754717
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 89.3203883495
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.3079732197
+			 Accuracy on test : 78.6885245902
+	- Iteration 95
+		 Fold 1
+			Accuracy on train : 76.1290322581
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 81.7610062893
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 90.2912621359
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.9450192737
+			 Accuracy on test : 78.6885245902
+	- Iteration 96
+		 Fold 1
+			Accuracy on train : 76.1290322581
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 88.3495145631
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.0016230473
+			 Accuracy on test : 78.6885245902
+	- Iteration 97
+		 Fold 1
+			Accuracy on train : 76.1290322581
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 80.5031446541
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 88.3495145631
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 78.3160884561
+			 Accuracy on test : 78.2786885246
+	- Iteration 98
+		 Fold 1
+			Accuracy on train : 74.8387096774
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 81.7610062893
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 88.3495145631
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.2998579834
+			 Accuracy on test : 78.2786885246
+	- Iteration 99
+		 Fold 1
+			Accuracy on train : 75.4838709677
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 80.5031446541
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 88.3495145631
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 77.9935078109
+			 Accuracy on test : 78.2786885246
+	- Iteration 100
+		 Fold 1
+			Accuracy on train : 76.1290322581
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.0016230473
+			 Accuracy on test : 77.868852459
+	- Iteration 101
+		 Fold 1
+			Accuracy on train : 77.4193548387
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.6467843376
+			 Accuracy on test : 77.868852459
+	- Iteration 102
+		 Fold 1
+			Accuracy on train : 78.7096774194
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.9774802191
+			 Accuracy on test : 77.868852459
+	- Iteration 103
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 104
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 105
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 106
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 107
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 108
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 109
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 110
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 111
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 112
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 113
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 114
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 115
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 116
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 117
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 118
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 119
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 120
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 121
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 122
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 123
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 124
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 125
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 126
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 127
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 128
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 129
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 130
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 131
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 132
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 133
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 134
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 135
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 136
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 137
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 138
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 139
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 140
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 141
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 142
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 143
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 144
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 145
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 146
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 147
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 148
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 149
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 150
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 151
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 152
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 153
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 154
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 155
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 156
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 157
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 158
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 159
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 160
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 161
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 162
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 163
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 164
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 165
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 166
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 167
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 168
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 169
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 170
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 171
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 172
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 173
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 174
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 175
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 176
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 177
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 178
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 179
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 180
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 181
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 182
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 183
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 184
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 185
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 186
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 187
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 188
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 189
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 190
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 191
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 192
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 193
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 194
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 195
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 196
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 197
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 198
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 199
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 200
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 201
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 202
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 203
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 204
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 205
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 206
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 207
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 208
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 209
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 210
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 211
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 212
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 213
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 214
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 215
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 216
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 217
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 218
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 219
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 220
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 221
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 222
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 223
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 224
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 225
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 226
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 227
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 228
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 229
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 230
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 231
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 232
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 233
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 234
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 235
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 236
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 237
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 238
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 239
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 240
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 241
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 242
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 243
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 244
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 245
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 246
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 247
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 248
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 249
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 250
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 251
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 252
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 253
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 254
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 255
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 256
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 257
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 258
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 259
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 260
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 261
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 262
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 263
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 264
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 265
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 266
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 267
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 268
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 269
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 270
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 271
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 272
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 273
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 274
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 275
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 276
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 277
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 278
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 279
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 280
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 281
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 282
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 283
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 284
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 285
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 286
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 287
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 288
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 289
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 290
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 291
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 292
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 293
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 294
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 295
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 296
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 297
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 298
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 299
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 300
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 301
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 302
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 303
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 304
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 305
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 306
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 307
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 308
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 309
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 310
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 311
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 312
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 313
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 314
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 315
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 316
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 317
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 318
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 319
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 320
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 321
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 322
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 323
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 324
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 325
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 326
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 327
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 328
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 329
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 330
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 331
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 332
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 333
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 334
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 335
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 336
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 337
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 338
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 339
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 340
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 341
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 342
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 343
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 344
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 345
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 346
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 347
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 348
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 349
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 350
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 351
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 352
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 353
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 354
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 355
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 356
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 357
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 358
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 359
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 360
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 361
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 362
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 363
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 364
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 365
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 366
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 367
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 368
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 369
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 370
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 371
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 372
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 373
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 374
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 375
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 376
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 377
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 378
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 379
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 380
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 381
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 382
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 383
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 384
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 385
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 386
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 387
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 388
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 389
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 390
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 391
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 392
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 393
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 394
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 395
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 396
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 397
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 398
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 399
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 400
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 401
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 402
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 403
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 404
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 405
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 406
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 407
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 408
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 409
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 410
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 411
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 412
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 413
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 414
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 415
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 416
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 417
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 418
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 419
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 420
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 421
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 422
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 423
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 424
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 425
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 426
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 427
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 428
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 429
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 430
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 431
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 432
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 433
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 434
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 435
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 436
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 437
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 438
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 439
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 440
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 441
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 442
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 443
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 444
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 445
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 446
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 447
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 448
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 449
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 450
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 451
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 452
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 453
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 454
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 455
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 456
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 457
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 458
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 459
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 460
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 461
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 462
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 463
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 464
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 465
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 466
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 467
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 468
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 469
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 470
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 471
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 472
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 473
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 474
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 475
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 476
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 477
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 478
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 479
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 480
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 481
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 482
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 483
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 484
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 485
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 486
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 487
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 488
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 489
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 490
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 491
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 492
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 493
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 494
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 495
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 496
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 497
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 498
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 499
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 500
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 501
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 502
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 503
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 504
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 505
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 506
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 507
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 508
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 509
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 510
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 511
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 512
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 513
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 514
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 515
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 516
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 517
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 518
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 519
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 520
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 521
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 522
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 523
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 524
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 525
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 526
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 527
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 528
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 529
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 530
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 531
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 532
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 533
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 534
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 535
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 536
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 537
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 538
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 539
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 540
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 541
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 542
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 543
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 544
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 545
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 546
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 547
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 548
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 549
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 550
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 551
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 552
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 553
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 554
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 555
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 556
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 557
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 558
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 559
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 560
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 561
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 562
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 563
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 564
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 565
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 566
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 567
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 568
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 569
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 570
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 571
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 572
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 573
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 574
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 575
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 576
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 577
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 578
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 579
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 580
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 581
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 582
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 583
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 584
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 585
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 586
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 587
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 588
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 589
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 590
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 591
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 592
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 593
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 594
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 595
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 596
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 597
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 598
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 599
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 600
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 601
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 602
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 603
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 604
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 605
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 606
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 607
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 608
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 609
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 610
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 611
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 612
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 613
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 614
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 615
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 616
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 617
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 618
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 619
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 620
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 621
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 622
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 623
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 624
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 625
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 626
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 627
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 628
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 629
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 630
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 631
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 632
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 633
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 634
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 635
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 636
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 637
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 638
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 639
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 640
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 641
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 642
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 643
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 644
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 645
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 646
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 647
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 648
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 649
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 650
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 651
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 652
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 653
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 654
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 655
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 656
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 657
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 658
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 659
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 660
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 661
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 662
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 663
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 664
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 665
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 666
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 667
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 668
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 669
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 670
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 671
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 672
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 673
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 674
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 675
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 676
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 677
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 678
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 679
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 680
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 681
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 682
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 683
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 684
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 685
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 686
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 687
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 688
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 689
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 690
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 691
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 692
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 693
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 694
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 695
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 696
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 697
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 698
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 699
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 700
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 701
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 702
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 703
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 704
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 705
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 706
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 707
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 708
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 709
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 710
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 711
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 712
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 713
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 714
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 715
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 716
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 717
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 718
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 719
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 720
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 721
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 722
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 723
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 724
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 725
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 726
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 727
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 728
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 729
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 730
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 731
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 732
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 733
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 734
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 735
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 736
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 737
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 738
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 739
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 740
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 741
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 742
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 743
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 744
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 745
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 746
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 747
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 748
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 749
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 750
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 751
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 752
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 753
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 754
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 755
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 756
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 757
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 758
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 759
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 760
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 761
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 762
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 763
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 764
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 765
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 766
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 767
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 768
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 769
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 770
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 771
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 772
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 773
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 774
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 775
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 776
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 777
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 778
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 779
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 780
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 781
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 782
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 783
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 784
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 785
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 786
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 787
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 788
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 789
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 790
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 791
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 792
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 793
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 794
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 795
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 796
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 797
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 798
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 799
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 800
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 801
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 802
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 803
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 804
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 805
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 806
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 807
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 808
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 809
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 810
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 811
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 812
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 813
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 814
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 815
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 816
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 817
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 818
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 819
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 820
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 821
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 822
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 823
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 824
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 825
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 826
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 827
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 828
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 829
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 830
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 831
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 832
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 833
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 834
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 835
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 836
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 837
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 838
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 839
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 840
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 841
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 842
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 843
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 844
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 845
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 846
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 847
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 848
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 849
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 850
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 851
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 852
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 853
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 854
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 855
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 856
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 857
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 858
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 859
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 860
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 861
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 862
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 863
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 864
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 865
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 866
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 867
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 868
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 869
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 870
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 871
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 872
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 873
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 874
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 875
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 876
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 877
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 878
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 879
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 880
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 881
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 882
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 883
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 884
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 885
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 886
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 887
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 888
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 889
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 890
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 891
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 892
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 893
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 894
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 895
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 896
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 897
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 898
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 899
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 900
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 901
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 902
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 903
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 904
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 905
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 906
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 907
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 908
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 909
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 910
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 911
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 912
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 913
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 914
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 915
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 916
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 917
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 918
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 919
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 920
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 921
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 922
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 923
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 924
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 925
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 926
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 927
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 928
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 929
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 930
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 931
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 932
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 933
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 934
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 935
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 936
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 937
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 938
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 939
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 940
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 941
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 942
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 943
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 944
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 945
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 946
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 947
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 948
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 949
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 950
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 951
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 952
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 953
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 954
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 955
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 956
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 957
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 958
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 959
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 960
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 961
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 962
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 963
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 964
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 965
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 966
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 967
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 968
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 969
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 970
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 971
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 972
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 973
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 974
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 975
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 976
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 977
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 978
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 979
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 980
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 981
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 982
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 983
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 984
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 985
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 986
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 987
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 988
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 989
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 990
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 991
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 992
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 993
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 994
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 995
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 996
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 997
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 998
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 999
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 1000
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+
+Computation time on 1 cores : 
+	Database extraction time : 0:00:00
+	                         Learn     Prediction
+	         Fold 1        0:06:03        0:00:15
+	         Fold 2        0:12:21        0:00:15
+	          Total        0:18:25        0:00:30
+	So a total classification time of 0:12:36.
+
+
+2016-08-24 11:41:34,356 INFO: Done:	 Result Analysis
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-114134Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-114134Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png
new file mode 100644
index 0000000000000000000000000000000000000000..47196e88b46142dd89b1928f2b2d070ab765ff92
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-114134Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic-accuracyByIteration.png differ
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-114134Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-114134Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt
new file mode 100644
index 0000000000000000000000000000000000000000..b8110dc4999a8522bda073b1c481fbc3a65c7b6f
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-114134Results-Mumbo-Methyl-MiRNA-RNASEQ-Clinical-Yes-No-learnRate0.7-ModifiedMultiOmic.txt
@@ -0,0 +1,14060 @@
+		Result for Multiview classification with Mumbo
+
+Average accuracy :
+	-On Train : 78.9774802191
+	-On Test : 77.868852459
+	-On Validation : 85.9223300971
+
+Dataset info :
+	-Database name : ModifiedMultiOmic
+	-Labels : No, Yes
+	-Views : Methyl, MiRNA, RNASEQ, Clinical
+	-2 folds
+	- Validation set length : 103 for learning rate : 0.7
+
+Classification configuration : 
+	-Algorithm used : Mumbo 
+	-Iterations : 1000
+	-Weak Classifiers : DecisionTree with depth 1,  sub-sampled at 0.02 on Methyl
+		-DecisionTree with depth 1,  sub-sampled at 0.02 on MiRNA
+		-DecisionTree with depth 1,  sub-sampled at 0.1 on RNASEQ
+		-DecisionTree with depth 2,  sub-sampled at 0.1 on Clinical
+
+ Mean average accuracies and stats for each fold : 
+	- Fold 0
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.0527741935484
+			- Percentage of time chosen : 0.906
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.0553741935484
+			- Percentage of time chosen : 0.032
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.0591741935484
+			- Percentage of time chosen : 0.03
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.0589870967742
+			- Percentage of time chosen : 0.032
+	- Fold 1
+		- On Methyl_ : 
+			- Mean average Accuracy : 0.0536855345912
+			- Percentage of time chosen : 0.904
+		- On MiRNA__ : 
+			- Mean average Accuracy : 0.0556855345912
+			- Percentage of time chosen : 0.033
+		- On RANSeq_ : 
+			- Mean average Accuracy : 0.0580943396226
+			- Percentage of time chosen : 0.022
+		- On Clinic_ : 
+			- Mean average Accuracy : 0.0596918238994
+			- Percentage of time chosen : 0.041
+
+ For each iteration : 
+	- Iteration 1
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 2
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 64.7798742138
+			Accuracy on test : 65.5737704918
+			Accuracy on validation : 75.7281553398
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 63.0350983972
+			 Accuracy on test : 69.262295082
+	- Iteration 3
+		 Fold 1
+			Accuracy on train : 63.2258064516
+			Accuracy on test : 71.3114754098
+			Accuracy on validation : 74.7572815534
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 64.7798742138
+			Accuracy on test : 65.5737704918
+			Accuracy on validation : 75.7281553398
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 64.0028403327
+			 Accuracy on test : 68.4426229508
+	- Iteration 4
+		 Fold 1
+			Accuracy on train : 63.2258064516
+			Accuracy on test : 72.131147541
+			Accuracy on validation : 74.7572815534
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 71.6981132075
+			Accuracy on test : 72.131147541
+			Accuracy on validation : 75.7281553398
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 67.4619598296
+			 Accuracy on test : 72.131147541
+	- Iteration 5
+		 Fold 1
+			Accuracy on train : 63.2258064516
+			Accuracy on test : 70.4918032787
+			Accuracy on validation : 72.8155339806
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 72.3270440252
+			Accuracy on test : 66.393442623
+			Accuracy on validation : 79.6116504854
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 67.7764252384
+			 Accuracy on test : 68.4426229508
+	- Iteration 6
+		 Fold 1
+			Accuracy on train : 62.5806451613
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 74.7572815534
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 78.6163522013
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 70.5984986813
+			 Accuracy on test : 72.9508196721
+	- Iteration 7
+		 Fold 1
+			Accuracy on train : 64.5161290323
+			Accuracy on test : 72.131147541
+			Accuracy on validation : 75.7281553398
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 75.4716981132
+			Accuracy on test : 68.8524590164
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 69.9939135727
+			 Accuracy on test : 70.4918032787
+	- Iteration 8
+		 Fold 1
+			Accuracy on train : 66.4516129032
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 77.6699029126
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 80.5031446541
+			Accuracy on test : 73.7704918033
+			Accuracy on validation : 81.5533980583
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 73.4773787787
+			 Accuracy on test : 74.5901639344
+	- Iteration 9
+		 Fold 1
+			Accuracy on train : 70.3225806452
+			Accuracy on test : 75.4098360656
+			Accuracy on validation : 82.5242718447
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 77.358490566
+			Accuracy on test : 71.3114754098
+			Accuracy on validation : 81.5533980583
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 73.8405356056
+			 Accuracy on test : 73.3606557377
+	- Iteration 10
+		 Fold 1
+			Accuracy on train : 70.9677419355
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 81.5533980583
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 70.4918032787
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 75.1065124772
+			 Accuracy on test : 73.3606557377
+	- Iteration 11
+		 Fold 1
+			Accuracy on train : 76.1290322581
+			Accuracy on test : 71.3114754098
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 78.6163522013
+			Accuracy on test : 72.131147541
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 77.3726922297
+			 Accuracy on test : 71.7213114754
+	- Iteration 12
+		 Fold 1
+			Accuracy on train : 74.1935483871
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 78.640776699
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 77.358490566
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 75.7760194766
+			 Accuracy on test : 73.7704918033
+	- Iteration 13
+		 Fold 1
+			Accuracy on train : 74.8387096774
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 80.5825242718
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 75.4716981132
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 75.1552038953
+			 Accuracy on test : 77.868852459
+	- Iteration 14
+		 Fold 1
+			Accuracy on train : 81.2903225806
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 74.5901639344
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.2678027998
+			 Accuracy on test : 77.0491803279
+	- Iteration 15
+		 Fold 1
+			Accuracy on train : 79.3548387097
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 82.5242718447
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 82.3899371069
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.8723879083
+			 Accuracy on test : 79.0983606557
+	- Iteration 16
+		 Fold 1
+			Accuracy on train : 79.3548387097
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 85.534591195
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 82.4447149523
+			 Accuracy on test : 77.4590163934
+	- Iteration 17
+		 Fold 1
+			Accuracy on train : 81.935483871
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 80.9048488537
+			 Accuracy on test : 79.0983606557
+	- Iteration 18
+		 Fold 1
+			Accuracy on train : 82.5806451613
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 81.1320754717
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 81.8563603165
+			 Accuracy on test : 80.3278688525
+	- Iteration 19
+		 Fold 1
+			Accuracy on train : 81.935483871
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 77.358490566
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 81.5533980583
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.6469872185
+			 Accuracy on test : 78.6885245902
+	- Iteration 20
+		 Fold 1
+			Accuracy on train : 81.2903225806
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 76.7295597484
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.0099411645
+			 Accuracy on test : 79.0983606557
+	- Iteration 21
+		 Fold 1
+			Accuracy on train : 80.0
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 78.6163522013
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.3081761006
+			 Accuracy on test : 79.0983606557
+	- Iteration 22
+		 Fold 1
+			Accuracy on train : 81.2903225806
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 77.9874213836
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.6388719821
+			 Accuracy on test : 78.2786885246
+	- Iteration 23
+		 Fold 1
+			Accuracy on train : 80.0
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 77.9874213836
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.9937106918
+			 Accuracy on test : 79.0983606557
+	- Iteration 24
+		 Fold 1
+			Accuracy on train : 79.3548387097
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 74.8427672956
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 82.5242718447
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 77.0988030026
+			 Accuracy on test : 79.5081967213
+	- Iteration 25
+		 Fold 1
+			Accuracy on train : 83.8709677419
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 76.1006289308
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 82.5242718447
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.9857983364
+			 Accuracy on test : 81.5573770492
+	- Iteration 26
+		 Fold 1
+			Accuracy on train : 82.5806451613
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 76.7295597484
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.6551024549
+			 Accuracy on test : 80.3278688525
+	- Iteration 27
+		 Fold 1
+			Accuracy on train : 82.5806451613
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 77.358490566
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.9695678637
+			 Accuracy on test : 80.737704918
+	- Iteration 28
+		 Fold 1
+			Accuracy on train : 82.5806451613
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 76.7295597484
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.6551024549
+			 Accuracy on test : 79.9180327869
+	- Iteration 29
+		 Fold 1
+			Accuracy on train : 83.2258064516
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 76.1006289308
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.6632176912
+			 Accuracy on test : 80.737704918
+	- Iteration 30
+		 Fold 1
+			Accuracy on train : 83.8709677419
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 74.213836478
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 82.5242718447
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.04240211
+			 Accuracy on test : 80.3278688525
+	- Iteration 31
+		 Fold 1
+			Accuracy on train : 83.8709677419
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 76.7295597484
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 80.3002637452
+			 Accuracy on test : 80.737704918
+	- Iteration 32
+		 Fold 1
+			Accuracy on train : 83.8709677419
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 76.1006289308
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 79.9857983364
+			 Accuracy on test : 80.737704918
+	- Iteration 33
+		 Fold 1
+			Accuracy on train : 84.5161290323
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 87.3786407767
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 75.4716981132
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 81.5533980583
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 79.9939135727
+			 Accuracy on test : 81.9672131148
+	- Iteration 34
+		 Fold 1
+			Accuracy on train : 84.5161290323
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 76.1006289308
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 80.5825242718
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.3083789815
+			 Accuracy on test : 80.737704918
+	- Iteration 35
+		 Fold 1
+			Accuracy on train : 83.8709677419
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 77.358490566
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 82.5242718447
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.614729154
+			 Accuracy on test : 82.3770491803
+	- Iteration 36
+		 Fold 1
+			Accuracy on train : 84.5161290323
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 77.9874213836
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 81.251775208
+			 Accuracy on test : 81.9672131148
+	- Iteration 37
+		 Fold 1
+			Accuracy on train : 83.2258064516
+			Accuracy on test : 85.2459016393
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 77.9874213836
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.6066139176
+			 Accuracy on test : 81.9672131148
+	- Iteration 38
+		 Fold 1
+			Accuracy on train : 83.8709677419
+			Accuracy on test : 85.2459016393
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 77.9874213836
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.9291945628
+			 Accuracy on test : 83.1967213115
+	- Iteration 39
+		 Fold 1
+			Accuracy on train : 82.5806451613
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 77.9874213836
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.2840332725
+			 Accuracy on test : 81.5573770492
+	- Iteration 40
+		 Fold 1
+			Accuracy on train : 83.2258064516
+			Accuracy on test : 84.4262295082
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 77.9874213836
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.6066139176
+			 Accuracy on test : 81.5573770492
+	- Iteration 41
+		 Fold 1
+			Accuracy on train : 81.935483871
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 77.9874213836
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.9614526273
+			 Accuracy on test : 80.737704918
+	- Iteration 42
+		 Fold 1
+			Accuracy on train : 79.3548387097
+			Accuracy on test : 83.606557377
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.3000608643
+			 Accuracy on test : 80.3278688525
+	- Iteration 43
+		 Fold 1
+			Accuracy on train : 81.935483871
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 78.6163522013
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.2759180361
+			 Accuracy on test : 79.9180327869
+	- Iteration 44
+		 Fold 1
+			Accuracy on train : 79.3548387097
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 79.6145262731
+			 Accuracy on test : 79.5081967213
+	- Iteration 45
+		 Fold 1
+			Accuracy on train : 81.935483871
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.9048488537
+			 Accuracy on test : 79.5081967213
+	- Iteration 46
+		 Fold 1
+			Accuracy on train : 80.6451612903
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 81.7610062893
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 87.3786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 81.2030837898
+			 Accuracy on test : 80.737704918
+	- Iteration 47
+		 Fold 1
+			Accuracy on train : 81.935483871
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 84.4660194175
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 81.7610062893
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 87.3786407767
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 81.8482450801
+			 Accuracy on test : 79.9180327869
+	- Iteration 48
+		 Fold 1
+			Accuracy on train : 81.935483871
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 80.5031446541
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 81.2193142625
+			 Accuracy on test : 80.737704918
+	- Iteration 49
+		 Fold 1
+			Accuracy on train : 81.2903225806
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 85.4368932039
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 80.2678027998
+			 Accuracy on test : 78.6885245902
+	- Iteration 50
+		 Fold 1
+			Accuracy on train : 81.935483871
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.5903834449
+			 Accuracy on test : 79.5081967213
+	- Iteration 51
+		 Fold 1
+			Accuracy on train : 81.2903225806
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.5822682086
+			 Accuracy on test : 79.0983606557
+	- Iteration 52
+		 Fold 1
+			Accuracy on train : 80.0
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 80.5031446541
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 80.251572327
+			 Accuracy on test : 79.9180327869
+	- Iteration 53
+		 Fold 1
+			Accuracy on train : 80.6451612903
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 81.1320754717
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 88.3495145631
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.888618381
+			 Accuracy on test : 79.9180327869
+	- Iteration 54
+		 Fold 1
+			Accuracy on train : 80.6451612903
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 85.4368932039
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.2596875634
+			 Accuracy on test : 80.3278688525
+	- Iteration 55
+		 Fold 1
+			Accuracy on train : 81.2903225806
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 81.7610062893
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 88.3495145631
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 81.525664435
+			 Accuracy on test : 80.3278688525
+	- Iteration 56
+		 Fold 1
+			Accuracy on train : 81.935483871
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.9048488537
+			 Accuracy on test : 79.9180327869
+	- Iteration 57
+		 Fold 1
+			Accuracy on train : 81.935483871
+			Accuracy on test : 81.9672131148
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 80.9048488537
+			 Accuracy on test : 79.0983606557
+	- Iteration 58
+		 Fold 1
+			Accuracy on train : 81.2903225806
+			Accuracy on test : 82.7868852459
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 80.5822682086
+			 Accuracy on test : 80.3278688525
+	- Iteration 59
+		 Fold 1
+			Accuracy on train : 80.6451612903
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 79.9452221546
+			 Accuracy on test : 79.5081967213
+	- Iteration 60
+		 Fold 1
+			Accuracy on train : 79.3548387097
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.6145262731
+			 Accuracy on test : 79.9180327869
+	- Iteration 61
+		 Fold 1
+			Accuracy on train : 79.3548387097
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 77.9874213836
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 86.4077669903
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.6711300467
+			 Accuracy on test : 78.6885245902
+	- Iteration 62
+		 Fold 1
+			Accuracy on train : 78.7096774194
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.9774802191
+			 Accuracy on test : 79.5081967213
+	- Iteration 63
+		 Fold 1
+			Accuracy on train : 77.4193548387
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 88.3495145631
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.3323189288
+			 Accuracy on test : 79.5081967213
+	- Iteration 64
+		 Fold 1
+			Accuracy on train : 78.7096774194
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 78.6163522013
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 87.3786407767
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 78.6630148103
+			 Accuracy on test : 79.5081967213
+	- Iteration 65
+		 Fold 1
+			Accuracy on train : 77.4193548387
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 87.3786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 78.6467843376
+			 Accuracy on test : 79.9180327869
+	- Iteration 66
+		 Fold 1
+			Accuracy on train : 80.0
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 88.3495145631
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.9371069182
+			 Accuracy on test : 79.5081967213
+	- Iteration 67
+		 Fold 1
+			Accuracy on train : 78.7096774194
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.9774802191
+			 Accuracy on test : 78.6885245902
+	- Iteration 68
+		 Fold 1
+			Accuracy on train : 79.3548387097
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 80.5031446541
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 88.3495145631
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.9289916819
+			 Accuracy on test : 79.5081967213
+	- Iteration 69
+		 Fold 1
+			Accuracy on train : 80.6451612903
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 81.1320754717
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 89.3203883495
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 80.888618381
+			 Accuracy on test : 79.9180327869
+	- Iteration 70
+		 Fold 1
+			Accuracy on train : 79.3548387097
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 81.1320754717
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 89.3203883495
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 80.2434570907
+			 Accuracy on test : 79.5081967213
+	- Iteration 71
+		 Fold 1
+			Accuracy on train : 80.0
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 80.5031446541
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 88.3495145631
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 80.251572327
+			 Accuracy on test : 79.5081967213
+	- Iteration 72
+		 Fold 1
+			Accuracy on train : 80.0
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 85.4368932039
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 88.3495145631
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 79.9371069182
+			 Accuracy on test : 79.0983606557
+	- Iteration 73
+		 Fold 1
+			Accuracy on train : 78.7096774194
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 80.5031446541
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 88.3495145631
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 79.6064110367
+			 Accuracy on test : 79.5081967213
+	- Iteration 74
+		 Fold 1
+			Accuracy on train : 77.4193548387
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 83.4951456311
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 78.6163522013
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 88.3495145631
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 78.01785352
+			 Accuracy on test : 79.0983606557
+	- Iteration 75
+		 Fold 1
+			Accuracy on train : 80.0
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 86.4077669903
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 78.6163522013
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 79.3081761006
+			 Accuracy on test : 79.0983606557
+	- Iteration 76
+		 Fold 1
+			Accuracy on train : 76.7741935484
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.3242036924
+			 Accuracy on test : 79.0983606557
+	- Iteration 77
+		 Fold 1
+			Accuracy on train : 76.7741935484
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.0097382836
+			 Accuracy on test : 79.5081967213
+	- Iteration 78
+		 Fold 1
+			Accuracy on train : 76.7741935484
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 80.5031446541
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 89.3203883495
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.6386691012
+			 Accuracy on test : 79.5081967213
+	- Iteration 79
+		 Fold 1
+			Accuracy on train : 76.1290322581
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 77.868852459
+			Accuracy on validation : 88.3495145631
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 77.6871576385
+			 Accuracy on test : 79.0983606557
+	- Iteration 80
+		 Fold 1
+			Accuracy on train : 76.7741935484
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 80.5031446541
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 88.3495145631
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 78.6386691012
+			 Accuracy on test : 78.6885245902
+	- Iteration 81
+		 Fold 1
+			Accuracy on train : 76.1290322581
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 78.6163522013
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 77.3726922297
+			 Accuracy on test : 78.6885245902
+	- Iteration 82
+		 Fold 1
+			Accuracy on train : 76.7741935484
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 78.6163522013
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 77.6952728748
+			 Accuracy on test : 78.6885245902
+	- Iteration 83
+		 Fold 1
+			Accuracy on train : 77.4193548387
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 76.1006289308
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 76.7599918848
+			 Accuracy on test : 79.0983606557
+	- Iteration 84
+		 Fold 1
+			Accuracy on train : 76.7741935484
+			Accuracy on test : 81.1475409836
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		 Fold 2
+			Accuracy on train : 76.7295597484
+			Accuracy on test : 76.2295081967
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 76.7518766484
+			 Accuracy on test : 78.6885245902
+	- Iteration 85
+		 Fold 1
+			Accuracy on train : 74.8387096774
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 77.358490566
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 84.4660194175
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 76.0986001217
+			 Accuracy on test : 78.6885245902
+	- Iteration 86
+		 Fold 1
+			Accuracy on train : 74.8387096774
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 88.3495145631
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 77.0419963481
+			 Accuracy on test : 78.2786885246
+	- Iteration 87
+		 Fold 1
+			Accuracy on train : 74.1935483871
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 83.4951456311
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 77.9874213836
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 76.0904848854
+			 Accuracy on test : 78.2786885246
+	- Iteration 88
+		 Fold 1
+			Accuracy on train : 75.4838709677
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 83.4951456311
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 77.9874213836
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 85.4368932039
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 76.7356461757
+			 Accuracy on test : 78.6885245902
+	- Iteration 89
+		 Fold 1
+			Accuracy on train : 75.4838709677
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 78.6163522013
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 77.0501115845
+			 Accuracy on test : 78.2786885246
+	- Iteration 90
+		 Fold 1
+			Accuracy on train : 75.4838709677
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 77.6790424021
+			 Accuracy on test : 78.2786885246
+	- Iteration 91
+		 Fold 1
+			Accuracy on train : 75.4838709677
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 77.6790424021
+			 Accuracy on test : 78.2786885246
+	- Iteration 92
+		 Fold 1
+			Accuracy on train : 76.1290322581
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 80.5031446541
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 88.3495145631
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.3160884561
+			 Accuracy on test : 78.6885245902
+	- Iteration 93
+		 Fold 1
+			Accuracy on train : 76.1290322581
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 85.4368932039
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 81.1320754717
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 89.3203883495
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.6305538649
+			 Accuracy on test : 78.6885245902
+	- Iteration 94
+		 Fold 1
+			Accuracy on train : 75.4838709677
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 81.1320754717
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 89.3203883495
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.3079732197
+			 Accuracy on test : 78.6885245902
+	- Iteration 95
+		 Fold 1
+			Accuracy on train : 76.1290322581
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 85.4368932039
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 81.7610062893
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 90.2912621359
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.9450192737
+			 Accuracy on test : 78.6885245902
+	- Iteration 96
+		 Fold 1
+			Accuracy on train : 76.1290322581
+			Accuracy on test : 80.3278688525
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 88.3495145631
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 78.0016230473
+			 Accuracy on test : 78.6885245902
+	- Iteration 97
+		 Fold 1
+			Accuracy on train : 76.1290322581
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 84.4660194175
+			Selected View : MiRNA__
+		 Fold 2
+			Accuracy on train : 80.5031446541
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 88.3495145631
+			Selected View : RANSeq_
+		- Mean : 
+			 Accuracy on train : 78.3160884561
+			 Accuracy on test : 78.2786885246
+	- Iteration 98
+		 Fold 1
+			Accuracy on train : 74.8387096774
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 81.7610062893
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 88.3495145631
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.2998579834
+			 Accuracy on test : 78.2786885246
+	- Iteration 99
+		 Fold 1
+			Accuracy on train : 75.4838709677
+			Accuracy on test : 79.5081967213
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 80.5031446541
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 88.3495145631
+			Selected View : MiRNA__
+		- Mean : 
+			 Accuracy on train : 77.9935078109
+			 Accuracy on test : 78.2786885246
+	- Iteration 100
+		 Fold 1
+			Accuracy on train : 76.1290322581
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.0016230473
+			 Accuracy on test : 77.868852459
+	- Iteration 101
+		 Fold 1
+			Accuracy on train : 77.4193548387
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : Clinic_
+		 Fold 2
+			Accuracy on train : 79.8742138365
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 86.4077669903
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.6467843376
+			 Accuracy on test : 77.868852459
+	- Iteration 102
+		 Fold 1
+			Accuracy on train : 78.7096774194
+			Accuracy on test : 78.6885245902
+			Accuracy on validation : 84.4660194175
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 79.2452830189
+			Accuracy on test : 77.0491803279
+			Accuracy on validation : 87.3786407767
+			Selected View : Clinic_
+		- Mean : 
+			 Accuracy on train : 78.9774802191
+			 Accuracy on test : 77.868852459
+	- Iteration 103
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 104
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 105
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 106
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 107
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 108
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 109
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 110
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 111
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 112
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 113
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 114
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 115
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 116
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 117
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 118
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 119
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 120
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 121
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 122
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 123
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 124
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 125
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 126
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 127
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 128
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 129
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 130
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 131
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 132
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 133
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 134
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 135
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 136
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 137
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 138
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 139
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 140
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 141
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 142
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 143
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 144
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 145
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 146
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 147
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 148
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 149
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 150
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 151
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 152
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 153
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 154
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 155
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 156
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 157
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 158
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 159
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 160
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 161
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 162
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 163
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 164
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 165
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 166
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 167
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 168
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 169
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 170
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 171
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 172
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 173
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 174
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 175
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 176
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 177
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 178
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 179
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 180
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 181
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 182
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 183
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 184
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 185
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 186
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 187
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 188
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 189
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 190
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 191
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 192
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 193
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 194
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 195
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 196
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 197
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 198
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 199
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 200
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 201
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 202
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 203
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 204
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 205
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 206
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 207
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 208
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 209
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 210
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 211
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 212
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 213
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 214
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 215
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 216
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 217
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 218
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 219
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 220
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 221
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 222
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 223
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 224
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 225
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 226
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 227
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 228
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 229
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 230
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 231
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 232
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 233
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 234
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 235
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 236
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 237
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 238
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 239
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 240
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 241
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 242
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 243
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 244
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 245
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 246
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 247
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 248
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 249
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 250
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 251
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 252
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 253
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 254
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 255
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 256
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 257
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 258
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 259
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 260
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 261
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 262
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 263
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 264
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 265
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 266
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 267
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 268
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 269
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 270
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 271
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 272
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 273
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 274
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 275
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 276
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 277
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 278
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 279
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 280
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 281
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 282
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 283
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 284
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 285
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 286
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 287
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 288
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 289
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 290
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 291
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 292
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 293
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 294
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 295
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 296
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 297
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 298
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 299
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 300
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 301
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 302
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 303
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 304
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 305
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 306
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 307
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 308
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 309
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 310
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 311
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 312
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 313
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 314
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 315
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 316
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 317
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 318
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 319
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 320
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 321
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 322
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 323
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 324
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 325
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 326
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 327
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 328
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 329
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 330
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 331
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 332
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 333
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 334
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 335
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 336
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 337
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 338
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 339
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 340
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 341
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 342
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 343
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 344
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 345
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 346
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 347
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 348
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 349
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 350
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 351
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 352
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 353
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 354
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 355
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 356
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 357
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 358
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 359
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 360
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 361
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 362
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 363
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 364
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 365
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 366
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 367
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 368
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 369
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 370
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 371
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 372
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 373
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 374
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 375
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 376
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 377
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 378
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 379
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 380
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 381
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 382
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 383
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 384
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 385
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 386
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 387
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 388
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 389
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 390
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 391
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 392
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 393
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 394
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 395
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 396
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 397
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 398
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 399
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 400
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 401
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 402
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 403
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 404
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 405
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 406
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 407
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 408
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 409
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 410
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 411
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 412
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 413
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 414
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 415
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 416
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 417
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 418
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 419
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 420
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 421
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 422
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 423
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 424
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 425
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 426
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 427
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 428
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 429
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 430
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 431
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 432
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 433
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 434
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 435
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 436
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 437
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 438
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 439
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 440
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 441
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 442
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 443
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 444
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 445
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 446
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 447
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 448
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 449
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 450
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 451
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 452
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 453
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 454
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 455
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 456
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 457
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 458
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 459
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 460
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 461
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 462
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 463
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 464
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 465
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 466
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 467
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 468
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 469
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 470
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 471
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 472
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 473
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 474
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 475
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 476
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 477
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 478
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 479
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 480
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 481
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 482
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 483
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 484
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 485
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 486
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 487
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 488
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 489
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 490
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 491
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 492
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 493
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 494
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 495
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 496
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 497
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 498
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 499
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 500
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 501
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 502
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 503
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 504
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 505
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 506
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 507
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 508
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 509
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 510
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 511
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 512
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 513
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 514
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 515
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 516
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 517
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 518
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 519
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 520
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 521
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 522
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 523
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 524
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 525
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 526
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 527
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 528
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 529
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 530
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 531
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 532
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 533
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 534
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 535
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 536
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 537
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 538
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 539
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 540
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 541
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 542
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 543
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 544
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 545
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 546
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 547
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 548
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 549
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 550
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 551
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 552
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 553
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 554
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 555
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 556
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 557
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 558
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 559
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 560
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 561
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 562
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 563
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 564
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 565
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 566
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 567
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 568
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 569
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 570
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 571
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 572
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 573
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 574
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 575
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 576
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 577
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 578
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 579
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 580
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 581
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 582
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 583
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 584
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 585
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 586
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 587
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 588
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 589
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 590
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 591
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 592
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 593
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 594
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 595
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 596
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 597
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 598
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 599
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 600
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 601
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 602
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 603
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 604
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 605
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 606
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 607
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 608
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 609
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 610
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 611
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 612
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 613
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 614
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 615
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 616
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 617
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 618
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 619
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 620
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 621
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 622
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 623
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 624
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 625
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 626
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 627
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 628
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 629
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 630
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 631
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 632
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 633
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 634
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 635
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 636
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 637
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 638
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 639
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 640
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 641
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 642
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 643
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 644
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 645
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 646
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 647
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 648
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 649
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 650
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 651
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 652
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 653
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 654
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 655
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 656
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 657
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 658
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 659
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 660
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 661
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 662
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 663
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 664
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 665
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 666
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 667
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 668
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 669
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 670
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 671
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 672
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 673
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 674
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 675
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 676
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 677
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 678
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 679
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 680
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 681
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 682
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 683
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 684
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 685
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 686
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 687
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 688
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 689
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 690
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 691
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 692
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 693
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 694
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 695
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 696
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 697
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 698
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 699
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 700
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 701
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 702
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 703
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 704
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 705
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 706
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 707
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 708
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 709
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 710
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 711
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 712
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 713
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 714
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 715
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 716
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 717
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 718
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 719
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 720
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 721
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 722
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 723
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 724
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 725
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 726
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 727
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 728
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 729
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 730
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 731
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 732
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 733
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 734
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 735
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 736
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 737
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 738
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 739
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 740
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 741
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 742
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 743
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 744
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 745
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 746
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 747
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 748
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 749
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 750
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 751
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 752
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 753
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 754
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 755
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 756
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 757
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 758
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 759
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 760
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 761
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 762
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 763
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 764
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 765
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 766
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 767
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 768
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 769
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 770
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 771
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 772
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 773
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 774
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 775
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 776
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 777
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 778
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 779
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 780
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 781
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 782
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 783
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 784
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 785
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 786
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 787
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 788
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 789
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 790
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 791
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 792
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 793
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 794
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 795
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 796
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 797
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 798
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 799
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 800
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 801
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 802
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 803
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 804
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 805
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 806
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 807
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 808
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 809
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 810
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 811
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 812
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 813
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 814
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 815
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 816
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 817
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 818
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 819
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 820
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 821
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 822
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 823
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 824
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 825
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 826
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 827
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 828
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 829
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 830
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 831
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 832
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 833
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 834
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 835
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 836
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 837
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 838
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 839
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 840
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 841
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 842
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 843
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 844
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 845
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 846
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 847
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 848
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 849
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 850
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 851
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 852
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 853
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 854
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 855
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 856
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 857
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 858
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 859
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 860
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 861
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 862
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 863
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 864
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 865
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 866
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 867
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 868
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 869
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 870
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 871
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 872
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 873
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 874
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 875
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 876
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 877
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 878
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 879
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 880
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 881
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 882
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 883
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 884
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 885
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 886
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 887
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 888
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 889
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 890
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 891
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 892
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 893
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 894
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 895
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 896
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 897
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 898
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 899
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 900
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 901
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 902
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 903
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 904
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 905
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 906
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 907
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 908
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 909
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 910
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 911
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 912
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 913
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 914
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 915
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 916
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 917
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 918
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 919
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 920
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 921
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 922
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 923
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 924
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 925
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 926
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 927
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 928
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 929
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 930
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 931
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 932
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 933
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 934
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 935
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 936
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 937
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 938
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 939
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 940
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 941
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 942
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 943
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 944
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 945
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 946
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 947
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 948
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 949
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 950
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 951
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 952
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 953
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 954
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 955
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 956
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 957
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 958
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 959
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 960
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 961
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 962
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 963
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 964
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 965
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 966
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 967
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 968
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 969
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 970
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 971
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 972
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 973
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 974
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 975
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 976
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 977
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 978
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 979
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 980
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 981
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 982
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 983
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 984
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 985
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 986
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 987
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 988
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 989
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 990
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 991
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 992
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 993
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 994
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 995
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 996
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 997
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 998
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 999
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+	- Iteration 1000
+		 Fold 1
+			Accuracy on train : 61.2903225806
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		 Fold 2
+			Accuracy on train : 62.2641509434
+			Accuracy on test : 72.9508196721
+			Accuracy on validation : 73.786407767
+			Selected View : Methyl_
+		- Mean : 
+			 Accuracy on train : 61.777236762
+			 Accuracy on test : 72.9508196721
+
+Computation time on 1 cores : 
+	Database extraction time : 0:00:00
+	                         Learn     Prediction
+	         Fold 1        0:06:03        0:00:15
+	         Fold 2        0:12:21        0:00:15
+	          Total        0:18:25        0:00:30
+	So a total classification time of 0:12:36.
+
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-115022-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-115022-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..e8da32671bbba0aa021a3faeea30a177249702f9
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-115022-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,655 @@
+2016-08-24 11:50:22,490 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 11:50:22,491 INFO: Info:	 Labels used: No, Yes
+2016-08-24 11:50:22,491 INFO: Info:	 Length of dataset:347
+2016-08-24 11:50:22,493 INFO: ### Main Programm for Multiview Classification
+2016-08-24 11:50:22,493 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 11:50:22,493 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 11:50:22,494 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 11:50:22,494 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 11:50:22,494 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 11:50:22,495 INFO: Done:	 Read Database Files
+2016-08-24 11:50:22,495 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 11:50:22,498 INFO: Done:	 Determine validation split
+2016-08-24 11:50:22,498 INFO: Start:	 Determine 2 folds
+2016-08-24 11:50:22,508 INFO: Info:	 Length of Learning Sets: 122
+2016-08-24 11:50:22,508 INFO: Info:	 Length of Testing Sets: 122
+2016-08-24 11:50:22,508 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 11:50:22,509 INFO: Done:	 Determine folds
+2016-08-24 11:50:22,509 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 11:50:22,509 INFO: 	Start:	 Fold number 1
+2016-08-24 11:50:24,147 DEBUG: 		Start:	 Iteration 1
+2016-08-24 11:50:24,169 DEBUG: 			View 0 : 0.496855345912
+2016-08-24 11:50:24,180 DEBUG: 			View 1 : 0.622641509434
+2016-08-24 11:50:24,222 DEBUG: 			View 2 : 0.622641509434
+2016-08-24 11:50:24,230 DEBUG: 			View 3 : 0.471698113208
+2016-08-24 11:50:24,276 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:50:24,364 DEBUG: 		Start:	 Iteration 2
+2016-08-24 11:50:24,382 DEBUG: 			View 0 : 0.477987421384
+2016-08-24 11:50:24,390 DEBUG: 			View 1 : 0.591194968553
+2016-08-24 11:50:24,491 DEBUG: 			View 2 : 0.610062893082
+2016-08-24 11:50:24,499 DEBUG: 			View 3 : 0.547169811321
+2016-08-24 11:50:24,557 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:50:24,711 DEBUG: 		Start:	 Iteration 3
+2016-08-24 11:50:24,728 DEBUG: 			View 0 : 0.345911949686
+2016-08-24 11:50:24,737 DEBUG: 			View 1 : 0.48427672956
+2016-08-24 11:50:24,825 DEBUG: 			View 2 : 0.540880503145
+2016-08-24 11:50:24,833 DEBUG: 			View 3 : 0.660377358491
+2016-08-24 11:50:24,890 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:50:25,106 DEBUG: 		Start:	 Iteration 4
+2016-08-24 11:50:25,124 DEBUG: 			View 0 : 0.427672955975
+2016-08-24 11:50:25,132 DEBUG: 			View 1 : 0.496855345912
+2016-08-24 11:50:25,223 DEBUG: 			View 2 : 0.698113207547
+2016-08-24 11:50:25,231 DEBUG: 			View 3 : 0.566037735849
+2016-08-24 11:50:25,293 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:50:25,589 DEBUG: 		Start:	 Iteration 5
+2016-08-24 11:50:25,610 DEBUG: 			View 0 : 0.503144654088
+2016-08-24 11:50:25,626 DEBUG: 			View 1 : 0.603773584906
+2016-08-24 11:50:25,714 DEBUG: 			View 2 : 0.522012578616
+2016-08-24 11:50:25,722 DEBUG: 			View 3 : 0.647798742138
+2016-08-24 11:50:25,785 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:50:26,134 DEBUG: 		Start:	 Iteration 6
+2016-08-24 11:50:26,151 DEBUG: 			View 0 : 0.40251572327
+2016-08-24 11:50:26,159 DEBUG: 			View 1 : 0.704402515723
+2016-08-24 11:50:26,249 DEBUG: 			View 2 : 0.547169811321
+2016-08-24 11:50:26,257 DEBUG: 			View 3 : 0.59748427673
+2016-08-24 11:50:26,320 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:50:26,737 DEBUG: 		Start:	 Iteration 7
+2016-08-24 11:50:26,754 DEBUG: 			View 0 : 0.51572327044
+2016-08-24 11:50:26,762 DEBUG: 			View 1 : 0.48427672956
+2016-08-24 11:50:26,851 DEBUG: 			View 2 : 0.578616352201
+2016-08-24 11:50:26,859 DEBUG: 			View 3 : 0.610062893082
+2016-08-24 11:50:26,925 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:50:27,480 DEBUG: 		Start:	 Iteration 8
+2016-08-24 11:50:27,500 DEBUG: 			View 0 : 0.635220125786
+2016-08-24 11:50:27,513 DEBUG: 			View 1 : 0.389937106918
+2016-08-24 11:50:27,646 DEBUG: 			View 2 : 0.559748427673
+2016-08-24 11:50:27,661 DEBUG: 			View 3 : 0.584905660377
+2016-08-24 11:50:27,774 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:50:28,343 DEBUG: 		Start:	 Iteration 9
+2016-08-24 11:50:28,360 DEBUG: 			View 0 : 0.440251572327
+2016-08-24 11:50:28,368 DEBUG: 			View 1 : 0.528301886792
+2016-08-24 11:50:28,458 DEBUG: 			View 2 : 0.641509433962
+2016-08-24 11:50:28,466 DEBUG: 			View 3 : 0.603773584906
+2016-08-24 11:50:28,538 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:50:29,134 DEBUG: 		Start:	 Iteration 10
+2016-08-24 11:50:29,150 DEBUG: 			View 0 : 0.37106918239
+2016-08-24 11:50:29,158 DEBUG: 			View 1 : 0.660377358491
+2016-08-24 11:50:29,248 DEBUG: 			View 2 : 0.48427672956
+2016-08-24 11:50:29,256 DEBUG: 			View 3 : 0.572327044025
+2016-08-24 11:50:29,328 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:50:29,975 DEBUG: 		Start:	 Iteration 11
+2016-08-24 11:50:29,992 DEBUG: 			View 0 : 0.446540880503
+2016-08-24 11:50:29,999 DEBUG: 			View 1 : 0.691823899371
+2016-08-24 11:50:30,091 DEBUG: 			View 2 : 0.48427672956
+2016-08-24 11:50:30,098 DEBUG: 			View 3 : 0.610062893082
+2016-08-24 11:50:30,172 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:50:30,885 DEBUG: 		Start:	 Iteration 12
+2016-08-24 11:50:30,902 DEBUG: 			View 0 : 0.408805031447
+2016-08-24 11:50:30,909 DEBUG: 			View 1 : 0.377358490566
+2016-08-24 11:50:30,995 DEBUG: 			View 2 : 0.616352201258
+2016-08-24 11:50:31,004 DEBUG: 			View 3 : 0.584905660377
+2016-08-24 11:50:31,080 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:50:31,869 DEBUG: 		Start:	 Iteration 13
+2016-08-24 11:50:31,885 DEBUG: 			View 0 : 0.415094339623
+2016-08-24 11:50:31,893 DEBUG: 			View 1 : 0.578616352201
+2016-08-24 11:50:31,978 DEBUG: 			View 2 : 0.603773584906
+2016-08-24 11:50:31,986 DEBUG: 			View 3 : 0.641509433962
+2016-08-24 11:50:32,067 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:50:32,908 DEBUG: 		Start:	 Iteration 14
+2016-08-24 11:50:32,924 DEBUG: 			View 0 : 0.440251572327
+2016-08-24 11:50:32,932 DEBUG: 			View 1 : 0.654088050314
+2016-08-24 11:50:33,013 DEBUG: 			View 2 : 0.603773584906
+2016-08-24 11:50:33,020 DEBUG: 			View 3 : 0.59748427673
+2016-08-24 11:50:33,100 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:50:33,998 DEBUG: 		Start:	 Iteration 15
+2016-08-24 11:50:34,015 DEBUG: 			View 0 : 0.616352201258
+2016-08-24 11:50:34,022 DEBUG: 			View 1 : 0.584905660377
+2016-08-24 11:50:34,108 DEBUG: 			View 2 : 0.622641509434
+2016-08-24 11:50:34,116 DEBUG: 			View 3 : 0.660377358491
+2016-08-24 11:50:34,198 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:50:35,164 DEBUG: 		Start:	 Iteration 16
+2016-08-24 11:50:35,181 DEBUG: 			View 0 : 0.358490566038
+2016-08-24 11:50:35,189 DEBUG: 			View 1 : 0.641509433962
+2016-08-24 11:50:35,278 DEBUG: 			View 2 : 0.566037735849
+2016-08-24 11:50:35,286 DEBUG: 			View 3 : 0.572327044025
+2016-08-24 11:50:35,370 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:50:36,375 DEBUG: 		Start:	 Iteration 17
+2016-08-24 11:50:36,391 DEBUG: 			View 0 : 0.477987421384
+2016-08-24 11:50:36,399 DEBUG: 			View 1 : 0.698113207547
+2016-08-24 11:50:36,489 DEBUG: 			View 2 : 0.660377358491
+2016-08-24 11:50:36,496 DEBUG: 			View 3 : 0.610062893082
+2016-08-24 11:50:36,583 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:50:37,656 DEBUG: 		Start:	 Iteration 18
+2016-08-24 11:50:37,672 DEBUG: 			View 0 : 0.389937106918
+2016-08-24 11:50:37,680 DEBUG: 			View 1 : 0.584905660377
+2016-08-24 11:50:37,770 DEBUG: 			View 2 : 0.591194968553
+2016-08-24 11:50:37,778 DEBUG: 			View 3 : 0.59748427673
+2016-08-24 11:50:37,866 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:50:38,996 DEBUG: 		Start:	 Iteration 19
+2016-08-24 11:50:39,013 DEBUG: 			View 0 : 0.591194968553
+2016-08-24 11:50:39,020 DEBUG: 			View 1 : 0.251572327044
+2016-08-24 11:50:39,101 DEBUG: 			View 2 : 0.547169811321
+2016-08-24 11:50:39,109 DEBUG: 			View 3 : 0.62893081761
+2016-08-24 11:50:39,199 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:50:40,389 DEBUG: 		Start:	 Iteration 20
+2016-08-24 11:50:40,406 DEBUG: 			View 0 : 0.578616352201
+2016-08-24 11:50:40,414 DEBUG: 			View 1 : 0.691823899371
+2016-08-24 11:50:40,500 DEBUG: 			View 2 : 0.59748427673
+2016-08-24 11:50:40,508 DEBUG: 			View 3 : 0.534591194969
+2016-08-24 11:50:40,600 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:50:41,849 DEBUG: 		Start:	 Iteration 21
+2016-08-24 11:50:41,866 DEBUG: 			View 0 : 0.553459119497
+2016-08-24 11:50:41,873 DEBUG: 			View 1 : 0.522012578616
+2016-08-24 11:50:41,960 DEBUG: 			View 2 : 0.553459119497
+2016-08-24 11:50:41,968 DEBUG: 			View 3 : 0.509433962264
+2016-08-24 11:50:42,063 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:50:43,380 DEBUG: 		Start:	 Iteration 22
+2016-08-24 11:50:43,397 DEBUG: 			View 0 : 0.48427672956
+2016-08-24 11:50:43,405 DEBUG: 			View 1 : 0.440251572327
+2016-08-24 11:50:43,494 DEBUG: 			View 2 : 0.509433962264
+2016-08-24 11:50:43,502 DEBUG: 			View 3 : 0.584905660377
+2016-08-24 11:50:43,600 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:50:44,988 DEBUG: 		Start:	 Iteration 23
+2016-08-24 11:50:45,005 DEBUG: 			View 0 : 0.622641509434
+2016-08-24 11:50:45,013 DEBUG: 			View 1 : 0.559748427673
+2016-08-24 11:50:45,102 DEBUG: 			View 2 : 0.559748427673
+2016-08-24 11:50:45,110 DEBUG: 			View 3 : 0.584905660377
+2016-08-24 11:50:45,209 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:50:46,651 DEBUG: 		Start:	 Iteration 24
+2016-08-24 11:50:46,668 DEBUG: 			View 0 : 0.547169811321
+2016-08-24 11:50:46,675 DEBUG: 			View 1 : 0.704402515723
+2016-08-24 11:50:46,758 DEBUG: 			View 2 : 0.547169811321
+2016-08-24 11:50:46,766 DEBUG: 			View 3 : 0.584905660377
+2016-08-24 11:50:46,867 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:50:48,357 DEBUG: 		Start:	 Iteration 25
+2016-08-24 11:50:48,374 DEBUG: 			View 0 : 0.641509433962
+2016-08-24 11:50:48,381 DEBUG: 			View 1 : 0.534591194969
+2016-08-24 11:50:48,472 DEBUG: 			View 2 : 0.496855345912
+2016-08-24 11:50:48,480 DEBUG: 			View 3 : 0.578616352201
+2016-08-24 11:50:48,583 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:50:50,137 DEBUG: 		Start:	 Iteration 26
+2016-08-24 11:50:50,153 DEBUG: 			View 0 : 0.566037735849
+2016-08-24 11:50:50,161 DEBUG: 			View 1 : 0.672955974843
+2016-08-24 11:50:50,254 DEBUG: 			View 2 : 0.647798742138
+2016-08-24 11:50:50,262 DEBUG: 			View 3 : 0.490566037736
+2016-08-24 11:50:50,368 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:50:51,980 DEBUG: 		Start:	 Iteration 27
+2016-08-24 11:50:51,997 DEBUG: 			View 0 : 0.710691823899
+2016-08-24 11:50:52,005 DEBUG: 			View 1 : 0.591194968553
+2016-08-24 11:50:52,092 DEBUG: 			View 2 : 0.559748427673
+2016-08-24 11:50:52,100 DEBUG: 			View 3 : 0.654088050314
+2016-08-24 11:50:52,208 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:50:53,885 DEBUG: 		Start:	 Iteration 28
+2016-08-24 11:50:53,902 DEBUG: 			View 0 : 0.672955974843
+2016-08-24 11:50:53,909 DEBUG: 			View 1 : 0.408805031447
+2016-08-24 11:50:53,997 DEBUG: 			View 2 : 0.566037735849
+2016-08-24 11:50:54,005 DEBUG: 			View 3 : 0.622641509434
+2016-08-24 11:50:54,115 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:50:55,861 DEBUG: 		Start:	 Iteration 29
+2016-08-24 11:50:55,878 DEBUG: 			View 0 : 0.408805031447
+2016-08-24 11:50:55,886 DEBUG: 			View 1 : 0.540880503145
+2016-08-24 11:50:55,971 DEBUG: 			View 2 : 0.528301886792
+2016-08-24 11:50:55,979 DEBUG: 			View 3 : 0.522012578616
+2016-08-24 11:50:56,093 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:50:57,922 DEBUG: 		Start:	 Iteration 30
+2016-08-24 11:50:57,939 DEBUG: 			View 0 : 0.408805031447
+2016-08-24 11:50:57,946 DEBUG: 			View 1 : 0.383647798742
+2016-08-24 11:50:58,039 DEBUG: 			View 2 : 0.540880503145
+2016-08-24 11:50:58,047 DEBUG: 			View 3 : 0.534591194969
+2016-08-24 11:50:58,162 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:51:00,061 DEBUG: 		Start:	 Iteration 31
+2016-08-24 11:51:00,078 DEBUG: 			View 0 : 0.358490566038
+2016-08-24 11:51:00,086 DEBUG: 			View 1 : 0.528301886792
+2016-08-24 11:51:00,176 DEBUG: 			View 2 : 0.528301886792
+2016-08-24 11:51:00,184 DEBUG: 			View 3 : 0.622641509434
+2016-08-24 11:51:00,301 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:51:02,266 DEBUG: 		Start:	 Iteration 32
+2016-08-24 11:51:02,284 DEBUG: 			View 0 : 0.377358490566
+2016-08-24 11:51:02,292 DEBUG: 			View 1 : 0.666666666667
+2016-08-24 11:51:02,388 DEBUG: 			View 2 : 0.572327044025
+2016-08-24 11:51:02,396 DEBUG: 			View 3 : 0.522012578616
+2016-08-24 11:51:02,517 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:51:04,541 DEBUG: 		Start:	 Iteration 33
+2016-08-24 11:51:04,557 DEBUG: 			View 0 : 0.345911949686
+2016-08-24 11:51:04,566 DEBUG: 			View 1 : 0.654088050314
+2016-08-24 11:51:04,663 DEBUG: 			View 2 : 0.51572327044
+2016-08-24 11:51:04,671 DEBUG: 			View 3 : 0.572327044025
+2016-08-24 11:51:04,794 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:51:06,888 DEBUG: 		Start:	 Iteration 34
+2016-08-24 11:51:06,904 DEBUG: 			View 0 : 0.622641509434
+2016-08-24 11:51:06,912 DEBUG: 			View 1 : 0.566037735849
+2016-08-24 11:51:06,992 DEBUG: 			View 2 : 0.522012578616
+2016-08-24 11:51:07,001 DEBUG: 			View 3 : 0.647798742138
+2016-08-24 11:51:07,125 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:51:09,330 DEBUG: 		Start:	 Iteration 35
+2016-08-24 11:51:09,347 DEBUG: 			View 0 : 0.452830188679
+2016-08-24 11:51:09,355 DEBUG: 			View 1 : 0.635220125786
+2016-08-24 11:51:09,453 DEBUG: 			View 2 : 0.59748427673
+2016-08-24 11:51:09,462 DEBUG: 			View 3 : 0.559748427673
+2016-08-24 11:51:09,592 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:51:11,779 DEBUG: 		Start:	 Iteration 36
+2016-08-24 11:51:11,796 DEBUG: 			View 0 : 0.572327044025
+2016-08-24 11:51:11,804 DEBUG: 			View 1 : 0.540880503145
+2016-08-24 11:51:11,891 DEBUG: 			View 2 : 0.51572327044
+2016-08-24 11:51:11,899 DEBUG: 			View 3 : 0.603773584906
+2016-08-24 11:51:12,026 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:51:14,260 DEBUG: 		Start:	 Iteration 37
+2016-08-24 11:51:14,277 DEBUG: 			View 0 : 0.490566037736
+2016-08-24 11:51:14,285 DEBUG: 			View 1 : 0.433962264151
+2016-08-24 11:51:14,380 DEBUG: 			View 2 : 0.578616352201
+2016-08-24 11:51:14,389 DEBUG: 			View 3 : 0.679245283019
+2016-08-24 11:51:14,518 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:51:16,845 DEBUG: 		Start:	 Iteration 38
+2016-08-24 11:51:16,862 DEBUG: 			View 0 : 0.452830188679
+2016-08-24 11:51:16,870 DEBUG: 			View 1 : 0.496855345912
+2016-08-24 11:51:16,959 DEBUG: 			View 2 : 0.503144654088
+2016-08-24 11:51:16,967 DEBUG: 			View 3 : 0.559748427673
+2016-08-24 11:51:17,099 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:51:19,449 DEBUG: 		Start:	 Iteration 39
+2016-08-24 11:51:19,466 DEBUG: 			View 0 : 0.603773584906
+2016-08-24 11:51:19,473 DEBUG: 			View 1 : 0.666666666667
+2016-08-24 11:51:19,563 DEBUG: 			View 2 : 0.540880503145
+2016-08-24 11:51:19,571 DEBUG: 			View 3 : 0.477987421384
+2016-08-24 11:51:19,705 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:51:22,122 DEBUG: 		Start:	 Iteration 40
+2016-08-24 11:51:22,139 DEBUG: 			View 0 : 0.559748427673
+2016-08-24 11:51:22,147 DEBUG: 			View 1 : 0.672955974843
+2016-08-24 11:51:22,236 DEBUG: 			View 2 : 0.559748427673
+2016-08-24 11:51:22,245 DEBUG: 			View 3 : 0.666666666667
+2016-08-24 11:51:22,381 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:51:24,842 DEBUG: 		Start:	 Iteration 41
+2016-08-24 11:51:24,859 DEBUG: 			View 0 : 0.421383647799
+2016-08-24 11:51:24,867 DEBUG: 			View 1 : 0.660377358491
+2016-08-24 11:51:24,950 DEBUG: 			View 2 : 0.616352201258
+2016-08-24 11:51:24,959 DEBUG: 			View 3 : 0.553459119497
+2016-08-24 11:51:25,097 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:51:27,616 DEBUG: 		Start:	 Iteration 42
+2016-08-24 11:51:27,633 DEBUG: 			View 0 : 0.509433962264
+2016-08-24 11:51:27,641 DEBUG: 			View 1 : 0.660377358491
+2016-08-24 11:51:27,734 DEBUG: 			View 2 : 0.522012578616
+2016-08-24 11:51:27,742 DEBUG: 			View 3 : 0.547169811321
+2016-08-24 11:51:27,882 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:51:30,452 DEBUG: 		Start:	 Iteration 43
+2016-08-24 11:51:30,469 DEBUG: 			View 0 : 0.616352201258
+2016-08-24 11:51:30,477 DEBUG: 			View 1 : 0.534591194969
+2016-08-24 11:51:30,572 DEBUG: 			View 2 : 0.509433962264
+2016-08-24 11:51:30,581 DEBUG: 			View 3 : 0.559748427673
+2016-08-24 11:51:30,723 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:51:33,333 DEBUG: 		Start:	 Iteration 44
+2016-08-24 11:51:33,349 DEBUG: 			View 0 : 0.660377358491
+2016-08-24 11:51:33,357 DEBUG: 			View 1 : 0.440251572327
+2016-08-24 11:51:33,455 DEBUG: 			View 2 : 0.62893081761
+2016-08-24 11:51:33,464 DEBUG: 			View 3 : 0.578616352201
+2016-08-24 11:51:33,607 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:51:36,279 DEBUG: 		Start:	 Iteration 45
+2016-08-24 11:51:36,296 DEBUG: 			View 0 : 0.51572327044
+2016-08-24 11:51:36,304 DEBUG: 			View 1 : 0.59748427673
+2016-08-24 11:51:36,400 DEBUG: 			View 2 : 0.660377358491
+2016-08-24 11:51:36,409 DEBUG: 			View 3 : 0.578616352201
+2016-08-24 11:51:36,556 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:51:39,318 DEBUG: 		Start:	 Iteration 46
+2016-08-24 11:51:39,334 DEBUG: 			View 0 : 0.490566037736
+2016-08-24 11:51:39,342 DEBUG: 			View 1 : 0.647798742138
+2016-08-24 11:51:39,437 DEBUG: 			View 2 : 0.534591194969
+2016-08-24 11:51:39,447 DEBUG: 			View 3 : 0.62893081761
+2016-08-24 11:51:39,596 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:51:42,394 DEBUG: 		Start:	 Iteration 47
+2016-08-24 11:51:42,410 DEBUG: 			View 0 : 0.578616352201
+2016-08-24 11:51:42,418 DEBUG: 			View 1 : 0.647798742138
+2016-08-24 11:51:42,514 DEBUG: 			View 2 : 0.547169811321
+2016-08-24 11:51:42,522 DEBUG: 			View 3 : 0.503144654088
+2016-08-24 11:51:42,673 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:51:45,517 DEBUG: 		Start:	 Iteration 48
+2016-08-24 11:51:45,533 DEBUG: 			View 0 : 0.433962264151
+2016-08-24 11:51:45,541 DEBUG: 			View 1 : 0.522012578616
+2016-08-24 11:51:45,630 DEBUG: 			View 2 : 0.616352201258
+2016-08-24 11:51:45,637 DEBUG: 			View 3 : 0.578616352201
+2016-08-24 11:51:45,789 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:51:48,860 DEBUG: 		Start:	 Iteration 49
+2016-08-24 11:51:48,876 DEBUG: 			View 0 : 0.616352201258
+2016-08-24 11:51:48,884 DEBUG: 			View 1 : 0.635220125786
+2016-08-24 11:51:48,972 DEBUG: 			View 2 : 0.59748427673
+2016-08-24 11:51:48,980 DEBUG: 			View 3 : 0.603773584906
+2016-08-24 11:51:49,140 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:51:52,141 DEBUG: 		Start:	 Iteration 50
+2016-08-24 11:51:52,158 DEBUG: 			View 0 : 0.503144654088
+2016-08-24 11:51:52,166 DEBUG: 			View 1 : 0.666666666667
+2016-08-24 11:51:52,255 DEBUG: 			View 2 : 0.578616352201
+2016-08-24 11:51:52,263 DEBUG: 			View 3 : 0.572327044025
+2016-08-24 11:51:52,421 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:51:55,452 DEBUG: 		Start:	 Iteration 51
+2016-08-24 11:51:55,469 DEBUG: 			View 0 : 0.528301886792
+2016-08-24 11:51:55,477 DEBUG: 			View 1 : 0.62893081761
+2016-08-24 11:51:55,564 DEBUG: 			View 2 : 0.578616352201
+2016-08-24 11:51:55,572 DEBUG: 			View 3 : 0.679245283019
+2016-08-24 11:51:55,731 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:51:58,822 DEBUG: 		Start:	 Iteration 52
+2016-08-24 11:51:58,839 DEBUG: 			View 0 : 0.40251572327
+2016-08-24 11:51:58,847 DEBUG: 			View 1 : 0.358490566038
+2016-08-24 11:51:58,937 DEBUG: 			View 2 : 0.559748427673
+2016-08-24 11:51:58,944 DEBUG: 			View 3 : 0.559748427673
+2016-08-24 11:51:59,110 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:52:02,297 DEBUG: 		Start:	 Iteration 53
+2016-08-24 11:52:02,314 DEBUG: 			View 0 : 0.377358490566
+2016-08-24 11:52:02,321 DEBUG: 			View 1 : 0.666666666667
+2016-08-24 11:52:02,411 DEBUG: 			View 2 : 0.509433962264
+2016-08-24 11:52:02,419 DEBUG: 			View 3 : 0.59748427673
+2016-08-24 11:52:02,583 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:52:05,819 DEBUG: 		Start:	 Iteration 54
+2016-08-24 11:52:05,836 DEBUG: 			View 0 : 0.572327044025
+2016-08-24 11:52:05,844 DEBUG: 			View 1 : 0.647798742138
+2016-08-24 11:52:05,941 DEBUG: 			View 2 : 0.603773584906
+2016-08-24 11:52:05,949 DEBUG: 			View 3 : 0.641509433962
+2016-08-24 11:52:06,118 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:52:09,420 DEBUG: 		Start:	 Iteration 55
+2016-08-24 11:52:09,437 DEBUG: 			View 0 : 0.654088050314
+2016-08-24 11:52:09,445 DEBUG: 			View 1 : 0.427672955975
+2016-08-24 11:52:09,525 DEBUG: 			View 2 : 0.591194968553
+2016-08-24 11:52:09,533 DEBUG: 			View 3 : 0.528301886792
+2016-08-24 11:52:09,700 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:52:13,042 DEBUG: 		Start:	 Iteration 56
+2016-08-24 11:52:13,058 DEBUG: 			View 0 : 0.37106918239
+2016-08-24 11:52:13,066 DEBUG: 			View 1 : 0.748427672956
+2016-08-24 11:52:13,150 DEBUG: 			View 2 : 0.584905660377
+2016-08-24 11:52:13,157 DEBUG: 			View 3 : 0.59748427673
+2016-08-24 11:52:13,330 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:52:16,739 DEBUG: 		Start:	 Iteration 57
+2016-08-24 11:52:16,756 DEBUG: 			View 0 : 0.805031446541
+2016-08-24 11:52:16,764 DEBUG: 			View 1 : 0.471698113208
+2016-08-24 11:52:16,851 DEBUG: 			View 2 : 0.591194968553
+2016-08-24 11:52:16,858 DEBUG: 			View 3 : 0.616352201258
+2016-08-24 11:52:17,034 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:52:20,629 DEBUG: 		Start:	 Iteration 58
+2016-08-24 11:52:20,646 DEBUG: 			View 0 : 0.496855345912
+2016-08-24 11:52:20,653 DEBUG: 			View 1 : 0.352201257862
+2016-08-24 11:52:20,738 DEBUG: 			View 2 : 0.647798742138
+2016-08-24 11:52:20,745 DEBUG: 			View 3 : 0.490566037736
+2016-08-24 11:52:20,924 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:52:24,455 DEBUG: 		Start:	 Iteration 59
+2016-08-24 11:52:24,471 DEBUG: 			View 0 : 0.301886792453
+2016-08-24 11:52:24,479 DEBUG: 			View 1 : 0.333333333333
+2016-08-24 11:52:24,562 DEBUG: 			View 2 : 0.51572327044
+2016-08-24 11:52:24,570 DEBUG: 			View 3 : 0.616352201258
+2016-08-24 11:52:24,747 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:52:28,327 DEBUG: 		Start:	 Iteration 60
+2016-08-24 11:52:28,344 DEBUG: 			View 0 : 0.559748427673
+2016-08-24 11:52:28,352 DEBUG: 			View 1 : 0.591194968553
+2016-08-24 11:52:28,439 DEBUG: 			View 2 : 0.51572327044
+2016-08-24 11:52:28,447 DEBUG: 			View 3 : 0.446540880503
+2016-08-24 11:52:28,627 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:52:32,268 DEBUG: 		Start:	 Iteration 61
+2016-08-24 11:52:32,284 DEBUG: 			View 0 : 0.547169811321
+2016-08-24 11:52:32,292 DEBUG: 			View 1 : 0.691823899371
+2016-08-24 11:52:32,379 DEBUG: 			View 2 : 0.553459119497
+2016-08-24 11:52:32,387 DEBUG: 			View 3 : 0.59748427673
+2016-08-24 11:52:32,568 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:52:36,264 DEBUG: 		Start:	 Iteration 62
+2016-08-24 11:52:36,281 DEBUG: 			View 0 : 0.748427672956
+2016-08-24 11:52:36,288 DEBUG: 			View 1 : 0.528301886792
+2016-08-24 11:52:36,377 DEBUG: 			View 2 : 0.672955974843
+2016-08-24 11:52:36,384 DEBUG: 			View 3 : 0.691823899371
+2016-08-24 11:52:36,569 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:52:40,347 DEBUG: 		Start:	 Iteration 63
+2016-08-24 11:52:40,363 DEBUG: 			View 0 : 0.465408805031
+2016-08-24 11:52:40,371 DEBUG: 			View 1 : 0.622641509434
+2016-08-24 11:52:40,459 DEBUG: 			View 2 : 0.622641509434
+2016-08-24 11:52:40,467 DEBUG: 			View 3 : 0.553459119497
+2016-08-24 11:52:40,655 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:52:44,468 DEBUG: 		Start:	 Iteration 64
+2016-08-24 11:52:44,484 DEBUG: 			View 0 : 0.610062893082
+2016-08-24 11:52:44,492 DEBUG: 			View 1 : 0.566037735849
+2016-08-24 11:52:44,580 DEBUG: 			View 2 : 0.62893081761
+2016-08-24 11:52:44,588 DEBUG: 			View 3 : 0.622641509434
+2016-08-24 11:52:44,777 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:52:48,671 DEBUG: 		Start:	 Iteration 65
+2016-08-24 11:52:48,688 DEBUG: 			View 0 : 0.427672955975
+2016-08-24 11:52:48,696 DEBUG: 			View 1 : 0.383647798742
+2016-08-24 11:52:48,780 DEBUG: 			View 2 : 0.584905660377
+2016-08-24 11:52:48,788 DEBUG: 			View 3 : 0.566037735849
+2016-08-24 11:52:48,978 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:52:52,930 DEBUG: 		Start:	 Iteration 66
+2016-08-24 11:52:52,947 DEBUG: 			View 0 : 0.383647798742
+2016-08-24 11:52:52,955 DEBUG: 			View 1 : 0.616352201258
+2016-08-24 11:52:53,044 DEBUG: 			View 2 : 0.591194968553
+2016-08-24 11:52:53,052 DEBUG: 			View 3 : 0.635220125786
+2016-08-24 11:52:53,245 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:52:57,247 DEBUG: 		Start:	 Iteration 67
+2016-08-24 11:52:57,264 DEBUG: 			View 0 : 0.459119496855
+2016-08-24 11:52:57,271 DEBUG: 			View 1 : 0.421383647799
+2016-08-24 11:52:57,359 DEBUG: 			View 2 : 0.522012578616
+2016-08-24 11:52:57,367 DEBUG: 			View 3 : 0.603773584906
+2016-08-24 11:52:57,561 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:53:01,624 DEBUG: 		Start:	 Iteration 68
+2016-08-24 11:53:01,640 DEBUG: 			View 0 : 0.62893081761
+2016-08-24 11:53:01,648 DEBUG: 			View 1 : 0.503144654088
+2016-08-24 11:53:01,739 DEBUG: 			View 2 : 0.534591194969
+2016-08-24 11:53:01,747 DEBUG: 			View 3 : 0.572327044025
+2016-08-24 11:53:01,944 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:53:06,061 DEBUG: 		Start:	 Iteration 69
+2016-08-24 11:53:06,078 DEBUG: 			View 0 : 0.578616352201
+2016-08-24 11:53:06,085 DEBUG: 			View 1 : 0.389937106918
+2016-08-24 11:53:06,174 DEBUG: 			View 2 : 0.572327044025
+2016-08-24 11:53:06,182 DEBUG: 			View 3 : 0.572327044025
+2016-08-24 11:53:06,383 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:53:10,572 DEBUG: 		Start:	 Iteration 70
+2016-08-24 11:53:10,588 DEBUG: 			View 0 : 0.48427672956
+2016-08-24 11:53:10,596 DEBUG: 			View 1 : 0.635220125786
+2016-08-24 11:53:10,680 DEBUG: 			View 2 : 0.51572327044
+2016-08-24 11:53:10,687 DEBUG: 			View 3 : 0.59748427673
+2016-08-24 11:53:10,888 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:53:15,144 DEBUG: 		Start:	 Iteration 71
+2016-08-24 11:53:15,160 DEBUG: 			View 0 : 0.622641509434
+2016-08-24 11:53:15,168 DEBUG: 			View 1 : 0.509433962264
+2016-08-24 11:53:15,258 DEBUG: 			View 2 : 0.616352201258
+2016-08-24 11:53:15,266 DEBUG: 			View 3 : 0.528301886792
+2016-08-24 11:53:15,469 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:53:19,842 DEBUG: 		Start:	 Iteration 72
+2016-08-24 11:53:19,858 DEBUG: 			View 0 : 0.446540880503
+2016-08-24 11:53:19,866 DEBUG: 			View 1 : 0.610062893082
+2016-08-24 11:53:19,954 DEBUG: 			View 2 : 0.635220125786
+2016-08-24 11:53:19,962 DEBUG: 			View 3 : 0.584905660377
+2016-08-24 11:53:20,164 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:53:24,556 DEBUG: 		Start:	 Iteration 73
+2016-08-24 11:53:24,573 DEBUG: 			View 0 : 0.534591194969
+2016-08-24 11:53:24,581 DEBUG: 			View 1 : 0.522012578616
+2016-08-24 11:53:24,668 DEBUG: 			View 2 : 0.603773584906
+2016-08-24 11:53:24,676 DEBUG: 			View 3 : 0.522012578616
+2016-08-24 11:53:24,882 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:53:29,347 DEBUG: 		Start:	 Iteration 74
+2016-08-24 11:53:29,363 DEBUG: 			View 0 : 0.509433962264
+2016-08-24 11:53:29,371 DEBUG: 			View 1 : 0.345911949686
+2016-08-24 11:53:29,457 DEBUG: 			View 2 : 0.51572327044
+2016-08-24 11:53:29,464 DEBUG: 			View 3 : 0.62893081761
+2016-08-24 11:53:29,672 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:53:34,188 DEBUG: 		Start:	 Iteration 75
+2016-08-24 11:53:34,204 DEBUG: 			View 0 : 0.59748427673
+2016-08-24 11:53:34,212 DEBUG: 			View 1 : 0.51572327044
+2016-08-24 11:53:34,298 DEBUG: 			View 2 : 0.635220125786
+2016-08-24 11:53:34,306 DEBUG: 			View 3 : 0.48427672956
+2016-08-24 11:53:34,516 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:53:39,103 DEBUG: 		Start:	 Iteration 76
+2016-08-24 11:53:39,119 DEBUG: 			View 0 : 0.490566037736
+2016-08-24 11:53:39,127 DEBUG: 			View 1 : 0.584905660377
+2016-08-24 11:53:39,214 DEBUG: 			View 2 : 0.622641509434
+2016-08-24 11:53:39,221 DEBUG: 			View 3 : 0.584905660377
+2016-08-24 11:53:39,437 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:53:44,087 DEBUG: 		Start:	 Iteration 77
+2016-08-24 11:53:44,103 DEBUG: 			View 0 : 0.48427672956
+2016-08-24 11:53:44,111 DEBUG: 			View 1 : 0.320754716981
+2016-08-24 11:53:44,195 DEBUG: 			View 2 : 0.584905660377
+2016-08-24 11:53:44,202 DEBUG: 			View 3 : 0.654088050314
+2016-08-24 11:53:44,419 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:53:49,151 DEBUG: 		Start:	 Iteration 78
+2016-08-24 11:53:49,168 DEBUG: 			View 0 : 0.534591194969
+2016-08-24 11:53:49,175 DEBUG: 			View 1 : 0.540880503145
+2016-08-24 11:53:49,262 DEBUG: 			View 2 : 0.59748427673
+2016-08-24 11:53:49,270 DEBUG: 			View 3 : 0.572327044025
+2016-08-24 11:53:49,487 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:53:54,269 DEBUG: 		Start:	 Iteration 79
+2016-08-24 11:53:54,285 DEBUG: 			View 0 : 0.566037735849
+2016-08-24 11:53:54,293 DEBUG: 			View 1 : 0.509433962264
+2016-08-24 11:53:54,380 DEBUG: 			View 2 : 0.559748427673
+2016-08-24 11:53:54,387 DEBUG: 			View 3 : 0.503144654088
+2016-08-24 11:53:54,609 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:53:59,466 DEBUG: 		Start:	 Iteration 80
+2016-08-24 11:53:59,483 DEBUG: 			View 0 : 0.616352201258
+2016-08-24 11:53:59,491 DEBUG: 			View 1 : 0.672955974843
+2016-08-24 11:53:59,579 DEBUG: 			View 2 : 0.62893081761
+2016-08-24 11:53:59,586 DEBUG: 			View 3 : 0.578616352201
+2016-08-24 11:53:59,807 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:54:04,731 DEBUG: 		Start:	 Iteration 81
+2016-08-24 11:54:04,747 DEBUG: 			View 0 : 0.528301886792
+2016-08-24 11:54:04,755 DEBUG: 			View 1 : 0.704402515723
+2016-08-24 11:54:04,837 DEBUG: 			View 2 : 0.522012578616
+2016-08-24 11:54:04,845 DEBUG: 			View 3 : 0.547169811321
+2016-08-24 11:54:05,067 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:54:10,043 DEBUG: 		Start:	 Iteration 82
+2016-08-24 11:54:10,059 DEBUG: 			View 0 : 0.559748427673
+2016-08-24 11:54:10,067 DEBUG: 			View 1 : 0.440251572327
+2016-08-24 11:54:10,153 DEBUG: 			View 2 : 0.578616352201
+2016-08-24 11:54:10,161 DEBUG: 			View 3 : 0.547169811321
+2016-08-24 11:54:10,387 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:54:15,483 DEBUG: 		Start:	 Iteration 83
+2016-08-24 11:54:15,500 DEBUG: 			View 0 : 0.51572327044
+2016-08-24 11:54:15,507 DEBUG: 			View 1 : 0.477987421384
+2016-08-24 11:54:15,594 DEBUG: 			View 2 : 0.62893081761
+2016-08-24 11:54:15,602 DEBUG: 			View 3 : 0.62893081761
+2016-08-24 11:54:15,831 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:54:20,939 DEBUG: 		Start:	 Iteration 84
+2016-08-24 11:54:20,956 DEBUG: 			View 0 : 0.723270440252
+2016-08-24 11:54:20,964 DEBUG: 			View 1 : 0.408805031447
+2016-08-24 11:54:21,047 DEBUG: 			View 2 : 0.641509433962
+2016-08-24 11:54:21,054 DEBUG: 			View 3 : 0.62893081761
+2016-08-24 11:54:21,285 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:54:26,440 DEBUG: 		Start:	 Iteration 85
+2016-08-24 11:54:26,456 DEBUG: 			View 0 : 0.427672955975
+2016-08-24 11:54:26,464 DEBUG: 			View 1 : 0.672955974843
+2016-08-24 11:54:26,552 DEBUG: 			View 2 : 0.616352201258
+2016-08-24 11:54:26,559 DEBUG: 			View 3 : 0.666666666667
+2016-08-24 11:54:26,790 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:54:32,015 DEBUG: 		Start:	 Iteration 86
+2016-08-24 11:54:32,031 DEBUG: 			View 0 : 0.540880503145
+2016-08-24 11:54:32,039 DEBUG: 			View 1 : 0.798742138365
+2016-08-24 11:54:32,114 DEBUG: 			View 2 : 0.553459119497
+2016-08-24 11:54:32,121 DEBUG: 			View 3 : 0.496855345912
+2016-08-24 11:54:32,359 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:54:37,638 DEBUG: 		Start:	 Iteration 87
+2016-08-24 11:54:37,654 DEBUG: 			View 0 : 0.553459119497
+2016-08-24 11:54:37,662 DEBUG: 			View 1 : 0.496855345912
+2016-08-24 11:54:37,748 DEBUG: 			View 2 : 0.654088050314
+2016-08-24 11:54:37,755 DEBUG: 			View 3 : 0.62893081761
+2016-08-24 11:54:37,990 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:54:43,338 DEBUG: 		Start:	 Iteration 88
+2016-08-24 11:54:43,355 DEBUG: 			View 0 : 0.40251572327
+2016-08-24 11:54:43,362 DEBUG: 			View 1 : 0.522012578616
+2016-08-24 11:54:43,453 DEBUG: 			View 2 : 0.578616352201
+2016-08-24 11:54:43,460 DEBUG: 			View 3 : 0.616352201258
+2016-08-24 11:54:43,698 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:54:49,088 DEBUG: 		Start:	 Iteration 89
+2016-08-24 11:54:49,105 DEBUG: 			View 0 : 0.547169811321
+2016-08-24 11:54:49,112 DEBUG: 			View 1 : 0.377358490566
+2016-08-24 11:54:49,199 DEBUG: 			View 2 : 0.622641509434
+2016-08-24 11:54:49,206 DEBUG: 			View 3 : 0.591194968553
+2016-08-24 11:54:49,450 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:54:54,921 DEBUG: 		Start:	 Iteration 90
+2016-08-24 11:54:54,938 DEBUG: 			View 0 : 0.566037735849
+2016-08-24 11:54:54,946 DEBUG: 			View 1 : 0.710691823899
+2016-08-24 11:54:55,029 DEBUG: 			View 2 : 0.59748427673
+2016-08-24 11:54:55,037 DEBUG: 			View 3 : 0.540880503145
+2016-08-24 11:54:55,279 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:55:00,796 DEBUG: 		Start:	 Iteration 91
+2016-08-24 11:55:00,812 DEBUG: 			View 0 : 0.59748427673
+2016-08-24 11:55:00,820 DEBUG: 			View 1 : 0.610062893082
+2016-08-24 11:55:00,908 DEBUG: 			View 2 : 0.584905660377
+2016-08-24 11:55:00,915 DEBUG: 			View 3 : 0.635220125786
+2016-08-24 11:55:01,161 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:55:06,789 DEBUG: 		Start:	 Iteration 92
+2016-08-24 11:55:06,808 DEBUG: 			View 0 : 0.509433962264
+2016-08-24 11:55:06,816 DEBUG: 			View 1 : 0.345911949686
+2016-08-24 11:55:06,909 DEBUG: 			View 2 : 0.553459119497
+2016-08-24 11:55:06,916 DEBUG: 			View 3 : 0.51572327044
+2016-08-24 11:55:07,185 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:55:12,930 DEBUG: 		Start:	 Iteration 93
+2016-08-24 11:55:12,947 DEBUG: 			View 0 : 0.62893081761
+2016-08-24 11:55:12,955 DEBUG: 			View 1 : 0.364779874214
+2016-08-24 11:55:13,040 DEBUG: 			View 2 : 0.534591194969
+2016-08-24 11:55:13,048 DEBUG: 			View 3 : 0.553459119497
+2016-08-24 11:55:13,301 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:55:19,024 DEBUG: 		Start:	 Iteration 94
+2016-08-24 11:55:19,040 DEBUG: 			View 0 : 0.452830188679
+2016-08-24 11:55:19,048 DEBUG: 			View 1 : 0.610062893082
+2016-08-24 11:55:19,137 DEBUG: 			View 2 : 0.559748427673
+2016-08-24 11:55:19,144 DEBUG: 			View 3 : 0.559748427673
+2016-08-24 11:55:19,395 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:55:25,181 DEBUG: 		Start:	 Iteration 95
+2016-08-24 11:55:25,198 DEBUG: 			View 0 : 0.547169811321
+2016-08-24 11:55:25,206 DEBUG: 			View 1 : 0.553459119497
+2016-08-24 11:55:25,288 DEBUG: 			View 2 : 0.591194968553
+2016-08-24 11:55:25,296 DEBUG: 			View 3 : 0.584905660377
+2016-08-24 11:55:25,547 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:55:31,382 DEBUG: 		Start:	 Iteration 96
+2016-08-24 11:55:31,399 DEBUG: 			View 0 : 0.522012578616
+2016-08-24 11:55:31,406 DEBUG: 			View 1 : 0.641509433962
+2016-08-24 11:55:31,493 DEBUG: 			View 2 : 0.559748427673
+2016-08-24 11:55:31,500 DEBUG: 			View 3 : 0.559748427673
+2016-08-24 11:55:31,755 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:55:37,653 DEBUG: 		Start:	 Iteration 97
+2016-08-24 11:55:37,669 DEBUG: 			View 0 : 0.522012578616
+2016-08-24 11:55:37,677 DEBUG: 			View 1 : 0.729559748428
+2016-08-24 11:55:37,760 DEBUG: 			View 2 : 0.566037735849
+2016-08-24 11:55:37,767 DEBUG: 			View 3 : 0.635220125786
+2016-08-24 11:55:38,024 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:55:43,967 DEBUG: 		Start:	 Iteration 98
+2016-08-24 11:55:43,984 DEBUG: 			View 0 : 0.471698113208
+2016-08-24 11:55:43,991 DEBUG: 			View 1 : 0.641509433962
+2016-08-24 11:55:44,074 DEBUG: 			View 2 : 0.635220125786
+2016-08-24 11:55:44,081 DEBUG: 			View 3 : 0.603773584906
+2016-08-24 11:55:44,341 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:55:50,378 DEBUG: 		Start:	 Iteration 99
+2016-08-24 11:55:50,395 DEBUG: 			View 0 : 0.603773584906
+2016-08-24 11:55:50,402 DEBUG: 			View 1 : 0.459119496855
+2016-08-24 11:55:50,489 DEBUG: 			View 2 : 0.584905660377
+2016-08-24 11:55:50,497 DEBUG: 			View 3 : 0.522012578616
+2016-08-24 11:55:50,758 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:55:56,848 DEBUG: 		Start:	 Iteration 100
+2016-08-24 11:55:56,864 DEBUG: 			View 0 : 0.540880503145
+2016-08-24 11:55:56,873 DEBUG: 			View 1 : 0.666666666667
+2016-08-24 11:55:56,961 DEBUG: 			View 2 : 0.654088050314
+2016-08-24 11:55:56,968 DEBUG: 			View 3 : 0.496855345912
+2016-08-24 11:55:57,232 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:56:03,400 DEBUG: 		Start:	 Iteration 101
+2016-08-24 11:56:03,417 DEBUG: 			View 0 : 0.584905660377
+2016-08-24 11:56:03,424 DEBUG: 			View 1 : 0.415094339623
+2016-08-24 11:56:03,513 DEBUG: 			View 2 : 0.622641509434
+2016-08-24 11:56:03,520 DEBUG: 			View 3 : 0.647798742138
+2016-08-24 11:56:03,784 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:56:10,265 DEBUG: 		Start:	 Iteration 102
+2016-08-24 11:56:10,292 DEBUG: 			View 0 : 0.547169811321
+2016-08-24 11:56:10,303 DEBUG: 			View 1 : 0.503144654088
+2016-08-24 11:56:10,405 DEBUG: 			View 2 : 0.62893081761
+2016-08-24 11:56:10,413 DEBUG: 			View 3 : 0.540880503145
+2016-08-24 11:56:10,685 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:56:17,168 DEBUG: 		Start:	 Iteration 103
+2016-08-24 11:56:17,189 DEBUG: 			View 0 : 0.496855345912
+2016-08-24 11:56:17,198 DEBUG: 			View 1 : 0.377358490566
+2016-08-24 11:56:17,289 DEBUG: 			View 2 : 0.591194968553
+2016-08-24 11:56:17,297 DEBUG: 			View 3 : 0.62893081761
+2016-08-24 11:56:17,571 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:56:24,608 DEBUG: 		Start:	 Iteration 104
+2016-08-24 11:56:24,629 DEBUG: 			View 0 : 0.452830188679
+2016-08-24 11:56:24,642 DEBUG: 			View 1 : 0.528301886792
+2016-08-24 11:56:24,745 DEBUG: 			View 2 : 0.622641509434
+2016-08-24 11:56:24,754 DEBUG: 			View 3 : 0.559748427673
+2016-08-24 11:56:25,049 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:56:32,323 DEBUG: 		Start:	 Iteration 105
+2016-08-24 11:56:32,342 DEBUG: 			View 0 : 0.377358490566
+2016-08-24 11:56:32,353 DEBUG: 			View 1 : 0.647798742138
+2016-08-24 11:56:32,495 DEBUG: 			View 2 : 0.622641509434
+2016-08-24 11:56:32,509 DEBUG: 			View 3 : 0.540880503145
+2016-08-24 11:56:32,842 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:56:40,165 DEBUG: 		Start:	 Iteration 106
+2016-08-24 11:56:40,186 DEBUG: 			View 0 : 0.490566037736
+2016-08-24 11:56:40,196 DEBUG: 			View 1 : 0.540880503145
+2016-08-24 11:56:40,286 DEBUG: 			View 2 : 0.51572327044
+2016-08-24 11:56:40,294 DEBUG: 			View 3 : 0.635220125786
+2016-08-24 11:56:40,572 DEBUG: 			 Best view : 		Clinic_
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-115712-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-115712-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..54ef5d1ed7293391eda4a4542da60e02641ad379
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-115712-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,4082 @@
+2016-08-24 11:57:12,454 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 11:57:12,454 INFO: Info:	 Labels used: No, Yes
+2016-08-24 11:57:12,455 INFO: Info:	 Length of dataset:347
+2016-08-24 11:57:12,456 INFO: ### Main Programm for Multiview Classification
+2016-08-24 11:57:12,456 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 11:57:12,457 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 11:57:12,457 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 11:57:12,457 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 11:57:12,458 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 11:57:12,458 INFO: Done:	 Read Database Files
+2016-08-24 11:57:12,458 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 11:57:12,462 INFO: Done:	 Determine validation split
+2016-08-24 11:57:12,462 INFO: Start:	 Determine 5 folds
+2016-08-24 11:57:12,469 INFO: Info:	 Length of Learning Sets: 196
+2016-08-24 11:57:12,469 INFO: Info:	 Length of Testing Sets: 48
+2016-08-24 11:57:12,469 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 11:57:12,469 INFO: Done:	 Determine folds
+2016-08-24 11:57:12,470 INFO: Start:	 Learning with Mumbo and 5 folds
+2016-08-24 11:57:12,470 INFO: 	Start:	 Fold number 1
+2016-08-24 11:57:14,621 DEBUG: 		Start:	 Iteration 1
+2016-08-24 11:57:14,642 DEBUG: 			View 0 : 0.379146919431
+2016-08-24 11:57:14,652 DEBUG: 			View 1 : 0.620853080569
+2016-08-24 11:57:14,779 DEBUG: 			View 2 : 0.488151658768
+2016-08-24 11:57:14,789 DEBUG: 			View 3 : 0.620853080569
+2016-08-24 11:57:14,848 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:57:14,947 DEBUG: 		Start:	 Iteration 2
+2016-08-24 11:57:14,970 DEBUG: 			View 0 : 0.625592417062
+2016-08-24 11:57:14,983 DEBUG: 			View 1 : 0.63981042654
+2016-08-24 11:57:15,114 DEBUG: 			View 2 : 0.658767772512
+2016-08-24 11:57:15,124 DEBUG: 			View 3 : 0.568720379147
+2016-08-24 11:57:15,196 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:57:15,401 DEBUG: 		Start:	 Iteration 3
+2016-08-24 11:57:15,424 DEBUG: 			View 0 : 0.611374407583
+2016-08-24 11:57:15,437 DEBUG: 			View 1 : 0.450236966825
+2016-08-24 11:57:15,556 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 11:57:15,566 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 11:57:15,641 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:57:15,925 DEBUG: 		Start:	 Iteration 4
+2016-08-24 11:57:15,946 DEBUG: 			View 0 : 0.54028436019
+2016-08-24 11:57:15,958 DEBUG: 			View 1 : 0.630331753555
+2016-08-24 11:57:16,076 DEBUG: 			View 2 : 0.502369668246
+2016-08-24 11:57:16,085 DEBUG: 			View 3 : 0.625592417062
+2016-08-24 11:57:16,162 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:57:16,517 DEBUG: 		Start:	 Iteration 5
+2016-08-24 11:57:16,539 DEBUG: 			View 0 : 0.682464454976
+2016-08-24 11:57:16,551 DEBUG: 			View 1 : 0.720379146919
+2016-08-24 11:57:16,674 DEBUG: 			View 2 : 0.54028436019
+2016-08-24 11:57:16,684 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 11:57:16,763 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:57:17,203 DEBUG: 		Start:	 Iteration 6
+2016-08-24 11:57:17,226 DEBUG: 			View 0 : 0.521327014218
+2016-08-24 11:57:17,238 DEBUG: 			View 1 : 0.715639810427
+2016-08-24 11:57:17,363 DEBUG: 			View 2 : 0.630331753555
+2016-08-24 11:57:17,372 DEBUG: 			View 3 : 0.644549763033
+2016-08-24 11:57:17,454 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:57:17,964 DEBUG: 		Start:	 Iteration 7
+2016-08-24 11:57:17,985 DEBUG: 			View 0 : 0.559241706161
+2016-08-24 11:57:17,997 DEBUG: 			View 1 : 0.398104265403
+2016-08-24 11:57:18,113 DEBUG: 			View 2 : 0.440758293839
+2016-08-24 11:57:18,123 DEBUG: 			View 3 : 0.715639810427
+2016-08-24 11:57:18,206 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:57:18,799 DEBUG: 		Start:	 Iteration 8
+2016-08-24 11:57:18,821 DEBUG: 			View 0 : 0.497630331754
+2016-08-24 11:57:18,833 DEBUG: 			View 1 : 0.502369668246
+2016-08-24 11:57:18,946 DEBUG: 			View 2 : 0.488151658768
+2016-08-24 11:57:18,955 DEBUG: 			View 3 : 0.654028436019
+2016-08-24 11:57:19,042 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:57:19,704 DEBUG: 		Start:	 Iteration 9
+2016-08-24 11:57:19,726 DEBUG: 			View 0 : 0.511848341232
+2016-08-24 11:57:19,736 DEBUG: 			View 1 : 0.635071090047
+2016-08-24 11:57:19,856 DEBUG: 			View 2 : 0.568720379147
+2016-08-24 11:57:19,866 DEBUG: 			View 3 : 0.687203791469
+2016-08-24 11:57:19,955 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:57:20,697 DEBUG: 		Start:	 Iteration 10
+2016-08-24 11:57:20,718 DEBUG: 			View 0 : 0.616113744076
+2016-08-24 11:57:20,730 DEBUG: 			View 1 : 0.630331753555
+2016-08-24 11:57:20,848 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 11:57:20,857 DEBUG: 			View 3 : 0.597156398104
+2016-08-24 11:57:20,950 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:57:21,773 DEBUG: 		Start:	 Iteration 11
+2016-08-24 11:57:21,795 DEBUG: 			View 0 : 0.379146919431
+2016-08-24 11:57:21,806 DEBUG: 			View 1 : 0.450236966825
+2016-08-24 11:57:21,923 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 11:57:21,932 DEBUG: 			View 3 : 0.545023696682
+2016-08-24 11:57:22,027 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:57:22,922 DEBUG: 		Start:	 Iteration 12
+2016-08-24 11:57:22,944 DEBUG: 			View 0 : 0.601895734597
+2016-08-24 11:57:22,955 DEBUG: 			View 1 : 0.663507109005
+2016-08-24 11:57:23,071 DEBUG: 			View 2 : 0.563981042654
+2016-08-24 11:57:23,081 DEBUG: 			View 3 : 0.611374407583
+2016-08-24 11:57:23,178 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:57:24,152 DEBUG: 		Start:	 Iteration 13
+2016-08-24 11:57:24,174 DEBUG: 			View 0 : 0.473933649289
+2016-08-24 11:57:24,185 DEBUG: 			View 1 : 0.682464454976
+2016-08-24 11:57:24,301 DEBUG: 			View 2 : 0.611374407583
+2016-08-24 11:57:24,311 DEBUG: 			View 3 : 0.60663507109
+2016-08-24 11:57:24,411 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:57:25,461 DEBUG: 		Start:	 Iteration 14
+2016-08-24 11:57:25,482 DEBUG: 			View 0 : 0.630331753555
+2016-08-24 11:57:25,493 DEBUG: 			View 1 : 0.644549763033
+2016-08-24 11:57:25,610 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 11:57:25,619 DEBUG: 			View 3 : 0.530805687204
+2016-08-24 11:57:25,722 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:57:26,857 DEBUG: 		Start:	 Iteration 15
+2016-08-24 11:57:26,878 DEBUG: 			View 0 : 0.502369668246
+2016-08-24 11:57:26,889 DEBUG: 			View 1 : 0.592417061611
+2016-08-24 11:57:27,009 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 11:57:27,019 DEBUG: 			View 3 : 0.530805687204
+2016-08-24 11:57:27,123 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:57:28,347 DEBUG: 		Start:	 Iteration 16
+2016-08-24 11:57:28,368 DEBUG: 			View 0 : 0.454976303318
+2016-08-24 11:57:28,379 DEBUG: 			View 1 : 0.535545023697
+2016-08-24 11:57:28,499 DEBUG: 			View 2 : 0.54028436019
+2016-08-24 11:57:28,509 DEBUG: 			View 3 : 0.668246445498
+2016-08-24 11:57:28,617 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:57:29,920 DEBUG: 		Start:	 Iteration 17
+2016-08-24 11:57:29,941 DEBUG: 			View 0 : 0.587677725118
+2016-08-24 11:57:29,952 DEBUG: 			View 1 : 0.511848341232
+2016-08-24 11:57:30,072 DEBUG: 			View 2 : 0.611374407583
+2016-08-24 11:57:30,081 DEBUG: 			View 3 : 0.601895734597
+2016-08-24 11:57:30,193 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:57:31,573 DEBUG: 		Start:	 Iteration 18
+2016-08-24 11:57:31,594 DEBUG: 			View 0 : 0.502369668246
+2016-08-24 11:57:31,605 DEBUG: 			View 1 : 0.682464454976
+2016-08-24 11:57:31,723 DEBUG: 			View 2 : 0.516587677725
+2016-08-24 11:57:31,732 DEBUG: 			View 3 : 0.587677725118
+2016-08-24 11:57:31,846 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:57:33,303 DEBUG: 		Start:	 Iteration 19
+2016-08-24 11:57:33,324 DEBUG: 			View 0 : 0.60663507109
+2016-08-24 11:57:33,335 DEBUG: 			View 1 : 0.663507109005
+2016-08-24 11:57:33,455 DEBUG: 			View 2 : 0.454976303318
+2016-08-24 11:57:33,465 DEBUG: 			View 3 : 0.663507109005
+2016-08-24 11:57:33,582 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:57:35,115 DEBUG: 		Start:	 Iteration 20
+2016-08-24 11:57:35,137 DEBUG: 			View 0 : 0.658767772512
+2016-08-24 11:57:35,148 DEBUG: 			View 1 : 0.644549763033
+2016-08-24 11:57:35,256 DEBUG: 			View 2 : 0.630331753555
+2016-08-24 11:57:35,266 DEBUG: 			View 3 : 0.616113744076
+2016-08-24 11:57:35,390 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:57:37,005 DEBUG: 		Start:	 Iteration 21
+2016-08-24 11:57:37,026 DEBUG: 			View 0 : 0.60663507109
+2016-08-24 11:57:37,037 DEBUG: 			View 1 : 0.644549763033
+2016-08-24 11:57:37,153 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 11:57:37,162 DEBUG: 			View 3 : 0.672985781991
+2016-08-24 11:57:37,285 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:57:38,978 DEBUG: 		Start:	 Iteration 22
+2016-08-24 11:57:38,999 DEBUG: 			View 0 : 0.658767772512
+2016-08-24 11:57:39,010 DEBUG: 			View 1 : 0.473933649289
+2016-08-24 11:57:39,131 DEBUG: 			View 2 : 0.601895734597
+2016-08-24 11:57:39,140 DEBUG: 			View 3 : 0.559241706161
+2016-08-24 11:57:39,265 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:57:41,041 DEBUG: 		Start:	 Iteration 23
+2016-08-24 11:57:41,063 DEBUG: 			View 0 : 0.630331753555
+2016-08-24 11:57:41,073 DEBUG: 			View 1 : 0.492890995261
+2016-08-24 11:57:41,179 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 11:57:41,188 DEBUG: 			View 3 : 0.682464454976
+2016-08-24 11:57:41,317 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:57:43,177 DEBUG: 		Start:	 Iteration 24
+2016-08-24 11:57:43,198 DEBUG: 			View 0 : 0.417061611374
+2016-08-24 11:57:43,208 DEBUG: 			View 1 : 0.663507109005
+2016-08-24 11:57:43,329 DEBUG: 			View 2 : 0.57345971564
+2016-08-24 11:57:43,338 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 11:57:43,468 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:57:45,397 DEBUG: 		Start:	 Iteration 25
+2016-08-24 11:57:45,418 DEBUG: 			View 0 : 0.630331753555
+2016-08-24 11:57:45,428 DEBUG: 			View 1 : 0.388625592417
+2016-08-24 11:57:45,549 DEBUG: 			View 2 : 0.568720379147
+2016-08-24 11:57:45,558 DEBUG: 			View 3 : 0.63981042654
+2016-08-24 11:57:45,690 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:57:47,697 DEBUG: 		Start:	 Iteration 26
+2016-08-24 11:57:47,718 DEBUG: 			View 0 : 0.701421800948
+2016-08-24 11:57:47,727 DEBUG: 			View 1 : 0.388625592417
+2016-08-24 11:57:47,849 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 11:57:47,859 DEBUG: 			View 3 : 0.616113744076
+2016-08-24 11:57:47,994 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:57:50,081 DEBUG: 		Start:	 Iteration 27
+2016-08-24 11:57:50,102 DEBUG: 			View 0 : 0.521327014218
+2016-08-24 11:57:50,112 DEBUG: 			View 1 : 0.744075829384
+2016-08-24 11:57:50,232 DEBUG: 			View 2 : 0.535545023697
+2016-08-24 11:57:50,241 DEBUG: 			View 3 : 0.611374407583
+2016-08-24 11:57:50,382 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:57:52,548 DEBUG: 		Start:	 Iteration 28
+2016-08-24 11:57:52,569 DEBUG: 			View 0 : 0.725118483412
+2016-08-24 11:57:52,579 DEBUG: 			View 1 : 0.478672985782
+2016-08-24 11:57:52,696 DEBUG: 			View 2 : 0.473933649289
+2016-08-24 11:57:52,705 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 11:57:52,847 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:57:55,093 DEBUG: 		Start:	 Iteration 29
+2016-08-24 11:57:55,114 DEBUG: 			View 0 : 0.473933649289
+2016-08-24 11:57:55,124 DEBUG: 			View 1 : 0.611374407583
+2016-08-24 11:57:55,243 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 11:57:55,253 DEBUG: 			View 3 : 0.587677725118
+2016-08-24 11:57:55,398 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:57:57,716 DEBUG: 		Start:	 Iteration 30
+2016-08-24 11:57:57,737 DEBUG: 			View 0 : 0.516587677725
+2016-08-24 11:57:57,747 DEBUG: 			View 1 : 0.582938388626
+2016-08-24 11:57:57,864 DEBUG: 			View 2 : 0.625592417062
+2016-08-24 11:57:57,873 DEBUG: 			View 3 : 0.592417061611
+2016-08-24 11:57:58,023 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:58:00,451 DEBUG: 		Start:	 Iteration 31
+2016-08-24 11:58:00,472 DEBUG: 			View 0 : 0.488151658768
+2016-08-24 11:58:00,482 DEBUG: 			View 1 : 0.677725118483
+2016-08-24 11:58:00,594 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 11:58:00,604 DEBUG: 			View 3 : 0.530805687204
+2016-08-24 11:58:00,755 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:58:03,265 DEBUG: 		Start:	 Iteration 32
+2016-08-24 11:58:03,287 DEBUG: 			View 0 : 0.507109004739
+2016-08-24 11:58:03,296 DEBUG: 			View 1 : 0.559241706161
+2016-08-24 11:58:03,410 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 11:58:03,419 DEBUG: 			View 3 : 0.687203791469
+2016-08-24 11:58:03,573 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:58:06,148 DEBUG: 		Start:	 Iteration 33
+2016-08-24 11:58:06,168 DEBUG: 			View 0 : 0.545023696682
+2016-08-24 11:58:06,179 DEBUG: 			View 1 : 0.54028436019
+2016-08-24 11:58:06,300 DEBUG: 			View 2 : 0.644549763033
+2016-08-24 11:58:06,310 DEBUG: 			View 3 : 0.597156398104
+2016-08-24 11:58:06,465 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:58:09,133 DEBUG: 		Start:	 Iteration 34
+2016-08-24 11:58:09,155 DEBUG: 			View 0 : 0.549763033175
+2016-08-24 11:58:09,164 DEBUG: 			View 1 : 0.407582938389
+2016-08-24 11:58:09,283 DEBUG: 			View 2 : 0.54028436019
+2016-08-24 11:58:09,292 DEBUG: 			View 3 : 0.507109004739
+2016-08-24 11:58:09,450 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:58:12,216 DEBUG: 		Start:	 Iteration 35
+2016-08-24 11:58:12,237 DEBUG: 			View 0 : 0.582938388626
+2016-08-24 11:58:12,247 DEBUG: 			View 1 : 0.611374407583
+2016-08-24 11:58:12,360 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 11:58:12,369 DEBUG: 			View 3 : 0.611374407583
+2016-08-24 11:58:12,530 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:58:15,378 DEBUG: 		Start:	 Iteration 36
+2016-08-24 11:58:15,399 DEBUG: 			View 0 : 0.473933649289
+2016-08-24 11:58:15,408 DEBUG: 			View 1 : 0.492890995261
+2016-08-24 11:58:15,522 DEBUG: 			View 2 : 0.635071090047
+2016-08-24 11:58:15,532 DEBUG: 			View 3 : 0.530805687204
+2016-08-24 11:58:15,696 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:58:18,642 DEBUG: 		Start:	 Iteration 37
+2016-08-24 11:58:18,663 DEBUG: 			View 0 : 0.559241706161
+2016-08-24 11:58:18,673 DEBUG: 			View 1 : 0.511848341232
+2016-08-24 11:58:18,794 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 11:58:18,803 DEBUG: 			View 3 : 0.545023696682
+2016-08-24 11:58:18,971 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:58:22,000 DEBUG: 		Start:	 Iteration 38
+2016-08-24 11:58:22,021 DEBUG: 			View 0 : 0.549763033175
+2016-08-24 11:58:22,031 DEBUG: 			View 1 : 0.654028436019
+2016-08-24 11:58:22,156 DEBUG: 			View 2 : 0.549763033175
+2016-08-24 11:58:22,165 DEBUG: 			View 3 : 0.42654028436
+2016-08-24 11:58:22,335 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:58:25,444 DEBUG: 		Start:	 Iteration 39
+2016-08-24 11:58:25,465 DEBUG: 			View 0 : 0.635071090047
+2016-08-24 11:58:25,475 DEBUG: 			View 1 : 0.838862559242
+2016-08-24 11:58:25,592 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 11:58:25,601 DEBUG: 			View 3 : 0.526066350711
+2016-08-24 11:58:25,773 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:58:28,956 DEBUG: 		Start:	 Iteration 40
+2016-08-24 11:58:28,978 DEBUG: 			View 0 : 0.421800947867
+2016-08-24 11:58:28,988 DEBUG: 			View 1 : 0.545023696682
+2016-08-24 11:58:29,112 DEBUG: 			View 2 : 0.568720379147
+2016-08-24 11:58:29,121 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 11:58:29,297 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:58:32,559 DEBUG: 		Start:	 Iteration 41
+2016-08-24 11:58:32,580 DEBUG: 			View 0 : 0.559241706161
+2016-08-24 11:58:32,589 DEBUG: 			View 1 : 0.464454976303
+2016-08-24 11:58:32,706 DEBUG: 			View 2 : 0.601895734597
+2016-08-24 11:58:32,715 DEBUG: 			View 3 : 0.630331753555
+2016-08-24 11:58:32,893 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:58:36,238 DEBUG: 		Start:	 Iteration 42
+2016-08-24 11:58:36,259 DEBUG: 			View 0 : 0.54028436019
+2016-08-24 11:58:36,269 DEBUG: 			View 1 : 0.492890995261
+2016-08-24 11:58:36,391 DEBUG: 			View 2 : 0.563981042654
+2016-08-24 11:58:36,400 DEBUG: 			View 3 : 0.611374407583
+2016-08-24 11:58:36,581 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:58:40,001 DEBUG: 		Start:	 Iteration 43
+2016-08-24 11:58:40,022 DEBUG: 			View 0 : 0.511848341232
+2016-08-24 11:58:40,032 DEBUG: 			View 1 : 0.60663507109
+2016-08-24 11:58:40,150 DEBUG: 			View 2 : 0.57345971564
+2016-08-24 11:58:40,159 DEBUG: 			View 3 : 0.644549763033
+2016-08-24 11:58:40,346 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:58:43,845 DEBUG: 		Start:	 Iteration 44
+2016-08-24 11:58:43,866 DEBUG: 			View 0 : 0.63981042654
+2016-08-24 11:58:43,876 DEBUG: 			View 1 : 0.521327014218
+2016-08-24 11:58:43,997 DEBUG: 			View 2 : 0.568720379147
+2016-08-24 11:58:44,007 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 11:58:44,194 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:58:47,769 DEBUG: 		Start:	 Iteration 45
+2016-08-24 11:58:47,790 DEBUG: 			View 0 : 0.597156398104
+2016-08-24 11:58:47,800 DEBUG: 			View 1 : 0.417061611374
+2016-08-24 11:58:47,921 DEBUG: 			View 2 : 0.635071090047
+2016-08-24 11:58:47,931 DEBUG: 			View 3 : 0.554502369668
+2016-08-24 11:58:48,122 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:58:51,801 DEBUG: 		Start:	 Iteration 46
+2016-08-24 11:58:51,822 DEBUG: 			View 0 : 0.767772511848
+2016-08-24 11:58:51,832 DEBUG: 			View 1 : 0.516587677725
+2016-08-24 11:58:51,953 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 11:58:51,962 DEBUG: 			View 3 : 0.511848341232
+2016-08-24 11:58:52,156 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 11:58:55,936 DEBUG: 		Start:	 Iteration 47
+2016-08-24 11:58:55,957 DEBUG: 			View 0 : 0.601895734597
+2016-08-24 11:58:55,967 DEBUG: 			View 1 : 0.663507109005
+2016-08-24 11:58:56,088 DEBUG: 			View 2 : 0.492890995261
+2016-08-24 11:58:56,097 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 11:58:56,294 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:59:00,122 DEBUG: 		Start:	 Iteration 48
+2016-08-24 11:59:00,144 DEBUG: 			View 0 : 0.57345971564
+2016-08-24 11:59:00,153 DEBUG: 			View 1 : 0.535545023697
+2016-08-24 11:59:00,265 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 11:59:00,274 DEBUG: 			View 3 : 0.63981042654
+2016-08-24 11:59:00,473 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:59:04,401 DEBUG: 		Start:	 Iteration 49
+2016-08-24 11:59:04,422 DEBUG: 			View 0 : 0.587677725118
+2016-08-24 11:59:04,432 DEBUG: 			View 1 : 0.511848341232
+2016-08-24 11:59:04,563 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 11:59:04,573 DEBUG: 			View 3 : 0.668246445498
+2016-08-24 11:59:04,783 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:59:08,788 DEBUG: 		Start:	 Iteration 50
+2016-08-24 11:59:08,810 DEBUG: 			View 0 : 0.578199052133
+2016-08-24 11:59:08,819 DEBUG: 			View 1 : 0.317535545024
+2016-08-24 11:59:08,939 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 11:59:08,948 DEBUG: 			View 3 : 0.511848341232
+2016-08-24 11:59:09,155 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:59:13,226 DEBUG: 		Start:	 Iteration 51
+2016-08-24 11:59:13,247 DEBUG: 			View 0 : 0.559241706161
+2016-08-24 11:59:13,257 DEBUG: 			View 1 : 0.526066350711
+2016-08-24 11:59:13,375 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 11:59:13,384 DEBUG: 			View 3 : 0.530805687204
+2016-08-24 11:59:13,595 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:59:17,767 DEBUG: 		Start:	 Iteration 52
+2016-08-24 11:59:17,788 DEBUG: 			View 0 : 0.549763033175
+2016-08-24 11:59:17,798 DEBUG: 			View 1 : 0.488151658768
+2016-08-24 11:59:17,910 DEBUG: 			View 2 : 0.611374407583
+2016-08-24 11:59:17,919 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 11:59:18,133 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:59:22,394 DEBUG: 		Start:	 Iteration 53
+2016-08-24 11:59:22,415 DEBUG: 			View 0 : 0.492890995261
+2016-08-24 11:59:22,425 DEBUG: 			View 1 : 0.582938388626
+2016-08-24 11:59:22,545 DEBUG: 			View 2 : 0.649289099526
+2016-08-24 11:59:22,555 DEBUG: 			View 3 : 0.663507109005
+2016-08-24 11:59:22,768 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:59:27,110 DEBUG: 		Start:	 Iteration 54
+2016-08-24 11:59:27,131 DEBUG: 			View 0 : 0.554502369668
+2016-08-24 11:59:27,141 DEBUG: 			View 1 : 0.620853080569
+2016-08-24 11:59:27,262 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 11:59:27,272 DEBUG: 			View 3 : 0.630331753555
+2016-08-24 11:59:27,488 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:59:31,904 DEBUG: 		Start:	 Iteration 55
+2016-08-24 11:59:31,925 DEBUG: 			View 0 : 0.592417061611
+2016-08-24 11:59:31,935 DEBUG: 			View 1 : 0.436018957346
+2016-08-24 11:59:32,054 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 11:59:32,064 DEBUG: 			View 3 : 0.554502369668
+2016-08-24 11:59:32,283 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 11:59:36,798 DEBUG: 		Start:	 Iteration 56
+2016-08-24 11:59:36,819 DEBUG: 			View 0 : 0.616113744076
+2016-08-24 11:59:36,829 DEBUG: 			View 1 : 0.383886255924
+2016-08-24 11:59:36,947 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 11:59:36,956 DEBUG: 			View 3 : 0.658767772512
+2016-08-24 11:59:37,178 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:59:41,766 DEBUG: 		Start:	 Iteration 57
+2016-08-24 11:59:41,787 DEBUG: 			View 0 : 0.559241706161
+2016-08-24 11:59:41,796 DEBUG: 			View 1 : 0.592417061611
+2016-08-24 11:59:41,913 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 11:59:41,922 DEBUG: 			View 3 : 0.582938388626
+2016-08-24 11:59:42,148 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:59:46,820 DEBUG: 		Start:	 Iteration 58
+2016-08-24 11:59:46,841 DEBUG: 			View 0 : 0.57345971564
+2016-08-24 11:59:46,851 DEBUG: 			View 1 : 0.478672985782
+2016-08-24 11:59:46,973 DEBUG: 			View 2 : 0.563981042654
+2016-08-24 11:59:46,982 DEBUG: 			View 3 : 0.630331753555
+2016-08-24 11:59:47,211 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 11:59:51,954 DEBUG: 		Start:	 Iteration 59
+2016-08-24 11:59:51,975 DEBUG: 			View 0 : 0.582938388626
+2016-08-24 11:59:51,985 DEBUG: 			View 1 : 0.625592417062
+2016-08-24 11:59:52,105 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 11:59:52,115 DEBUG: 			View 3 : 0.464454976303
+2016-08-24 11:59:52,344 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 11:59:57,158 DEBUG: 		Start:	 Iteration 60
+2016-08-24 11:59:57,179 DEBUG: 			View 0 : 0.644549763033
+2016-08-24 11:59:57,189 DEBUG: 			View 1 : 0.582938388626
+2016-08-24 11:59:57,305 DEBUG: 			View 2 : 0.530805687204
+2016-08-24 11:59:57,314 DEBUG: 			View 3 : 0.521327014218
+2016-08-24 11:59:57,548 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:00:02,454 DEBUG: 		Start:	 Iteration 61
+2016-08-24 12:00:02,476 DEBUG: 			View 0 : 0.492890995261
+2016-08-24 12:00:02,485 DEBUG: 			View 1 : 0.545023696682
+2016-08-24 12:00:02,603 DEBUG: 			View 2 : 0.568720379147
+2016-08-24 12:00:02,613 DEBUG: 			View 3 : 0.549763033175
+2016-08-24 12:00:02,847 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:00:07,853 DEBUG: 		Start:	 Iteration 62
+2016-08-24 12:00:07,875 DEBUG: 			View 0 : 0.388625592417
+2016-08-24 12:00:07,885 DEBUG: 			View 1 : 0.691943127962
+2016-08-24 12:00:08,001 DEBUG: 			View 2 : 0.63981042654
+2016-08-24 12:00:08,011 DEBUG: 			View 3 : 0.635071090047
+2016-08-24 12:00:08,248 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:00:13,319 DEBUG: 		Start:	 Iteration 63
+2016-08-24 12:00:13,340 DEBUG: 			View 0 : 0.563981042654
+2016-08-24 12:00:13,350 DEBUG: 			View 1 : 0.63981042654
+2016-08-24 12:00:13,468 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 12:00:13,478 DEBUG: 			View 3 : 0.530805687204
+2016-08-24 12:00:13,717 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:00:18,868 DEBUG: 		Start:	 Iteration 64
+2016-08-24 12:00:18,889 DEBUG: 			View 0 : 0.492890995261
+2016-08-24 12:00:18,899 DEBUG: 			View 1 : 0.559241706161
+2016-08-24 12:00:19,016 DEBUG: 			View 2 : 0.473933649289
+2016-08-24 12:00:19,025 DEBUG: 			View 3 : 0.715639810427
+2016-08-24 12:00:19,268 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:00:24,514 DEBUG: 		Start:	 Iteration 65
+2016-08-24 12:00:24,535 DEBUG: 			View 0 : 0.526066350711
+2016-08-24 12:00:24,545 DEBUG: 			View 1 : 0.668246445498
+2016-08-24 12:00:24,657 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 12:00:24,667 DEBUG: 			View 3 : 0.654028436019
+2016-08-24 12:00:24,914 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:00:30,236 DEBUG: 		Start:	 Iteration 66
+2016-08-24 12:00:30,257 DEBUG: 			View 0 : 0.649289099526
+2016-08-24 12:00:30,267 DEBUG: 			View 1 : 0.421800947867
+2016-08-24 12:00:30,388 DEBUG: 			View 2 : 0.611374407583
+2016-08-24 12:00:30,397 DEBUG: 			View 3 : 0.473933649289
+2016-08-24 12:00:30,649 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:00:36,037 DEBUG: 		Start:	 Iteration 67
+2016-08-24 12:00:36,058 DEBUG: 			View 0 : 0.644549763033
+2016-08-24 12:00:36,068 DEBUG: 			View 1 : 0.668246445498
+2016-08-24 12:00:36,184 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 12:00:36,193 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 12:00:36,445 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:00:41,924 DEBUG: 		Start:	 Iteration 68
+2016-08-24 12:00:41,945 DEBUG: 			View 0 : 0.568720379147
+2016-08-24 12:00:41,955 DEBUG: 			View 1 : 0.649289099526
+2016-08-24 12:00:42,071 DEBUG: 			View 2 : 0.57345971564
+2016-08-24 12:00:42,080 DEBUG: 			View 3 : 0.60663507109
+2016-08-24 12:00:42,335 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:00:47,885 DEBUG: 		Start:	 Iteration 69
+2016-08-24 12:00:47,907 DEBUG: 			View 0 : 0.45971563981
+2016-08-24 12:00:47,916 DEBUG: 			View 1 : 0.706161137441
+2016-08-24 12:00:48,034 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 12:00:48,043 DEBUG: 			View 3 : 0.672985781991
+2016-08-24 12:00:48,301 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:00:53,925 DEBUG: 		Start:	 Iteration 70
+2016-08-24 12:00:53,946 DEBUG: 			View 0 : 0.587677725118
+2016-08-24 12:00:53,955 DEBUG: 			View 1 : 0.60663507109
+2016-08-24 12:00:54,077 DEBUG: 			View 2 : 0.654028436019
+2016-08-24 12:00:54,086 DEBUG: 			View 3 : 0.635071090047
+2016-08-24 12:00:54,348 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:01:00,090 DEBUG: 		Start:	 Iteration 71
+2016-08-24 12:01:00,111 DEBUG: 			View 0 : 0.511848341232
+2016-08-24 12:01:00,121 DEBUG: 			View 1 : 0.729857819905
+2016-08-24 12:01:00,238 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 12:01:00,247 DEBUG: 			View 3 : 0.687203791469
+2016-08-24 12:01:00,509 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:01:06,310 DEBUG: 		Start:	 Iteration 72
+2016-08-24 12:01:06,331 DEBUG: 			View 0 : 0.630331753555
+2016-08-24 12:01:06,341 DEBUG: 			View 1 : 0.388625592417
+2016-08-24 12:01:06,454 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 12:01:06,463 DEBUG: 			View 3 : 0.597156398104
+2016-08-24 12:01:06,728 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:01:12,616 DEBUG: 		Start:	 Iteration 73
+2016-08-24 12:01:12,637 DEBUG: 			View 0 : 0.701421800948
+2016-08-24 12:01:12,647 DEBUG: 			View 1 : 0.691943127962
+2016-08-24 12:01:12,765 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 12:01:12,774 DEBUG: 			View 3 : 0.710900473934
+2016-08-24 12:01:13,045 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:01:19,004 DEBUG: 		Start:	 Iteration 74
+2016-08-24 12:01:19,025 DEBUG: 			View 0 : 0.578199052133
+2016-08-24 12:01:19,035 DEBUG: 			View 1 : 0.559241706161
+2016-08-24 12:01:19,156 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 12:01:19,165 DEBUG: 			View 3 : 0.677725118483
+2016-08-24 12:01:19,437 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:01:25,474 DEBUG: 		Start:	 Iteration 75
+2016-08-24 12:01:25,495 DEBUG: 			View 0 : 0.601895734597
+2016-08-24 12:01:25,505 DEBUG: 			View 1 : 0.649289099526
+2016-08-24 12:01:25,617 DEBUG: 			View 2 : 0.549763033175
+2016-08-24 12:01:25,626 DEBUG: 			View 3 : 0.521327014218
+2016-08-24 12:01:25,899 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:01:32,011 DEBUG: 		Start:	 Iteration 76
+2016-08-24 12:01:32,032 DEBUG: 			View 0 : 0.559241706161
+2016-08-24 12:01:32,042 DEBUG: 			View 1 : 0.549763033175
+2016-08-24 12:01:32,155 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 12:01:32,164 DEBUG: 			View 3 : 0.530805687204
+2016-08-24 12:01:32,442 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:01:38,648 DEBUG: 		Start:	 Iteration 77
+2016-08-24 12:01:38,669 DEBUG: 			View 0 : 0.620853080569
+2016-08-24 12:01:38,679 DEBUG: 			View 1 : 0.620853080569
+2016-08-24 12:01:38,796 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 12:01:38,805 DEBUG: 			View 3 : 0.601895734597
+2016-08-24 12:01:39,085 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:01:45,370 DEBUG: 		Start:	 Iteration 78
+2016-08-24 12:01:45,392 DEBUG: 			View 0 : 0.42654028436
+2016-08-24 12:01:45,401 DEBUG: 			View 1 : 0.440758293839
+2016-08-24 12:01:45,518 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 12:01:45,528 DEBUG: 			View 3 : 0.715639810427
+2016-08-24 12:01:45,810 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:01:52,166 DEBUG: 		Start:	 Iteration 79
+2016-08-24 12:01:52,187 DEBUG: 			View 0 : 0.649289099526
+2016-08-24 12:01:52,196 DEBUG: 			View 1 : 0.63981042654
+2016-08-24 12:01:52,314 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 12:01:52,323 DEBUG: 			View 3 : 0.478672985782
+2016-08-24 12:01:52,609 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:01:59,070 DEBUG: 		Start:	 Iteration 80
+2016-08-24 12:01:59,092 DEBUG: 			View 0 : 0.568720379147
+2016-08-24 12:01:59,101 DEBUG: 			View 1 : 0.469194312796
+2016-08-24 12:01:59,214 DEBUG: 			View 2 : 0.530805687204
+2016-08-24 12:01:59,223 DEBUG: 			View 3 : 0.649289099526
+2016-08-24 12:01:59,513 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:02:06,043 DEBUG: 		Start:	 Iteration 81
+2016-08-24 12:02:06,064 DEBUG: 			View 0 : 0.654028436019
+2016-08-24 12:02:06,074 DEBUG: 			View 1 : 0.644549763033
+2016-08-24 12:02:06,186 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 12:02:06,195 DEBUG: 			View 3 : 0.63981042654
+2016-08-24 12:02:06,487 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:02:13,114 DEBUG: 		Start:	 Iteration 82
+2016-08-24 12:02:13,136 DEBUG: 			View 0 : 0.502369668246
+2016-08-24 12:02:13,146 DEBUG: 			View 1 : 0.36018957346
+2016-08-24 12:02:13,274 DEBUG: 			View 2 : 0.526066350711
+2016-08-24 12:02:13,284 DEBUG: 			View 3 : 0.63981042654
+2016-08-24 12:02:13,581 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:02:20,360 DEBUG: 		Start:	 Iteration 83
+2016-08-24 12:02:20,381 DEBUG: 			View 0 : 0.502369668246
+2016-08-24 12:02:20,391 DEBUG: 			View 1 : 0.654028436019
+2016-08-24 12:02:20,515 DEBUG: 			View 2 : 0.492890995261
+2016-08-24 12:02:20,524 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 12:02:20,828 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:02:27,746 DEBUG: 		Start:	 Iteration 84
+2016-08-24 12:02:27,767 DEBUG: 			View 0 : 0.57345971564
+2016-08-24 12:02:27,777 DEBUG: 			View 1 : 0.582938388626
+2016-08-24 12:02:27,933 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 12:02:27,942 DEBUG: 			View 3 : 0.530805687204
+2016-08-24 12:02:28,242 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:02:35,093 DEBUG: 		Start:	 Iteration 85
+2016-08-24 12:02:35,114 DEBUG: 			View 0 : 0.649289099526
+2016-08-24 12:02:35,124 DEBUG: 			View 1 : 0.63981042654
+2016-08-24 12:02:35,242 DEBUG: 			View 2 : 0.526066350711
+2016-08-24 12:02:35,251 DEBUG: 			View 3 : 0.431279620853
+2016-08-24 12:02:35,553 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:02:42,467 DEBUG: 		Start:	 Iteration 86
+2016-08-24 12:02:42,488 DEBUG: 			View 0 : 0.601895734597
+2016-08-24 12:02:42,498 DEBUG: 			View 1 : 0.431279620853
+2016-08-24 12:02:42,619 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 12:02:42,628 DEBUG: 			View 3 : 0.530805687204
+2016-08-24 12:02:42,932 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:02:49,946 DEBUG: 		Start:	 Iteration 87
+2016-08-24 12:02:49,965 DEBUG: 			View 0 : 0.369668246445
+2016-08-24 12:02:49,975 DEBUG: 			View 1 : 0.54028436019
+2016-08-24 12:02:50,088 DEBUG: 			View 2 : 0.63981042654
+2016-08-24 12:02:50,098 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 12:02:50,405 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:02:57,532 DEBUG: 		Start:	 Iteration 88
+2016-08-24 12:02:57,553 DEBUG: 			View 0 : 0.436018957346
+2016-08-24 12:02:57,563 DEBUG: 			View 1 : 0.587677725118
+2016-08-24 12:02:57,676 DEBUG: 			View 2 : 0.568720379147
+2016-08-24 12:02:57,685 DEBUG: 			View 3 : 0.644549763033
+2016-08-24 12:02:57,995 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:03:05,188 DEBUG: 		Start:	 Iteration 89
+2016-08-24 12:03:05,209 DEBUG: 			View 0 : 0.60663507109
+2016-08-24 12:03:05,219 DEBUG: 			View 1 : 0.663507109005
+2016-08-24 12:03:05,332 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 12:03:05,342 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 12:03:05,655 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:03:12,949 DEBUG: 		Start:	 Iteration 90
+2016-08-24 12:03:12,969 DEBUG: 			View 0 : 0.597156398104
+2016-08-24 12:03:12,979 DEBUG: 			View 1 : 0.563981042654
+2016-08-24 12:03:13,100 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 12:03:13,109 DEBUG: 			View 3 : 0.559241706161
+2016-08-24 12:03:13,425 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:03:20,775 DEBUG: 		Start:	 Iteration 91
+2016-08-24 12:03:20,796 DEBUG: 			View 0 : 0.497630331754
+2016-08-24 12:03:20,806 DEBUG: 			View 1 : 0.60663507109
+2016-08-24 12:03:20,925 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 12:03:20,934 DEBUG: 			View 3 : 0.582938388626
+2016-08-24 12:03:21,297 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:03:28,741 DEBUG: 		Start:	 Iteration 92
+2016-08-24 12:03:28,762 DEBUG: 			View 0 : 0.54028436019
+2016-08-24 12:03:28,772 DEBUG: 			View 1 : 0.587677725118
+2016-08-24 12:03:28,877 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 12:03:28,886 DEBUG: 			View 3 : 0.549763033175
+2016-08-24 12:03:29,206 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:03:36,720 DEBUG: 		Start:	 Iteration 93
+2016-08-24 12:03:36,741 DEBUG: 			View 0 : 0.473933649289
+2016-08-24 12:03:36,751 DEBUG: 			View 1 : 0.616113744076
+2016-08-24 12:03:36,873 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 12:03:36,882 DEBUG: 			View 3 : 0.635071090047
+2016-08-24 12:03:37,206 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:03:44,800 DEBUG: 		Start:	 Iteration 94
+2016-08-24 12:03:44,822 DEBUG: 			View 0 : 0.469194312796
+2016-08-24 12:03:44,831 DEBUG: 			View 1 : 0.578199052133
+2016-08-24 12:03:44,953 DEBUG: 			View 2 : 0.616113744076
+2016-08-24 12:03:44,962 DEBUG: 			View 3 : 0.663507109005
+2016-08-24 12:03:45,290 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:03:52,966 DEBUG: 		Start:	 Iteration 95
+2016-08-24 12:03:52,988 DEBUG: 			View 0 : 0.530805687204
+2016-08-24 12:03:52,997 DEBUG: 			View 1 : 0.687203791469
+2016-08-24 12:03:53,118 DEBUG: 			View 2 : 0.63981042654
+2016-08-24 12:03:53,128 DEBUG: 			View 3 : 0.587677725118
+2016-08-24 12:03:53,458 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:04:01,211 DEBUG: 		Start:	 Iteration 96
+2016-08-24 12:04:01,232 DEBUG: 			View 0 : 0.469194312796
+2016-08-24 12:04:01,242 DEBUG: 			View 1 : 0.601895734597
+2016-08-24 12:04:01,350 DEBUG: 			View 2 : 0.611374407583
+2016-08-24 12:04:01,359 DEBUG: 			View 3 : 0.635071090047
+2016-08-24 12:04:01,694 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:04:09,530 DEBUG: 		Start:	 Iteration 97
+2016-08-24 12:04:09,552 DEBUG: 			View 0 : 0.488151658768
+2016-08-24 12:04:09,563 DEBUG: 			View 1 : 0.436018957346
+2016-08-24 12:04:09,681 DEBUG: 			View 2 : 0.658767772512
+2016-08-24 12:04:09,690 DEBUG: 			View 3 : 0.630331753555
+2016-08-24 12:04:10,026 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:04:17,961 DEBUG: 		Start:	 Iteration 98
+2016-08-24 12:04:17,982 DEBUG: 			View 0 : 0.464454976303
+2016-08-24 12:04:17,992 DEBUG: 			View 1 : 0.545023696682
+2016-08-24 12:04:18,109 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 12:04:18,118 DEBUG: 			View 3 : 0.526066350711
+2016-08-24 12:04:18,456 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:04:26,502 DEBUG: 		Start:	 Iteration 99
+2016-08-24 12:04:26,523 DEBUG: 			View 0 : 0.563981042654
+2016-08-24 12:04:26,533 DEBUG: 			View 1 : 0.630331753555
+2016-08-24 12:04:26,641 DEBUG: 			View 2 : 0.625592417062
+2016-08-24 12:04:26,651 DEBUG: 			View 3 : 0.530805687204
+2016-08-24 12:04:26,992 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:04:35,093 DEBUG: 		Start:	 Iteration 100
+2016-08-24 12:04:35,115 DEBUG: 			View 0 : 0.63981042654
+2016-08-24 12:04:35,125 DEBUG: 			View 1 : 0.450236966825
+2016-08-24 12:04:35,244 DEBUG: 			View 2 : 0.57345971564
+2016-08-24 12:04:35,254 DEBUG: 			View 3 : 0.554502369668
+2016-08-24 12:04:35,597 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:04:43,787 DEBUG: 		Start:	 Iteration 101
+2016-08-24 12:04:43,808 DEBUG: 			View 0 : 0.57345971564
+2016-08-24 12:04:43,818 DEBUG: 			View 1 : 0.587677725118
+2016-08-24 12:04:43,934 DEBUG: 			View 2 : 0.535545023697
+2016-08-24 12:04:43,943 DEBUG: 			View 3 : 0.568720379147
+2016-08-24 12:04:44,291 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:04:52,538 DEBUG: 		Start:	 Iteration 102
+2016-08-24 12:04:52,559 DEBUG: 			View 0 : 0.507109004739
+2016-08-24 12:04:52,568 DEBUG: 			View 1 : 0.597156398104
+2016-08-24 12:04:52,681 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 12:04:52,690 DEBUG: 			View 3 : 0.559241706161
+2016-08-24 12:04:53,040 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:05:01,389 DEBUG: 		Start:	 Iteration 103
+2016-08-24 12:05:01,411 DEBUG: 			View 0 : 0.616113744076
+2016-08-24 12:05:01,421 DEBUG: 			View 1 : 0.545023696682
+2016-08-24 12:05:01,540 DEBUG: 			View 2 : 0.625592417062
+2016-08-24 12:05:01,549 DEBUG: 			View 3 : 0.635071090047
+2016-08-24 12:05:01,901 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:05:10,323 DEBUG: 		Start:	 Iteration 104
+2016-08-24 12:05:10,344 DEBUG: 			View 0 : 0.511848341232
+2016-08-24 12:05:10,354 DEBUG: 			View 1 : 0.483412322275
+2016-08-24 12:05:10,473 DEBUG: 			View 2 : 0.601895734597
+2016-08-24 12:05:10,482 DEBUG: 			View 3 : 0.535545023697
+2016-08-24 12:05:10,838 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:05:19,346 DEBUG: 		Start:	 Iteration 105
+2016-08-24 12:05:19,367 DEBUG: 			View 0 : 0.601895734597
+2016-08-24 12:05:19,377 DEBUG: 			View 1 : 0.625592417062
+2016-08-24 12:05:19,491 DEBUG: 			View 2 : 0.526066350711
+2016-08-24 12:05:19,500 DEBUG: 			View 3 : 0.616113744076
+2016-08-24 12:05:19,859 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:05:28,447 DEBUG: 		Start:	 Iteration 106
+2016-08-24 12:05:28,468 DEBUG: 			View 0 : 0.601895734597
+2016-08-24 12:05:28,478 DEBUG: 			View 1 : 0.507109004739
+2016-08-24 12:05:28,592 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 12:05:28,601 DEBUG: 			View 3 : 0.54028436019
+2016-08-24 12:05:28,962 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:05:37,647 DEBUG: 		Start:	 Iteration 107
+2016-08-24 12:05:37,668 DEBUG: 			View 0 : 0.601895734597
+2016-08-24 12:05:37,678 DEBUG: 			View 1 : 0.57345971564
+2016-08-24 12:05:37,800 DEBUG: 			View 2 : 0.625592417062
+2016-08-24 12:05:37,809 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 12:05:38,173 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:05:46,950 DEBUG: 		Start:	 Iteration 108
+2016-08-24 12:05:46,971 DEBUG: 			View 0 : 0.630331753555
+2016-08-24 12:05:46,981 DEBUG: 			View 1 : 0.60663507109
+2016-08-24 12:05:47,093 DEBUG: 			View 2 : 0.625592417062
+2016-08-24 12:05:47,102 DEBUG: 			View 3 : 0.715639810427
+2016-08-24 12:05:47,469 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:05:56,315 DEBUG: 		Start:	 Iteration 109
+2016-08-24 12:05:56,336 DEBUG: 			View 0 : 0.649289099526
+2016-08-24 12:05:56,345 DEBUG: 			View 1 : 0.582938388626
+2016-08-24 12:05:56,462 DEBUG: 			View 2 : 0.644549763033
+2016-08-24 12:05:56,471 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 12:05:56,844 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:06:05,777 DEBUG: 		Start:	 Iteration 110
+2016-08-24 12:06:05,798 DEBUG: 			View 0 : 0.568720379147
+2016-08-24 12:06:05,808 DEBUG: 			View 1 : 0.526066350711
+2016-08-24 12:06:05,930 DEBUG: 			View 2 : 0.535545023697
+2016-08-24 12:06:05,939 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 12:06:06,312 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:06:15,323 DEBUG: 		Start:	 Iteration 111
+2016-08-24 12:06:15,344 DEBUG: 			View 0 : 0.568720379147
+2016-08-24 12:06:15,354 DEBUG: 			View 1 : 0.545023696682
+2016-08-24 12:06:15,478 DEBUG: 			View 2 : 0.649289099526
+2016-08-24 12:06:15,488 DEBUG: 			View 3 : 0.60663507109
+2016-08-24 12:06:15,862 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:06:24,977 DEBUG: 		Start:	 Iteration 112
+2016-08-24 12:06:24,998 DEBUG: 			View 0 : 0.502369668246
+2016-08-24 12:06:25,008 DEBUG: 			View 1 : 0.563981042654
+2016-08-24 12:06:25,132 DEBUG: 			View 2 : 0.54028436019
+2016-08-24 12:06:25,141 DEBUG: 			View 3 : 0.587677725118
+2016-08-24 12:06:25,522 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:06:34,714 DEBUG: 		Start:	 Iteration 113
+2016-08-24 12:06:34,735 DEBUG: 			View 0 : 0.568720379147
+2016-08-24 12:06:34,744 DEBUG: 			View 1 : 0.507109004739
+2016-08-24 12:06:34,868 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 12:06:34,877 DEBUG: 			View 3 : 0.63981042654
+2016-08-24 12:06:35,257 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:06:44,518 DEBUG: 		Start:	 Iteration 114
+2016-08-24 12:06:44,539 DEBUG: 			View 0 : 0.445497630332
+2016-08-24 12:06:44,548 DEBUG: 			View 1 : 0.597156398104
+2016-08-24 12:06:44,669 DEBUG: 			View 2 : 0.563981042654
+2016-08-24 12:06:44,679 DEBUG: 			View 3 : 0.611374407583
+2016-08-24 12:06:45,064 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:06:54,444 DEBUG: 		Start:	 Iteration 115
+2016-08-24 12:06:54,465 DEBUG: 			View 0 : 0.526066350711
+2016-08-24 12:06:54,475 DEBUG: 			View 1 : 0.63981042654
+2016-08-24 12:06:54,593 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 12:06:54,602 DEBUG: 			View 3 : 0.554502369668
+2016-08-24 12:06:54,988 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:07:04,409 DEBUG: 		Start:	 Iteration 116
+2016-08-24 12:07:04,431 DEBUG: 			View 0 : 0.60663507109
+2016-08-24 12:07:04,441 DEBUG: 			View 1 : 0.734597156398
+2016-08-24 12:07:04,563 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 12:07:04,572 DEBUG: 			View 3 : 0.587677725118
+2016-08-24 12:07:04,967 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:07:14,506 DEBUG: 		Start:	 Iteration 117
+2016-08-24 12:07:14,527 DEBUG: 			View 0 : 0.545023696682
+2016-08-24 12:07:14,537 DEBUG: 			View 1 : 0.611374407583
+2016-08-24 12:07:14,654 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 12:07:14,663 DEBUG: 			View 3 : 0.530805687204
+2016-08-24 12:07:15,054 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:07:24,664 DEBUG: 		Start:	 Iteration 118
+2016-08-24 12:07:24,686 DEBUG: 			View 0 : 0.649289099526
+2016-08-24 12:07:24,695 DEBUG: 			View 1 : 0.42654028436
+2016-08-24 12:07:24,813 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 12:07:24,823 DEBUG: 			View 3 : 0.620853080569
+2016-08-24 12:07:25,216 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:07:34,886 DEBUG: 		Start:	 Iteration 119
+2016-08-24 12:07:34,908 DEBUG: 			View 0 : 0.592417061611
+2016-08-24 12:07:34,918 DEBUG: 			View 1 : 0.649289099526
+2016-08-24 12:07:35,044 DEBUG: 			View 2 : 0.601895734597
+2016-08-24 12:07:35,053 DEBUG: 			View 3 : 0.601895734597
+2016-08-24 12:07:35,452 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:07:45,211 DEBUG: 		Start:	 Iteration 120
+2016-08-24 12:07:45,232 DEBUG: 			View 0 : 0.545023696682
+2016-08-24 12:07:45,242 DEBUG: 			View 1 : 0.677725118483
+2016-08-24 12:07:45,365 DEBUG: 			View 2 : 0.511848341232
+2016-08-24 12:07:45,375 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 12:07:45,780 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:07:55,605 DEBUG: 		Start:	 Iteration 121
+2016-08-24 12:07:55,625 DEBUG: 			View 0 : 0.511848341232
+2016-08-24 12:07:55,635 DEBUG: 			View 1 : 0.578199052133
+2016-08-24 12:07:55,752 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 12:07:55,761 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 12:07:56,167 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:08:06,056 DEBUG: 		Start:	 Iteration 122
+2016-08-24 12:08:06,077 DEBUG: 			View 0 : 0.587677725118
+2016-08-24 12:08:06,087 DEBUG: 			View 1 : 0.611374407583
+2016-08-24 12:08:06,205 DEBUG: 			View 2 : 0.511848341232
+2016-08-24 12:08:06,215 DEBUG: 			View 3 : 0.526066350711
+2016-08-24 12:08:06,620 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:08:16,607 DEBUG: 		Start:	 Iteration 123
+2016-08-24 12:08:16,628 DEBUG: 			View 0 : 0.511848341232
+2016-08-24 12:08:16,638 DEBUG: 			View 1 : 0.511848341232
+2016-08-24 12:08:16,760 DEBUG: 			View 2 : 0.530805687204
+2016-08-24 12:08:16,769 DEBUG: 			View 3 : 0.568720379147
+2016-08-24 12:08:17,180 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:08:27,249 DEBUG: 		Start:	 Iteration 124
+2016-08-24 12:08:27,270 DEBUG: 			View 0 : 0.545023696682
+2016-08-24 12:08:27,280 DEBUG: 			View 1 : 0.668246445498
+2016-08-24 12:08:27,393 DEBUG: 			View 2 : 0.57345971564
+2016-08-24 12:08:27,403 DEBUG: 			View 3 : 0.592417061611
+2016-08-24 12:08:27,816 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:08:37,964 DEBUG: 		Start:	 Iteration 125
+2016-08-24 12:08:37,985 DEBUG: 			View 0 : 0.620853080569
+2016-08-24 12:08:37,995 DEBUG: 			View 1 : 0.57345971564
+2016-08-24 12:08:38,112 DEBUG: 			View 2 : 0.630331753555
+2016-08-24 12:08:38,121 DEBUG: 			View 3 : 0.654028436019
+2016-08-24 12:08:38,538 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:08:48,754 DEBUG: 		Start:	 Iteration 126
+2016-08-24 12:08:48,775 DEBUG: 			View 0 : 0.402843601896
+2016-08-24 12:08:48,785 DEBUG: 			View 1 : 0.644549763033
+2016-08-24 12:08:48,897 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 12:08:48,906 DEBUG: 			View 3 : 0.672985781991
+2016-08-24 12:08:49,326 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:08:59,605 DEBUG: 		Start:	 Iteration 127
+2016-08-24 12:08:59,626 DEBUG: 			View 0 : 0.663507109005
+2016-08-24 12:08:59,636 DEBUG: 			View 1 : 0.578199052133
+2016-08-24 12:08:59,753 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 12:08:59,763 DEBUG: 			View 3 : 0.568720379147
+2016-08-24 12:09:00,192 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:09:10,552 DEBUG: 		Start:	 Iteration 128
+2016-08-24 12:09:10,573 DEBUG: 			View 0 : 0.672985781991
+2016-08-24 12:09:10,583 DEBUG: 			View 1 : 0.710900473934
+2016-08-24 12:09:10,705 DEBUG: 			View 2 : 0.502369668246
+2016-08-24 12:09:10,714 DEBUG: 			View 3 : 0.568720379147
+2016-08-24 12:09:11,139 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:09:21,574 DEBUG: 		Start:	 Iteration 129
+2016-08-24 12:09:21,595 DEBUG: 			View 0 : 0.663507109005
+2016-08-24 12:09:21,605 DEBUG: 			View 1 : 0.497630331754
+2016-08-24 12:09:21,726 DEBUG: 			View 2 : 0.57345971564
+2016-08-24 12:09:21,735 DEBUG: 			View 3 : 0.644549763033
+2016-08-24 12:09:22,164 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:09:32,723 DEBUG: 		Start:	 Iteration 130
+2016-08-24 12:09:32,744 DEBUG: 			View 0 : 0.611374407583
+2016-08-24 12:09:32,754 DEBUG: 			View 1 : 0.616113744076
+2016-08-24 12:09:32,869 DEBUG: 			View 2 : 0.530805687204
+2016-08-24 12:09:32,878 DEBUG: 			View 3 : 0.644549763033
+2016-08-24 12:09:33,308 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:09:43,918 DEBUG: 		Start:	 Iteration 131
+2016-08-24 12:09:43,939 DEBUG: 			View 0 : 0.554502369668
+2016-08-24 12:09:43,949 DEBUG: 			View 1 : 0.554502369668
+2016-08-24 12:09:44,068 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 12:09:44,077 DEBUG: 			View 3 : 0.616113744076
+2016-08-24 12:09:44,512 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:09:55,225 DEBUG: 		Start:	 Iteration 132
+2016-08-24 12:09:55,246 DEBUG: 			View 0 : 0.563981042654
+2016-08-24 12:09:55,256 DEBUG: 			View 1 : 0.36018957346
+2016-08-24 12:09:55,373 DEBUG: 			View 2 : 0.530805687204
+2016-08-24 12:09:55,383 DEBUG: 			View 3 : 0.625592417062
+2016-08-24 12:09:55,820 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:10:06,593 DEBUG: 		Start:	 Iteration 133
+2016-08-24 12:10:06,614 DEBUG: 			View 0 : 0.530805687204
+2016-08-24 12:10:06,624 DEBUG: 			View 1 : 0.488151658768
+2016-08-24 12:10:06,736 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 12:10:06,746 DEBUG: 			View 3 : 0.710900473934
+2016-08-24 12:10:07,184 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:10:18,015 DEBUG: 		Start:	 Iteration 134
+2016-08-24 12:10:18,036 DEBUG: 			View 0 : 0.440758293839
+2016-08-24 12:10:18,046 DEBUG: 			View 1 : 0.677725118483
+2016-08-24 12:10:18,166 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 12:10:18,175 DEBUG: 			View 3 : 0.530805687204
+2016-08-24 12:10:18,618 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:10:29,538 DEBUG: 		Start:	 Iteration 135
+2016-08-24 12:10:29,560 DEBUG: 			View 0 : 0.45971563981
+2016-08-24 12:10:29,569 DEBUG: 			View 1 : 0.601895734597
+2016-08-24 12:10:29,693 DEBUG: 			View 2 : 0.502369668246
+2016-08-24 12:10:29,702 DEBUG: 			View 3 : 0.597156398104
+2016-08-24 12:10:30,148 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:10:41,135 DEBUG: 		Start:	 Iteration 136
+2016-08-24 12:10:41,156 DEBUG: 			View 0 : 0.483412322275
+2016-08-24 12:10:41,165 DEBUG: 			View 1 : 0.710900473934
+2016-08-24 12:10:41,284 DEBUG: 			View 2 : 0.535545023697
+2016-08-24 12:10:41,293 DEBUG: 			View 3 : 0.511848341232
+2016-08-24 12:10:41,741 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:10:52,818 DEBUG: 		Start:	 Iteration 137
+2016-08-24 12:10:52,841 DEBUG: 			View 0 : 0.549763033175
+2016-08-24 12:10:52,850 DEBUG: 			View 1 : 0.554502369668
+2016-08-24 12:10:52,964 DEBUG: 			View 2 : 0.469194312796
+2016-08-24 12:10:52,974 DEBUG: 			View 3 : 0.516587677725
+2016-08-24 12:10:53,424 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:11:04,593 DEBUG: 		Start:	 Iteration 138
+2016-08-24 12:11:04,614 DEBUG: 			View 0 : 0.473933649289
+2016-08-24 12:11:04,624 DEBUG: 			View 1 : 0.701421800948
+2016-08-24 12:11:04,741 DEBUG: 			View 2 : 0.54028436019
+2016-08-24 12:11:04,751 DEBUG: 			View 3 : 0.644549763033
+2016-08-24 12:11:05,209 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:11:16,483 DEBUG: 		Start:	 Iteration 139
+2016-08-24 12:11:16,504 DEBUG: 			View 0 : 0.502369668246
+2016-08-24 12:11:16,513 DEBUG: 			View 1 : 0.341232227488
+2016-08-24 12:11:16,631 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 12:11:16,640 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 12:11:17,099 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:11:28,407 DEBUG: 		Start:	 Iteration 140
+2016-08-24 12:11:28,428 DEBUG: 			View 0 : 0.658767772512
+2016-08-24 12:11:28,437 DEBUG: 			View 1 : 0.530805687204
+2016-08-24 12:11:28,550 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 12:11:28,559 DEBUG: 			View 3 : 0.511848341232
+2016-08-24 12:11:29,017 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:11:40,402 DEBUG: 		Start:	 Iteration 141
+2016-08-24 12:11:40,424 DEBUG: 			View 0 : 0.535545023697
+2016-08-24 12:11:40,434 DEBUG: 			View 1 : 0.526066350711
+2016-08-24 12:11:40,555 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 12:11:40,564 DEBUG: 			View 3 : 0.672985781991
+2016-08-24 12:11:41,028 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:11:52,497 DEBUG: 		Start:	 Iteration 142
+2016-08-24 12:11:52,519 DEBUG: 			View 0 : 0.511848341232
+2016-08-24 12:11:52,528 DEBUG: 			View 1 : 0.60663507109
+2016-08-24 12:11:52,637 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 12:11:52,646 DEBUG: 			View 3 : 0.526066350711
+2016-08-24 12:11:53,112 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:12:04,623 DEBUG: 		Start:	 Iteration 143
+2016-08-24 12:12:04,644 DEBUG: 			View 0 : 0.57345971564
+2016-08-24 12:12:04,654 DEBUG: 			View 1 : 0.483412322275
+2016-08-24 12:12:04,776 DEBUG: 			View 2 : 0.54028436019
+2016-08-24 12:12:04,786 DEBUG: 			View 3 : 0.616113744076
+2016-08-24 12:12:05,252 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:12:16,866 DEBUG: 		Start:	 Iteration 144
+2016-08-24 12:12:16,887 DEBUG: 			View 0 : 0.526066350711
+2016-08-24 12:12:16,897 DEBUG: 			View 1 : 0.388625592417
+2016-08-24 12:12:17,016 DEBUG: 			View 2 : 0.54028436019
+2016-08-24 12:12:17,025 DEBUG: 			View 3 : 0.521327014218
+2016-08-24 12:12:17,502 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:12:29,210 DEBUG: 		Start:	 Iteration 145
+2016-08-24 12:12:29,231 DEBUG: 			View 0 : 0.450236966825
+2016-08-24 12:12:29,241 DEBUG: 			View 1 : 0.620853080569
+2016-08-24 12:12:29,354 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 12:12:29,364 DEBUG: 			View 3 : 0.511848341232
+2016-08-24 12:12:29,840 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:12:41,619 DEBUG: 		Start:	 Iteration 146
+2016-08-24 12:12:41,641 DEBUG: 			View 0 : 0.654028436019
+2016-08-24 12:12:41,650 DEBUG: 			View 1 : 0.511848341232
+2016-08-24 12:12:41,771 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 12:12:41,780 DEBUG: 			View 3 : 0.625592417062
+2016-08-24 12:12:42,255 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:12:54,122 DEBUG: 		Start:	 Iteration 147
+2016-08-24 12:12:54,143 DEBUG: 			View 0 : 0.729857819905
+2016-08-24 12:12:54,153 DEBUG: 			View 1 : 0.421800947867
+2016-08-24 12:12:54,271 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 12:12:54,281 DEBUG: 			View 3 : 0.592417061611
+2016-08-24 12:12:54,761 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:13:06,717 DEBUG: 		Start:	 Iteration 148
+2016-08-24 12:13:06,738 DEBUG: 			View 0 : 0.616113744076
+2016-08-24 12:13:06,748 DEBUG: 			View 1 : 0.696682464455
+2016-08-24 12:13:06,866 DEBUG: 			View 2 : 0.54028436019
+2016-08-24 12:13:06,875 DEBUG: 			View 3 : 0.611374407583
+2016-08-24 12:13:07,360 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:13:19,413 DEBUG: 		Start:	 Iteration 149
+2016-08-24 12:13:19,435 DEBUG: 			View 0 : 0.601895734597
+2016-08-24 12:13:19,444 DEBUG: 			View 1 : 0.672985781991
+2016-08-24 12:13:19,567 DEBUG: 			View 2 : 0.526066350711
+2016-08-24 12:13:19,576 DEBUG: 			View 3 : 0.554502369668
+2016-08-24 12:13:20,060 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:13:32,162 DEBUG: 		Start:	 Iteration 150
+2016-08-24 12:13:32,183 DEBUG: 			View 0 : 0.42654028436
+2016-08-24 12:13:32,193 DEBUG: 			View 1 : 0.530805687204
+2016-08-24 12:13:32,314 DEBUG: 			View 2 : 0.620853080569
+2016-08-24 12:13:32,324 DEBUG: 			View 3 : 0.691943127962
+2016-08-24 12:13:32,822 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:13:45,034 DEBUG: 		Start:	 Iteration 151
+2016-08-24 12:13:45,056 DEBUG: 			View 0 : 0.57345971564
+2016-08-24 12:13:45,066 DEBUG: 			View 1 : 0.412322274882
+2016-08-24 12:13:45,192 DEBUG: 			View 2 : 0.563981042654
+2016-08-24 12:13:45,201 DEBUG: 			View 3 : 0.597156398104
+2016-08-24 12:13:45,693 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:13:57,957 DEBUG: 		Start:	 Iteration 152
+2016-08-24 12:13:57,979 DEBUG: 			View 0 : 0.530805687204
+2016-08-24 12:13:57,988 DEBUG: 			View 1 : 0.549763033175
+2016-08-24 12:13:58,111 DEBUG: 			View 2 : 0.616113744076
+2016-08-24 12:13:58,120 DEBUG: 			View 3 : 0.592417061611
+2016-08-24 12:13:58,616 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:14:10,970 DEBUG: 		Start:	 Iteration 153
+2016-08-24 12:14:10,991 DEBUG: 			View 0 : 0.616113744076
+2016-08-24 12:14:11,001 DEBUG: 			View 1 : 0.57345971564
+2016-08-24 12:14:11,123 DEBUG: 			View 2 : 0.54028436019
+2016-08-24 12:14:11,133 DEBUG: 			View 3 : 0.530805687204
+2016-08-24 12:14:11,628 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:14:24,069 DEBUG: 		Start:	 Iteration 154
+2016-08-24 12:14:24,090 DEBUG: 			View 0 : 0.630331753555
+2016-08-24 12:14:24,100 DEBUG: 			View 1 : 0.682464454976
+2016-08-24 12:14:24,218 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 12:14:24,227 DEBUG: 			View 3 : 0.601895734597
+2016-08-24 12:14:24,731 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:14:37,258 DEBUG: 		Start:	 Iteration 155
+2016-08-24 12:14:37,279 DEBUG: 			View 0 : 0.592417061611
+2016-08-24 12:14:37,288 DEBUG: 			View 1 : 0.483412322275
+2016-08-24 12:14:37,409 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 12:14:37,418 DEBUG: 			View 3 : 0.672985781991
+2016-08-24 12:14:37,917 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:14:50,508 DEBUG: 		Start:	 Iteration 156
+2016-08-24 12:14:50,529 DEBUG: 			View 0 : 0.549763033175
+2016-08-24 12:14:50,539 DEBUG: 			View 1 : 0.625592417062
+2016-08-24 12:14:50,655 DEBUG: 			View 2 : 0.530805687204
+2016-08-24 12:14:50,664 DEBUG: 			View 3 : 0.549763033175
+2016-08-24 12:14:51,169 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:15:03,825 DEBUG: 		Start:	 Iteration 157
+2016-08-24 12:15:03,846 DEBUG: 			View 0 : 0.507109004739
+2016-08-24 12:15:03,855 DEBUG: 			View 1 : 0.592417061611
+2016-08-24 12:15:03,972 DEBUG: 			View 2 : 0.511848341232
+2016-08-24 12:15:03,981 DEBUG: 			View 3 : 0.535545023697
+2016-08-24 12:15:04,489 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:15:17,235 DEBUG: 		Start:	 Iteration 158
+2016-08-24 12:15:17,257 DEBUG: 			View 0 : 0.526066350711
+2016-08-24 12:15:17,266 DEBUG: 			View 1 : 0.60663507109
+2016-08-24 12:15:17,384 DEBUG: 			View 2 : 0.625592417062
+2016-08-24 12:15:17,394 DEBUG: 			View 3 : 0.54028436019
+2016-08-24 12:15:17,905 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:15:30,740 DEBUG: 		Start:	 Iteration 159
+2016-08-24 12:15:30,761 DEBUG: 			View 0 : 0.658767772512
+2016-08-24 12:15:30,771 DEBUG: 			View 1 : 0.710900473934
+2016-08-24 12:15:30,890 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 12:15:30,899 DEBUG: 			View 3 : 0.663507109005
+2016-08-24 12:15:31,411 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:15:44,313 DEBUG: 		Start:	 Iteration 160
+2016-08-24 12:15:44,334 DEBUG: 			View 0 : 0.568720379147
+2016-08-24 12:15:44,344 DEBUG: 			View 1 : 0.597156398104
+2016-08-24 12:15:44,470 DEBUG: 			View 2 : 0.57345971564
+2016-08-24 12:15:44,479 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 12:15:44,994 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:15:58,000 DEBUG: 		Start:	 Iteration 161
+2016-08-24 12:15:58,021 DEBUG: 			View 0 : 0.815165876777
+2016-08-24 12:15:58,031 DEBUG: 			View 1 : 0.45971563981
+2016-08-24 12:15:58,144 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 12:15:58,153 DEBUG: 			View 3 : 0.582938388626
+2016-08-24 12:15:58,671 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:16:11,725 DEBUG: 		Start:	 Iteration 162
+2016-08-24 12:16:11,746 DEBUG: 			View 0 : 0.578199052133
+2016-08-24 12:16:11,756 DEBUG: 			View 1 : 0.549763033175
+2016-08-24 12:16:11,873 DEBUG: 			View 2 : 0.521327014218
+2016-08-24 12:16:11,882 DEBUG: 			View 3 : 0.559241706161
+2016-08-24 12:16:12,403 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:16:25,556 DEBUG: 		Start:	 Iteration 163
+2016-08-24 12:16:25,577 DEBUG: 			View 0 : 0.464454976303
+2016-08-24 12:16:25,586 DEBUG: 			View 1 : 0.549763033175
+2016-08-24 12:16:25,707 DEBUG: 			View 2 : 0.454976303318
+2016-08-24 12:16:25,716 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 12:16:26,241 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:16:39,475 DEBUG: 		Start:	 Iteration 164
+2016-08-24 12:16:39,497 DEBUG: 			View 0 : 0.625592417062
+2016-08-24 12:16:39,506 DEBUG: 			View 1 : 0.545023696682
+2016-08-24 12:16:39,619 DEBUG: 			View 2 : 0.635071090047
+2016-08-24 12:16:39,628 DEBUG: 			View 3 : 0.521327014218
+2016-08-24 12:16:40,153 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:16:53,496 DEBUG: 		Start:	 Iteration 165
+2016-08-24 12:16:53,517 DEBUG: 			View 0 : 0.568720379147
+2016-08-24 12:16:53,527 DEBUG: 			View 1 : 0.635071090047
+2016-08-24 12:16:53,645 DEBUG: 			View 2 : 0.568720379147
+2016-08-24 12:16:53,654 DEBUG: 			View 3 : 0.687203791469
+2016-08-24 12:16:54,187 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:17:07,598 DEBUG: 		Start:	 Iteration 166
+2016-08-24 12:17:07,619 DEBUG: 			View 0 : 0.436018957346
+2016-08-24 12:17:07,629 DEBUG: 			View 1 : 0.563981042654
+2016-08-24 12:17:07,735 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 12:17:07,744 DEBUG: 			View 3 : 0.478672985782
+2016-08-24 12:17:08,276 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:17:21,774 DEBUG: 		Start:	 Iteration 167
+2016-08-24 12:17:21,796 DEBUG: 			View 0 : 0.473933649289
+2016-08-24 12:17:21,805 DEBUG: 			View 1 : 0.42654028436
+2016-08-24 12:17:21,922 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 12:17:21,931 DEBUG: 			View 3 : 0.672985781991
+2016-08-24 12:17:22,467 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:17:36,030 DEBUG: 		Start:	 Iteration 168
+2016-08-24 12:17:36,051 DEBUG: 			View 0 : 0.251184834123
+2016-08-24 12:17:36,061 DEBUG: 			View 1 : 0.597156398104
+2016-08-24 12:17:36,181 DEBUG: 			View 2 : 0.530805687204
+2016-08-24 12:17:36,190 DEBUG: 			View 3 : 0.511848341232
+2016-08-24 12:17:36,730 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:17:50,379 DEBUG: 		Start:	 Iteration 169
+2016-08-24 12:17:50,400 DEBUG: 			View 0 : 0.483412322275
+2016-08-24 12:17:50,410 DEBUG: 			View 1 : 0.45971563981
+2016-08-24 12:17:50,528 DEBUG: 			View 2 : 0.616113744076
+2016-08-24 12:17:50,537 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 12:17:51,078 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:18:04,862 DEBUG: 		Start:	 Iteration 170
+2016-08-24 12:18:04,884 DEBUG: 			View 0 : 0.559241706161
+2016-08-24 12:18:04,894 DEBUG: 			View 1 : 0.649289099526
+2016-08-24 12:18:05,012 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 12:18:05,021 DEBUG: 			View 3 : 0.630331753555
+2016-08-24 12:18:05,570 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:18:19,413 DEBUG: 		Start:	 Iteration 171
+2016-08-24 12:18:19,434 DEBUG: 			View 0 : 0.36018957346
+2016-08-24 12:18:19,444 DEBUG: 			View 1 : 0.511848341232
+2016-08-24 12:18:19,561 DEBUG: 			View 2 : 0.530805687204
+2016-08-24 12:18:19,570 DEBUG: 			View 3 : 0.601895734597
+2016-08-24 12:18:20,121 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:18:34,055 DEBUG: 		Start:	 Iteration 172
+2016-08-24 12:18:34,076 DEBUG: 			View 0 : 0.672985781991
+2016-08-24 12:18:34,085 DEBUG: 			View 1 : 0.497630331754
+2016-08-24 12:18:34,207 DEBUG: 			View 2 : 0.635071090047
+2016-08-24 12:18:34,216 DEBUG: 			View 3 : 0.658767772512
+2016-08-24 12:18:34,767 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:18:48,760 DEBUG: 		Start:	 Iteration 173
+2016-08-24 12:18:48,781 DEBUG: 			View 0 : 0.54028436019
+2016-08-24 12:18:48,790 DEBUG: 			View 1 : 0.473933649289
+2016-08-24 12:18:48,903 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 12:18:48,912 DEBUG: 			View 3 : 0.597156398104
+2016-08-24 12:18:49,465 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:19:03,546 DEBUG: 		Start:	 Iteration 174
+2016-08-24 12:19:03,567 DEBUG: 			View 0 : 0.436018957346
+2016-08-24 12:19:03,577 DEBUG: 			View 1 : 0.488151658768
+2016-08-24 12:19:03,694 DEBUG: 			View 2 : 0.535545023697
+2016-08-24 12:19:03,704 DEBUG: 			View 3 : 0.616113744076
+2016-08-24 12:19:04,260 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:19:18,387 DEBUG: 		Start:	 Iteration 175
+2016-08-24 12:19:18,408 DEBUG: 			View 0 : 0.620853080569
+2016-08-24 12:19:18,417 DEBUG: 			View 1 : 0.578199052133
+2016-08-24 12:19:18,530 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 12:19:18,539 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 12:19:19,102 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:19:33,321 DEBUG: 		Start:	 Iteration 176
+2016-08-24 12:19:33,343 DEBUG: 			View 0 : 0.611374407583
+2016-08-24 12:19:33,353 DEBUG: 			View 1 : 0.355450236967
+2016-08-24 12:19:33,475 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 12:19:33,484 DEBUG: 			View 3 : 0.635071090047
+2016-08-24 12:19:34,046 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:19:48,336 DEBUG: 		Start:	 Iteration 177
+2016-08-24 12:19:48,357 DEBUG: 			View 0 : 0.559241706161
+2016-08-24 12:19:48,367 DEBUG: 			View 1 : 0.516587677725
+2016-08-24 12:19:48,483 DEBUG: 			View 2 : 0.616113744076
+2016-08-24 12:19:48,492 DEBUG: 			View 3 : 0.691943127962
+2016-08-24 12:19:49,059 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:20:03,424 DEBUG: 		Start:	 Iteration 178
+2016-08-24 12:20:03,446 DEBUG: 			View 0 : 0.620853080569
+2016-08-24 12:20:03,455 DEBUG: 			View 1 : 0.668246445498
+2016-08-24 12:20:03,569 DEBUG: 			View 2 : 0.521327014218
+2016-08-24 12:20:03,578 DEBUG: 			View 3 : 0.549763033175
+2016-08-24 12:20:04,145 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:20:18,599 DEBUG: 		Start:	 Iteration 179
+2016-08-24 12:20:18,620 DEBUG: 			View 0 : 0.578199052133
+2016-08-24 12:20:18,629 DEBUG: 			View 1 : 0.625592417062
+2016-08-24 12:20:18,751 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 12:20:18,760 DEBUG: 			View 3 : 0.710900473934
+2016-08-24 12:20:19,336 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:20:33,854 DEBUG: 		Start:	 Iteration 180
+2016-08-24 12:20:33,875 DEBUG: 			View 0 : 0.511848341232
+2016-08-24 12:20:33,884 DEBUG: 			View 1 : 0.611374407583
+2016-08-24 12:20:34,004 DEBUG: 			View 2 : 0.507109004739
+2016-08-24 12:20:34,013 DEBUG: 			View 3 : 0.663507109005
+2016-08-24 12:20:34,586 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:20:49,180 DEBUG: 		Start:	 Iteration 181
+2016-08-24 12:20:49,201 DEBUG: 			View 0 : 0.45971563981
+2016-08-24 12:20:49,211 DEBUG: 			View 1 : 0.383886255924
+2016-08-24 12:20:49,328 DEBUG: 			View 2 : 0.568720379147
+2016-08-24 12:20:49,338 DEBUG: 			View 3 : 0.710900473934
+2016-08-24 12:20:49,925 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:21:04,606 DEBUG: 		Start:	 Iteration 182
+2016-08-24 12:21:04,628 DEBUG: 			View 0 : 0.587677725118
+2016-08-24 12:21:04,637 DEBUG: 			View 1 : 0.582938388626
+2016-08-24 12:21:04,757 DEBUG: 			View 2 : 0.530805687204
+2016-08-24 12:21:04,766 DEBUG: 			View 3 : 0.559241706161
+2016-08-24 12:21:05,345 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:21:20,109 DEBUG: 		Start:	 Iteration 183
+2016-08-24 12:21:20,131 DEBUG: 			View 0 : 0.696682464455
+2016-08-24 12:21:20,140 DEBUG: 			View 1 : 0.625592417062
+2016-08-24 12:21:20,257 DEBUG: 			View 2 : 0.521327014218
+2016-08-24 12:21:20,266 DEBUG: 			View 3 : 0.587677725118
+2016-08-24 12:21:20,850 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:21:35,677 DEBUG: 		Start:	 Iteration 184
+2016-08-24 12:21:35,698 DEBUG: 			View 0 : 0.483412322275
+2016-08-24 12:21:35,708 DEBUG: 			View 1 : 0.620853080569
+2016-08-24 12:21:35,825 DEBUG: 			View 2 : 0.563981042654
+2016-08-24 12:21:35,835 DEBUG: 			View 3 : 0.54028436019
+2016-08-24 12:21:36,423 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:21:51,330 DEBUG: 		Start:	 Iteration 185
+2016-08-24 12:21:51,351 DEBUG: 			View 0 : 0.635071090047
+2016-08-24 12:21:51,361 DEBUG: 			View 1 : 0.706161137441
+2016-08-24 12:21:51,480 DEBUG: 			View 2 : 0.616113744076
+2016-08-24 12:21:51,490 DEBUG: 			View 3 : 0.54028436019
+2016-08-24 12:21:52,074 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:22:07,069 DEBUG: 		Start:	 Iteration 186
+2016-08-24 12:22:07,090 DEBUG: 			View 0 : 0.545023696682
+2016-08-24 12:22:07,100 DEBUG: 			View 1 : 0.45971563981
+2016-08-24 12:22:07,220 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 12:22:07,229 DEBUG: 			View 3 : 0.530805687204
+2016-08-24 12:22:07,825 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:22:22,929 DEBUG: 		Start:	 Iteration 187
+2016-08-24 12:22:22,950 DEBUG: 			View 0 : 0.672985781991
+2016-08-24 12:22:22,959 DEBUG: 			View 1 : 0.725118483412
+2016-08-24 12:22:23,078 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 12:22:23,088 DEBUG: 			View 3 : 0.620853080569
+2016-08-24 12:22:23,683 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:22:38,861 DEBUG: 		Start:	 Iteration 188
+2016-08-24 12:22:38,882 DEBUG: 			View 0 : 0.625592417062
+2016-08-24 12:22:38,892 DEBUG: 			View 1 : 0.549763033175
+2016-08-24 12:22:39,013 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 12:22:39,022 DEBUG: 			View 3 : 0.677725118483
+2016-08-24 12:22:39,617 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:22:54,875 DEBUG: 		Start:	 Iteration 189
+2016-08-24 12:22:54,896 DEBUG: 			View 0 : 0.530805687204
+2016-08-24 12:22:54,906 DEBUG: 			View 1 : 0.412322274882
+2016-08-24 12:22:55,034 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 12:22:55,043 DEBUG: 			View 3 : 0.582938388626
+2016-08-24 12:22:55,648 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:23:10,946 DEBUG: 		Start:	 Iteration 190
+2016-08-24 12:23:10,967 DEBUG: 			View 0 : 0.502369668246
+2016-08-24 12:23:10,977 DEBUG: 			View 1 : 0.440758293839
+2016-08-24 12:23:11,109 DEBUG: 			View 2 : 0.473933649289
+2016-08-24 12:23:11,118 DEBUG: 			View 3 : 0.625592417062
+2016-08-24 12:23:11,721 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:23:27,156 DEBUG: 		Start:	 Iteration 191
+2016-08-24 12:23:27,177 DEBUG: 			View 0 : 0.497630331754
+2016-08-24 12:23:27,187 DEBUG: 			View 1 : 0.644549763033
+2016-08-24 12:23:27,310 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 12:23:27,320 DEBUG: 			View 3 : 0.63981042654
+2016-08-24 12:23:27,920 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:23:43,375 DEBUG: 		Start:	 Iteration 192
+2016-08-24 12:23:43,396 DEBUG: 			View 0 : 0.620853080569
+2016-08-24 12:23:43,406 DEBUG: 			View 1 : 0.620853080569
+2016-08-24 12:23:43,540 DEBUG: 			View 2 : 0.54028436019
+2016-08-24 12:23:43,551 DEBUG: 			View 3 : 0.587677725118
+2016-08-24 12:23:44,160 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:23:59,708 DEBUG: 		Start:	 Iteration 193
+2016-08-24 12:23:59,730 DEBUG: 			View 0 : 0.516587677725
+2016-08-24 12:23:59,739 DEBUG: 			View 1 : 0.417061611374
+2016-08-24 12:23:59,880 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 12:23:59,892 DEBUG: 			View 3 : 0.535545023697
+2016-08-24 12:24:00,504 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:24:16,134 DEBUG: 		Start:	 Iteration 194
+2016-08-24 12:24:16,155 DEBUG: 			View 0 : 0.39336492891
+2016-08-24 12:24:16,165 DEBUG: 			View 1 : 0.478672985782
+2016-08-24 12:24:16,296 DEBUG: 			View 2 : 0.511848341232
+2016-08-24 12:24:16,308 DEBUG: 			View 3 : 0.658767772512
+2016-08-24 12:24:16,929 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:24:32,642 DEBUG: 		Start:	 Iteration 195
+2016-08-24 12:24:32,663 DEBUG: 			View 0 : 0.587677725118
+2016-08-24 12:24:32,673 DEBUG: 			View 1 : 0.587677725118
+2016-08-24 12:24:32,808 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 12:24:32,819 DEBUG: 			View 3 : 0.545023696682
+2016-08-24 12:24:33,438 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:24:49,256 DEBUG: 		Start:	 Iteration 196
+2016-08-24 12:24:49,277 DEBUG: 			View 0 : 0.592417061611
+2016-08-24 12:24:49,287 DEBUG: 			View 1 : 0.469194312796
+2016-08-24 12:24:49,418 DEBUG: 			View 2 : 0.649289099526
+2016-08-24 12:24:49,430 DEBUG: 			View 3 : 0.492890995261
+2016-08-24 12:24:50,049 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:25:05,942 DEBUG: 		Start:	 Iteration 197
+2016-08-24 12:25:05,961 DEBUG: 			View 0 : 0.497630331754
+2016-08-24 12:25:05,971 DEBUG: 			View 1 : 0.549763033175
+2016-08-24 12:25:06,106 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 12:25:06,118 DEBUG: 			View 3 : 0.554502369668
+2016-08-24 12:25:06,739 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:25:22,740 DEBUG: 		Start:	 Iteration 198
+2016-08-24 12:25:22,761 DEBUG: 			View 0 : 0.535545023697
+2016-08-24 12:25:22,771 DEBUG: 			View 1 : 0.672985781991
+2016-08-24 12:25:22,906 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 12:25:22,918 DEBUG: 			View 3 : 0.559241706161
+2016-08-24 12:25:23,544 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:25:39,634 DEBUG: 		Start:	 Iteration 199
+2016-08-24 12:25:39,655 DEBUG: 			View 0 : 0.597156398104
+2016-08-24 12:25:39,665 DEBUG: 			View 1 : 0.691943127962
+2016-08-24 12:25:39,791 DEBUG: 			View 2 : 0.521327014218
+2016-08-24 12:25:39,803 DEBUG: 			View 3 : 0.625592417062
+2016-08-24 12:25:40,445 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:25:56,609 DEBUG: 		Start:	 Iteration 200
+2016-08-24 12:25:56,631 DEBUG: 			View 0 : 0.644549763033
+2016-08-24 12:25:56,640 DEBUG: 			View 1 : 0.54028436019
+2016-08-24 12:25:56,772 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 12:25:56,783 DEBUG: 			View 3 : 0.701421800948
+2016-08-24 12:25:57,413 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:26:13,644 DEBUG: 		Start:	 Iteration 201
+2016-08-24 12:26:13,665 DEBUG: 			View 0 : 0.440758293839
+2016-08-24 12:26:13,675 DEBUG: 			View 1 : 0.635071090047
+2016-08-24 12:26:13,806 DEBUG: 			View 2 : 0.620853080569
+2016-08-24 12:26:13,818 DEBUG: 			View 3 : 0.511848341232
+2016-08-24 12:26:14,451 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:26:30,791 DEBUG: 		Start:	 Iteration 202
+2016-08-24 12:26:30,813 DEBUG: 			View 0 : 0.54028436019
+2016-08-24 12:26:30,822 DEBUG: 			View 1 : 0.398104265403
+2016-08-24 12:26:30,963 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 12:26:30,974 DEBUG: 			View 3 : 0.559241706161
+2016-08-24 12:26:31,610 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:26:48,031 DEBUG: 		Start:	 Iteration 203
+2016-08-24 12:26:48,052 DEBUG: 			View 0 : 0.630331753555
+2016-08-24 12:26:48,062 DEBUG: 			View 1 : 0.54028436019
+2016-08-24 12:26:48,172 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 12:26:48,184 DEBUG: 			View 3 : 0.663507109005
+2016-08-24 12:26:48,822 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:27:05,312 DEBUG: 		Start:	 Iteration 204
+2016-08-24 12:27:05,334 DEBUG: 			View 0 : 0.478672985782
+2016-08-24 12:27:05,344 DEBUG: 			View 1 : 0.473933649289
+2016-08-24 12:27:05,472 DEBUG: 			View 2 : 0.563981042654
+2016-08-24 12:27:05,484 DEBUG: 			View 3 : 0.672985781991
+2016-08-24 12:27:06,126 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:27:22,687 DEBUG: 		Start:	 Iteration 205
+2016-08-24 12:27:22,709 DEBUG: 			View 0 : 0.625592417062
+2016-08-24 12:27:22,718 DEBUG: 			View 1 : 0.568720379147
+2016-08-24 12:27:22,856 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 12:27:22,868 DEBUG: 			View 3 : 0.635071090047
+2016-08-24 12:27:23,510 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:27:40,173 DEBUG: 		Start:	 Iteration 206
+2016-08-24 12:27:40,194 DEBUG: 			View 0 : 0.483412322275
+2016-08-24 12:27:40,204 DEBUG: 			View 1 : 0.483412322275
+2016-08-24 12:27:40,338 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 12:27:40,349 DEBUG: 			View 3 : 0.601895734597
+2016-08-24 12:27:41,001 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:27:57,762 DEBUG: 		Start:	 Iteration 207
+2016-08-24 12:27:57,783 DEBUG: 			View 0 : 0.601895734597
+2016-08-24 12:27:57,793 DEBUG: 			View 1 : 0.663507109005
+2016-08-24 12:27:57,928 DEBUG: 			View 2 : 0.563981042654
+2016-08-24 12:27:57,939 DEBUG: 			View 3 : 0.559241706161
+2016-08-24 12:27:58,591 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:28:15,463 DEBUG: 		Start:	 Iteration 208
+2016-08-24 12:28:15,484 DEBUG: 			View 0 : 0.620853080569
+2016-08-24 12:28:15,494 DEBUG: 			View 1 : 0.57345971564
+2016-08-24 12:28:15,627 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 12:28:15,638 DEBUG: 			View 3 : 0.611374407583
+2016-08-24 12:28:16,292 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:28:33,226 DEBUG: 		Start:	 Iteration 209
+2016-08-24 12:28:33,247 DEBUG: 			View 0 : 0.511848341232
+2016-08-24 12:28:33,257 DEBUG: 			View 1 : 0.677725118483
+2016-08-24 12:28:33,393 DEBUG: 			View 2 : 0.601895734597
+2016-08-24 12:28:33,404 DEBUG: 			View 3 : 0.582938388626
+2016-08-24 12:28:34,062 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:28:51,028 DEBUG: 		Start:	 Iteration 210
+2016-08-24 12:28:51,049 DEBUG: 			View 0 : 0.535545023697
+2016-08-24 12:28:51,059 DEBUG: 			View 1 : 0.578199052133
+2016-08-24 12:28:51,182 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 12:28:51,194 DEBUG: 			View 3 : 0.616113744076
+2016-08-24 12:28:51,859 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:29:08,915 DEBUG: 		Start:	 Iteration 211
+2016-08-24 12:29:08,936 DEBUG: 			View 0 : 0.582938388626
+2016-08-24 12:29:08,945 DEBUG: 			View 1 : 0.654028436019
+2016-08-24 12:29:09,080 DEBUG: 			View 2 : 0.526066350711
+2016-08-24 12:29:09,091 DEBUG: 			View 3 : 0.535545023697
+2016-08-24 12:29:09,755 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:29:26,868 DEBUG: 		Start:	 Iteration 212
+2016-08-24 12:29:26,889 DEBUG: 			View 0 : 0.483412322275
+2016-08-24 12:29:26,899 DEBUG: 			View 1 : 0.483412322275
+2016-08-24 12:29:27,034 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 12:29:27,046 DEBUG: 			View 3 : 0.668246445498
+2016-08-24 12:29:27,711 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:29:44,959 DEBUG: 		Start:	 Iteration 213
+2016-08-24 12:29:44,980 DEBUG: 			View 0 : 0.464454976303
+2016-08-24 12:29:44,990 DEBUG: 			View 1 : 0.507109004739
+2016-08-24 12:29:45,125 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 12:29:45,136 DEBUG: 			View 3 : 0.60663507109
+2016-08-24 12:29:45,810 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:30:03,096 DEBUG: 		Start:	 Iteration 214
+2016-08-24 12:30:03,118 DEBUG: 			View 0 : 0.568720379147
+2016-08-24 12:30:03,127 DEBUG: 			View 1 : 0.549763033175
+2016-08-24 12:30:03,252 DEBUG: 			View 2 : 0.625592417062
+2016-08-24 12:30:03,263 DEBUG: 			View 3 : 0.502369668246
+2016-08-24 12:30:03,934 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:30:21,334 DEBUG: 		Start:	 Iteration 215
+2016-08-24 12:30:21,355 DEBUG: 			View 0 : 0.492890995261
+2016-08-24 12:30:21,365 DEBUG: 			View 1 : 0.687203791469
+2016-08-24 12:30:21,499 DEBUG: 			View 2 : 0.488151658768
+2016-08-24 12:30:21,508 DEBUG: 			View 3 : 0.483412322275
+2016-08-24 12:30:22,180 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:30:39,659 DEBUG: 		Start:	 Iteration 216
+2016-08-24 12:30:39,680 DEBUG: 			View 0 : 0.507109004739
+2016-08-24 12:30:39,690 DEBUG: 			View 1 : 0.720379146919
+2016-08-24 12:30:39,811 DEBUG: 			View 2 : 0.492890995261
+2016-08-24 12:30:39,820 DEBUG: 			View 3 : 0.691943127962
+2016-08-24 12:30:40,498 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:30:58,038 DEBUG: 		Start:	 Iteration 217
+2016-08-24 12:30:58,059 DEBUG: 			View 0 : 0.668246445498
+2016-08-24 12:30:58,069 DEBUG: 			View 1 : 0.682464454976
+2016-08-24 12:30:58,190 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 12:30:58,200 DEBUG: 			View 3 : 0.526066350711
+2016-08-24 12:30:58,880 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:31:16,516 DEBUG: 		Start:	 Iteration 218
+2016-08-24 12:31:16,537 DEBUG: 			View 0 : 0.535545023697
+2016-08-24 12:31:16,547 DEBUG: 			View 1 : 0.63981042654
+2016-08-24 12:31:16,670 DEBUG: 			View 2 : 0.535545023697
+2016-08-24 12:31:16,679 DEBUG: 			View 3 : 0.635071090047
+2016-08-24 12:31:17,364 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:31:35,062 DEBUG: 		Start:	 Iteration 219
+2016-08-24 12:31:35,083 DEBUG: 			View 0 : 0.436018957346
+2016-08-24 12:31:35,092 DEBUG: 			View 1 : 0.502369668246
+2016-08-24 12:31:35,218 DEBUG: 			View 2 : 0.521327014218
+2016-08-24 12:31:35,227 DEBUG: 			View 3 : 0.649289099526
+2016-08-24 12:31:35,914 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:31:53,669 DEBUG: 		Start:	 Iteration 220
+2016-08-24 12:31:53,690 DEBUG: 			View 0 : 0.706161137441
+2016-08-24 12:31:53,700 DEBUG: 			View 1 : 0.620853080569
+2016-08-24 12:31:53,823 DEBUG: 			View 2 : 0.54028436019
+2016-08-24 12:31:53,832 DEBUG: 			View 3 : 0.592417061611
+2016-08-24 12:31:54,527 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:32:12,385 DEBUG: 		Start:	 Iteration 221
+2016-08-24 12:32:12,406 DEBUG: 			View 0 : 0.502369668246
+2016-08-24 12:32:12,416 DEBUG: 			View 1 : 0.492890995261
+2016-08-24 12:32:12,539 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 12:32:12,548 DEBUG: 			View 3 : 0.554502369668
+2016-08-24 12:32:13,236 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:32:31,134 DEBUG: 		Start:	 Iteration 222
+2016-08-24 12:32:31,155 DEBUG: 			View 0 : 0.587677725118
+2016-08-24 12:32:31,165 DEBUG: 			View 1 : 0.483412322275
+2016-08-24 12:32:31,296 DEBUG: 			View 2 : 0.549763033175
+2016-08-24 12:32:31,305 DEBUG: 			View 3 : 0.54028436019
+2016-08-24 12:32:32,001 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:32:49,999 DEBUG: 		Start:	 Iteration 223
+2016-08-24 12:32:50,020 DEBUG: 			View 0 : 0.497630331754
+2016-08-24 12:32:50,029 DEBUG: 			View 1 : 0.81990521327
+2016-08-24 12:32:50,164 DEBUG: 			View 2 : 0.568720379147
+2016-08-24 12:32:50,174 DEBUG: 			View 3 : 0.60663507109
+2016-08-24 12:32:50,871 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:33:08,927 DEBUG: 		Start:	 Iteration 224
+2016-08-24 12:33:08,948 DEBUG: 			View 0 : 0.464454976303
+2016-08-24 12:33:08,957 DEBUG: 			View 1 : 0.293838862559
+2016-08-24 12:33:09,076 DEBUG: 			View 2 : 0.644549763033
+2016-08-24 12:33:09,085 DEBUG: 			View 3 : 0.630331753555
+2016-08-24 12:33:09,787 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:33:27,976 DEBUG: 		Start:	 Iteration 225
+2016-08-24 12:33:27,997 DEBUG: 			View 0 : 0.388625592417
+2016-08-24 12:33:28,007 DEBUG: 			View 1 : 0.805687203791
+2016-08-24 12:33:28,130 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 12:33:28,140 DEBUG: 			View 3 : 0.611374407583
+2016-08-24 12:33:28,840 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:33:47,106 DEBUG: 		Start:	 Iteration 226
+2016-08-24 12:33:47,128 DEBUG: 			View 0 : 0.530805687204
+2016-08-24 12:33:47,138 DEBUG: 			View 1 : 0.677725118483
+2016-08-24 12:33:47,268 DEBUG: 			View 2 : 0.516587677725
+2016-08-24 12:33:47,278 DEBUG: 			View 3 : 0.649289099526
+2016-08-24 12:33:47,984 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:34:06,263 DEBUG: 		Start:	 Iteration 227
+2016-08-24 12:34:06,284 DEBUG: 			View 0 : 0.57345971564
+2016-08-24 12:34:06,294 DEBUG: 			View 1 : 0.620853080569
+2016-08-24 12:34:06,422 DEBUG: 			View 2 : 0.530805687204
+2016-08-24 12:34:06,432 DEBUG: 			View 3 : 0.60663507109
+2016-08-24 12:34:07,137 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:34:25,806 DEBUG: 		Start:	 Iteration 228
+2016-08-24 12:34:25,830 DEBUG: 			View 0 : 0.563981042654
+2016-08-24 12:34:25,843 DEBUG: 			View 1 : 0.526066350711
+2016-08-24 12:34:26,007 DEBUG: 			View 2 : 0.568720379147
+2016-08-24 12:34:26,017 DEBUG: 			View 3 : 0.530805687204
+2016-08-24 12:34:26,767 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:34:46,243 DEBUG: 		Start:	 Iteration 229
+2016-08-24 12:34:46,265 DEBUG: 			View 0 : 0.57345971564
+2016-08-24 12:34:46,276 DEBUG: 			View 1 : 0.654028436019
+2016-08-24 12:34:46,453 DEBUG: 			View 2 : 0.535545023697
+2016-08-24 12:34:46,463 DEBUG: 			View 3 : 0.592417061611
+2016-08-24 12:34:47,215 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:35:05,992 DEBUG: 		Start:	 Iteration 230
+2016-08-24 12:35:06,013 DEBUG: 			View 0 : 0.616113744076
+2016-08-24 12:35:06,023 DEBUG: 			View 1 : 0.431279620853
+2016-08-24 12:35:06,139 DEBUG: 			View 2 : 0.521327014218
+2016-08-24 12:35:06,150 DEBUG: 			View 3 : 0.597156398104
+2016-08-24 12:35:06,863 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:35:25,551 DEBUG: 		Start:	 Iteration 231
+2016-08-24 12:35:25,573 DEBUG: 			View 0 : 0.450236966825
+2016-08-24 12:35:25,583 DEBUG: 			View 1 : 0.635071090047
+2016-08-24 12:35:25,703 DEBUG: 			View 2 : 0.616113744076
+2016-08-24 12:35:25,713 DEBUG: 			View 3 : 0.545023696682
+2016-08-24 12:35:26,428 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:35:45,202 DEBUG: 		Start:	 Iteration 232
+2016-08-24 12:35:45,223 DEBUG: 			View 0 : 0.620853080569
+2016-08-24 12:35:45,233 DEBUG: 			View 1 : 0.469194312796
+2016-08-24 12:35:45,356 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 12:35:45,366 DEBUG: 			View 3 : 0.478672985782
+2016-08-24 12:35:46,085 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:36:04,939 DEBUG: 		Start:	 Iteration 233
+2016-08-24 12:36:04,960 DEBUG: 			View 0 : 0.554502369668
+2016-08-24 12:36:04,970 DEBUG: 			View 1 : 0.568720379147
+2016-08-24 12:36:05,097 DEBUG: 			View 2 : 0.521327014218
+2016-08-24 12:36:05,106 DEBUG: 			View 3 : 0.568720379147
+2016-08-24 12:36:05,830 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:36:24,753 DEBUG: 		Start:	 Iteration 234
+2016-08-24 12:36:24,773 DEBUG: 			View 0 : 0.530805687204
+2016-08-24 12:36:24,783 DEBUG: 			View 1 : 0.511848341232
+2016-08-24 12:36:24,899 DEBUG: 			View 2 : 0.563981042654
+2016-08-24 12:36:24,908 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 12:36:25,636 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:36:44,616 DEBUG: 		Start:	 Iteration 235
+2016-08-24 12:36:44,637 DEBUG: 			View 0 : 0.469194312796
+2016-08-24 12:36:44,647 DEBUG: 			View 1 : 0.42654028436
+2016-08-24 12:36:44,761 DEBUG: 			View 2 : 0.535545023697
+2016-08-24 12:36:44,770 DEBUG: 			View 3 : 0.701421800948
+2016-08-24 12:36:45,502 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:37:04,540 DEBUG: 		Start:	 Iteration 236
+2016-08-24 12:37:04,562 DEBUG: 			View 0 : 0.445497630332
+2016-08-24 12:37:04,573 DEBUG: 			View 1 : 0.478672985782
+2016-08-24 12:37:04,691 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 12:37:04,700 DEBUG: 			View 3 : 0.701421800948
+2016-08-24 12:37:05,432 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:37:24,538 DEBUG: 		Start:	 Iteration 237
+2016-08-24 12:37:24,559 DEBUG: 			View 0 : 0.511848341232
+2016-08-24 12:37:24,569 DEBUG: 			View 1 : 0.582938388626
+2016-08-24 12:37:24,691 DEBUG: 			View 2 : 0.563981042654
+2016-08-24 12:37:24,700 DEBUG: 			View 3 : 0.625592417062
+2016-08-24 12:37:25,438 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:37:44,807 DEBUG: 		Start:	 Iteration 238
+2016-08-24 12:37:44,828 DEBUG: 			View 0 : 0.625592417062
+2016-08-24 12:37:44,838 DEBUG: 			View 1 : 0.597156398104
+2016-08-24 12:37:44,955 DEBUG: 			View 2 : 0.521327014218
+2016-08-24 12:37:44,964 DEBUG: 			View 3 : 0.559241706161
+2016-08-24 12:37:45,704 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:38:05,054 DEBUG: 		Start:	 Iteration 239
+2016-08-24 12:38:05,076 DEBUG: 			View 0 : 0.725118483412
+2016-08-24 12:38:05,085 DEBUG: 			View 1 : 0.682464454976
+2016-08-24 12:38:05,204 DEBUG: 			View 2 : 0.568720379147
+2016-08-24 12:38:05,213 DEBUG: 			View 3 : 0.516587677725
+2016-08-24 12:38:05,956 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:38:25,314 DEBUG: 		Start:	 Iteration 240
+2016-08-24 12:38:25,335 DEBUG: 			View 0 : 0.530805687204
+2016-08-24 12:38:25,345 DEBUG: 			View 1 : 0.635071090047
+2016-08-24 12:38:25,474 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 12:38:25,483 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 12:38:26,227 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:38:45,701 DEBUG: 		Start:	 Iteration 241
+2016-08-24 12:38:45,723 DEBUG: 			View 0 : 0.545023696682
+2016-08-24 12:38:45,733 DEBUG: 			View 1 : 0.677725118483
+2016-08-24 12:38:45,846 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 12:38:45,856 DEBUG: 			View 3 : 0.649289099526
+2016-08-24 12:38:46,600 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:39:06,116 DEBUG: 		Start:	 Iteration 242
+2016-08-24 12:39:06,137 DEBUG: 			View 0 : 0.549763033175
+2016-08-24 12:39:06,147 DEBUG: 			View 1 : 0.658767772512
+2016-08-24 12:39:06,265 DEBUG: 			View 2 : 0.535545023697
+2016-08-24 12:39:06,275 DEBUG: 			View 3 : 0.687203791469
+2016-08-24 12:39:07,024 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:39:26,644 DEBUG: 		Start:	 Iteration 243
+2016-08-24 12:39:26,665 DEBUG: 			View 0 : 0.748815165877
+2016-08-24 12:39:26,675 DEBUG: 			View 1 : 0.483412322275
+2016-08-24 12:39:26,796 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 12:39:26,805 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 12:39:27,561 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:39:47,265 DEBUG: 		Start:	 Iteration 244
+2016-08-24 12:39:47,286 DEBUG: 			View 0 : 0.502369668246
+2016-08-24 12:39:47,296 DEBUG: 			View 1 : 0.45971563981
+2016-08-24 12:39:47,413 DEBUG: 			View 2 : 0.620853080569
+2016-08-24 12:39:47,422 DEBUG: 			View 3 : 0.497630331754
+2016-08-24 12:39:48,175 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:40:07,943 DEBUG: 		Start:	 Iteration 245
+2016-08-24 12:40:07,964 DEBUG: 			View 0 : 0.492890995261
+2016-08-24 12:40:07,974 DEBUG: 			View 1 : 0.57345971564
+2016-08-24 12:40:08,075 DEBUG: 			View 2 : 0.630331753555
+2016-08-24 12:40:08,085 DEBUG: 			View 3 : 0.507109004739
+2016-08-24 12:40:08,845 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:40:28,754 DEBUG: 		Start:	 Iteration 246
+2016-08-24 12:40:28,775 DEBUG: 			View 0 : 0.729857819905
+2016-08-24 12:40:28,785 DEBUG: 			View 1 : 0.57345971564
+2016-08-24 12:40:28,902 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 12:40:28,911 DEBUG: 			View 3 : 0.677725118483
+2016-08-24 12:40:29,672 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:40:49,632 DEBUG: 		Start:	 Iteration 247
+2016-08-24 12:40:49,654 DEBUG: 			View 0 : 0.440758293839
+2016-08-24 12:40:49,663 DEBUG: 			View 1 : 0.369668246445
+2016-08-24 12:40:49,781 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 12:40:49,790 DEBUG: 			View 3 : 0.611374407583
+2016-08-24 12:40:50,557 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:41:10,634 DEBUG: 		Start:	 Iteration 248
+2016-08-24 12:41:10,653 DEBUG: 			View 0 : 0.592417061611
+2016-08-24 12:41:10,663 DEBUG: 			View 1 : 0.763033175355
+2016-08-24 12:41:10,785 DEBUG: 			View 2 : 0.530805687204
+2016-08-24 12:41:10,794 DEBUG: 			View 3 : 0.601895734597
+2016-08-24 12:41:11,561 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:41:31,677 DEBUG: 		Start:	 Iteration 249
+2016-08-24 12:41:31,698 DEBUG: 			View 0 : 0.488151658768
+2016-08-24 12:41:31,708 DEBUG: 			View 1 : 0.777251184834
+2016-08-24 12:41:31,832 DEBUG: 			View 2 : 0.625592417062
+2016-08-24 12:41:31,841 DEBUG: 			View 3 : 0.545023696682
+2016-08-24 12:41:32,606 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:41:52,512 DEBUG: 		Start:	 Iteration 250
+2016-08-24 12:41:52,533 DEBUG: 			View 0 : 0.635071090047
+2016-08-24 12:41:52,543 DEBUG: 			View 1 : 0.687203791469
+2016-08-24 12:41:52,666 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 12:41:52,676 DEBUG: 			View 3 : 0.691943127962
+2016-08-24 12:41:53,438 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:42:13,324 DEBUG: 		Start:	 Iteration 251
+2016-08-24 12:42:13,346 DEBUG: 			View 0 : 0.620853080569
+2016-08-24 12:42:13,356 DEBUG: 			View 1 : 0.364928909953
+2016-08-24 12:42:13,476 DEBUG: 			View 2 : 0.625592417062
+2016-08-24 12:42:13,486 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 12:42:14,258 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:42:34,246 DEBUG: 		Start:	 Iteration 252
+2016-08-24 12:42:34,267 DEBUG: 			View 0 : 0.597156398104
+2016-08-24 12:42:34,276 DEBUG: 			View 1 : 0.407582938389
+2016-08-24 12:42:34,390 DEBUG: 			View 2 : 0.511848341232
+2016-08-24 12:42:34,400 DEBUG: 			View 3 : 0.492890995261
+2016-08-24 12:42:35,175 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:42:55,285 DEBUG: 		Start:	 Iteration 253
+2016-08-24 12:42:55,307 DEBUG: 			View 0 : 0.521327014218
+2016-08-24 12:42:55,317 DEBUG: 			View 1 : 0.582938388626
+2016-08-24 12:42:55,443 DEBUG: 			View 2 : 0.568720379147
+2016-08-24 12:42:55,453 DEBUG: 			View 3 : 0.597156398104
+2016-08-24 12:42:56,233 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:43:16,372 DEBUG: 		Start:	 Iteration 254
+2016-08-24 12:43:16,393 DEBUG: 			View 0 : 0.516587677725
+2016-08-24 12:43:16,403 DEBUG: 			View 1 : 0.473933649289
+2016-08-24 12:43:16,532 DEBUG: 			View 2 : 0.516587677725
+2016-08-24 12:43:16,543 DEBUG: 			View 3 : 0.497630331754
+2016-08-24 12:43:17,330 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:43:37,613 DEBUG: 		Start:	 Iteration 255
+2016-08-24 12:43:37,634 DEBUG: 			View 0 : 0.473933649289
+2016-08-24 12:43:37,644 DEBUG: 			View 1 : 0.63981042654
+2016-08-24 12:43:37,771 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 12:43:37,782 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 12:43:38,562 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:43:58,879 DEBUG: 		Start:	 Iteration 256
+2016-08-24 12:43:58,900 DEBUG: 			View 0 : 0.469194312796
+2016-08-24 12:43:58,909 DEBUG: 			View 1 : 0.601895734597
+2016-08-24 12:43:59,033 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 12:43:59,044 DEBUG: 			View 3 : 0.663507109005
+2016-08-24 12:43:59,827 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:44:20,227 DEBUG: 		Start:	 Iteration 257
+2016-08-24 12:44:20,249 DEBUG: 			View 0 : 0.554502369668
+2016-08-24 12:44:20,259 DEBUG: 			View 1 : 0.625592417062
+2016-08-24 12:44:20,387 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 12:44:20,398 DEBUG: 			View 3 : 0.507109004739
+2016-08-24 12:44:21,184 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:44:41,641 DEBUG: 		Start:	 Iteration 258
+2016-08-24 12:44:41,662 DEBUG: 			View 0 : 0.454976303318
+2016-08-24 12:44:41,673 DEBUG: 			View 1 : 0.478672985782
+2016-08-24 12:44:41,799 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 12:44:41,810 DEBUG: 			View 3 : 0.649289099526
+2016-08-24 12:44:42,597 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:45:03,175 DEBUG: 		Start:	 Iteration 259
+2016-08-24 12:45:03,196 DEBUG: 			View 0 : 0.625592417062
+2016-08-24 12:45:03,206 DEBUG: 			View 1 : 0.701421800948
+2016-08-24 12:45:03,329 DEBUG: 			View 2 : 0.516587677725
+2016-08-24 12:45:03,340 DEBUG: 			View 3 : 0.582938388626
+2016-08-24 12:45:04,129 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:45:24,744 DEBUG: 		Start:	 Iteration 260
+2016-08-24 12:45:24,765 DEBUG: 			View 0 : 0.616113744076
+2016-08-24 12:45:24,774 DEBUG: 			View 1 : 0.625592417062
+2016-08-24 12:45:24,899 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 12:45:24,909 DEBUG: 			View 3 : 0.549763033175
+2016-08-24 12:45:25,705 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:45:46,401 DEBUG: 		Start:	 Iteration 261
+2016-08-24 12:45:46,423 DEBUG: 			View 0 : 0.535545023697
+2016-08-24 12:45:46,432 DEBUG: 			View 1 : 0.663507109005
+2016-08-24 12:45:46,559 DEBUG: 			View 2 : 0.568720379147
+2016-08-24 12:45:46,570 DEBUG: 			View 3 : 0.620853080569
+2016-08-24 12:45:47,370 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:46:08,132 DEBUG: 		Start:	 Iteration 262
+2016-08-24 12:46:08,153 DEBUG: 			View 0 : 0.54028436019
+2016-08-24 12:46:08,163 DEBUG: 			View 1 : 0.620853080569
+2016-08-24 12:46:08,294 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 12:46:08,305 DEBUG: 			View 3 : 0.545023696682
+2016-08-24 12:46:09,099 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:46:29,920 DEBUG: 		Start:	 Iteration 263
+2016-08-24 12:46:29,941 DEBUG: 			View 0 : 0.568720379147
+2016-08-24 12:46:29,951 DEBUG: 			View 1 : 0.644549763033
+2016-08-24 12:46:30,079 DEBUG: 			View 2 : 0.526066350711
+2016-08-24 12:46:30,090 DEBUG: 			View 3 : 0.611374407583
+2016-08-24 12:46:30,901 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:46:51,789 DEBUG: 		Start:	 Iteration 264
+2016-08-24 12:46:51,810 DEBUG: 			View 0 : 0.60663507109
+2016-08-24 12:46:51,820 DEBUG: 			View 1 : 0.483412322275
+2016-08-24 12:46:51,936 DEBUG: 			View 2 : 0.630331753555
+2016-08-24 12:46:51,947 DEBUG: 			View 3 : 0.635071090047
+2016-08-24 12:46:52,749 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:47:13,747 DEBUG: 		Start:	 Iteration 265
+2016-08-24 12:47:13,769 DEBUG: 			View 0 : 0.691943127962
+2016-08-24 12:47:13,778 DEBUG: 			View 1 : 0.402843601896
+2016-08-24 12:47:13,907 DEBUG: 			View 2 : 0.521327014218
+2016-08-24 12:47:13,918 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 12:47:14,728 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:47:35,822 DEBUG: 		Start:	 Iteration 266
+2016-08-24 12:47:35,843 DEBUG: 			View 0 : 0.677725118483
+2016-08-24 12:47:35,853 DEBUG: 			View 1 : 0.706161137441
+2016-08-24 12:47:35,975 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 12:47:35,985 DEBUG: 			View 3 : 0.597156398104
+2016-08-24 12:47:36,793 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:47:57,934 DEBUG: 		Start:	 Iteration 267
+2016-08-24 12:47:57,955 DEBUG: 			View 0 : 0.559241706161
+2016-08-24 12:47:57,964 DEBUG: 			View 1 : 0.744075829384
+2016-08-24 12:47:58,093 DEBUG: 			View 2 : 0.549763033175
+2016-08-24 12:47:58,103 DEBUG: 			View 3 : 0.630331753555
+2016-08-24 12:47:58,921 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:48:20,152 DEBUG: 		Start:	 Iteration 268
+2016-08-24 12:48:20,173 DEBUG: 			View 0 : 0.526066350711
+2016-08-24 12:48:20,182 DEBUG: 			View 1 : 0.57345971564
+2016-08-24 12:48:20,306 DEBUG: 			View 2 : 0.57345971564
+2016-08-24 12:48:20,316 DEBUG: 			View 3 : 0.701421800948
+2016-08-24 12:48:21,134 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:48:42,436 DEBUG: 		Start:	 Iteration 269
+2016-08-24 12:48:42,456 DEBUG: 			View 0 : 0.42654028436
+2016-08-24 12:48:42,466 DEBUG: 			View 1 : 0.57345971564
+2016-08-24 12:48:42,592 DEBUG: 			View 2 : 0.497630331754
+2016-08-24 12:48:42,602 DEBUG: 			View 3 : 0.611374407583
+2016-08-24 12:48:43,424 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:49:04,786 DEBUG: 		Start:	 Iteration 270
+2016-08-24 12:49:04,807 DEBUG: 			View 0 : 0.57345971564
+2016-08-24 12:49:04,816 DEBUG: 			View 1 : 0.412322274882
+2016-08-24 12:49:04,945 DEBUG: 			View 2 : 0.630331753555
+2016-08-24 12:49:04,956 DEBUG: 			View 3 : 0.478672985782
+2016-08-24 12:49:05,789 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:49:27,239 DEBUG: 		Start:	 Iteration 271
+2016-08-24 12:49:27,260 DEBUG: 			View 0 : 0.568720379147
+2016-08-24 12:49:27,270 DEBUG: 			View 1 : 0.521327014218
+2016-08-24 12:49:27,396 DEBUG: 			View 2 : 0.568720379147
+2016-08-24 12:49:27,407 DEBUG: 			View 3 : 0.654028436019
+2016-08-24 12:49:28,229 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:49:49,823 DEBUG: 		Start:	 Iteration 272
+2016-08-24 12:49:49,845 DEBUG: 			View 0 : 0.616113744076
+2016-08-24 12:49:49,854 DEBUG: 			View 1 : 0.545023696682
+2016-08-24 12:49:49,981 DEBUG: 			View 2 : 0.611374407583
+2016-08-24 12:49:49,992 DEBUG: 			View 3 : 0.535545023697
+2016-08-24 12:49:50,819 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:50:12,458 DEBUG: 		Start:	 Iteration 273
+2016-08-24 12:50:12,480 DEBUG: 			View 0 : 0.502369668246
+2016-08-24 12:50:12,489 DEBUG: 			View 1 : 0.635071090047
+2016-08-24 12:50:12,618 DEBUG: 			View 2 : 0.530805687204
+2016-08-24 12:50:12,628 DEBUG: 			View 3 : 0.507109004739
+2016-08-24 12:50:13,463 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:50:35,159 DEBUG: 		Start:	 Iteration 274
+2016-08-24 12:50:35,180 DEBUG: 			View 0 : 0.436018957346
+2016-08-24 12:50:35,189 DEBUG: 			View 1 : 0.587677725118
+2016-08-24 12:50:35,317 DEBUG: 			View 2 : 0.601895734597
+2016-08-24 12:50:35,328 DEBUG: 			View 3 : 0.554502369668
+2016-08-24 12:50:36,162 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:50:57,942 DEBUG: 		Start:	 Iteration 275
+2016-08-24 12:50:57,963 DEBUG: 			View 0 : 0.473933649289
+2016-08-24 12:50:57,973 DEBUG: 			View 1 : 0.658767772512
+2016-08-24 12:50:58,092 DEBUG: 			View 2 : 0.526066350711
+2016-08-24 12:50:58,102 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 12:50:58,936 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:51:20,806 DEBUG: 		Start:	 Iteration 276
+2016-08-24 12:51:20,827 DEBUG: 			View 0 : 0.530805687204
+2016-08-24 12:51:20,837 DEBUG: 			View 1 : 0.729857819905
+2016-08-24 12:51:20,957 DEBUG: 			View 2 : 0.511848341232
+2016-08-24 12:51:20,968 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 12:51:21,806 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:51:43,736 DEBUG: 		Start:	 Iteration 277
+2016-08-24 12:51:43,757 DEBUG: 			View 0 : 0.464454976303
+2016-08-24 12:51:43,767 DEBUG: 			View 1 : 0.668246445498
+2016-08-24 12:51:43,893 DEBUG: 			View 2 : 0.654028436019
+2016-08-24 12:51:43,903 DEBUG: 			View 3 : 0.582938388626
+2016-08-24 12:51:44,745 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:52:06,799 DEBUG: 		Start:	 Iteration 278
+2016-08-24 12:52:06,820 DEBUG: 			View 0 : 0.526066350711
+2016-08-24 12:52:06,830 DEBUG: 			View 1 : 0.706161137441
+2016-08-24 12:52:06,956 DEBUG: 			View 2 : 0.563981042654
+2016-08-24 12:52:06,966 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 12:52:07,817 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:52:29,952 DEBUG: 		Start:	 Iteration 279
+2016-08-24 12:52:29,973 DEBUG: 			View 0 : 0.644549763033
+2016-08-24 12:52:29,983 DEBUG: 			View 1 : 0.473933649289
+2016-08-24 12:52:30,112 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 12:52:30,123 DEBUG: 			View 3 : 0.630331753555
+2016-08-24 12:52:30,970 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:52:53,162 DEBUG: 		Start:	 Iteration 280
+2016-08-24 12:52:53,183 DEBUG: 			View 0 : 0.521327014218
+2016-08-24 12:52:53,193 DEBUG: 			View 1 : 0.379146919431
+2016-08-24 12:52:53,322 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 12:52:53,333 DEBUG: 			View 3 : 0.658767772512
+2016-08-24 12:52:54,181 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:53:16,493 DEBUG: 		Start:	 Iteration 281
+2016-08-24 12:53:16,514 DEBUG: 			View 0 : 0.559241706161
+2016-08-24 12:53:16,524 DEBUG: 			View 1 : 0.60663507109
+2016-08-24 12:53:16,648 DEBUG: 			View 2 : 0.521327014218
+2016-08-24 12:53:16,659 DEBUG: 			View 3 : 0.60663507109
+2016-08-24 12:53:17,515 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:53:39,938 DEBUG: 		Start:	 Iteration 282
+2016-08-24 12:53:39,959 DEBUG: 			View 0 : 0.568720379147
+2016-08-24 12:53:39,969 DEBUG: 			View 1 : 0.317535545024
+2016-08-24 12:53:40,093 DEBUG: 			View 2 : 0.625592417062
+2016-08-24 12:53:40,104 DEBUG: 			View 3 : 0.654028436019
+2016-08-24 12:53:40,961 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:54:03,344 DEBUG: 		Start:	 Iteration 283
+2016-08-24 12:54:03,366 DEBUG: 			View 0 : 0.521327014218
+2016-08-24 12:54:03,375 DEBUG: 			View 1 : 0.578199052133
+2016-08-24 12:54:03,496 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 12:54:03,506 DEBUG: 			View 3 : 0.701421800948
+2016-08-24 12:54:04,364 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:54:26,851 DEBUG: 		Start:	 Iteration 284
+2016-08-24 12:54:26,872 DEBUG: 			View 0 : 0.630331753555
+2016-08-24 12:54:26,882 DEBUG: 			View 1 : 0.63981042654
+2016-08-24 12:54:27,010 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 12:54:27,021 DEBUG: 			View 3 : 0.616113744076
+2016-08-24 12:54:27,891 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:54:50,442 DEBUG: 		Start:	 Iteration 285
+2016-08-24 12:54:50,463 DEBUG: 			View 0 : 0.469194312796
+2016-08-24 12:54:50,473 DEBUG: 			View 1 : 0.635071090047
+2016-08-24 12:54:50,598 DEBUG: 			View 2 : 0.507109004739
+2016-08-24 12:54:50,609 DEBUG: 			View 3 : 0.592417061611
+2016-08-24 12:54:51,471 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:55:14,160 DEBUG: 		Start:	 Iteration 286
+2016-08-24 12:55:14,181 DEBUG: 			View 0 : 0.497630331754
+2016-08-24 12:55:14,190 DEBUG: 			View 1 : 0.597156398104
+2016-08-24 12:55:14,316 DEBUG: 			View 2 : 0.530805687204
+2016-08-24 12:55:14,326 DEBUG: 			View 3 : 0.635071090047
+2016-08-24 12:55:15,212 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:55:37,935 DEBUG: 		Start:	 Iteration 287
+2016-08-24 12:55:37,954 DEBUG: 			View 0 : 0.398104265403
+2016-08-24 12:55:37,964 DEBUG: 			View 1 : 0.445497630332
+2016-08-24 12:55:38,095 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 12:55:38,106 DEBUG: 			View 3 : 0.568720379147
+2016-08-24 12:55:38,977 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:56:01,705 DEBUG: 		Start:	 Iteration 288
+2016-08-24 12:56:01,726 DEBUG: 			View 0 : 0.597156398104
+2016-08-24 12:56:01,735 DEBUG: 			View 1 : 0.483412322275
+2016-08-24 12:56:01,866 DEBUG: 			View 2 : 0.530805687204
+2016-08-24 12:56:01,877 DEBUG: 			View 3 : 0.492890995261
+2016-08-24 12:56:02,747 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 12:56:25,635 DEBUG: 		Start:	 Iteration 289
+2016-08-24 12:56:25,656 DEBUG: 			View 0 : 0.530805687204
+2016-08-24 12:56:25,665 DEBUG: 			View 1 : 0.644549763033
+2016-08-24 12:56:25,792 DEBUG: 			View 2 : 0.568720379147
+2016-08-24 12:56:25,804 DEBUG: 			View 3 : 0.625592417062
+2016-08-24 12:56:26,676 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:56:49,632 DEBUG: 		Start:	 Iteration 290
+2016-08-24 12:56:49,653 DEBUG: 			View 0 : 0.497630331754
+2016-08-24 12:56:49,663 DEBUG: 			View 1 : 0.582938388626
+2016-08-24 12:56:49,798 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 12:56:49,809 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 12:56:50,683 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:57:13,765 DEBUG: 		Start:	 Iteration 291
+2016-08-24 12:57:13,786 DEBUG: 			View 0 : 0.483412322275
+2016-08-24 12:57:13,796 DEBUG: 			View 1 : 0.412322274882
+2016-08-24 12:57:13,930 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 12:57:13,942 DEBUG: 			View 3 : 0.568720379147
+2016-08-24 12:57:14,822 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:57:37,933 DEBUG: 		Start:	 Iteration 292
+2016-08-24 12:57:37,955 DEBUG: 			View 0 : 0.511848341232
+2016-08-24 12:57:37,964 DEBUG: 			View 1 : 0.445497630332
+2016-08-24 12:57:38,094 DEBUG: 			View 2 : 0.620853080569
+2016-08-24 12:57:38,106 DEBUG: 			View 3 : 0.601895734597
+2016-08-24 12:57:38,988 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 12:58:02,193 DEBUG: 		Start:	 Iteration 293
+2016-08-24 12:58:02,215 DEBUG: 			View 0 : 0.578199052133
+2016-08-24 12:58:02,225 DEBUG: 			View 1 : 0.454976303318
+2016-08-24 12:58:02,357 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 12:58:02,368 DEBUG: 			View 3 : 0.625592417062
+2016-08-24 12:58:03,251 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:58:26,533 DEBUG: 		Start:	 Iteration 294
+2016-08-24 12:58:26,554 DEBUG: 			View 0 : 0.597156398104
+2016-08-24 12:58:26,564 DEBUG: 			View 1 : 0.39336492891
+2016-08-24 12:58:26,688 DEBUG: 			View 2 : 0.57345971564
+2016-08-24 12:58:26,699 DEBUG: 			View 3 : 0.597156398104
+2016-08-24 12:58:27,585 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:58:50,953 DEBUG: 		Start:	 Iteration 295
+2016-08-24 12:58:50,974 DEBUG: 			View 0 : 0.488151658768
+2016-08-24 12:58:50,984 DEBUG: 			View 1 : 0.715639810427
+2016-08-24 12:58:51,111 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 12:58:51,122 DEBUG: 			View 3 : 0.568720379147
+2016-08-24 12:58:52,015 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 12:59:15,436 DEBUG: 		Start:	 Iteration 296
+2016-08-24 12:59:15,457 DEBUG: 			View 0 : 0.507109004739
+2016-08-24 12:59:15,466 DEBUG: 			View 1 : 0.530805687204
+2016-08-24 12:59:15,594 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 12:59:15,604 DEBUG: 			View 3 : 0.597156398104
+2016-08-24 12:59:16,503 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 12:59:40,003 DEBUG: 		Start:	 Iteration 297
+2016-08-24 12:59:40,024 DEBUG: 			View 0 : 0.563981042654
+2016-08-24 12:59:40,033 DEBUG: 			View 1 : 0.582938388626
+2016-08-24 12:59:40,159 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 12:59:40,169 DEBUG: 			View 3 : 0.530805687204
+2016-08-24 12:59:41,074 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 13:00:04,679 DEBUG: 		Start:	 Iteration 298
+2016-08-24 13:00:04,700 DEBUG: 			View 0 : 0.440758293839
+2016-08-24 13:00:04,709 DEBUG: 			View 1 : 0.545023696682
+2016-08-24 13:00:04,837 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 13:00:04,847 DEBUG: 			View 3 : 0.658767772512
+2016-08-24 13:00:05,752 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:00:29,468 DEBUG: 		Start:	 Iteration 299
+2016-08-24 13:00:29,489 DEBUG: 			View 0 : 0.620853080569
+2016-08-24 13:00:29,498 DEBUG: 			View 1 : 0.440758293839
+2016-08-24 13:00:29,623 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 13:00:29,634 DEBUG: 			View 3 : 0.620853080569
+2016-08-24 13:00:30,543 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:00:54,312 DEBUG: 		Start:	 Iteration 300
+2016-08-24 13:00:54,334 DEBUG: 			View 0 : 0.587677725118
+2016-08-24 13:00:54,343 DEBUG: 			View 1 : 0.549763033175
+2016-08-24 13:00:54,474 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 13:00:54,485 DEBUG: 			View 3 : 0.568720379147
+2016-08-24 13:00:55,389 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 13:01:19,318 DEBUG: 		Start:	 Iteration 301
+2016-08-24 13:01:19,339 DEBUG: 			View 0 : 0.511848341232
+2016-08-24 13:01:19,349 DEBUG: 			View 1 : 0.60663507109
+2016-08-24 13:01:19,478 DEBUG: 			View 2 : 0.630331753555
+2016-08-24 13:01:19,489 DEBUG: 			View 3 : 0.549763033175
+2016-08-24 13:01:20,406 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 13:01:44,342 DEBUG: 		Start:	 Iteration 302
+2016-08-24 13:01:44,363 DEBUG: 			View 0 : 0.507109004739
+2016-08-24 13:01:44,373 DEBUG: 			View 1 : 0.611374407583
+2016-08-24 13:01:44,499 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 13:01:44,510 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 13:01:45,420 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:02:09,473 DEBUG: 		Start:	 Iteration 303
+2016-08-24 13:02:09,494 DEBUG: 			View 0 : 0.663507109005
+2016-08-24 13:02:09,504 DEBUG: 			View 1 : 0.554502369668
+2016-08-24 13:02:09,629 DEBUG: 			View 2 : 0.530805687204
+2016-08-24 13:02:09,640 DEBUG: 			View 3 : 0.549763033175
+2016-08-24 13:02:10,560 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 13:02:34,701 DEBUG: 		Start:	 Iteration 304
+2016-08-24 13:02:34,722 DEBUG: 			View 0 : 0.597156398104
+2016-08-24 13:02:34,732 DEBUG: 			View 1 : 0.729857819905
+2016-08-24 13:02:34,853 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 13:02:34,864 DEBUG: 			View 3 : 0.620853080569
+2016-08-24 13:02:35,788 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:02:59,937 DEBUG: 		Start:	 Iteration 305
+2016-08-24 13:02:59,958 DEBUG: 			View 0 : 0.473933649289
+2016-08-24 13:02:59,968 DEBUG: 			View 1 : 0.601895734597
+2016-08-24 13:03:00,090 DEBUG: 			View 2 : 0.625592417062
+2016-08-24 13:03:00,101 DEBUG: 			View 3 : 0.516587677725
+2016-08-24 13:03:01,023 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 13:03:25,286 DEBUG: 		Start:	 Iteration 306
+2016-08-24 13:03:25,307 DEBUG: 			View 0 : 0.454976303318
+2016-08-24 13:03:25,317 DEBUG: 			View 1 : 0.710900473934
+2016-08-24 13:03:25,451 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 13:03:25,461 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 13:03:26,384 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:03:50,762 DEBUG: 		Start:	 Iteration 307
+2016-08-24 13:03:50,783 DEBUG: 			View 0 : 0.644549763033
+2016-08-24 13:03:50,793 DEBUG: 			View 1 : 0.611374407583
+2016-08-24 13:03:50,921 DEBUG: 			View 2 : 0.511848341232
+2016-08-24 13:03:50,932 DEBUG: 			View 3 : 0.635071090047
+2016-08-24 13:03:51,861 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:04:16,296 DEBUG: 		Start:	 Iteration 308
+2016-08-24 13:04:16,317 DEBUG: 			View 0 : 0.582938388626
+2016-08-24 13:04:16,326 DEBUG: 			View 1 : 0.677725118483
+2016-08-24 13:04:16,452 DEBUG: 			View 2 : 0.54028436019
+2016-08-24 13:04:16,463 DEBUG: 			View 3 : 0.582938388626
+2016-08-24 13:04:17,396 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:04:41,935 DEBUG: 		Start:	 Iteration 309
+2016-08-24 13:04:41,954 DEBUG: 			View 0 : 0.530805687204
+2016-08-24 13:04:41,964 DEBUG: 			View 1 : 0.63981042654
+2016-08-24 13:04:42,095 DEBUG: 			View 2 : 0.549763033175
+2016-08-24 13:04:42,106 DEBUG: 			View 3 : 0.54028436019
+2016-08-24 13:04:43,048 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:05:07,600 DEBUG: 		Start:	 Iteration 310
+2016-08-24 13:05:07,621 DEBUG: 			View 0 : 0.620853080569
+2016-08-24 13:05:07,632 DEBUG: 			View 1 : 0.592417061611
+2016-08-24 13:05:07,760 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 13:05:07,771 DEBUG: 			View 3 : 0.554502369668
+2016-08-24 13:05:08,706 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 13:05:33,385 DEBUG: 		Start:	 Iteration 311
+2016-08-24 13:05:33,406 DEBUG: 			View 0 : 0.81990521327
+2016-08-24 13:05:33,416 DEBUG: 			View 1 : 0.644549763033
+2016-08-24 13:05:33,542 DEBUG: 			View 2 : 0.521327014218
+2016-08-24 13:05:33,552 DEBUG: 			View 3 : 0.601895734597
+2016-08-24 13:05:34,490 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 13:05:59,216 DEBUG: 		Start:	 Iteration 312
+2016-08-24 13:05:59,237 DEBUG: 			View 0 : 0.440758293839
+2016-08-24 13:05:59,246 DEBUG: 			View 1 : 0.578199052133
+2016-08-24 13:05:59,373 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 13:05:59,384 DEBUG: 			View 3 : 0.682464454976
+2016-08-24 13:06:00,326 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:06:25,148 DEBUG: 		Start:	 Iteration 313
+2016-08-24 13:06:25,169 DEBUG: 			View 0 : 0.597156398104
+2016-08-24 13:06:25,179 DEBUG: 			View 1 : 0.715639810427
+2016-08-24 13:06:25,314 DEBUG: 			View 2 : 0.535545023697
+2016-08-24 13:06:25,325 DEBUG: 			View 3 : 0.672985781991
+2016-08-24 13:06:26,268 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:06:51,146 DEBUG: 		Start:	 Iteration 314
+2016-08-24 13:06:51,167 DEBUG: 			View 0 : 0.563981042654
+2016-08-24 13:06:51,176 DEBUG: 			View 1 : 0.620853080569
+2016-08-24 13:06:51,304 DEBUG: 			View 2 : 0.663507109005
+2016-08-24 13:06:51,315 DEBUG: 			View 3 : 0.611374407583
+2016-08-24 13:06:52,260 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 13:07:17,317 DEBUG: 		Start:	 Iteration 315
+2016-08-24 13:07:17,338 DEBUG: 			View 0 : 0.568720379147
+2016-08-24 13:07:17,348 DEBUG: 			View 1 : 0.379146919431
+2016-08-24 13:07:17,474 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 13:07:17,485 DEBUG: 			View 3 : 0.568720379147
+2016-08-24 13:07:18,436 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 13:07:43,598 DEBUG: 		Start:	 Iteration 316
+2016-08-24 13:07:43,619 DEBUG: 			View 0 : 0.407582938389
+2016-08-24 13:07:43,629 DEBUG: 			View 1 : 0.545023696682
+2016-08-24 13:07:43,759 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 13:07:43,770 DEBUG: 			View 3 : 0.710900473934
+2016-08-24 13:07:44,721 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:08:09,887 DEBUG: 		Start:	 Iteration 317
+2016-08-24 13:08:09,908 DEBUG: 			View 0 : 0.696682464455
+2016-08-24 13:08:09,918 DEBUG: 			View 1 : 0.625592417062
+2016-08-24 13:08:10,041 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 13:08:10,052 DEBUG: 			View 3 : 0.682464454976
+2016-08-24 13:08:11,006 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 13:08:36,231 DEBUG: 		Start:	 Iteration 318
+2016-08-24 13:08:36,252 DEBUG: 			View 0 : 0.63981042654
+2016-08-24 13:08:36,261 DEBUG: 			View 1 : 0.611374407583
+2016-08-24 13:08:36,388 DEBUG: 			View 2 : 0.535545023697
+2016-08-24 13:08:36,399 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 13:08:37,367 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 13:09:02,676 DEBUG: 		Start:	 Iteration 319
+2016-08-24 13:09:02,697 DEBUG: 			View 0 : 0.701421800948
+2016-08-24 13:09:02,706 DEBUG: 			View 1 : 0.597156398104
+2016-08-24 13:09:02,833 DEBUG: 			View 2 : 0.497630331754
+2016-08-24 13:09:02,844 DEBUG: 			View 3 : 0.530805687204
+2016-08-24 13:09:03,803 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 13:09:29,304 DEBUG: 		Start:	 Iteration 320
+2016-08-24 13:09:29,325 DEBUG: 			View 0 : 0.516587677725
+2016-08-24 13:09:29,335 DEBUG: 			View 1 : 0.625592417062
+2016-08-24 13:09:29,462 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 13:09:29,473 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 13:09:30,442 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:09:55,977 DEBUG: 		Start:	 Iteration 321
+2016-08-24 13:09:55,998 DEBUG: 			View 0 : 0.611374407583
+2016-08-24 13:09:56,008 DEBUG: 			View 1 : 0.492890995261
+2016-08-24 13:09:56,129 DEBUG: 			View 2 : 0.492890995261
+2016-08-24 13:09:56,140 DEBUG: 			View 3 : 0.60663507109
+2016-08-24 13:09:57,108 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:10:22,680 DEBUG: 		Start:	 Iteration 322
+2016-08-24 13:10:22,699 DEBUG: 			View 0 : 0.502369668246
+2016-08-24 13:10:22,709 DEBUG: 			View 1 : 0.644549763033
+2016-08-24 13:10:22,836 DEBUG: 			View 2 : 0.497630331754
+2016-08-24 13:10:22,847 DEBUG: 			View 3 : 0.682464454976
+2016-08-24 13:10:23,824 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:10:49,464 DEBUG: 		Start:	 Iteration 323
+2016-08-24 13:10:49,485 DEBUG: 			View 0 : 0.464454976303
+2016-08-24 13:10:49,495 DEBUG: 			View 1 : 0.445497630332
+2016-08-24 13:10:49,627 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 13:10:49,638 DEBUG: 			View 3 : 0.63981042654
+2016-08-24 13:10:50,603 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:11:16,319 DEBUG: 		Start:	 Iteration 324
+2016-08-24 13:11:16,340 DEBUG: 			View 0 : 0.545023696682
+2016-08-24 13:11:16,350 DEBUG: 			View 1 : 0.701421800948
+2016-08-24 13:11:16,481 DEBUG: 			View 2 : 0.57345971564
+2016-08-24 13:11:16,492 DEBUG: 			View 3 : 0.478672985782
+2016-08-24 13:11:17,473 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:11:43,320 DEBUG: 		Start:	 Iteration 325
+2016-08-24 13:11:43,341 DEBUG: 			View 0 : 0.587677725118
+2016-08-24 13:11:43,351 DEBUG: 			View 1 : 0.649289099526
+2016-08-24 13:11:43,469 DEBUG: 			View 2 : 0.488151658768
+2016-08-24 13:11:43,480 DEBUG: 			View 3 : 0.63981042654
+2016-08-24 13:11:44,462 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:12:10,284 DEBUG: 		Start:	 Iteration 326
+2016-08-24 13:12:10,305 DEBUG: 			View 0 : 0.57345971564
+2016-08-24 13:12:10,315 DEBUG: 			View 1 : 0.729857819905
+2016-08-24 13:12:10,445 DEBUG: 			View 2 : 0.616113744076
+2016-08-24 13:12:10,457 DEBUG: 			View 3 : 0.677725118483
+2016-08-24 13:12:11,437 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:12:37,412 DEBUG: 		Start:	 Iteration 327
+2016-08-24 13:12:37,433 DEBUG: 			View 0 : 0.630331753555
+2016-08-24 13:12:37,442 DEBUG: 			View 1 : 0.620853080569
+2016-08-24 13:12:37,574 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 13:12:37,585 DEBUG: 			View 3 : 0.559241706161
+2016-08-24 13:12:38,570 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:13:04,614 DEBUG: 		Start:	 Iteration 328
+2016-08-24 13:13:04,635 DEBUG: 			View 0 : 0.592417061611
+2016-08-24 13:13:04,645 DEBUG: 			View 1 : 0.60663507109
+2016-08-24 13:13:04,781 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 13:13:04,792 DEBUG: 			View 3 : 0.620853080569
+2016-08-24 13:13:05,777 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:13:31,866 DEBUG: 		Start:	 Iteration 329
+2016-08-24 13:13:31,887 DEBUG: 			View 0 : 0.582938388626
+2016-08-24 13:13:31,896 DEBUG: 			View 1 : 0.635071090047
+2016-08-24 13:13:32,023 DEBUG: 			View 2 : 0.488151658768
+2016-08-24 13:13:32,035 DEBUG: 			View 3 : 0.60663507109
+2016-08-24 13:13:33,028 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:13:59,177 DEBUG: 		Start:	 Iteration 330
+2016-08-24 13:13:59,198 DEBUG: 			View 0 : 0.492890995261
+2016-08-24 13:13:59,208 DEBUG: 			View 1 : 0.620853080569
+2016-08-24 13:13:59,338 DEBUG: 			View 2 : 0.630331753555
+2016-08-24 13:13:59,350 DEBUG: 			View 3 : 0.483412322275
+2016-08-24 13:14:00,344 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 13:14:26,647 DEBUG: 		Start:	 Iteration 331
+2016-08-24 13:14:26,668 DEBUG: 			View 0 : 0.597156398104
+2016-08-24 13:14:26,677 DEBUG: 			View 1 : 0.630331753555
+2016-08-24 13:14:26,812 DEBUG: 			View 2 : 0.63981042654
+2016-08-24 13:14:26,824 DEBUG: 			View 3 : 0.511848341232
+2016-08-24 13:14:27,820 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 13:14:54,213 DEBUG: 		Start:	 Iteration 332
+2016-08-24 13:14:54,234 DEBUG: 			View 0 : 0.421800947867
+2016-08-24 13:14:54,243 DEBUG: 			View 1 : 0.507109004739
+2016-08-24 13:14:54,382 DEBUG: 			View 2 : 0.625592417062
+2016-08-24 13:14:54,394 DEBUG: 			View 3 : 0.526066350711
+2016-08-24 13:14:55,386 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 13:15:21,825 DEBUG: 		Start:	 Iteration 333
+2016-08-24 13:15:21,846 DEBUG: 			View 0 : 0.582938388626
+2016-08-24 13:15:21,856 DEBUG: 			View 1 : 0.677725118483
+2016-08-24 13:15:21,980 DEBUG: 			View 2 : 0.497630331754
+2016-08-24 13:15:21,992 DEBUG: 			View 3 : 0.682464454976
+2016-08-24 13:15:22,993 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:15:49,454 DEBUG: 		Start:	 Iteration 334
+2016-08-24 13:15:49,475 DEBUG: 			View 0 : 0.644549763033
+2016-08-24 13:15:49,485 DEBUG: 			View 1 : 0.630331753555
+2016-08-24 13:15:49,616 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 13:15:49,627 DEBUG: 			View 3 : 0.682464454976
+2016-08-24 13:15:50,634 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:16:17,257 DEBUG: 		Start:	 Iteration 335
+2016-08-24 13:16:17,278 DEBUG: 			View 0 : 0.582938388626
+2016-08-24 13:16:17,288 DEBUG: 			View 1 : 0.497630331754
+2016-08-24 13:16:17,429 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 13:16:17,441 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 13:16:18,444 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:16:45,102 DEBUG: 		Start:	 Iteration 336
+2016-08-24 13:16:45,123 DEBUG: 			View 0 : 0.772511848341
+2016-08-24 13:16:45,132 DEBUG: 			View 1 : 0.592417061611
+2016-08-24 13:16:45,262 DEBUG: 			View 2 : 0.497630331754
+2016-08-24 13:16:45,272 DEBUG: 			View 3 : 0.535545023697
+2016-08-24 13:16:46,283 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 13:17:12,988 DEBUG: 		Start:	 Iteration 337
+2016-08-24 13:17:13,009 DEBUG: 			View 0 : 0.45971563981
+2016-08-24 13:17:13,018 DEBUG: 			View 1 : 0.843601895735
+2016-08-24 13:17:13,155 DEBUG: 			View 2 : 0.521327014218
+2016-08-24 13:17:13,164 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 13:17:14,174 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:17:40,947 DEBUG: 		Start:	 Iteration 338
+2016-08-24 13:17:40,968 DEBUG: 			View 0 : 0.578199052133
+2016-08-24 13:17:40,978 DEBUG: 			View 1 : 0.701421800948
+2016-08-24 13:17:41,102 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 13:17:41,111 DEBUG: 			View 3 : 0.625592417062
+2016-08-24 13:17:42,125 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:18:08,964 DEBUG: 		Start:	 Iteration 339
+2016-08-24 13:18:08,985 DEBUG: 			View 0 : 0.445497630332
+2016-08-24 13:18:08,995 DEBUG: 			View 1 : 0.691943127962
+2016-08-24 13:18:09,116 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 13:18:09,126 DEBUG: 			View 3 : 0.630331753555
+2016-08-24 13:18:10,144 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:18:37,137 DEBUG: 		Start:	 Iteration 340
+2016-08-24 13:18:37,158 DEBUG: 			View 0 : 0.516587677725
+2016-08-24 13:18:37,168 DEBUG: 			View 1 : 0.829383886256
+2016-08-24 13:18:37,289 DEBUG: 			View 2 : 0.630331753555
+2016-08-24 13:18:37,298 DEBUG: 			View 3 : 0.535545023697
+2016-08-24 13:18:38,321 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:19:05,398 DEBUG: 		Start:	 Iteration 341
+2016-08-24 13:19:05,419 DEBUG: 			View 0 : 0.54028436019
+2016-08-24 13:19:05,429 DEBUG: 			View 1 : 0.687203791469
+2016-08-24 13:19:05,558 DEBUG: 			View 2 : 0.54028436019
+2016-08-24 13:19:05,567 DEBUG: 			View 3 : 0.682464454976
+2016-08-24 13:19:06,592 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:19:33,682 DEBUG: 		Start:	 Iteration 342
+2016-08-24 13:19:33,703 DEBUG: 			View 0 : 0.526066350711
+2016-08-24 13:19:33,712 DEBUG: 			View 1 : 0.398104265403
+2016-08-24 13:19:33,846 DEBUG: 			View 2 : 0.526066350711
+2016-08-24 13:19:33,855 DEBUG: 			View 3 : 0.677725118483
+2016-08-24 13:19:34,880 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:20:02,169 DEBUG: 		Start:	 Iteration 343
+2016-08-24 13:20:02,190 DEBUG: 			View 0 : 0.421800947867
+2016-08-24 13:20:02,200 DEBUG: 			View 1 : 0.350710900474
+2016-08-24 13:20:02,331 DEBUG: 			View 2 : 0.535545023697
+2016-08-24 13:20:02,340 DEBUG: 			View 3 : 0.554502369668
+2016-08-24 13:20:03,376 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:20:31,151 DEBUG: 		Start:	 Iteration 344
+2016-08-24 13:20:31,173 DEBUG: 			View 0 : 0.616113744076
+2016-08-24 13:20:31,182 DEBUG: 			View 1 : 0.715639810427
+2016-08-24 13:20:31,302 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 13:20:31,312 DEBUG: 			View 3 : 0.625592417062
+2016-08-24 13:20:32,370 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:21:00,542 DEBUG: 		Start:	 Iteration 345
+2016-08-24 13:21:00,564 DEBUG: 			View 0 : 0.436018957346
+2016-08-24 13:21:00,575 DEBUG: 			View 1 : 0.578199052133
+2016-08-24 13:21:00,701 DEBUG: 			View 2 : 0.530805687204
+2016-08-24 13:21:00,711 DEBUG: 			View 3 : 0.620853080569
+2016-08-24 13:21:01,779 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:21:29,765 DEBUG: 		Start:	 Iteration 346
+2016-08-24 13:21:29,786 DEBUG: 			View 0 : 0.63981042654
+2016-08-24 13:21:29,796 DEBUG: 			View 1 : 0.473933649289
+2016-08-24 13:21:29,922 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 13:21:29,931 DEBUG: 			View 3 : 0.691943127962
+2016-08-24 13:21:30,995 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:21:59,180 DEBUG: 		Start:	 Iteration 347
+2016-08-24 13:21:59,201 DEBUG: 			View 0 : 0.587677725118
+2016-08-24 13:21:59,211 DEBUG: 			View 1 : 0.687203791469
+2016-08-24 13:21:59,335 DEBUG: 			View 2 : 0.54028436019
+2016-08-24 13:21:59,345 DEBUG: 			View 3 : 0.611374407583
+2016-08-24 13:22:00,434 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:22:28,518 DEBUG: 		Start:	 Iteration 348
+2016-08-24 13:22:28,539 DEBUG: 			View 0 : 0.521327014218
+2016-08-24 13:22:28,549 DEBUG: 			View 1 : 0.563981042654
+2016-08-24 13:22:28,662 DEBUG: 			View 2 : 0.635071090047
+2016-08-24 13:22:28,672 DEBUG: 			View 3 : 0.545023696682
+2016-08-24 13:22:29,716 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 13:22:57,657 DEBUG: 		Start:	 Iteration 349
+2016-08-24 13:22:57,678 DEBUG: 			View 0 : 0.601895734597
+2016-08-24 13:22:57,687 DEBUG: 			View 1 : 0.255924170616
+2016-08-24 13:22:57,819 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 13:22:57,829 DEBUG: 			View 3 : 0.45971563981
+2016-08-24 13:22:58,880 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 13:23:26,842 DEBUG: 		Start:	 Iteration 350
+2016-08-24 13:23:26,863 DEBUG: 			View 0 : 0.559241706161
+2016-08-24 13:23:26,873 DEBUG: 			View 1 : 0.526066350711
+2016-08-24 13:23:26,995 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 13:23:27,006 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 13:23:28,055 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:23:56,069 DEBUG: 		Start:	 Iteration 351
+2016-08-24 13:23:56,090 DEBUG: 			View 0 : 0.563981042654
+2016-08-24 13:23:56,099 DEBUG: 			View 1 : 0.597156398104
+2016-08-24 13:23:56,229 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 13:23:56,241 DEBUG: 			View 3 : 0.611374407583
+2016-08-24 13:23:57,313 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:24:25,267 DEBUG: 		Start:	 Iteration 352
+2016-08-24 13:24:25,288 DEBUG: 			View 0 : 0.658767772512
+2016-08-24 13:24:25,297 DEBUG: 			View 1 : 0.668246445498
+2016-08-24 13:24:25,435 DEBUG: 			View 2 : 0.63981042654
+2016-08-24 13:24:25,446 DEBUG: 			View 3 : 0.691943127962
+2016-08-24 13:24:26,503 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:24:55,334 DEBUG: 		Start:	 Iteration 353
+2016-08-24 13:24:55,356 DEBUG: 			View 0 : 0.715639810427
+2016-08-24 13:24:55,368 DEBUG: 			View 1 : 0.383886255924
+2016-08-24 13:24:55,509 DEBUG: 			View 2 : 0.568720379147
+2016-08-24 13:24:55,520 DEBUG: 			View 3 : 0.620853080569
+2016-08-24 13:24:56,581 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 13:25:25,491 DEBUG: 		Start:	 Iteration 354
+2016-08-24 13:25:25,512 DEBUG: 			View 0 : 0.687203791469
+2016-08-24 13:25:25,522 DEBUG: 			View 1 : 0.592417061611
+2016-08-24 13:25:25,677 DEBUG: 			View 2 : 0.601895734597
+2016-08-24 13:25:25,690 DEBUG: 			View 3 : 0.587677725118
+2016-08-24 13:25:26,866 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 13:25:55,868 DEBUG: 		Start:	 Iteration 355
+2016-08-24 13:25:55,889 DEBUG: 			View 0 : 0.450236966825
+2016-08-24 13:25:55,899 DEBUG: 			View 1 : 0.597156398104
+2016-08-24 13:25:56,036 DEBUG: 			View 2 : 0.549763033175
+2016-08-24 13:25:56,048 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 13:25:57,138 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:26:26,039 DEBUG: 		Start:	 Iteration 356
+2016-08-24 13:26:26,060 DEBUG: 			View 0 : 0.535545023697
+2016-08-24 13:26:26,070 DEBUG: 			View 1 : 0.625592417062
+2016-08-24 13:26:26,209 DEBUG: 			View 2 : 0.502369668246
+2016-08-24 13:26:26,220 DEBUG: 			View 3 : 0.630331753555
+2016-08-24 13:26:27,295 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:26:56,537 DEBUG: 		Start:	 Iteration 357
+2016-08-24 13:26:56,559 DEBUG: 			View 0 : 0.521327014218
+2016-08-24 13:26:56,568 DEBUG: 			View 1 : 0.758293838863
+2016-08-24 13:26:56,704 DEBUG: 			View 2 : 0.635071090047
+2016-08-24 13:26:56,715 DEBUG: 			View 3 : 0.592417061611
+2016-08-24 13:26:57,821 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:27:26,994 DEBUG: 		Start:	 Iteration 358
+2016-08-24 13:27:27,015 DEBUG: 			View 0 : 0.630331753555
+2016-08-24 13:27:27,025 DEBUG: 			View 1 : 0.616113744076
+2016-08-24 13:27:27,162 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 13:27:27,174 DEBUG: 			View 3 : 0.554502369668
+2016-08-24 13:27:28,247 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 13:27:58,044 DEBUG: 		Start:	 Iteration 359
+2016-08-24 13:27:58,064 DEBUG: 			View 0 : 0.545023696682
+2016-08-24 13:27:58,074 DEBUG: 			View 1 : 0.469194312796
+2016-08-24 13:27:58,197 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 13:27:58,209 DEBUG: 			View 3 : 0.616113744076
+2016-08-24 13:27:59,367 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:28:28,618 DEBUG: 		Start:	 Iteration 360
+2016-08-24 13:28:28,639 DEBUG: 			View 0 : 0.620853080569
+2016-08-24 13:28:28,650 DEBUG: 			View 1 : 0.379146919431
+2016-08-24 13:28:28,788 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 13:28:28,800 DEBUG: 			View 3 : 0.625592417062
+2016-08-24 13:28:30,145 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:28:59,484 DEBUG: 		Start:	 Iteration 361
+2016-08-24 13:28:59,505 DEBUG: 			View 0 : 0.57345971564
+2016-08-24 13:28:59,515 DEBUG: 			View 1 : 0.620853080569
+2016-08-24 13:28:59,644 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 13:28:59,655 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 13:29:00,763 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:29:30,434 DEBUG: 		Start:	 Iteration 362
+2016-08-24 13:29:30,455 DEBUG: 			View 0 : 0.620853080569
+2016-08-24 13:29:30,465 DEBUG: 			View 1 : 0.45971563981
+2016-08-24 13:29:30,598 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 13:29:30,610 DEBUG: 			View 3 : 0.592417061611
+2016-08-24 13:29:31,731 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:30:01,786 DEBUG: 		Start:	 Iteration 363
+2016-08-24 13:30:01,807 DEBUG: 			View 0 : 0.630331753555
+2016-08-24 13:30:01,816 DEBUG: 			View 1 : 0.502369668246
+2016-08-24 13:30:01,953 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 13:30:01,964 DEBUG: 			View 3 : 0.507109004739
+2016-08-24 13:30:03,086 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 13:30:32,971 DEBUG: 		Start:	 Iteration 364
+2016-08-24 13:30:32,993 DEBUG: 			View 0 : 0.554502369668
+2016-08-24 13:30:33,003 DEBUG: 			View 1 : 0.644549763033
+2016-08-24 13:30:33,126 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 13:30:33,137 DEBUG: 			View 3 : 0.616113744076
+2016-08-24 13:30:34,239 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:31:04,052 DEBUG: 		Start:	 Iteration 365
+2016-08-24 13:31:04,072 DEBUG: 			View 0 : 0.545023696682
+2016-08-24 13:31:04,082 DEBUG: 			View 1 : 0.706161137441
+2016-08-24 13:31:04,215 DEBUG: 			View 2 : 0.492890995261
+2016-08-24 13:31:04,226 DEBUG: 			View 3 : 0.554502369668
+2016-08-24 13:31:05,331 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:31:35,076 DEBUG: 		Start:	 Iteration 366
+2016-08-24 13:31:35,096 DEBUG: 			View 0 : 0.658767772512
+2016-08-24 13:31:35,106 DEBUG: 			View 1 : 0.54028436019
+2016-08-24 13:31:35,242 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 13:31:35,253 DEBUG: 			View 3 : 0.587677725118
+2016-08-24 13:31:36,362 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 13:32:05,866 DEBUG: 		Start:	 Iteration 367
+2016-08-24 13:32:05,887 DEBUG: 			View 0 : 0.630331753555
+2016-08-24 13:32:05,897 DEBUG: 			View 1 : 0.677725118483
+2016-08-24 13:32:06,019 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 13:32:06,030 DEBUG: 			View 3 : 0.592417061611
+2016-08-24 13:32:07,151 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:32:37,659 DEBUG: 		Start:	 Iteration 368
+2016-08-24 13:32:37,680 DEBUG: 			View 0 : 0.625592417062
+2016-08-24 13:32:37,691 DEBUG: 			View 1 : 0.563981042654
+2016-08-24 13:32:37,812 DEBUG: 			View 2 : 0.511848341232
+2016-08-24 13:32:37,822 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 13:32:38,995 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 13:33:09,312 DEBUG: 		Start:	 Iteration 369
+2016-08-24 13:33:09,334 DEBUG: 			View 0 : 0.464454976303
+2016-08-24 13:33:09,348 DEBUG: 			View 1 : 0.549763033175
+2016-08-24 13:33:09,482 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 13:33:09,498 DEBUG: 			View 3 : 0.625592417062
+2016-08-24 13:33:10,676 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:33:40,714 DEBUG: 		Start:	 Iteration 370
+2016-08-24 13:33:40,736 DEBUG: 			View 0 : 0.507109004739
+2016-08-24 13:33:40,745 DEBUG: 			View 1 : 0.644549763033
+2016-08-24 13:33:40,862 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 13:33:40,872 DEBUG: 			View 3 : 0.611374407583
+2016-08-24 13:33:41,996 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:34:11,589 DEBUG: 		Start:	 Iteration 371
+2016-08-24 13:34:11,611 DEBUG: 			View 0 : 0.516587677725
+2016-08-24 13:34:11,620 DEBUG: 			View 1 : 0.450236966825
+2016-08-24 13:34:11,740 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 13:34:11,749 DEBUG: 			View 3 : 0.582938388626
+2016-08-24 13:34:12,914 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:34:42,966 DEBUG: 		Start:	 Iteration 372
+2016-08-24 13:34:42,987 DEBUG: 			View 0 : 0.54028436019
+2016-08-24 13:34:42,997 DEBUG: 			View 1 : 0.597156398104
+2016-08-24 13:34:43,125 DEBUG: 			View 2 : 0.620853080569
+2016-08-24 13:34:43,134 DEBUG: 			View 3 : 0.611374407583
+2016-08-24 13:34:44,307 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 13:35:14,647 DEBUG: 		Start:	 Iteration 373
+2016-08-24 13:35:14,668 DEBUG: 			View 0 : 0.654028436019
+2016-08-24 13:35:14,680 DEBUG: 			View 1 : 0.421800947867
+2016-08-24 13:35:14,805 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 13:35:14,814 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 13:35:15,960 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 13:35:46,317 DEBUG: 		Start:	 Iteration 374
+2016-08-24 13:35:46,339 DEBUG: 			View 0 : 0.492890995261
+2016-08-24 13:35:46,349 DEBUG: 			View 1 : 0.625592417062
+2016-08-24 13:35:46,466 DEBUG: 			View 2 : 0.535545023697
+2016-08-24 13:35:46,475 DEBUG: 			View 3 : 0.511848341232
+2016-08-24 13:35:47,650 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:36:17,996 DEBUG: 		Start:	 Iteration 375
+2016-08-24 13:36:18,018 DEBUG: 			View 0 : 0.587677725118
+2016-08-24 13:36:18,028 DEBUG: 			View 1 : 0.388625592417
+2016-08-24 13:36:18,170 DEBUG: 			View 2 : 0.563981042654
+2016-08-24 13:36:18,181 DEBUG: 			View 3 : 0.630331753555
+2016-08-24 13:36:19,343 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:36:49,753 DEBUG: 		Start:	 Iteration 376
+2016-08-24 13:36:49,774 DEBUG: 			View 0 : 0.445497630332
+2016-08-24 13:36:49,784 DEBUG: 			View 1 : 0.616113744076
+2016-08-24 13:36:49,904 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 13:36:49,913 DEBUG: 			View 3 : 0.597156398104
+2016-08-24 13:36:51,145 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:37:21,399 DEBUG: 		Start:	 Iteration 377
+2016-08-24 13:37:21,420 DEBUG: 			View 0 : 0.545023696682
+2016-08-24 13:37:21,430 DEBUG: 			View 1 : 0.611374407583
+2016-08-24 13:37:21,550 DEBUG: 			View 2 : 0.502369668246
+2016-08-24 13:37:21,560 DEBUG: 			View 3 : 0.521327014218
+2016-08-24 13:37:22,689 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:37:52,749 DEBUG: 		Start:	 Iteration 378
+2016-08-24 13:37:52,770 DEBUG: 			View 0 : 0.42654028436
+2016-08-24 13:37:52,779 DEBUG: 			View 1 : 0.587677725118
+2016-08-24 13:37:52,902 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 13:37:52,912 DEBUG: 			View 3 : 0.620853080569
+2016-08-24 13:37:54,077 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:38:24,175 DEBUG: 		Start:	 Iteration 379
+2016-08-24 13:38:24,197 DEBUG: 			View 0 : 0.625592417062
+2016-08-24 13:38:24,206 DEBUG: 			View 1 : 0.75355450237
+2016-08-24 13:38:24,329 DEBUG: 			View 2 : 0.526066350711
+2016-08-24 13:38:24,338 DEBUG: 			View 3 : 0.620853080569
+2016-08-24 13:38:25,566 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:38:55,931 DEBUG: 		Start:	 Iteration 380
+2016-08-24 13:38:55,953 DEBUG: 			View 0 : 0.535545023697
+2016-08-24 13:38:55,962 DEBUG: 			View 1 : 0.677725118483
+2016-08-24 13:38:56,079 DEBUG: 			View 2 : 0.635071090047
+2016-08-24 13:38:56,088 DEBUG: 			View 3 : 0.616113744076
+2016-08-24 13:38:57,256 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:39:27,647 DEBUG: 		Start:	 Iteration 381
+2016-08-24 13:39:27,668 DEBUG: 			View 0 : 0.473933649289
+2016-08-24 13:39:27,678 DEBUG: 			View 1 : 0.620853080569
+2016-08-24 13:39:27,798 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 13:39:27,808 DEBUG: 			View 3 : 0.616113744076
+2016-08-24 13:39:28,946 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:40:00,455 DEBUG: 		Start:	 Iteration 382
+2016-08-24 13:40:00,481 DEBUG: 			View 0 : 0.42654028436
+2016-08-24 13:40:00,492 DEBUG: 			View 1 : 0.436018957346
+2016-08-24 13:40:00,631 DEBUG: 			View 2 : 0.635071090047
+2016-08-24 13:40:00,643 DEBUG: 			View 3 : 0.616113744076
+2016-08-24 13:40:01,991 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 13:40:32,518 DEBUG: 		Start:	 Iteration 383
+2016-08-24 13:40:32,539 DEBUG: 			View 0 : 0.436018957346
+2016-08-24 13:40:32,548 DEBUG: 			View 1 : 0.60663507109
+2016-08-24 13:40:32,668 DEBUG: 			View 2 : 0.507109004739
+2016-08-24 13:40:32,678 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 13:40:33,824 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:41:04,952 DEBUG: 		Start:	 Iteration 384
+2016-08-24 13:41:04,974 DEBUG: 			View 0 : 0.587677725118
+2016-08-24 13:41:04,983 DEBUG: 			View 1 : 0.597156398104
+2016-08-24 13:41:05,103 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 13:41:05,112 DEBUG: 			View 3 : 0.545023696682
+2016-08-24 13:41:06,291 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:41:37,036 DEBUG: 		Start:	 Iteration 385
+2016-08-24 13:41:37,056 DEBUG: 			View 0 : 0.530805687204
+2016-08-24 13:41:37,066 DEBUG: 			View 1 : 0.630331753555
+2016-08-24 13:41:37,181 DEBUG: 			View 2 : 0.535545023697
+2016-08-24 13:41:37,191 DEBUG: 			View 3 : 0.582938388626
+2016-08-24 13:41:38,358 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:42:09,865 DEBUG: 		Start:	 Iteration 386
+2016-08-24 13:42:09,889 DEBUG: 			View 0 : 0.635071090047
+2016-08-24 13:42:09,902 DEBUG: 			View 1 : 0.582938388626
+2016-08-24 13:42:10,037 DEBUG: 			View 2 : 0.57345971564
+2016-08-24 13:42:10,046 DEBUG: 			View 3 : 0.663507109005
+2016-08-24 13:42:11,381 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:42:43,246 DEBUG: 		Start:	 Iteration 387
+2016-08-24 13:42:43,270 DEBUG: 			View 0 : 0.530805687204
+2016-08-24 13:42:43,281 DEBUG: 			View 1 : 0.497630331754
+2016-08-24 13:42:43,425 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 13:42:43,436 DEBUG: 			View 3 : 0.663507109005
+2016-08-24 13:42:44,706 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:43:15,848 DEBUG: 		Start:	 Iteration 388
+2016-08-24 13:43:15,869 DEBUG: 			View 0 : 0.54028436019
+2016-08-24 13:43:15,879 DEBUG: 			View 1 : 0.654028436019
+2016-08-24 13:43:15,990 DEBUG: 			View 2 : 0.568720379147
+2016-08-24 13:43:15,999 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 13:43:17,163 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:43:48,364 DEBUG: 		Start:	 Iteration 389
+2016-08-24 13:43:48,385 DEBUG: 			View 0 : 0.635071090047
+2016-08-24 13:43:48,394 DEBUG: 			View 1 : 0.687203791469
+2016-08-24 13:43:48,501 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 13:43:48,510 DEBUG: 			View 3 : 0.625592417062
+2016-08-24 13:43:49,674 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:44:21,139 DEBUG: 		Start:	 Iteration 390
+2016-08-24 13:44:21,160 DEBUG: 			View 0 : 0.492890995261
+2016-08-24 13:44:21,170 DEBUG: 			View 1 : 0.45971563981
+2016-08-24 13:44:21,292 DEBUG: 			View 2 : 0.502369668246
+2016-08-24 13:44:21,301 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 13:44:22,530 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:44:54,159 DEBUG: 		Start:	 Iteration 391
+2016-08-24 13:44:54,180 DEBUG: 			View 0 : 0.497630331754
+2016-08-24 13:44:54,190 DEBUG: 			View 1 : 0.483412322275
+2016-08-24 13:44:54,307 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 13:44:54,318 DEBUG: 			View 3 : 0.554502369668
+2016-08-24 13:44:55,517 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 13:45:27,112 DEBUG: 		Start:	 Iteration 392
+2016-08-24 13:45:27,133 DEBUG: 			View 0 : 0.473933649289
+2016-08-24 13:45:27,143 DEBUG: 			View 1 : 0.601895734597
+2016-08-24 13:45:27,260 DEBUG: 			View 2 : 0.601895734597
+2016-08-24 13:45:27,270 DEBUG: 			View 3 : 0.635071090047
+2016-08-24 13:45:28,443 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:46:00,019 DEBUG: 		Start:	 Iteration 393
+2016-08-24 13:46:00,040 DEBUG: 			View 0 : 0.691943127962
+2016-08-24 13:46:00,050 DEBUG: 			View 1 : 0.421800947867
+2016-08-24 13:46:00,166 DEBUG: 			View 2 : 0.521327014218
+2016-08-24 13:46:00,175 DEBUG: 			View 3 : 0.559241706161
+2016-08-24 13:46:01,367 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 13:46:33,081 DEBUG: 		Start:	 Iteration 394
+2016-08-24 13:46:33,102 DEBUG: 			View 0 : 0.549763033175
+2016-08-24 13:46:33,111 DEBUG: 			View 1 : 0.545023696682
+2016-08-24 13:46:33,231 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 13:46:33,240 DEBUG: 			View 3 : 0.635071090047
+2016-08-24 13:46:34,419 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:47:06,196 DEBUG: 		Start:	 Iteration 395
+2016-08-24 13:47:06,221 DEBUG: 			View 0 : 0.464454976303
+2016-08-24 13:47:06,232 DEBUG: 			View 1 : 0.597156398104
+2016-08-24 13:47:06,363 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 13:47:06,372 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 13:47:07,572 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:47:39,732 DEBUG: 		Start:	 Iteration 396
+2016-08-24 13:47:39,754 DEBUG: 			View 0 : 0.582938388626
+2016-08-24 13:47:39,764 DEBUG: 			View 1 : 0.658767772512
+2016-08-24 13:47:39,911 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 13:47:39,920 DEBUG: 			View 3 : 0.545023696682
+2016-08-24 13:47:41,213 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:48:13,299 DEBUG: 		Start:	 Iteration 397
+2016-08-24 13:48:13,320 DEBUG: 			View 0 : 0.635071090047
+2016-08-24 13:48:13,330 DEBUG: 			View 1 : 0.644549763033
+2016-08-24 13:48:13,453 DEBUG: 			View 2 : 0.611374407583
+2016-08-24 13:48:13,463 DEBUG: 			View 3 : 0.654028436019
+2016-08-24 13:48:14,683 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:48:47,260 DEBUG: 		Start:	 Iteration 398
+2016-08-24 13:48:47,281 DEBUG: 			View 0 : 0.54028436019
+2016-08-24 13:48:47,290 DEBUG: 			View 1 : 0.625592417062
+2016-08-24 13:48:47,425 DEBUG: 			View 2 : 0.535545023697
+2016-08-24 13:48:47,435 DEBUG: 			View 3 : 0.545023696682
+2016-08-24 13:48:48,673 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:49:20,843 DEBUG: 		Start:	 Iteration 399
+2016-08-24 13:49:20,864 DEBUG: 			View 0 : 0.829383886256
+2016-08-24 13:49:20,874 DEBUG: 			View 1 : 0.744075829384
+2016-08-24 13:49:20,991 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 13:49:21,000 DEBUG: 			View 3 : 0.549763033175
+2016-08-24 13:49:22,365 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 13:49:55,510 DEBUG: 		Start:	 Iteration 400
+2016-08-24 13:49:55,537 DEBUG: 			View 0 : 0.620853080569
+2016-08-24 13:49:55,548 DEBUG: 			View 1 : 0.649289099526
+2016-08-24 13:49:55,685 DEBUG: 			View 2 : 0.635071090047
+2016-08-24 13:49:55,695 DEBUG: 			View 3 : 0.691943127962
+2016-08-24 13:49:57,078 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:50:30,035 DEBUG: 		Start:	 Iteration 401
+2016-08-24 13:50:30,056 DEBUG: 			View 0 : 0.436018957346
+2016-08-24 13:50:30,065 DEBUG: 			View 1 : 0.677725118483
+2016-08-24 13:50:30,179 DEBUG: 			View 2 : 0.635071090047
+2016-08-24 13:50:30,188 DEBUG: 			View 3 : 0.597156398104
+2016-08-24 13:50:31,383 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:51:03,983 DEBUG: 		Start:	 Iteration 402
+2016-08-24 13:51:04,005 DEBUG: 			View 0 : 0.620853080569
+2016-08-24 13:51:04,014 DEBUG: 			View 1 : 0.644549763033
+2016-08-24 13:51:04,129 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 13:51:04,138 DEBUG: 			View 3 : 0.706161137441
+2016-08-24 13:51:05,329 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:51:37,241 DEBUG: 		Start:	 Iteration 403
+2016-08-24 13:51:37,263 DEBUG: 			View 0 : 0.549763033175
+2016-08-24 13:51:37,273 DEBUG: 			View 1 : 0.369668246445
+2016-08-24 13:51:37,388 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 13:51:37,397 DEBUG: 			View 3 : 0.658767772512
+2016-08-24 13:51:38,606 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:52:11,139 DEBUG: 		Start:	 Iteration 404
+2016-08-24 13:52:11,160 DEBUG: 			View 0 : 0.620853080569
+2016-08-24 13:52:11,169 DEBUG: 			View 1 : 0.559241706161
+2016-08-24 13:52:11,289 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 13:52:11,298 DEBUG: 			View 3 : 0.554502369668
+2016-08-24 13:52:12,508 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 13:52:44,577 DEBUG: 		Start:	 Iteration 405
+2016-08-24 13:52:44,598 DEBUG: 			View 0 : 0.620853080569
+2016-08-24 13:52:44,608 DEBUG: 			View 1 : 0.625592417062
+2016-08-24 13:52:44,723 DEBUG: 			View 2 : 0.492890995261
+2016-08-24 13:52:44,732 DEBUG: 			View 3 : 0.625592417062
+2016-08-24 13:52:45,935 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:53:19,104 DEBUG: 		Start:	 Iteration 406
+2016-08-24 13:53:19,125 DEBUG: 			View 0 : 0.535545023697
+2016-08-24 13:53:19,134 DEBUG: 			View 1 : 0.625592417062
+2016-08-24 13:53:19,257 DEBUG: 			View 2 : 0.601895734597
+2016-08-24 13:53:19,266 DEBUG: 			View 3 : 0.658767772512
+2016-08-24 13:53:20,642 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:53:53,732 DEBUG: 		Start:	 Iteration 407
+2016-08-24 13:53:53,754 DEBUG: 			View 0 : 0.810426540284
+2016-08-24 13:53:53,764 DEBUG: 			View 1 : 0.341232227488
+2016-08-24 13:53:53,883 DEBUG: 			View 2 : 0.601895734597
+2016-08-24 13:53:53,892 DEBUG: 			View 3 : 0.611374407583
+2016-08-24 13:53:55,101 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 13:54:27,648 DEBUG: 		Start:	 Iteration 408
+2016-08-24 13:54:27,669 DEBUG: 			View 0 : 0.507109004739
+2016-08-24 13:54:27,679 DEBUG: 			View 1 : 0.464454976303
+2016-08-24 13:54:27,798 DEBUG: 			View 2 : 0.526066350711
+2016-08-24 13:54:27,807 DEBUG: 			View 3 : 0.436018957346
+2016-08-24 13:54:29,031 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 13:55:02,477 DEBUG: 		Start:	 Iteration 409
+2016-08-24 13:55:02,498 DEBUG: 			View 0 : 0.663507109005
+2016-08-24 13:55:02,508 DEBUG: 			View 1 : 0.417061611374
+2016-08-24 13:55:02,624 DEBUG: 			View 2 : 0.63981042654
+2016-08-24 13:55:02,633 DEBUG: 			View 3 : 0.597156398104
+2016-08-24 13:55:03,877 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 13:55:37,510 DEBUG: 		Start:	 Iteration 410
+2016-08-24 13:55:37,531 DEBUG: 			View 0 : 0.658767772512
+2016-08-24 13:55:37,541 DEBUG: 			View 1 : 0.630331753555
+2016-08-24 13:55:37,664 DEBUG: 			View 2 : 0.620853080569
+2016-08-24 13:55:37,673 DEBUG: 			View 3 : 0.545023696682
+2016-08-24 13:55:38,897 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 13:56:12,501 DEBUG: 		Start:	 Iteration 411
+2016-08-24 13:56:12,523 DEBUG: 			View 0 : 0.635071090047
+2016-08-24 13:56:12,533 DEBUG: 			View 1 : 0.644549763033
+2016-08-24 13:56:12,666 DEBUG: 			View 2 : 0.516587677725
+2016-08-24 13:56:12,677 DEBUG: 			View 3 : 0.663507109005
+2016-08-24 13:56:13,983 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:56:47,750 DEBUG: 		Start:	 Iteration 412
+2016-08-24 13:56:47,771 DEBUG: 			View 0 : 0.502369668246
+2016-08-24 13:56:47,781 DEBUG: 			View 1 : 0.57345971564
+2016-08-24 13:56:47,892 DEBUG: 			View 2 : 0.63981042654
+2016-08-24 13:56:47,901 DEBUG: 			View 3 : 0.630331753555
+2016-08-24 13:56:49,135 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 13:57:23,645 DEBUG: 		Start:	 Iteration 413
+2016-08-24 13:57:23,666 DEBUG: 			View 0 : 0.488151658768
+2016-08-24 13:57:23,677 DEBUG: 			View 1 : 0.663507109005
+2016-08-24 13:57:23,802 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 13:57:23,811 DEBUG: 			View 3 : 0.568720379147
+2016-08-24 13:57:25,057 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:57:59,361 DEBUG: 		Start:	 Iteration 414
+2016-08-24 13:57:59,382 DEBUG: 			View 0 : 0.644549763033
+2016-08-24 13:57:59,391 DEBUG: 			View 1 : 0.63981042654
+2016-08-24 13:57:59,507 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 13:57:59,516 DEBUG: 			View 3 : 0.582938388626
+2016-08-24 13:58:00,773 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 13:58:34,062 DEBUG: 		Start:	 Iteration 415
+2016-08-24 13:58:34,083 DEBUG: 			View 0 : 0.511848341232
+2016-08-24 13:58:34,093 DEBUG: 			View 1 : 0.597156398104
+2016-08-24 13:58:34,220 DEBUG: 			View 2 : 0.549763033175
+2016-08-24 13:58:34,229 DEBUG: 			View 3 : 0.554502369668
+2016-08-24 13:58:35,453 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:59:08,331 DEBUG: 		Start:	 Iteration 416
+2016-08-24 13:59:08,352 DEBUG: 			View 0 : 0.54028436019
+2016-08-24 13:59:08,362 DEBUG: 			View 1 : 0.601895734597
+2016-08-24 13:59:08,476 DEBUG: 			View 2 : 0.616113744076
+2016-08-24 13:59:08,485 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 13:59:09,711 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 13:59:43,368 DEBUG: 		Start:	 Iteration 417
+2016-08-24 13:59:43,389 DEBUG: 			View 0 : 0.454976303318
+2016-08-24 13:59:43,399 DEBUG: 			View 1 : 0.710900473934
+2016-08-24 13:59:43,519 DEBUG: 			View 2 : 0.568720379147
+2016-08-24 13:59:43,528 DEBUG: 			View 3 : 0.687203791469
+2016-08-24 13:59:44,841 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:00:18,976 DEBUG: 		Start:	 Iteration 418
+2016-08-24 14:00:18,997 DEBUG: 			View 0 : 0.658767772512
+2016-08-24 14:00:19,008 DEBUG: 			View 1 : 0.578199052133
+2016-08-24 14:00:19,124 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 14:00:19,133 DEBUG: 			View 3 : 0.545023696682
+2016-08-24 14:00:20,396 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 14:00:54,344 DEBUG: 		Start:	 Iteration 419
+2016-08-24 14:00:54,365 DEBUG: 			View 0 : 0.516587677725
+2016-08-24 14:00:54,375 DEBUG: 			View 1 : 0.635071090047
+2016-08-24 14:00:54,498 DEBUG: 			View 2 : 0.568720379147
+2016-08-24 14:00:54,507 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 14:00:55,752 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:01:30,338 DEBUG: 		Start:	 Iteration 420
+2016-08-24 14:01:30,359 DEBUG: 			View 0 : 0.592417061611
+2016-08-24 14:01:30,369 DEBUG: 			View 1 : 0.677725118483
+2016-08-24 14:01:30,504 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 14:01:30,514 DEBUG: 			View 3 : 0.60663507109
+2016-08-24 14:01:31,799 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:02:05,514 DEBUG: 		Start:	 Iteration 421
+2016-08-24 14:02:05,535 DEBUG: 			View 0 : 0.545023696682
+2016-08-24 14:02:05,545 DEBUG: 			View 1 : 0.777251184834
+2016-08-24 14:02:05,681 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 14:02:05,691 DEBUG: 			View 3 : 0.635071090047
+2016-08-24 14:02:06,975 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:02:40,836 DEBUG: 		Start:	 Iteration 422
+2016-08-24 14:02:40,857 DEBUG: 			View 0 : 0.597156398104
+2016-08-24 14:02:40,867 DEBUG: 			View 1 : 0.672985781991
+2016-08-24 14:02:40,989 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 14:02:40,998 DEBUG: 			View 3 : 0.616113744076
+2016-08-24 14:02:42,282 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:03:16,292 DEBUG: 		Start:	 Iteration 423
+2016-08-24 14:03:16,313 DEBUG: 			View 0 : 0.507109004739
+2016-08-24 14:03:16,322 DEBUG: 			View 1 : 0.497630331754
+2016-08-24 14:03:16,440 DEBUG: 			View 2 : 0.507109004739
+2016-08-24 14:03:16,449 DEBUG: 			View 3 : 0.620853080569
+2016-08-24 14:03:17,705 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:03:52,074 DEBUG: 		Start:	 Iteration 424
+2016-08-24 14:03:52,095 DEBUG: 			View 0 : 0.601895734597
+2016-08-24 14:03:52,104 DEBUG: 			View 1 : 0.616113744076
+2016-08-24 14:03:52,220 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 14:03:52,229 DEBUG: 			View 3 : 0.497630331754
+2016-08-24 14:03:53,482 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 14:04:27,383 DEBUG: 		Start:	 Iteration 425
+2016-08-24 14:04:27,404 DEBUG: 			View 0 : 0.454976303318
+2016-08-24 14:04:27,414 DEBUG: 			View 1 : 0.644549763033
+2016-08-24 14:04:27,534 DEBUG: 			View 2 : 0.563981042654
+2016-08-24 14:04:27,543 DEBUG: 			View 3 : 0.497630331754
+2016-08-24 14:04:28,823 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:05:03,346 DEBUG: 		Start:	 Iteration 426
+2016-08-24 14:05:03,367 DEBUG: 			View 0 : 0.492890995261
+2016-08-24 14:05:03,377 DEBUG: 			View 1 : 0.549763033175
+2016-08-24 14:05:03,497 DEBUG: 			View 2 : 0.535545023697
+2016-08-24 14:05:03,506 DEBUG: 			View 3 : 0.469194312796
+2016-08-24 14:05:04,788 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:05:39,257 DEBUG: 		Start:	 Iteration 427
+2016-08-24 14:05:39,279 DEBUG: 			View 0 : 0.620853080569
+2016-08-24 14:05:39,288 DEBUG: 			View 1 : 0.469194312796
+2016-08-24 14:05:39,410 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 14:05:39,419 DEBUG: 			View 3 : 0.568720379147
+2016-08-24 14:05:40,675 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 14:06:14,724 DEBUG: 		Start:	 Iteration 428
+2016-08-24 14:06:14,745 DEBUG: 			View 0 : 0.582938388626
+2016-08-24 14:06:14,755 DEBUG: 			View 1 : 0.654028436019
+2016-08-24 14:06:14,913 DEBUG: 			View 2 : 0.530805687204
+2016-08-24 14:06:14,927 DEBUG: 			View 3 : 0.668246445498
+2016-08-24 14:06:16,235 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:06:50,711 DEBUG: 		Start:	 Iteration 429
+2016-08-24 14:06:50,731 DEBUG: 			View 0 : 0.611374407583
+2016-08-24 14:06:50,741 DEBUG: 			View 1 : 0.649289099526
+2016-08-24 14:06:50,867 DEBUG: 			View 2 : 0.611374407583
+2016-08-24 14:06:50,879 DEBUG: 			View 3 : 0.625592417062
+2016-08-24 14:06:52,142 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:07:25,955 DEBUG: 		Start:	 Iteration 430
+2016-08-24 14:07:25,977 DEBUG: 			View 0 : 0.488151658768
+2016-08-24 14:07:25,986 DEBUG: 			View 1 : 0.663507109005
+2016-08-24 14:07:26,117 DEBUG: 			View 2 : 0.521327014218
+2016-08-24 14:07:26,129 DEBUG: 			View 3 : 0.440758293839
+2016-08-24 14:07:27,392 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:08:01,799 DEBUG: 		Start:	 Iteration 431
+2016-08-24 14:08:01,820 DEBUG: 			View 0 : 0.644549763033
+2016-08-24 14:08:01,830 DEBUG: 			View 1 : 0.63981042654
+2016-08-24 14:08:01,953 DEBUG: 			View 2 : 0.563981042654
+2016-08-24 14:08:01,965 DEBUG: 			View 3 : 0.526066350711
+2016-08-24 14:08:03,237 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 14:08:37,425 DEBUG: 		Start:	 Iteration 432
+2016-08-24 14:08:37,446 DEBUG: 			View 0 : 0.511848341232
+2016-08-24 14:08:37,455 DEBUG: 			View 1 : 0.649289099526
+2016-08-24 14:08:37,583 DEBUG: 			View 2 : 0.502369668246
+2016-08-24 14:08:37,594 DEBUG: 			View 3 : 0.654028436019
+2016-08-24 14:08:38,862 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:09:13,162 DEBUG: 		Start:	 Iteration 433
+2016-08-24 14:09:13,183 DEBUG: 			View 0 : 0.57345971564
+2016-08-24 14:09:13,192 DEBUG: 			View 1 : 0.454976303318
+2016-08-24 14:09:13,326 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 14:09:13,338 DEBUG: 			View 3 : 0.696682464455
+2016-08-24 14:09:14,619 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:09:50,222 DEBUG: 		Start:	 Iteration 434
+2016-08-24 14:09:50,243 DEBUG: 			View 0 : 0.473933649289
+2016-08-24 14:09:50,253 DEBUG: 			View 1 : 0.469194312796
+2016-08-24 14:09:50,388 DEBUG: 			View 2 : 0.611374407583
+2016-08-24 14:09:50,399 DEBUG: 			View 3 : 0.473933649289
+2016-08-24 14:09:51,683 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 14:10:26,874 DEBUG: 		Start:	 Iteration 435
+2016-08-24 14:10:26,896 DEBUG: 			View 0 : 0.464454976303
+2016-08-24 14:10:26,906 DEBUG: 			View 1 : 0.616113744076
+2016-08-24 14:10:27,058 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 14:10:27,068 DEBUG: 			View 3 : 0.691943127962
+2016-08-24 14:10:28,544 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:11:04,720 DEBUG: 		Start:	 Iteration 436
+2016-08-24 14:11:04,741 DEBUG: 			View 0 : 0.417061611374
+2016-08-24 14:11:04,750 DEBUG: 			View 1 : 0.635071090047
+2016-08-24 14:11:04,869 DEBUG: 			View 2 : 0.464454976303
+2016-08-24 14:11:04,879 DEBUG: 			View 3 : 0.654028436019
+2016-08-24 14:11:06,172 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:11:40,928 DEBUG: 		Start:	 Iteration 437
+2016-08-24 14:11:40,949 DEBUG: 			View 0 : 0.625592417062
+2016-08-24 14:11:40,959 DEBUG: 			View 1 : 0.483412322275
+2016-08-24 14:11:41,090 DEBUG: 			View 2 : 0.488151658768
+2016-08-24 14:11:41,099 DEBUG: 			View 3 : 0.587677725118
+2016-08-24 14:11:42,392 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 14:12:17,624 DEBUG: 		Start:	 Iteration 438
+2016-08-24 14:12:17,645 DEBUG: 			View 0 : 0.431279620853
+2016-08-24 14:12:17,655 DEBUG: 			View 1 : 0.644549763033
+2016-08-24 14:12:17,781 DEBUG: 			View 2 : 0.620853080569
+2016-08-24 14:12:17,790 DEBUG: 			View 3 : 0.507109004739
+2016-08-24 14:12:19,346 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 14:12:55,038 DEBUG: 		Start:	 Iteration 439
+2016-08-24 14:12:55,063 DEBUG: 			View 0 : 0.630331753555
+2016-08-24 14:12:55,073 DEBUG: 			View 1 : 0.611374407583
+2016-08-24 14:12:55,216 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 14:12:55,225 DEBUG: 			View 3 : 0.635071090047
+2016-08-24 14:12:56,554 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:13:32,726 DEBUG: 		Start:	 Iteration 440
+2016-08-24 14:13:32,747 DEBUG: 			View 0 : 0.611374407583
+2016-08-24 14:13:32,758 DEBUG: 			View 1 : 0.587677725118
+2016-08-24 14:13:32,905 DEBUG: 			View 2 : 0.625592417062
+2016-08-24 14:13:32,916 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 14:13:34,216 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 14:14:09,458 DEBUG: 		Start:	 Iteration 441
+2016-08-24 14:14:09,479 DEBUG: 			View 0 : 0.563981042654
+2016-08-24 14:14:09,489 DEBUG: 			View 1 : 0.810426540284
+2016-08-24 14:14:09,624 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 14:14:09,636 DEBUG: 			View 3 : 0.597156398104
+2016-08-24 14:14:10,973 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:14:46,186 DEBUG: 		Start:	 Iteration 442
+2016-08-24 14:14:46,208 DEBUG: 			View 0 : 0.672985781991
+2016-08-24 14:14:46,218 DEBUG: 			View 1 : 0.464454976303
+2016-08-24 14:14:46,347 DEBUG: 			View 2 : 0.654028436019
+2016-08-24 14:14:46,358 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 14:14:47,659 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 14:15:24,290 DEBUG: 		Start:	 Iteration 443
+2016-08-24 14:15:24,311 DEBUG: 			View 0 : 0.658767772512
+2016-08-24 14:15:24,321 DEBUG: 			View 1 : 0.658767772512
+2016-08-24 14:15:24,494 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 14:15:24,507 DEBUG: 			View 3 : 0.511848341232
+2016-08-24 14:15:25,989 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 14:16:02,481 DEBUG: 		Start:	 Iteration 444
+2016-08-24 14:16:02,502 DEBUG: 			View 0 : 0.568720379147
+2016-08-24 14:16:02,511 DEBUG: 			View 1 : 0.611374407583
+2016-08-24 14:16:02,641 DEBUG: 			View 2 : 0.630331753555
+2016-08-24 14:16:02,652 DEBUG: 			View 3 : 0.706161137441
+2016-08-24 14:16:04,126 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:16:40,930 DEBUG: 		Start:	 Iteration 445
+2016-08-24 14:16:40,951 DEBUG: 			View 0 : 0.625592417062
+2016-08-24 14:16:40,960 DEBUG: 			View 1 : 0.492890995261
+2016-08-24 14:16:41,091 DEBUG: 			View 2 : 0.54028436019
+2016-08-24 14:16:41,102 DEBUG: 			View 3 : 0.516587677725
+2016-08-24 14:16:42,421 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 14:17:18,422 DEBUG: 		Start:	 Iteration 446
+2016-08-24 14:17:18,444 DEBUG: 			View 0 : 0.478672985782
+2016-08-24 14:17:18,453 DEBUG: 			View 1 : 0.63981042654
+2016-08-24 14:17:18,602 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 14:17:18,612 DEBUG: 			View 3 : 0.620853080569
+2016-08-24 14:17:20,117 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:17:57,426 DEBUG: 		Start:	 Iteration 447
+2016-08-24 14:17:57,450 DEBUG: 			View 0 : 0.469194312796
+2016-08-24 14:17:57,461 DEBUG: 			View 1 : 0.601895734597
+2016-08-24 14:17:57,600 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 14:17:57,611 DEBUG: 			View 3 : 0.568720379147
+2016-08-24 14:17:59,029 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 14:18:35,354 DEBUG: 		Start:	 Iteration 448
+2016-08-24 14:18:35,375 DEBUG: 			View 0 : 0.630331753555
+2016-08-24 14:18:35,385 DEBUG: 			View 1 : 0.507109004739
+2016-08-24 14:18:35,505 DEBUG: 			View 2 : 0.616113744076
+2016-08-24 14:18:35,514 DEBUG: 			View 3 : 0.649289099526
+2016-08-24 14:18:36,846 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:19:13,619 DEBUG: 		Start:	 Iteration 449
+2016-08-24 14:19:13,641 DEBUG: 			View 0 : 0.616113744076
+2016-08-24 14:19:13,651 DEBUG: 			View 1 : 0.554502369668
+2016-08-24 14:19:13,792 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 14:19:13,801 DEBUG: 			View 3 : 0.521327014218
+2016-08-24 14:19:15,250 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 14:19:52,835 DEBUG: 		Start:	 Iteration 450
+2016-08-24 14:19:52,856 DEBUG: 			View 0 : 0.454976303318
+2016-08-24 14:19:52,865 DEBUG: 			View 1 : 0.649289099526
+2016-08-24 14:19:53,007 DEBUG: 			View 2 : 0.57345971564
+2016-08-24 14:19:53,042 DEBUG: 			View 3 : 0.554502369668
+2016-08-24 14:19:54,465 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:20:31,239 DEBUG: 		Start:	 Iteration 451
+2016-08-24 14:20:31,261 DEBUG: 			View 0 : 0.559241706161
+2016-08-24 14:20:31,271 DEBUG: 			View 1 : 0.473933649289
+2016-08-24 14:20:31,395 DEBUG: 			View 2 : 0.535545023697
+2016-08-24 14:20:31,407 DEBUG: 			View 3 : 0.658767772512
+2016-08-24 14:20:32,738 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:21:09,265 DEBUG: 		Start:	 Iteration 452
+2016-08-24 14:21:09,286 DEBUG: 			View 0 : 0.601895734597
+2016-08-24 14:21:09,296 DEBUG: 			View 1 : 0.582938388626
+2016-08-24 14:21:09,420 DEBUG: 			View 2 : 0.57345971564
+2016-08-24 14:21:09,432 DEBUG: 			View 3 : 0.644549763033
+2016-08-24 14:21:10,870 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:21:47,810 DEBUG: 		Start:	 Iteration 453
+2016-08-24 14:21:47,835 DEBUG: 			View 0 : 0.473933649289
+2016-08-24 14:21:47,852 DEBUG: 			View 1 : 0.578199052133
+2016-08-24 14:21:48,046 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 14:21:48,058 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 14:21:49,470 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:22:26,194 DEBUG: 		Start:	 Iteration 454
+2016-08-24 14:22:26,214 DEBUG: 			View 0 : 0.492890995261
+2016-08-24 14:22:26,224 DEBUG: 			View 1 : 0.516587677725
+2016-08-24 14:22:26,352 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 14:22:26,363 DEBUG: 			View 3 : 0.535545023697
+2016-08-24 14:22:27,705 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 14:23:05,443 DEBUG: 		Start:	 Iteration 455
+2016-08-24 14:23:05,468 DEBUG: 			View 0 : 0.445497630332
+2016-08-24 14:23:05,479 DEBUG: 			View 1 : 0.597156398104
+2016-08-24 14:23:05,630 DEBUG: 			View 2 : 0.611374407583
+2016-08-24 14:23:05,642 DEBUG: 			View 3 : 0.601895734597
+2016-08-24 14:23:06,986 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 14:23:44,594 DEBUG: 		Start:	 Iteration 456
+2016-08-24 14:23:44,616 DEBUG: 			View 0 : 0.578199052133
+2016-08-24 14:23:44,626 DEBUG: 			View 1 : 0.57345971564
+2016-08-24 14:23:44,757 DEBUG: 			View 2 : 0.620853080569
+2016-08-24 14:23:44,768 DEBUG: 			View 3 : 0.559241706161
+2016-08-24 14:23:46,145 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 14:24:23,164 DEBUG: 		Start:	 Iteration 457
+2016-08-24 14:24:23,185 DEBUG: 			View 0 : 0.554502369668
+2016-08-24 14:24:23,194 DEBUG: 			View 1 : 0.682464454976
+2016-08-24 14:24:23,314 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 14:24:23,325 DEBUG: 			View 3 : 0.507109004739
+2016-08-24 14:24:24,700 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:25:02,897 DEBUG: 		Start:	 Iteration 458
+2016-08-24 14:25:02,918 DEBUG: 			View 0 : 0.440758293839
+2016-08-24 14:25:02,928 DEBUG: 			View 1 : 0.483412322275
+2016-08-24 14:25:03,068 DEBUG: 			View 2 : 0.563981042654
+2016-08-24 14:25:03,077 DEBUG: 			View 3 : 0.587677725118
+2016-08-24 14:25:04,547 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:25:42,116 DEBUG: 		Start:	 Iteration 459
+2016-08-24 14:25:42,137 DEBUG: 			View 0 : 0.644549763033
+2016-08-24 14:25:42,147 DEBUG: 			View 1 : 0.54028436019
+2016-08-24 14:25:42,279 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 14:25:42,289 DEBUG: 			View 3 : 0.535545023697
+2016-08-24 14:25:43,672 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 14:26:20,762 DEBUG: 		Start:	 Iteration 460
+2016-08-24 14:26:20,783 DEBUG: 			View 0 : 0.60663507109
+2016-08-24 14:26:20,793 DEBUG: 			View 1 : 0.668246445498
+2016-08-24 14:26:20,907 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 14:26:20,916 DEBUG: 			View 3 : 0.587677725118
+2016-08-24 14:26:22,282 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:26:59,239 DEBUG: 		Start:	 Iteration 461
+2016-08-24 14:26:59,260 DEBUG: 			View 0 : 0.611374407583
+2016-08-24 14:26:59,269 DEBUG: 			View 1 : 0.469194312796
+2016-08-24 14:26:59,405 DEBUG: 			View 2 : 0.516587677725
+2016-08-24 14:26:59,415 DEBUG: 			View 3 : 0.516587677725
+2016-08-24 14:27:00,776 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 14:27:38,287 DEBUG: 		Start:	 Iteration 462
+2016-08-24 14:27:38,308 DEBUG: 			View 0 : 0.559241706161
+2016-08-24 14:27:38,317 DEBUG: 			View 1 : 0.587677725118
+2016-08-24 14:27:38,464 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 14:27:38,474 DEBUG: 			View 3 : 0.60663507109
+2016-08-24 14:27:39,847 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:28:18,037 DEBUG: 		Start:	 Iteration 463
+2016-08-24 14:28:18,062 DEBUG: 			View 0 : 0.436018957346
+2016-08-24 14:28:18,072 DEBUG: 			View 1 : 0.630331753555
+2016-08-24 14:28:18,228 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 14:28:18,237 DEBUG: 			View 3 : 0.611374407583
+2016-08-24 14:28:19,596 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:28:56,597 DEBUG: 		Start:	 Iteration 464
+2016-08-24 14:28:56,619 DEBUG: 			View 0 : 0.57345971564
+2016-08-24 14:28:56,628 DEBUG: 			View 1 : 0.677725118483
+2016-08-24 14:28:56,758 DEBUG: 			View 2 : 0.511848341232
+2016-08-24 14:28:56,767 DEBUG: 			View 3 : 0.682464454976
+2016-08-24 14:28:58,130 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:29:35,413 DEBUG: 		Start:	 Iteration 465
+2016-08-24 14:29:35,434 DEBUG: 			View 0 : 0.663507109005
+2016-08-24 14:29:35,444 DEBUG: 			View 1 : 0.597156398104
+2016-08-24 14:29:35,556 DEBUG: 			View 2 : 0.535545023697
+2016-08-24 14:29:35,566 DEBUG: 			View 3 : 0.582938388626
+2016-08-24 14:29:36,961 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 14:30:14,881 DEBUG: 		Start:	 Iteration 466
+2016-08-24 14:30:14,902 DEBUG: 			View 0 : 0.620853080569
+2016-08-24 14:30:14,912 DEBUG: 			View 1 : 0.597156398104
+2016-08-24 14:30:15,025 DEBUG: 			View 2 : 0.54028436019
+2016-08-24 14:30:15,035 DEBUG: 			View 3 : 0.706161137441
+2016-08-24 14:30:16,512 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:30:55,095 DEBUG: 		Start:	 Iteration 467
+2016-08-24 14:30:55,116 DEBUG: 			View 0 : 0.407582938389
+2016-08-24 14:30:55,126 DEBUG: 			View 1 : 0.587677725118
+2016-08-24 14:30:55,250 DEBUG: 			View 2 : 0.611374407583
+2016-08-24 14:30:55,259 DEBUG: 			View 3 : 0.554502369668
+2016-08-24 14:30:56,684 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 14:31:34,469 DEBUG: 		Start:	 Iteration 468
+2016-08-24 14:31:34,489 DEBUG: 			View 0 : 0.668246445498
+2016-08-24 14:31:34,498 DEBUG: 			View 1 : 0.668246445498
+2016-08-24 14:31:34,620 DEBUG: 			View 2 : 0.483412322275
+2016-08-24 14:31:34,629 DEBUG: 			View 3 : 0.654028436019
+2016-08-24 14:31:36,027 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 14:32:14,205 DEBUG: 		Start:	 Iteration 469
+2016-08-24 14:32:14,226 DEBUG: 			View 0 : 0.535545023697
+2016-08-24 14:32:14,235 DEBUG: 			View 1 : 0.739336492891
+2016-08-24 14:32:14,353 DEBUG: 			View 2 : 0.649289099526
+2016-08-24 14:32:14,362 DEBUG: 			View 3 : 0.601895734597
+2016-08-24 14:32:15,787 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:32:54,091 DEBUG: 		Start:	 Iteration 470
+2016-08-24 14:32:54,114 DEBUG: 			View 0 : 0.60663507109
+2016-08-24 14:32:54,124 DEBUG: 			View 1 : 0.502369668246
+2016-08-24 14:32:54,243 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 14:32:54,253 DEBUG: 			View 3 : 0.568720379147
+2016-08-24 14:32:55,737 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 14:33:34,003 DEBUG: 		Start:	 Iteration 471
+2016-08-24 14:33:34,024 DEBUG: 			View 0 : 0.559241706161
+2016-08-24 14:33:34,033 DEBUG: 			View 1 : 0.720379146919
+2016-08-24 14:33:34,146 DEBUG: 			View 2 : 0.549763033175
+2016-08-24 14:33:34,156 DEBUG: 			View 3 : 0.654028436019
+2016-08-24 14:33:35,545 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:34:13,876 DEBUG: 		Start:	 Iteration 472
+2016-08-24 14:34:13,897 DEBUG: 			View 0 : 0.611374407583
+2016-08-24 14:34:13,906 DEBUG: 			View 1 : 0.616113744076
+2016-08-24 14:34:14,030 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 14:34:14,040 DEBUG: 			View 3 : 0.658767772512
+2016-08-24 14:34:15,463 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:34:54,173 DEBUG: 		Start:	 Iteration 473
+2016-08-24 14:34:54,194 DEBUG: 			View 0 : 0.611374407583
+2016-08-24 14:34:54,203 DEBUG: 			View 1 : 0.611374407583
+2016-08-24 14:34:54,329 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 14:34:54,339 DEBUG: 			View 3 : 0.554502369668
+2016-08-24 14:34:55,732 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:35:34,082 DEBUG: 		Start:	 Iteration 474
+2016-08-24 14:35:34,103 DEBUG: 			View 0 : 0.511848341232
+2016-08-24 14:35:34,112 DEBUG: 			View 1 : 0.75355450237
+2016-08-24 14:35:34,239 DEBUG: 			View 2 : 0.473933649289
+2016-08-24 14:35:34,249 DEBUG: 			View 3 : 0.620853080569
+2016-08-24 14:35:35,798 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:36:14,378 DEBUG: 		Start:	 Iteration 475
+2016-08-24 14:36:14,399 DEBUG: 			View 0 : 0.516587677725
+2016-08-24 14:36:14,408 DEBUG: 			View 1 : 0.507109004739
+2016-08-24 14:36:14,537 DEBUG: 			View 2 : 0.611374407583
+2016-08-24 14:36:14,547 DEBUG: 			View 3 : 0.592417061611
+2016-08-24 14:36:16,022 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 14:36:54,417 DEBUG: 		Start:	 Iteration 476
+2016-08-24 14:36:54,438 DEBUG: 			View 0 : 0.668246445498
+2016-08-24 14:36:54,448 DEBUG: 			View 1 : 0.687203791469
+2016-08-24 14:36:54,562 DEBUG: 			View 2 : 0.497630331754
+2016-08-24 14:36:54,572 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 14:36:56,022 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:37:33,927 DEBUG: 		Start:	 Iteration 477
+2016-08-24 14:37:33,948 DEBUG: 			View 0 : 0.587677725118
+2016-08-24 14:37:33,957 DEBUG: 			View 1 : 0.374407582938
+2016-08-24 14:37:34,072 DEBUG: 			View 2 : 0.483412322275
+2016-08-24 14:37:34,082 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 14:37:35,484 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:38:13,694 DEBUG: 		Start:	 Iteration 478
+2016-08-24 14:38:13,715 DEBUG: 			View 0 : 0.554502369668
+2016-08-24 14:38:13,725 DEBUG: 			View 1 : 0.554502369668
+2016-08-24 14:38:13,838 DEBUG: 			View 2 : 0.601895734597
+2016-08-24 14:38:13,848 DEBUG: 			View 3 : 0.554502369668
+2016-08-24 14:38:15,290 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 14:38:53,757 DEBUG: 		Start:	 Iteration 479
+2016-08-24 14:38:53,778 DEBUG: 			View 0 : 0.554502369668
+2016-08-24 14:38:53,788 DEBUG: 			View 1 : 0.630331753555
+2016-08-24 14:38:53,912 DEBUG: 			View 2 : 0.516587677725
+2016-08-24 14:38:53,922 DEBUG: 			View 3 : 0.625592417062
+2016-08-24 14:38:55,346 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:39:34,401 DEBUG: 		Start:	 Iteration 480
+2016-08-24 14:39:34,425 DEBUG: 			View 0 : 0.545023696682
+2016-08-24 14:39:34,440 DEBUG: 			View 1 : 0.668246445498
+2016-08-24 14:39:34,579 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 14:39:34,589 DEBUG: 			View 3 : 0.691943127962
+2016-08-24 14:39:36,125 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:40:14,887 DEBUG: 		Start:	 Iteration 481
+2016-08-24 14:40:14,908 DEBUG: 			View 0 : 0.54028436019
+2016-08-24 14:40:14,918 DEBUG: 			View 1 : 0.668246445498
+2016-08-24 14:40:15,053 DEBUG: 			View 2 : 0.507109004739
+2016-08-24 14:40:15,066 DEBUG: 			View 3 : 0.535545023697
+2016-08-24 14:40:16,577 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:40:55,468 DEBUG: 		Start:	 Iteration 482
+2016-08-24 14:40:55,489 DEBUG: 			View 0 : 0.488151658768
+2016-08-24 14:40:55,499 DEBUG: 			View 1 : 0.630331753555
+2016-08-24 14:40:55,629 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 14:40:55,640 DEBUG: 			View 3 : 0.592417061611
+2016-08-24 14:40:57,059 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:41:35,975 DEBUG: 		Start:	 Iteration 483
+2016-08-24 14:41:35,995 DEBUG: 			View 0 : 0.578199052133
+2016-08-24 14:41:36,005 DEBUG: 			View 1 : 0.601895734597
+2016-08-24 14:41:36,148 DEBUG: 			View 2 : 0.54028436019
+2016-08-24 14:41:36,160 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 14:41:37,599 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:42:16,484 DEBUG: 		Start:	 Iteration 484
+2016-08-24 14:42:16,505 DEBUG: 			View 0 : 0.611374407583
+2016-08-24 14:42:16,515 DEBUG: 			View 1 : 0.535545023697
+2016-08-24 14:42:16,644 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 14:42:16,656 DEBUG: 			View 3 : 0.701421800948
+2016-08-24 14:42:18,100 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:42:57,361 DEBUG: 		Start:	 Iteration 485
+2016-08-24 14:42:57,385 DEBUG: 			View 0 : 0.563981042654
+2016-08-24 14:42:57,394 DEBUG: 			View 1 : 0.398104265403
+2016-08-24 14:42:57,528 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 14:42:57,540 DEBUG: 			View 3 : 0.587677725118
+2016-08-24 14:42:59,092 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:43:38,145 DEBUG: 		Start:	 Iteration 486
+2016-08-24 14:43:38,166 DEBUG: 			View 0 : 0.45971563981
+2016-08-24 14:43:38,176 DEBUG: 			View 1 : 0.582938388626
+2016-08-24 14:43:38,310 DEBUG: 			View 2 : 0.616113744076
+2016-08-24 14:43:38,322 DEBUG: 			View 3 : 0.620853080569
+2016-08-24 14:43:39,765 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:44:19,272 DEBUG: 		Start:	 Iteration 487
+2016-08-24 14:44:19,297 DEBUG: 			View 0 : 0.554502369668
+2016-08-24 14:44:19,308 DEBUG: 			View 1 : 0.668246445498
+2016-08-24 14:44:19,463 DEBUG: 			View 2 : 0.526066350711
+2016-08-24 14:44:19,476 DEBUG: 			View 3 : 0.649289099526
+2016-08-24 14:44:20,936 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:45:00,133 DEBUG: 		Start:	 Iteration 488
+2016-08-24 14:45:00,155 DEBUG: 			View 0 : 0.507109004739
+2016-08-24 14:45:00,164 DEBUG: 			View 1 : 0.635071090047
+2016-08-24 14:45:00,292 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 14:45:00,304 DEBUG: 			View 3 : 0.568720379147
+2016-08-24 14:45:01,790 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:45:40,751 DEBUG: 		Start:	 Iteration 489
+2016-08-24 14:45:40,770 DEBUG: 			View 0 : 0.549763033175
+2016-08-24 14:45:40,780 DEBUG: 			View 1 : 0.488151658768
+2016-08-24 14:45:40,918 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 14:45:40,930 DEBUG: 			View 3 : 0.568720379147
+2016-08-24 14:45:42,383 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:46:21,819 DEBUG: 		Start:	 Iteration 490
+2016-08-24 14:46:21,840 DEBUG: 			View 0 : 0.450236966825
+2016-08-24 14:46:21,850 DEBUG: 			View 1 : 0.535545023697
+2016-08-24 14:46:21,980 DEBUG: 			View 2 : 0.611374407583
+2016-08-24 14:46:21,991 DEBUG: 			View 3 : 0.511848341232
+2016-08-24 14:46:23,445 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 14:47:03,443 DEBUG: 		Start:	 Iteration 491
+2016-08-24 14:47:03,465 DEBUG: 			View 0 : 0.492890995261
+2016-08-24 14:47:03,475 DEBUG: 			View 1 : 0.630331753555
+2016-08-24 14:47:03,604 DEBUG: 			View 2 : 0.549763033175
+2016-08-24 14:47:03,616 DEBUG: 			View 3 : 0.582938388626
+2016-08-24 14:47:05,066 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:47:44,382 DEBUG: 		Start:	 Iteration 492
+2016-08-24 14:47:44,404 DEBUG: 			View 0 : 0.654028436019
+2016-08-24 14:47:44,413 DEBUG: 			View 1 : 0.478672985782
+2016-08-24 14:47:44,543 DEBUG: 			View 2 : 0.57345971564
+2016-08-24 14:47:44,555 DEBUG: 			View 3 : 0.568720379147
+2016-08-24 14:47:46,025 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 14:48:26,539 DEBUG: 		Start:	 Iteration 493
+2016-08-24 14:48:26,562 DEBUG: 			View 0 : 0.421800947867
+2016-08-24 14:48:26,571 DEBUG: 			View 1 : 0.677725118483
+2016-08-24 14:48:26,712 DEBUG: 			View 2 : 0.516587677725
+2016-08-24 14:48:26,725 DEBUG: 			View 3 : 0.625592417062
+2016-08-24 14:48:28,443 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:49:08,581 DEBUG: 		Start:	 Iteration 494
+2016-08-24 14:49:08,602 DEBUG: 			View 0 : 0.502369668246
+2016-08-24 14:49:08,612 DEBUG: 			View 1 : 0.502369668246
+2016-08-24 14:49:08,767 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 14:49:08,776 DEBUG: 			View 3 : 0.554502369668
+2016-08-24 14:49:10,262 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 14:49:49,722 DEBUG: 		Start:	 Iteration 495
+2016-08-24 14:49:49,742 DEBUG: 			View 0 : 0.497630331754
+2016-08-24 14:49:49,752 DEBUG: 			View 1 : 0.488151658768
+2016-08-24 14:49:49,869 DEBUG: 			View 2 : 0.563981042654
+2016-08-24 14:49:49,878 DEBUG: 			View 3 : 0.60663507109
+2016-08-24 14:49:51,372 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:50:31,344 DEBUG: 		Start:	 Iteration 496
+2016-08-24 14:50:31,368 DEBUG: 			View 0 : 0.464454976303
+2016-08-24 14:50:31,379 DEBUG: 			View 1 : 0.563981042654
+2016-08-24 14:50:31,540 DEBUG: 			View 2 : 0.535545023697
+2016-08-24 14:50:31,551 DEBUG: 			View 3 : 0.677725118483
+2016-08-24 14:50:33,064 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:51:12,832 DEBUG: 		Start:	 Iteration 497
+2016-08-24 14:51:12,853 DEBUG: 			View 0 : 0.436018957346
+2016-08-24 14:51:12,862 DEBUG: 			View 1 : 0.274881516588
+2016-08-24 14:51:13,000 DEBUG: 			View 2 : 0.492890995261
+2016-08-24 14:51:13,010 DEBUG: 			View 3 : 0.592417061611
+2016-08-24 14:51:14,493 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:51:54,078 DEBUG: 		Start:	 Iteration 498
+2016-08-24 14:51:54,099 DEBUG: 			View 0 : 0.696682464455
+2016-08-24 14:51:54,109 DEBUG: 			View 1 : 0.649289099526
+2016-08-24 14:51:54,236 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 14:51:54,247 DEBUG: 			View 3 : 0.511848341232
+2016-08-24 14:51:55,773 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 14:52:35,842 DEBUG: 		Start:	 Iteration 499
+2016-08-24 14:52:35,863 DEBUG: 			View 0 : 0.620853080569
+2016-08-24 14:52:35,873 DEBUG: 			View 1 : 0.587677725118
+2016-08-24 14:52:35,995 DEBUG: 			View 2 : 0.63981042654
+2016-08-24 14:52:36,005 DEBUG: 			View 3 : 0.677725118483
+2016-08-24 14:52:37,485 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:53:17,616 DEBUG: 		Start:	 Iteration 500
+2016-08-24 14:53:17,637 DEBUG: 			View 0 : 0.563981042654
+2016-08-24 14:53:17,648 DEBUG: 			View 1 : 0.554502369668
+2016-08-24 14:53:17,772 DEBUG: 			View 2 : 0.563981042654
+2016-08-24 14:53:17,782 DEBUG: 			View 3 : 0.63981042654
+2016-08-24 14:53:19,276 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:53:59,709 DEBUG: 		Start:	 Iteration 501
+2016-08-24 14:53:59,730 DEBUG: 			View 0 : 0.549763033175
+2016-08-24 14:53:59,740 DEBUG: 			View 1 : 0.682464454976
+2016-08-24 14:53:59,869 DEBUG: 			View 2 : 0.611374407583
+2016-08-24 14:53:59,879 DEBUG: 			View 3 : 0.502369668246
+2016-08-24 14:54:01,355 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:54:42,269 DEBUG: 6.43108861106e-05 proche de zero ?
+2016-08-24 14:54:42,269 DEBUG: 		Start:	 Iteration 502
+2016-08-24 14:54:42,293 DEBUG: 			View 0 : 0.350710900474
+2016-08-24 14:54:42,304 DEBUG: 			View 1 : 0.488151658768
+2016-08-24 14:54:42,455 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 14:54:42,466 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 14:54:43,961 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:55:24,658 DEBUG: 6.42019701749e-05 proche de zero ?
+2016-08-24 14:55:24,658 DEBUG: 		Start:	 Iteration 503
+2016-08-24 14:55:24,684 DEBUG: 			View 0 : 0.521327014218
+2016-08-24 14:55:24,695 DEBUG: 			View 1 : 0.559241706161
+2016-08-24 14:55:24,844 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 14:55:24,855 DEBUG: 			View 3 : 0.545023696682
+2016-08-24 14:55:26,433 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 14:56:07,371 DEBUG: 6.40932219808e-05 proche de zero ?
+2016-08-24 14:56:07,372 DEBUG: 		Start:	 Iteration 504
+2016-08-24 14:56:07,396 DEBUG: 			View 0 : 0.582938388626
+2016-08-24 14:56:07,410 DEBUG: 			View 1 : 0.516587677725
+2016-08-24 14:56:07,564 DEBUG: 			View 2 : 0.464454976303
+2016-08-24 14:56:07,576 DEBUG: 			View 3 : 0.545023696682
+2016-08-24 14:56:09,062 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:56:49,356 DEBUG: 6.39846425015e-05 proche de zero ?
+2016-08-24 14:56:49,357 DEBUG: 		Start:	 Iteration 505
+2016-08-24 14:56:49,386 DEBUG: 			View 0 : 0.469194312796
+2016-08-24 14:56:49,398 DEBUG: 			View 1 : 0.57345971564
+2016-08-24 14:56:49,520 DEBUG: 			View 2 : 0.511848341232
+2016-08-24 14:56:49,533 DEBUG: 			View 3 : 0.63981042654
+2016-08-24 14:56:51,030 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:57:31,246 DEBUG: 6.38762326861e-05 proche de zero ?
+2016-08-24 14:57:31,246 DEBUG: 		Start:	 Iteration 506
+2016-08-24 14:57:31,276 DEBUG: 			View 0 : 0.445497630332
+2016-08-24 14:57:31,294 DEBUG: 			View 1 : 0.63981042654
+2016-08-24 14:57:31,445 DEBUG: 			View 2 : 0.625592417062
+2016-08-24 14:57:31,457 DEBUG: 			View 3 : 0.592417061611
+2016-08-24 14:57:32,969 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 14:58:13,419 DEBUG: 6.37679934601e-05 proche de zero ?
+2016-08-24 14:58:13,420 DEBUG: 		Start:	 Iteration 507
+2016-08-24 14:58:13,444 DEBUG: 			View 0 : 0.388625592417
+2016-08-24 14:58:13,455 DEBUG: 			View 1 : 0.677725118483
+2016-08-24 14:58:13,595 DEBUG: 			View 2 : 0.521327014218
+2016-08-24 14:58:13,608 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 14:58:15,125 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 14:58:56,247 DEBUG: 6.36473362773e-05 proche de zero ?
+2016-08-24 14:58:56,247 DEBUG: 		Start:	 Iteration 508
+2016-08-24 14:58:56,278 DEBUG: 			View 0 : 0.611374407583
+2016-08-24 14:58:56,287 DEBUG: 			View 1 : 0.497630331754
+2016-08-24 14:58:56,432 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 14:58:56,444 DEBUG: 			View 3 : 0.635071090047
+2016-08-24 14:58:57,984 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 14:59:39,248 DEBUG: 6.35269610662e-05 proche de zero ?
+2016-08-24 14:59:39,249 DEBUG: 		Start:	 Iteration 509
+2016-08-24 14:59:39,273 DEBUG: 			View 0 : 0.454976303318
+2016-08-24 14:59:39,285 DEBUG: 			View 1 : 0.654028436019
+2016-08-24 14:59:39,428 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 14:59:39,439 DEBUG: 			View 3 : 0.691943127962
+2016-08-24 14:59:40,975 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:00:21,819 DEBUG: 6.34193719181e-05 proche de zero ?
+2016-08-24 15:00:21,820 DEBUG: 		Start:	 Iteration 510
+2016-08-24 15:00:21,845 DEBUG: 			View 0 : 0.587677725118
+2016-08-24 15:00:21,856 DEBUG: 			View 1 : 0.663507109005
+2016-08-24 15:00:21,994 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 15:00:22,011 DEBUG: 			View 3 : 0.601895734597
+2016-08-24 15:00:23,521 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:01:04,544 DEBUG: 6.33119559779e-05 proche de zero ?
+2016-08-24 15:01:04,544 DEBUG: 		Start:	 Iteration 511
+2016-08-24 15:01:04,569 DEBUG: 			View 0 : 0.341232227488
+2016-08-24 15:01:04,579 DEBUG: 			View 1 : 0.421800947867
+2016-08-24 15:01:04,714 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 15:01:04,727 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 15:01:06,266 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:01:47,018 DEBUG: 6.32047140654e-05 proche de zero ?
+2016-08-24 15:01:47,018 DEBUG: 		Start:	 Iteration 512
+2016-08-24 15:01:47,042 DEBUG: 			View 0 : 0.526066350711
+2016-08-24 15:01:47,053 DEBUG: 			View 1 : 0.364928909953
+2016-08-24 15:01:47,210 DEBUG: 			View 2 : 0.511848341232
+2016-08-24 15:01:47,220 DEBUG: 			View 3 : 0.630331753555
+2016-08-24 15:01:48,727 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:02:29,648 DEBUG: 6.30976469783e-05 proche de zero ?
+2016-08-24 15:02:29,648 DEBUG: 		Start:	 Iteration 513
+2016-08-24 15:02:29,673 DEBUG: 			View 0 : 0.601895734597
+2016-08-24 15:02:29,685 DEBUG: 			View 1 : 0.473933649289
+2016-08-24 15:02:29,850 DEBUG: 			View 2 : 0.625592417062
+2016-08-24 15:02:29,859 DEBUG: 			View 3 : 0.710900473934
+2016-08-24 15:02:31,405 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:03:12,445 DEBUG: 6.29907554935e-05 proche de zero ?
+2016-08-24 15:03:12,445 DEBUG: 		Start:	 Iteration 514
+2016-08-24 15:03:12,470 DEBUG: 			View 0 : 0.60663507109
+2016-08-24 15:03:12,481 DEBUG: 			View 1 : 0.677725118483
+2016-08-24 15:03:12,621 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 15:03:12,637 DEBUG: 			View 3 : 0.559241706161
+2016-08-24 15:03:14,153 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:03:55,418 DEBUG: 6.28840403669e-05 proche de zero ?
+2016-08-24 15:03:55,418 DEBUG: 		Start:	 Iteration 515
+2016-08-24 15:03:55,452 DEBUG: 			View 0 : 0.672985781991
+2016-08-24 15:03:55,469 DEBUG: 			View 1 : 0.729857819905
+2016-08-24 15:03:55,590 DEBUG: 			View 2 : 0.526066350711
+2016-08-24 15:03:55,599 DEBUG: 			View 3 : 0.616113744076
+2016-08-24 15:03:57,134 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:04:38,371 DEBUG: 6.27775023341e-05 proche de zero ?
+2016-08-24 15:04:38,371 DEBUG: 		Start:	 Iteration 516
+2016-08-24 15:04:38,405 DEBUG: 			View 0 : 0.616113744076
+2016-08-24 15:04:38,421 DEBUG: 			View 1 : 0.625592417062
+2016-08-24 15:04:38,562 DEBUG: 			View 2 : 0.488151658768
+2016-08-24 15:04:38,571 DEBUG: 			View 3 : 0.554502369668
+2016-08-24 15:04:40,107 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:05:21,425 DEBUG: 6.26711421105e-05 proche de zero ?
+2016-08-24 15:05:21,426 DEBUG: 		Start:	 Iteration 517
+2016-08-24 15:05:21,451 DEBUG: 			View 0 : 0.582938388626
+2016-08-24 15:05:21,462 DEBUG: 			View 1 : 0.559241706161
+2016-08-24 15:05:21,590 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 15:05:21,599 DEBUG: 			View 3 : 0.54028436019
+2016-08-24 15:05:23,158 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 15:06:04,833 DEBUG: 6.25649603915e-05 proche de zero ?
+2016-08-24 15:06:04,833 DEBUG: 		Start:	 Iteration 518
+2016-08-24 15:06:04,858 DEBUG: 			View 0 : 0.616113744076
+2016-08-24 15:06:04,869 DEBUG: 			View 1 : 0.473933649289
+2016-08-24 15:06:05,004 DEBUG: 			View 2 : 0.57345971564
+2016-08-24 15:06:05,014 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 15:06:06,594 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:06:48,955 DEBUG: 6.24589578535e-05 proche de zero ?
+2016-08-24 15:06:48,956 DEBUG: 		Start:	 Iteration 519
+2016-08-24 15:06:48,980 DEBUG: 			View 0 : 0.635071090047
+2016-08-24 15:06:48,991 DEBUG: 			View 1 : 0.57345971564
+2016-08-24 15:06:49,152 DEBUG: 			View 2 : 0.469194312796
+2016-08-24 15:06:49,163 DEBUG: 			View 3 : 0.710900473934
+2016-08-24 15:06:50,826 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:07:33,656 DEBUG: 6.23531351532e-05 proche de zero ?
+2016-08-24 15:07:33,656 DEBUG: 		Start:	 Iteration 520
+2016-08-24 15:07:33,680 DEBUG: 			View 0 : 0.554502369668
+2016-08-24 15:07:33,691 DEBUG: 			View 1 : 0.800947867299
+2016-08-24 15:07:33,850 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 15:07:33,859 DEBUG: 			View 3 : 0.649289099526
+2016-08-24 15:07:35,393 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:08:17,754 DEBUG: 6.22474929289e-05 proche de zero ?
+2016-08-24 15:08:17,755 DEBUG: 		Start:	 Iteration 521
+2016-08-24 15:08:17,779 DEBUG: 			View 0 : 0.625592417062
+2016-08-24 15:08:17,790 DEBUG: 			View 1 : 0.654028436019
+2016-08-24 15:08:17,926 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 15:08:17,935 DEBUG: 			View 3 : 0.597156398104
+2016-08-24 15:08:19,472 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:09:00,815 DEBUG: 6.21420318002e-05 proche de zero ?
+2016-08-24 15:09:00,815 DEBUG: 		Start:	 Iteration 522
+2016-08-24 15:09:00,840 DEBUG: 			View 0 : 0.578199052133
+2016-08-24 15:09:00,852 DEBUG: 			View 1 : 0.644549763033
+2016-08-24 15:09:00,991 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 15:09:01,000 DEBUG: 			View 3 : 0.488151658768
+2016-08-24 15:09:02,525 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:09:44,500 DEBUG: 6.20367523684e-05 proche de zero ?
+2016-08-24 15:09:44,501 DEBUG: 		Start:	 Iteration 523
+2016-08-24 15:09:44,525 DEBUG: 			View 0 : 0.492890995261
+2016-08-24 15:09:44,535 DEBUG: 			View 1 : 0.720379146919
+2016-08-24 15:09:44,661 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 15:09:44,670 DEBUG: 			View 3 : 0.630331753555
+2016-08-24 15:09:46,207 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:10:29,196 DEBUG: 6.19197235513e-05 proche de zero ?
+2016-08-24 15:10:29,196 DEBUG: 		Start:	 Iteration 524
+2016-08-24 15:10:29,412 DEBUG: 			View 0 : 0.601895734597
+2016-08-24 15:10:29,438 DEBUG: 			View 1 : 0.469194312796
+2016-08-24 15:10:29,851 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 15:10:29,862 DEBUG: 			View 3 : 0.549763033175
+2016-08-24 15:10:31,523 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 15:11:15,637 DEBUG: 6.18148708249e-05 proche de zero ?
+2016-08-24 15:11:15,637 DEBUG: 		Start:	 Iteration 525
+2016-08-24 15:11:15,662 DEBUG: 			View 0 : 0.663507109005
+2016-08-24 15:11:15,674 DEBUG: 			View 1 : 0.677725118483
+2016-08-24 15:11:15,811 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 15:11:15,821 DEBUG: 			View 3 : 0.582938388626
+2016-08-24 15:11:17,608 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:12:01,649 DEBUG: 6.17102011088e-05 proche de zero ?
+2016-08-24 15:12:01,650 DEBUG: 		Start:	 Iteration 526
+2016-08-24 15:12:01,674 DEBUG: 			View 0 : 0.284360189573
+2016-08-24 15:12:01,685 DEBUG: 			View 1 : 0.587677725118
+2016-08-24 15:12:01,813 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 15:12:01,822 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 15:12:03,531 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:12:47,530 DEBUG: 6.16057149375e-05 proche de zero ?
+2016-08-24 15:12:47,531 DEBUG: 		Start:	 Iteration 527
+2016-08-24 15:12:47,568 DEBUG: 			View 0 : 0.687203791469
+2016-08-24 15:12:47,585 DEBUG: 			View 1 : 0.578199052133
+2016-08-24 15:12:47,742 DEBUG: 			View 2 : 0.658767772512
+2016-08-24 15:12:47,753 DEBUG: 			View 3 : 0.630331753555
+2016-08-24 15:12:49,328 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 15:13:31,667 DEBUG: 6.15014128287e-05 proche de zero ?
+2016-08-24 15:13:31,668 DEBUG: 		Start:	 Iteration 528
+2016-08-24 15:13:31,692 DEBUG: 			View 0 : 0.507109004739
+2016-08-24 15:13:31,703 DEBUG: 			View 1 : 0.559241706161
+2016-08-24 15:13:31,836 DEBUG: 			View 2 : 0.526066350711
+2016-08-24 15:13:31,845 DEBUG: 			View 3 : 0.469194312796
+2016-08-24 15:13:33,405 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:14:16,032 DEBUG: 6.13972952838e-05 proche de zero ?
+2016-08-24 15:14:16,032 DEBUG: 		Start:	 Iteration 529
+2016-08-24 15:14:16,055 DEBUG: 			View 0 : 0.436018957346
+2016-08-24 15:14:16,064 DEBUG: 			View 1 : 0.654028436019
+2016-08-24 15:14:16,191 DEBUG: 			View 2 : 0.635071090047
+2016-08-24 15:14:16,200 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 15:14:18,060 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 15:15:02,190 DEBUG: 6.12933627878e-05 proche de zero ?
+2016-08-24 15:15:02,190 DEBUG: 		Start:	 Iteration 530
+2016-08-24 15:15:02,219 DEBUG: 			View 0 : 0.635071090047
+2016-08-24 15:15:02,236 DEBUG: 			View 1 : 0.649289099526
+2016-08-24 15:15:02,391 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 15:15:02,408 DEBUG: 			View 3 : 0.530805687204
+2016-08-24 15:15:04,103 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:15:47,898 DEBUG: 6.11896158096e-05 proche de zero ?
+2016-08-24 15:15:47,899 DEBUG: 		Start:	 Iteration 531
+2016-08-24 15:15:47,937 DEBUG: 			View 0 : 0.469194312796
+2016-08-24 15:15:47,957 DEBUG: 			View 1 : 0.45971563981
+2016-08-24 15:15:48,105 DEBUG: 			View 2 : 0.549763033175
+2016-08-24 15:15:48,116 DEBUG: 			View 3 : 0.597156398104
+2016-08-24 15:15:49,811 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:16:34,198 DEBUG: 6.10860548028e-05 proche de zero ?
+2016-08-24 15:16:34,198 DEBUG: 		Start:	 Iteration 532
+2016-08-24 15:16:34,225 DEBUG: 			View 0 : 0.54028436019
+2016-08-24 15:16:34,238 DEBUG: 			View 1 : 0.687203791469
+2016-08-24 15:16:34,404 DEBUG: 			View 2 : 0.620853080569
+2016-08-24 15:16:34,415 DEBUG: 			View 3 : 0.649289099526
+2016-08-24 15:16:36,063 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:17:20,598 DEBUG: 6.09826802051e-05 proche de zero ?
+2016-08-24 15:17:20,598 DEBUG: 		Start:	 Iteration 533
+2016-08-24 15:17:20,622 DEBUG: 			View 0 : 0.658767772512
+2016-08-24 15:17:20,633 DEBUG: 			View 1 : 0.620853080569
+2016-08-24 15:17:20,763 DEBUG: 			View 2 : 0.568720379147
+2016-08-24 15:17:20,775 DEBUG: 			View 3 : 0.54028436019
+2016-08-24 15:17:22,446 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 15:18:06,572 DEBUG: 6.08794924395e-05 proche de zero ?
+2016-08-24 15:18:06,572 DEBUG: 		Start:	 Iteration 534
+2016-08-24 15:18:06,596 DEBUG: 			View 0 : 0.601895734597
+2016-08-24 15:18:06,605 DEBUG: 			View 1 : 0.625592417062
+2016-08-24 15:18:06,755 DEBUG: 			View 2 : 0.492890995261
+2016-08-24 15:18:06,767 DEBUG: 			View 3 : 0.701421800948
+2016-08-24 15:18:08,389 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:18:54,278 DEBUG: 6.07764919137e-05 proche de zero ?
+2016-08-24 15:18:54,279 DEBUG: 		Start:	 Iteration 535
+2016-08-24 15:18:54,640 DEBUG: 			View 0 : 0.549763033175
+2016-08-24 15:18:54,662 DEBUG: 			View 1 : 0.421800947867
+2016-08-24 15:18:56,081 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 15:18:56,104 DEBUG: 			View 3 : 0.630331753555
+2016-08-24 15:18:57,810 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:19:42,131 DEBUG: 6.0673679021e-05 proche de zero ?
+2016-08-24 15:19:42,131 DEBUG: 		Start:	 Iteration 536
+2016-08-24 15:19:42,156 DEBUG: 			View 0 : 0.578199052133
+2016-08-24 15:19:42,166 DEBUG: 			View 1 : 0.601895734597
+2016-08-24 15:19:42,283 DEBUG: 			View 2 : 0.54028436019
+2016-08-24 15:19:42,292 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 15:19:43,942 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:20:27,085 DEBUG: 6.05710541401e-05 proche de zero ?
+2016-08-24 15:20:27,085 DEBUG: 		Start:	 Iteration 537
+2016-08-24 15:20:27,107 DEBUG: 			View 0 : 0.436018957346
+2016-08-24 15:20:27,117 DEBUG: 			View 1 : 0.473933649289
+2016-08-24 15:20:27,252 DEBUG: 			View 2 : 0.563981042654
+2016-08-24 15:20:27,265 DEBUG: 			View 3 : 0.696682464455
+2016-08-24 15:20:28,953 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:21:13,372 DEBUG: 6.04686176355e-05 proche de zero ?
+2016-08-24 15:21:13,372 DEBUG: 		Start:	 Iteration 538
+2016-08-24 15:21:13,397 DEBUG: 			View 0 : 0.587677725118
+2016-08-24 15:21:13,407 DEBUG: 			View 1 : 0.511848341232
+2016-08-24 15:21:13,545 DEBUG: 			View 2 : 0.511848341232
+2016-08-24 15:21:13,556 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 15:21:15,151 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:21:59,346 DEBUG: 6.03663698579e-05 proche de zero ?
+2016-08-24 15:21:59,347 DEBUG: 		Start:	 Iteration 539
+2016-08-24 15:22:00,071 DEBUG: 			View 0 : 0.492890995261
+2016-08-24 15:22:00,093 DEBUG: 			View 1 : 0.620853080569
+2016-08-24 15:22:01,161 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 15:22:01,193 DEBUG: 			View 3 : 0.672985781991
+2016-08-24 15:22:03,131 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:22:48,366 DEBUG: 6.02643111442e-05 proche de zero ?
+2016-08-24 15:22:48,366 DEBUG: 		Start:	 Iteration 540
+2016-08-24 15:22:48,389 DEBUG: 			View 0 : 0.630331753555
+2016-08-24 15:22:48,399 DEBUG: 			View 1 : 0.691943127962
+2016-08-24 15:22:48,523 DEBUG: 			View 2 : 0.563981042654
+2016-08-24 15:22:48,532 DEBUG: 			View 3 : 0.611374407583
+2016-08-24 15:22:50,133 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:23:33,606 DEBUG: 6.01624418179e-05 proche de zero ?
+2016-08-24 15:23:33,607 DEBUG: 		Start:	 Iteration 541
+2016-08-24 15:23:33,630 DEBUG: 			View 0 : 0.592417061611
+2016-08-24 15:23:33,640 DEBUG: 			View 1 : 0.545023696682
+2016-08-24 15:23:33,771 DEBUG: 			View 2 : 0.635071090047
+2016-08-24 15:23:33,781 DEBUG: 			View 3 : 0.597156398104
+2016-08-24 15:23:35,443 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 15:24:18,979 DEBUG: 6.0060762189e-05 proche de zero ?
+2016-08-24 15:24:18,979 DEBUG: 		Start:	 Iteration 542
+2016-08-24 15:24:19,003 DEBUG: 			View 0 : 0.630331753555
+2016-08-24 15:24:19,013 DEBUG: 			View 1 : 0.492890995261
+2016-08-24 15:24:19,135 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 15:24:19,144 DEBUG: 			View 3 : 0.63981042654
+2016-08-24 15:24:20,737 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:25:03,911 DEBUG: 5.99592725547e-05 proche de zero ?
+2016-08-24 15:25:03,911 DEBUG: 		Start:	 Iteration 543
+2016-08-24 15:25:03,936 DEBUG: 			View 0 : 0.568720379147
+2016-08-24 15:25:03,946 DEBUG: 			View 1 : 0.601895734597
+2016-08-24 15:25:04,091 DEBUG: 			View 2 : 0.611374407583
+2016-08-24 15:25:04,104 DEBUG: 			View 3 : 0.601895734597
+2016-08-24 15:25:05,694 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 15:25:49,244 DEBUG: 5.98579731994e-05 proche de zero ?
+2016-08-24 15:25:49,245 DEBUG: 		Start:	 Iteration 544
+2016-08-24 15:25:49,269 DEBUG: 			View 0 : 0.654028436019
+2016-08-24 15:25:49,278 DEBUG: 			View 1 : 0.625592417062
+2016-08-24 15:25:49,417 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 15:25:49,430 DEBUG: 			View 3 : 0.60663507109
+2016-08-24 15:25:51,062 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 15:26:34,788 DEBUG: 5.97568643947e-05 proche de zero ?
+2016-08-24 15:26:34,788 DEBUG: 		Start:	 Iteration 545
+2016-08-24 15:26:34,813 DEBUG: 			View 0 : 0.450236966825
+2016-08-24 15:26:34,824 DEBUG: 			View 1 : 0.559241706161
+2016-08-24 15:26:34,971 DEBUG: 			View 2 : 0.483412322275
+2016-08-24 15:26:34,983 DEBUG: 			View 3 : 0.545023696682
+2016-08-24 15:26:36,583 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:27:20,428 DEBUG: 5.96559463999e-05 proche de zero ?
+2016-08-24 15:27:20,428 DEBUG: 		Start:	 Iteration 546
+2016-08-24 15:27:20,453 DEBUG: 			View 0 : 0.545023696682
+2016-08-24 15:27:20,464 DEBUG: 			View 1 : 0.488151658768
+2016-08-24 15:27:20,609 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 15:27:20,621 DEBUG: 			View 3 : 0.663507109005
+2016-08-24 15:27:22,232 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:28:06,308 DEBUG: 5.95552194623e-05 proche de zero ?
+2016-08-24 15:28:06,309 DEBUG: 		Start:	 Iteration 547
+2016-08-24 15:28:06,335 DEBUG: 			View 0 : 0.488151658768
+2016-08-24 15:28:06,346 DEBUG: 			View 1 : 0.796208530806
+2016-08-24 15:28:06,484 DEBUG: 			View 2 : 0.54028436019
+2016-08-24 15:28:06,496 DEBUG: 			View 3 : 0.582938388626
+2016-08-24 15:28:08,119 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:28:52,144 DEBUG: 5.94546838169e-05 proche de zero ?
+2016-08-24 15:28:52,144 DEBUG: 		Start:	 Iteration 548
+2016-08-24 15:28:52,168 DEBUG: 			View 0 : 0.483412322275
+2016-08-24 15:28:52,178 DEBUG: 			View 1 : 0.521327014218
+2016-08-24 15:28:52,310 DEBUG: 			View 2 : 0.530805687204
+2016-08-24 15:28:52,322 DEBUG: 			View 3 : 0.582938388626
+2016-08-24 15:28:53,922 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:29:38,112 DEBUG: 5.93543396871e-05 proche de zero ?
+2016-08-24 15:29:38,113 DEBUG: 		Start:	 Iteration 549
+2016-08-24 15:29:38,139 DEBUG: 			View 0 : 0.549763033175
+2016-08-24 15:29:38,152 DEBUG: 			View 1 : 0.649289099526
+2016-08-24 15:29:38,291 DEBUG: 			View 2 : 0.568720379147
+2016-08-24 15:29:38,303 DEBUG: 			View 3 : 0.511848341232
+2016-08-24 15:29:39,936 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:30:24,016 DEBUG: 5.92541872847e-05 proche de zero ?
+2016-08-24 15:30:24,016 DEBUG: 		Start:	 Iteration 550
+2016-08-24 15:30:24,039 DEBUG: 			View 0 : 0.57345971564
+2016-08-24 15:30:24,049 DEBUG: 			View 1 : 0.578199052133
+2016-08-24 15:30:24,182 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 15:30:24,193 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 15:30:25,802 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 15:31:09,943 DEBUG: 5.91542268102e-05 proche de zero ?
+2016-08-24 15:31:09,944 DEBUG: 		Start:	 Iteration 551
+2016-08-24 15:31:09,968 DEBUG: 			View 0 : 0.630331753555
+2016-08-24 15:31:09,979 DEBUG: 			View 1 : 0.654028436019
+2016-08-24 15:31:10,127 DEBUG: 			View 2 : 0.649289099526
+2016-08-24 15:31:10,136 DEBUG: 			View 3 : 0.630331753555
+2016-08-24 15:31:11,803 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 15:31:56,974 DEBUG: 5.90544584529e-05 proche de zero ?
+2016-08-24 15:31:56,974 DEBUG: 		Start:	 Iteration 552
+2016-08-24 15:31:56,998 DEBUG: 			View 0 : 0.530805687204
+2016-08-24 15:31:57,009 DEBUG: 			View 1 : 0.616113744076
+2016-08-24 15:31:57,162 DEBUG: 			View 2 : 0.54028436019
+2016-08-24 15:31:57,173 DEBUG: 			View 3 : 0.587677725118
+2016-08-24 15:31:58,845 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:32:45,571 DEBUG: 5.89548823909e-05 proche de zero ?
+2016-08-24 15:32:45,571 DEBUG: 		Start:	 Iteration 553
+2016-08-24 15:32:45,595 DEBUG: 			View 0 : 0.554502369668
+2016-08-24 15:32:45,605 DEBUG: 			View 1 : 0.398104265403
+2016-08-24 15:32:45,762 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 15:32:45,772 DEBUG: 			View 3 : 0.478672985782
+2016-08-24 15:32:47,481 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 15:33:33,740 DEBUG: 5.88554987916e-05 proche de zero ?
+2016-08-24 15:33:33,740 DEBUG: 		Start:	 Iteration 554
+2016-08-24 15:33:33,764 DEBUG: 			View 0 : 0.478672985782
+2016-08-24 15:33:33,775 DEBUG: 			View 1 : 0.516587677725
+2016-08-24 15:33:33,902 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 15:33:33,912 DEBUG: 			View 3 : 0.620853080569
+2016-08-24 15:33:35,669 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:34:20,273 DEBUG: 5.8756307812e-05 proche de zero ?
+2016-08-24 15:34:20,273 DEBUG: 		Start:	 Iteration 555
+2016-08-24 15:34:20,299 DEBUG: 			View 0 : 0.554502369668
+2016-08-24 15:34:20,310 DEBUG: 			View 1 : 0.597156398104
+2016-08-24 15:34:20,438 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 15:34:20,447 DEBUG: 			View 3 : 0.630331753555
+2016-08-24 15:34:22,103 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:35:07,929 DEBUG: 5.86573095984e-05 proche de zero ?
+2016-08-24 15:35:07,930 DEBUG: 		Start:	 Iteration 556
+2016-08-24 15:35:07,955 DEBUG: 			View 0 : 0.592417061611
+2016-08-24 15:35:07,967 DEBUG: 			View 1 : 0.663507109005
+2016-08-24 15:35:08,095 DEBUG: 			View 2 : 0.616113744076
+2016-08-24 15:35:08,104 DEBUG: 			View 3 : 0.549763033175
+2016-08-24 15:35:09,807 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:35:58,044 DEBUG: 5.85585042868e-05 proche de zero ?
+2016-08-24 15:35:58,044 DEBUG: 		Start:	 Iteration 557
+2016-08-24 15:35:58,069 DEBUG: 			View 0 : 0.535545023697
+2016-08-24 15:35:58,080 DEBUG: 			View 1 : 0.710900473934
+2016-08-24 15:35:58,243 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 15:35:58,254 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 15:36:00,159 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:36:52,201 DEBUG: 5.84598920032e-05 proche de zero ?
+2016-08-24 15:36:52,327 DEBUG: 		Start:	 Iteration 558
+2016-08-24 15:36:54,210 DEBUG: 			View 0 : 0.559241706161
+2016-08-24 15:36:54,232 DEBUG: 			View 1 : 0.350710900474
+2016-08-24 15:36:55,005 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 15:36:56,248 DEBUG: 			View 3 : 0.601895734597
+2016-08-24 15:36:58,070 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:37:46,240 DEBUG: 5.83614728638e-05 proche de zero ?
+2016-08-24 15:37:46,240 DEBUG: 		Start:	 Iteration 559
+2016-08-24 15:37:46,265 DEBUG: 			View 0 : 0.388625592417
+2016-08-24 15:37:46,276 DEBUG: 			View 1 : 0.563981042654
+2016-08-24 15:37:46,403 DEBUG: 			View 2 : 0.521327014218
+2016-08-24 15:37:46,412 DEBUG: 			View 3 : 0.568720379147
+2016-08-24 15:37:48,074 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:38:34,352 DEBUG: 5.82632469748e-05 proche de zero ?
+2016-08-24 15:38:34,352 DEBUG: 		Start:	 Iteration 560
+2016-08-24 15:38:34,389 DEBUG: 			View 0 : 0.530805687204
+2016-08-24 15:38:34,402 DEBUG: 			View 1 : 0.592417061611
+2016-08-24 15:38:34,530 DEBUG: 			View 2 : 0.483412322275
+2016-08-24 15:38:34,540 DEBUG: 			View 3 : 0.568720379147
+2016-08-24 15:38:36,229 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:39:22,206 DEBUG: 5.81652144331e-05 proche de zero ?
+2016-08-24 15:39:22,206 DEBUG: 		Start:	 Iteration 561
+2016-08-24 15:39:22,229 DEBUG: 			View 0 : 0.469194312796
+2016-08-24 15:39:22,239 DEBUG: 			View 1 : 0.706161137441
+2016-08-24 15:39:22,360 DEBUG: 			View 2 : 0.497630331754
+2016-08-24 15:39:22,369 DEBUG: 			View 3 : 0.502369668246
+2016-08-24 15:39:24,075 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:40:10,837 DEBUG: 5.80673753259e-05 proche de zero ?
+2016-08-24 15:40:10,837 DEBUG: 		Start:	 Iteration 562
+2016-08-24 15:40:10,859 DEBUG: 			View 0 : 0.492890995261
+2016-08-24 15:40:10,869 DEBUG: 			View 1 : 0.668246445498
+2016-08-24 15:40:10,987 DEBUG: 			View 2 : 0.492890995261
+2016-08-24 15:40:10,997 DEBUG: 			View 3 : 0.516587677725
+2016-08-24 15:40:12,696 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:40:59,048 DEBUG: 5.79697297312e-05 proche de zero ?
+2016-08-24 15:40:59,048 DEBUG: 		Start:	 Iteration 563
+2016-08-24 15:40:59,071 DEBUG: 			View 0 : 0.526066350711
+2016-08-24 15:40:59,081 DEBUG: 			View 1 : 0.582938388626
+2016-08-24 15:40:59,203 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 15:40:59,212 DEBUG: 			View 3 : 0.483412322275
+2016-08-24 15:41:00,908 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 15:41:47,728 DEBUG: 5.78722777182e-05 proche de zero ?
+2016-08-24 15:41:47,728 DEBUG: 		Start:	 Iteration 564
+2016-08-24 15:41:47,751 DEBUG: 			View 0 : 0.611374407583
+2016-08-24 15:41:47,760 DEBUG: 			View 1 : 0.75355450237
+2016-08-24 15:41:47,883 DEBUG: 			View 2 : 0.57345971564
+2016-08-24 15:41:47,893 DEBUG: 			View 3 : 0.616113744076
+2016-08-24 15:41:49,554 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:42:36,097 DEBUG: 5.77750193467e-05 proche de zero ?
+2016-08-24 15:42:36,097 DEBUG: 		Start:	 Iteration 565
+2016-08-24 15:42:36,119 DEBUG: 			View 0 : 0.635071090047
+2016-08-24 15:42:36,129 DEBUG: 			View 1 : 0.554502369668
+2016-08-24 15:42:36,252 DEBUG: 			View 2 : 0.549763033175
+2016-08-24 15:42:36,262 DEBUG: 			View 3 : 0.492890995261
+2016-08-24 15:42:37,977 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 15:43:24,037 DEBUG: 5.76779546681e-05 proche de zero ?
+2016-08-24 15:43:24,037 DEBUG: 		Start:	 Iteration 566
+2016-08-24 15:43:24,061 DEBUG: 			View 0 : 0.635071090047
+2016-08-24 15:43:24,072 DEBUG: 			View 1 : 0.654028436019
+2016-08-24 15:43:24,198 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 15:43:24,208 DEBUG: 			View 3 : 0.592417061611
+2016-08-24 15:43:25,937 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:44:11,585 DEBUG: 5.75810837249e-05 proche de zero ?
+2016-08-24 15:44:11,585 DEBUG: 		Start:	 Iteration 567
+2016-08-24 15:44:11,607 DEBUG: 			View 0 : 0.582938388626
+2016-08-24 15:44:11,617 DEBUG: 			View 1 : 0.578199052133
+2016-08-24 15:44:11,732 DEBUG: 			View 2 : 0.601895734597
+2016-08-24 15:44:11,741 DEBUG: 			View 3 : 0.582938388626
+2016-08-24 15:44:13,424 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 15:45:00,021 DEBUG: 5.74844065512e-05 proche de zero ?
+2016-08-24 15:45:00,022 DEBUG: 		Start:	 Iteration 568
+2016-08-24 15:45:00,044 DEBUG: 			View 0 : 0.440758293839
+2016-08-24 15:45:00,054 DEBUG: 			View 1 : 0.473933649289
+2016-08-24 15:45:00,181 DEBUG: 			View 2 : 0.488151658768
+2016-08-24 15:45:00,191 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 15:45:01,914 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:45:48,690 DEBUG: 5.73879231729e-05 proche de zero ?
+2016-08-24 15:45:48,690 DEBUG: 		Start:	 Iteration 569
+2016-08-24 15:45:48,713 DEBUG: 			View 0 : 0.663507109005
+2016-08-24 15:45:48,723 DEBUG: 			View 1 : 0.383886255924
+2016-08-24 15:45:48,840 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 15:45:48,849 DEBUG: 			View 3 : 0.635071090047
+2016-08-24 15:45:50,539 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 15:46:37,307 DEBUG: 5.72916336075e-05 proche de zero ?
+2016-08-24 15:46:37,308 DEBUG: 		Start:	 Iteration 570
+2016-08-24 15:46:37,332 DEBUG: 			View 0 : 0.630331753555
+2016-08-24 15:46:37,347 DEBUG: 			View 1 : 0.630331753555
+2016-08-24 15:46:37,468 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 15:46:37,479 DEBUG: 			View 3 : 0.592417061611
+2016-08-24 15:46:39,281 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 15:47:25,307 DEBUG: 5.71955378646e-05 proche de zero ?
+2016-08-24 15:47:25,308 DEBUG: 		Start:	 Iteration 571
+2016-08-24 15:47:25,331 DEBUG: 			View 0 : 0.763033175355
+2016-08-24 15:47:25,341 DEBUG: 			View 1 : 0.682464454976
+2016-08-24 15:47:25,471 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 15:47:25,481 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 15:47:27,250 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 15:48:14,586 DEBUG: 5.70996359457e-05 proche de zero ?
+2016-08-24 15:48:14,586 DEBUG: 		Start:	 Iteration 572
+2016-08-24 15:48:14,607 DEBUG: 			View 0 : 0.635071090047
+2016-08-24 15:48:14,619 DEBUG: 			View 1 : 0.39336492891
+2016-08-24 15:48:14,737 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 15:48:14,747 DEBUG: 			View 3 : 0.649289099526
+2016-08-24 15:48:16,681 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:49:05,561 DEBUG: 5.70039278448e-05 proche de zero ?
+2016-08-24 15:49:05,561 DEBUG: 		Start:	 Iteration 573
+2016-08-24 15:49:05,583 DEBUG: 			View 0 : 0.725118483412
+2016-08-24 15:49:05,593 DEBUG: 			View 1 : 0.516587677725
+2016-08-24 15:49:05,714 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 15:49:05,723 DEBUG: 			View 3 : 0.649289099526
+2016-08-24 15:49:07,444 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 15:49:54,785 DEBUG: 5.69084135481e-05 proche de zero ?
+2016-08-24 15:49:54,785 DEBUG: 		Start:	 Iteration 574
+2016-08-24 15:49:54,807 DEBUG: 			View 0 : 0.521327014218
+2016-08-24 15:49:54,817 DEBUG: 			View 1 : 0.729857819905
+2016-08-24 15:49:54,937 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 15:49:54,946 DEBUG: 			View 3 : 0.668246445498
+2016-08-24 15:49:56,655 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:50:45,854 DEBUG: 5.68130930342e-05 proche de zero ?
+2016-08-24 15:50:45,854 DEBUG: 		Start:	 Iteration 575
+2016-08-24 15:50:45,876 DEBUG: 			View 0 : 0.398104265403
+2016-08-24 15:50:45,885 DEBUG: 			View 1 : 0.668246445498
+2016-08-24 15:50:46,010 DEBUG: 			View 2 : 0.57345971564
+2016-08-24 15:50:46,020 DEBUG: 			View 3 : 0.592417061611
+2016-08-24 15:50:47,761 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:51:34,498 DEBUG: 5.67280869189e-05 proche de zero ?
+2016-08-24 15:51:34,498 DEBUG: 		Start:	 Iteration 576
+2016-08-24 15:51:34,520 DEBUG: 			View 0 : 0.582938388626
+2016-08-24 15:51:34,531 DEBUG: 			View 1 : 0.616113744076
+2016-08-24 15:51:34,650 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 15:51:34,659 DEBUG: 			View 3 : 0.436018957346
+2016-08-24 15:51:36,373 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:52:24,031 DEBUG: 5.6643196095e-05 proche de zero ?
+2016-08-24 15:52:24,031 DEBUG: 		Start:	 Iteration 577
+2016-08-24 15:52:24,053 DEBUG: 			View 0 : 0.473933649289
+2016-08-24 15:52:24,062 DEBUG: 			View 1 : 0.421800947867
+2016-08-24 15:52:24,187 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 15:52:24,196 DEBUG: 			View 3 : 0.611374407583
+2016-08-24 15:52:25,951 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:53:13,077 DEBUG: 5.65584211559e-05 proche de zero ?
+2016-08-24 15:53:13,077 DEBUG: 		Start:	 Iteration 578
+2016-08-24 15:53:13,100 DEBUG: 			View 0 : 0.374407582938
+2016-08-24 15:53:13,111 DEBUG: 			View 1 : 0.658767772512
+2016-08-24 15:53:13,256 DEBUG: 			View 2 : 0.511848341232
+2016-08-24 15:53:13,267 DEBUG: 			View 3 : 0.654028436019
+2016-08-24 15:53:15,260 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:54:03,129 DEBUG: 5.64637334828e-05 proche de zero ?
+2016-08-24 15:54:03,129 DEBUG: 		Start:	 Iteration 579
+2016-08-24 15:54:03,154 DEBUG: 			View 0 : 0.554502369668
+2016-08-24 15:54:03,164 DEBUG: 			View 1 : 0.554502369668
+2016-08-24 15:54:03,304 DEBUG: 			View 2 : 0.601895734597
+2016-08-24 15:54:03,313 DEBUG: 			View 3 : 0.644549763033
+2016-08-24 15:54:05,055 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:54:52,005 DEBUG: 5.63792391847e-05 proche de zero ?
+2016-08-24 15:54:52,005 DEBUG: 		Start:	 Iteration 580
+2016-08-24 15:54:52,027 DEBUG: 			View 0 : 0.563981042654
+2016-08-24 15:54:52,036 DEBUG: 			View 1 : 0.388625592417
+2016-08-24 15:54:52,159 DEBUG: 			View 2 : 0.635071090047
+2016-08-24 15:54:52,168 DEBUG: 			View 3 : 0.568720379147
+2016-08-24 15:54:53,905 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 15:55:42,320 DEBUG: 5.6284893273e-05 proche de zero ?
+2016-08-24 15:55:42,320 DEBUG: 		Start:	 Iteration 581
+2016-08-24 15:55:42,359 DEBUG: 			View 0 : 0.60663507109
+2016-08-24 15:55:42,377 DEBUG: 			View 1 : 0.658767772512
+2016-08-24 15:55:42,540 DEBUG: 			View 2 : 0.563981042654
+2016-08-24 15:55:42,549 DEBUG: 			View 3 : 0.54028436019
+2016-08-24 15:55:44,296 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:56:32,161 DEBUG: 5.61907418602e-05 proche de zero ?
+2016-08-24 15:56:32,161 DEBUG: 		Start:	 Iteration 582
+2016-08-24 15:56:32,183 DEBUG: 			View 0 : 0.625592417062
+2016-08-24 15:56:32,193 DEBUG: 			View 1 : 0.483412322275
+2016-08-24 15:56:32,312 DEBUG: 			View 2 : 0.57345971564
+2016-08-24 15:56:32,321 DEBUG: 			View 3 : 0.630331753555
+2016-08-24 15:56:34,074 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 15:57:22,663 DEBUG: 5.60967848622e-05 proche de zero ?
+2016-08-24 15:57:22,663 DEBUG: 		Start:	 Iteration 583
+2016-08-24 15:57:22,698 DEBUG: 			View 0 : 0.625592417062
+2016-08-24 15:57:22,710 DEBUG: 			View 1 : 0.507109004739
+2016-08-24 15:57:22,848 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 15:57:22,859 DEBUG: 			View 3 : 0.597156398104
+2016-08-24 15:57:24,791 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 15:58:13,942 DEBUG: 5.60030221883e-05 proche de zero ?
+2016-08-24 15:58:13,943 DEBUG: 		Start:	 Iteration 584
+2016-08-24 15:58:13,965 DEBUG: 			View 0 : 0.587677725118
+2016-08-24 15:58:13,976 DEBUG: 			View 1 : 0.663507109005
+2016-08-24 15:58:14,103 DEBUG: 			View 2 : 0.601895734597
+2016-08-24 15:58:14,113 DEBUG: 			View 3 : 0.559241706161
+2016-08-24 15:58:15,877 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 15:59:04,748 DEBUG: 5.59094537419e-05 proche de zero ?
+2016-08-24 15:59:04,749 DEBUG: 		Start:	 Iteration 585
+2016-08-24 15:59:04,770 DEBUG: 			View 0 : 0.601895734597
+2016-08-24 15:59:04,780 DEBUG: 			View 1 : 0.516587677725
+2016-08-24 15:59:04,901 DEBUG: 			View 2 : 0.483412322275
+2016-08-24 15:59:04,910 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 15:59:06,785 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 15:59:54,484 DEBUG: 5.58160794201e-05 proche de zero ?
+2016-08-24 15:59:54,484 DEBUG: 		Start:	 Iteration 586
+2016-08-24 15:59:54,506 DEBUG: 			View 0 : 0.568720379147
+2016-08-24 15:59:54,516 DEBUG: 			View 1 : 0.535545023697
+2016-08-24 15:59:54,633 DEBUG: 			View 2 : 0.568720379147
+2016-08-24 15:59:54,642 DEBUG: 			View 3 : 0.706161137441
+2016-08-24 15:59:56,355 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 16:00:44,580 DEBUG: 5.5722899114e-05 proche de zero ?
+2016-08-24 16:00:44,580 DEBUG: 		Start:	 Iteration 587
+2016-08-24 16:00:44,602 DEBUG: 			View 0 : 0.668246445498
+2016-08-24 16:00:44,612 DEBUG: 			View 1 : 0.649289099526
+2016-08-24 16:00:44,734 DEBUG: 			View 2 : 0.507109004739
+2016-08-24 16:00:44,743 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 16:00:46,475 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 16:01:33,775 DEBUG: 5.5639675002e-05 proche de zero ?
+2016-08-24 16:01:33,775 DEBUG: 		Start:	 Iteration 588
+2016-08-24 16:01:33,797 DEBUG: 			View 0 : 0.526066350711
+2016-08-24 16:01:33,807 DEBUG: 			View 1 : 0.625592417062
+2016-08-24 16:01:33,931 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 16:01:33,941 DEBUG: 			View 3 : 0.60663507109
+2016-08-24 16:01:35,687 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:02:23,165 DEBUG: 5.55565704549e-05 proche de zero ?
+2016-08-24 16:02:23,165 DEBUG: 		Start:	 Iteration 589
+2016-08-24 16:02:23,187 DEBUG: 			View 0 : 0.568720379147
+2016-08-24 16:02:23,196 DEBUG: 			View 1 : 0.668246445498
+2016-08-24 16:02:23,317 DEBUG: 			View 2 : 0.635071090047
+2016-08-24 16:02:23,326 DEBUG: 			View 3 : 0.54028436019
+2016-08-24 16:02:25,045 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:03:12,485 DEBUG: 5.54735859372e-05 proche de zero ?
+2016-08-24 16:03:12,485 DEBUG: 		Start:	 Iteration 590
+2016-08-24 16:03:12,510 DEBUG: 			View 0 : 0.672985781991
+2016-08-24 16:03:12,521 DEBUG: 			View 1 : 0.317535545024
+2016-08-24 16:03:12,658 DEBUG: 			View 2 : 0.516587677725
+2016-08-24 16:03:12,668 DEBUG: 			View 3 : 0.616113744076
+2016-08-24 16:03:14,546 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 16:04:01,915 DEBUG: 5.53907219025e-05 proche de zero ?
+2016-08-24 16:04:01,915 DEBUG: 		Start:	 Iteration 591
+2016-08-24 16:04:01,937 DEBUG: 			View 0 : 0.554502369668
+2016-08-24 16:04:01,947 DEBUG: 			View 1 : 0.450236966825
+2016-08-24 16:04:02,066 DEBUG: 			View 2 : 0.625592417062
+2016-08-24 16:04:02,075 DEBUG: 			View 3 : 0.568720379147
+2016-08-24 16:04:03,799 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 16:04:50,961 DEBUG: 5.53079787937e-05 proche de zero ?
+2016-08-24 16:04:50,961 DEBUG: 		Start:	 Iteration 592
+2016-08-24 16:04:50,983 DEBUG: 			View 0 : 0.644549763033
+2016-08-24 16:04:50,994 DEBUG: 			View 1 : 0.734597156398
+2016-08-24 16:04:51,111 DEBUG: 			View 2 : 0.644549763033
+2016-08-24 16:04:51,120 DEBUG: 			View 3 : 0.60663507109
+2016-08-24 16:04:52,847 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:05:40,087 DEBUG: 5.52253570429e-05 proche de zero ?
+2016-08-24 16:05:40,087 DEBUG: 		Start:	 Iteration 593
+2016-08-24 16:05:40,109 DEBUG: 			View 0 : 0.507109004739
+2016-08-24 16:05:40,119 DEBUG: 			View 1 : 0.701421800948
+2016-08-24 16:05:40,235 DEBUG: 			View 2 : 0.473933649289
+2016-08-24 16:05:40,245 DEBUG: 			View 3 : 0.625592417062
+2016-08-24 16:05:41,978 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:06:29,547 DEBUG: 5.51428570719e-05 proche de zero ?
+2016-08-24 16:06:29,547 DEBUG: 		Start:	 Iteration 594
+2016-08-24 16:06:29,569 DEBUG: 			View 0 : 0.445497630332
+2016-08-24 16:06:29,579 DEBUG: 			View 1 : 0.355450236967
+2016-08-24 16:06:29,699 DEBUG: 			View 2 : 0.530805687204
+2016-08-24 16:06:29,708 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 16:06:31,458 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 16:07:19,034 DEBUG: 5.5060479292e-05 proche de zero ?
+2016-08-24 16:07:19,034 DEBUG: 		Start:	 Iteration 595
+2016-08-24 16:07:19,057 DEBUG: 			View 0 : 0.563981042654
+2016-08-24 16:07:19,067 DEBUG: 			View 1 : 0.502369668246
+2016-08-24 16:07:19,187 DEBUG: 			View 2 : 0.601895734597
+2016-08-24 16:07:19,196 DEBUG: 			View 3 : 0.658767772512
+2016-08-24 16:07:20,939 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 16:08:08,827 DEBUG: 5.49782241045e-05 proche de zero ?
+2016-08-24 16:08:08,827 DEBUG: 		Start:	 Iteration 596
+2016-08-24 16:08:08,849 DEBUG: 			View 0 : 0.511848341232
+2016-08-24 16:08:08,859 DEBUG: 			View 1 : 0.554502369668
+2016-08-24 16:08:08,981 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 16:08:08,990 DEBUG: 			View 3 : 0.687203791469
+2016-08-24 16:08:10,760 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 16:08:58,882 DEBUG: 5.48960919006e-05 proche de zero ?
+2016-08-24 16:08:58,882 DEBUG: 		Start:	 Iteration 597
+2016-08-24 16:08:58,913 DEBUG: 			View 0 : 0.478672985782
+2016-08-24 16:08:58,933 DEBUG: 			View 1 : 0.696682464455
+2016-08-24 16:08:59,084 DEBUG: 			View 2 : 0.625592417062
+2016-08-24 16:08:59,095 DEBUG: 			View 3 : 0.587677725118
+2016-08-24 16:09:00,892 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:09:49,241 DEBUG: 5.48140830615e-05 proche de zero ?
+2016-08-24 16:09:49,241 DEBUG: 		Start:	 Iteration 598
+2016-08-24 16:09:49,263 DEBUG: 			View 0 : 0.582938388626
+2016-08-24 16:09:49,272 DEBUG: 			View 1 : 0.616113744076
+2016-08-24 16:09:49,391 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 16:09:49,400 DEBUG: 			View 3 : 0.592417061611
+2016-08-24 16:09:51,155 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 16:10:39,013 DEBUG: 5.47321979589e-05 proche de zero ?
+2016-08-24 16:10:39,013 DEBUG: 		Start:	 Iteration 599
+2016-08-24 16:10:39,035 DEBUG: 			View 0 : 0.592417061611
+2016-08-24 16:10:39,045 DEBUG: 			View 1 : 0.592417061611
+2016-08-24 16:10:39,166 DEBUG: 			View 2 : 0.497630331754
+2016-08-24 16:10:39,176 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 16:10:40,931 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:11:28,926 DEBUG: 5.46504369546e-05 proche de zero ?
+2016-08-24 16:11:28,926 DEBUG: 		Start:	 Iteration 600
+2016-08-24 16:11:28,948 DEBUG: 			View 0 : 0.431279620853
+2016-08-24 16:11:28,957 DEBUG: 			View 1 : 0.663507109005
+2016-08-24 16:11:29,078 DEBUG: 			View 2 : 0.620853080569
+2016-08-24 16:11:29,087 DEBUG: 			View 3 : 0.616113744076
+2016-08-24 16:11:30,845 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:12:18,982 DEBUG: 5.45688004013e-05 proche de zero ?
+2016-08-24 16:12:18,983 DEBUG: 		Start:	 Iteration 601
+2016-08-24 16:12:19,004 DEBUG: 			View 0 : 0.345971563981
+2016-08-24 16:12:19,014 DEBUG: 			View 1 : 0.696682464455
+2016-08-24 16:12:19,131 DEBUG: 			View 2 : 0.57345971564
+2016-08-24 16:12:19,141 DEBUG: 			View 3 : 0.620853080569
+2016-08-24 16:12:20,902 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:13:09,183 DEBUG: 5.4487288642e-05 proche de zero ?
+2016-08-24 16:13:09,183 DEBUG: 		Start:	 Iteration 602
+2016-08-24 16:13:09,205 DEBUG: 			View 0 : 0.545023696682
+2016-08-24 16:13:09,214 DEBUG: 			View 1 : 0.57345971564
+2016-08-24 16:13:09,342 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 16:13:09,352 DEBUG: 			View 3 : 0.582938388626
+2016-08-24 16:13:11,147 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 16:13:59,514 DEBUG: 5.44059020109e-05 proche de zero ?
+2016-08-24 16:13:59,514 DEBUG: 		Start:	 Iteration 603
+2016-08-24 16:13:59,536 DEBUG: 			View 0 : 0.57345971564
+2016-08-24 16:13:59,545 DEBUG: 			View 1 : 0.535545023697
+2016-08-24 16:13:59,674 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 16:13:59,684 DEBUG: 			View 3 : 0.710900473934
+2016-08-24 16:14:01,459 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 16:14:49,977 DEBUG: 5.43246408327e-05 proche de zero ?
+2016-08-24 16:14:49,977 DEBUG: 		Start:	 Iteration 604
+2016-08-24 16:14:49,999 DEBUG: 			View 0 : 0.748815165877
+2016-08-24 16:14:50,009 DEBUG: 			View 1 : 0.691943127962
+2016-08-24 16:14:50,131 DEBUG: 			View 2 : 0.625592417062
+2016-08-24 16:14:50,140 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 16:14:51,957 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 16:15:41,515 DEBUG: 5.42435054237e-05 proche de zero ?
+2016-08-24 16:15:41,515 DEBUG: 		Start:	 Iteration 605
+2016-08-24 16:15:41,537 DEBUG: 			View 0 : 0.421800947867
+2016-08-24 16:15:41,547 DEBUG: 			View 1 : 0.635071090047
+2016-08-24 16:15:41,663 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 16:15:41,673 DEBUG: 			View 3 : 0.54028436019
+2016-08-24 16:15:43,441 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:16:32,734 DEBUG: 5.41624960909e-05 proche de zero ?
+2016-08-24 16:16:32,734 DEBUG: 		Start:	 Iteration 606
+2016-08-24 16:16:32,759 DEBUG: 			View 0 : 0.601895734597
+2016-08-24 16:16:32,770 DEBUG: 			View 1 : 0.644549763033
+2016-08-24 16:16:32,925 DEBUG: 			View 2 : 0.521327014218
+2016-08-24 16:16:32,937 DEBUG: 			View 3 : 0.582938388626
+2016-08-24 16:16:34,787 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:17:23,226 DEBUG: 5.4081613133e-05 proche de zero ?
+2016-08-24 16:17:23,226 DEBUG: 		Start:	 Iteration 607
+2016-08-24 16:17:23,248 DEBUG: 			View 0 : 0.630331753555
+2016-08-24 16:17:23,258 DEBUG: 			View 1 : 0.578199052133
+2016-08-24 16:17:23,376 DEBUG: 			View 2 : 0.635071090047
+2016-08-24 16:17:23,386 DEBUG: 			View 3 : 0.668246445498
+2016-08-24 16:17:25,176 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 16:18:13,881 DEBUG: 5.400085684e-05 proche de zero ?
+2016-08-24 16:18:13,881 DEBUG: 		Start:	 Iteration 608
+2016-08-24 16:18:13,903 DEBUG: 			View 0 : 0.644549763033
+2016-08-24 16:18:13,912 DEBUG: 			View 1 : 0.355450236967
+2016-08-24 16:18:14,026 DEBUG: 			View 2 : 0.492890995261
+2016-08-24 16:18:14,036 DEBUG: 			View 3 : 0.635071090047
+2016-08-24 16:18:15,817 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 16:19:04,326 DEBUG: 5.39202274935e-05 proche de zero ?
+2016-08-24 16:19:04,327 DEBUG: 		Start:	 Iteration 609
+2016-08-24 16:19:04,348 DEBUG: 			View 0 : 0.473933649289
+2016-08-24 16:19:04,358 DEBUG: 			View 1 : 0.535545023697
+2016-08-24 16:19:04,480 DEBUG: 			View 2 : 0.549763033175
+2016-08-24 16:19:04,490 DEBUG: 			View 3 : 0.672985781991
+2016-08-24 16:19:06,282 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 16:19:54,903 DEBUG: 5.38397253669e-05 proche de zero ?
+2016-08-24 16:19:54,903 DEBUG: 		Start:	 Iteration 610
+2016-08-24 16:19:54,924 DEBUG: 			View 0 : 0.568720379147
+2016-08-24 16:19:54,934 DEBUG: 			View 1 : 0.691943127962
+2016-08-24 16:19:55,050 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 16:19:55,061 DEBUG: 			View 3 : 0.60663507109
+2016-08-24 16:19:56,858 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:20:45,411 DEBUG: 5.37593507254e-05 proche de zero ?
+2016-08-24 16:20:45,412 DEBUG: 		Start:	 Iteration 611
+2016-08-24 16:20:45,433 DEBUG: 			View 0 : 0.445497630332
+2016-08-24 16:20:45,443 DEBUG: 			View 1 : 0.511848341232
+2016-08-24 16:20:45,571 DEBUG: 			View 2 : 0.497630331754
+2016-08-24 16:20:45,581 DEBUG: 			View 3 : 0.554502369668
+2016-08-24 16:20:47,384 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 16:21:36,123 DEBUG: 5.3679103826e-05 proche de zero ?
+2016-08-24 16:21:36,124 DEBUG: 		Start:	 Iteration 612
+2016-08-24 16:21:36,145 DEBUG: 			View 0 : 0.478672985782
+2016-08-24 16:21:36,155 DEBUG: 			View 1 : 0.630331753555
+2016-08-24 16:21:36,304 DEBUG: 			View 2 : 0.616113744076
+2016-08-24 16:21:36,313 DEBUG: 			View 3 : 0.649289099526
+2016-08-24 16:21:38,101 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 16:22:28,302 DEBUG: 5.3598984918e-05 proche de zero ?
+2016-08-24 16:22:28,302 DEBUG: 		Start:	 Iteration 613
+2016-08-24 16:22:28,325 DEBUG: 			View 0 : 0.488151658768
+2016-08-24 16:22:28,334 DEBUG: 			View 1 : 0.60663507109
+2016-08-24 16:22:28,475 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 16:22:28,485 DEBUG: 			View 3 : 0.587677725118
+2016-08-24 16:22:30,299 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:23:19,384 DEBUG: 5.35189942428e-05 proche de zero ?
+2016-08-24 16:23:19,384 DEBUG: 		Start:	 Iteration 614
+2016-08-24 16:23:19,406 DEBUG: 			View 0 : 0.654028436019
+2016-08-24 16:23:19,415 DEBUG: 			View 1 : 0.60663507109
+2016-08-24 16:23:19,552 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 16:23:19,564 DEBUG: 			View 3 : 0.60663507109
+2016-08-24 16:23:21,373 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 16:24:10,622 DEBUG: 5.3439132034e-05 proche de zero ?
+2016-08-24 16:24:10,622 DEBUG: 		Start:	 Iteration 615
+2016-08-24 16:24:10,645 DEBUG: 			View 0 : 0.559241706161
+2016-08-24 16:24:10,655 DEBUG: 			View 1 : 0.658767772512
+2016-08-24 16:24:10,783 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 16:24:10,794 DEBUG: 			View 3 : 0.601895734597
+2016-08-24 16:24:12,596 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:25:01,702 DEBUG: 5.33593985177e-05 proche de zero ?
+2016-08-24 16:25:01,703 DEBUG: 		Start:	 Iteration 616
+2016-08-24 16:25:01,725 DEBUG: 			View 0 : 0.63981042654
+2016-08-24 16:25:01,736 DEBUG: 			View 1 : 0.488151658768
+2016-08-24 16:25:01,866 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 16:25:01,878 DEBUG: 			View 3 : 0.568720379147
+2016-08-24 16:25:03,674 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 16:25:53,123 DEBUG: 5.32797939126e-05 proche de zero ?
+2016-08-24 16:25:53,123 DEBUG: 		Start:	 Iteration 617
+2016-08-24 16:25:53,145 DEBUG: 			View 0 : 0.796208530806
+2016-08-24 16:25:53,156 DEBUG: 			View 1 : 0.630331753555
+2016-08-24 16:25:53,292 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 16:25:53,304 DEBUG: 			View 3 : 0.545023696682
+2016-08-24 16:25:55,142 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 16:26:44,515 DEBUG: 5.32092650058e-05 proche de zero ?
+2016-08-24 16:26:44,515 DEBUG: 		Start:	 Iteration 618
+2016-08-24 16:26:44,537 DEBUG: 			View 0 : 0.587677725118
+2016-08-24 16:26:44,549 DEBUG: 			View 1 : 0.635071090047
+2016-08-24 16:26:44,686 DEBUG: 			View 2 : 0.473933649289
+2016-08-24 16:26:44,697 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 16:26:46,509 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:27:36,201 DEBUG: 5.31298792906e-05 proche de zero ?
+2016-08-24 16:27:36,201 DEBUG: 		Start:	 Iteration 619
+2016-08-24 16:27:36,225 DEBUG: 			View 0 : 0.563981042654
+2016-08-24 16:27:36,235 DEBUG: 			View 1 : 0.649289099526
+2016-08-24 16:27:36,365 DEBUG: 			View 2 : 0.563981042654
+2016-08-24 16:27:36,376 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 16:27:38,191 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:28:27,719 DEBUG: 5.30506233104e-05 proche de zero ?
+2016-08-24 16:28:27,719 DEBUG: 		Start:	 Iteration 620
+2016-08-24 16:28:27,741 DEBUG: 			View 0 : 0.497630331754
+2016-08-24 16:28:27,753 DEBUG: 			View 1 : 0.800947867299
+2016-08-24 16:28:27,886 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 16:28:27,896 DEBUG: 			View 3 : 0.597156398104
+2016-08-24 16:28:29,803 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:29:19,334 DEBUG: 5.29803680113e-05 proche de zero ?
+2016-08-24 16:29:19,335 DEBUG: 		Start:	 Iteration 621
+2016-08-24 16:29:24,389 DEBUG: 			View 0 : 0.587677725118
+2016-08-24 16:29:24,398 DEBUG: 			View 1 : 0.691943127962
+2016-08-24 16:29:24,532 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 16:29:24,541 DEBUG: 			View 3 : 0.473933649289
+2016-08-24 16:29:26,362 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:30:16,056 DEBUG: 5.29013330137e-05 proche de zero ?
+2016-08-24 16:30:16,056 DEBUG: 		Start:	 Iteration 622
+2016-08-24 16:30:16,078 DEBUG: 			View 0 : 0.473933649289
+2016-08-24 16:30:16,088 DEBUG: 			View 1 : 0.530805687204
+2016-08-24 16:30:16,232 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 16:30:16,244 DEBUG: 			View 3 : 0.587677725118
+2016-08-24 16:30:18,066 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 16:31:08,022 DEBUG: 5.28224285036e-05 proche de zero ?
+2016-08-24 16:31:08,022 DEBUG: 		Start:	 Iteration 623
+2016-08-24 16:31:08,045 DEBUG: 			View 0 : 0.625592417062
+2016-08-24 16:31:08,055 DEBUG: 			View 1 : 0.57345971564
+2016-08-24 16:31:08,186 DEBUG: 			View 2 : 0.563981042654
+2016-08-24 16:31:08,197 DEBUG: 			View 3 : 0.492890995261
+2016-08-24 16:31:10,022 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 16:31:59,790 DEBUG: 5.27436546477e-05 proche de zero ?
+2016-08-24 16:31:59,790 DEBUG: 		Start:	 Iteration 624
+2016-08-24 16:31:59,813 DEBUG: 			View 0 : 0.625592417062
+2016-08-24 16:31:59,824 DEBUG: 			View 1 : 0.492890995261
+2016-08-24 16:31:59,961 DEBUG: 			View 2 : 0.502369668246
+2016-08-24 16:31:59,973 DEBUG: 			View 3 : 0.592417061611
+2016-08-24 16:32:01,813 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 16:32:51,910 DEBUG: 5.26650116059e-05 proche de zero ?
+2016-08-24 16:32:51,910 DEBUG: 		Start:	 Iteration 625
+2016-08-24 16:32:51,932 DEBUG: 			View 0 : 0.521327014218
+2016-08-24 16:32:51,942 DEBUG: 			View 1 : 0.57345971564
+2016-08-24 16:32:52,076 DEBUG: 			View 2 : 0.597156398104
+2016-08-24 16:32:52,088 DEBUG: 			View 3 : 0.511848341232
+2016-08-24 16:32:53,919 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:33:43,825 DEBUG: 5.25864995314e-05 proche de zero ?
+2016-08-24 16:33:43,825 DEBUG: 		Start:	 Iteration 626
+2016-08-24 16:33:43,846 DEBUG: 			View 0 : 0.464454976303
+2016-08-24 16:33:43,856 DEBUG: 			View 1 : 0.687203791469
+2016-08-24 16:33:43,984 DEBUG: 			View 2 : 0.469194312796
+2016-08-24 16:33:43,996 DEBUG: 			View 3 : 0.592417061611
+2016-08-24 16:33:45,827 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:34:35,741 DEBUG: 5.25081185713e-05 proche de zero ?
+2016-08-24 16:34:35,741 DEBUG: 		Start:	 Iteration 627
+2016-08-24 16:34:35,763 DEBUG: 			View 0 : 0.559241706161
+2016-08-24 16:34:35,773 DEBUG: 			View 1 : 0.672985781991
+2016-08-24 16:34:35,904 DEBUG: 			View 2 : 0.530805687204
+2016-08-24 16:34:35,915 DEBUG: 			View 3 : 0.630331753555
+2016-08-24 16:34:37,740 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:35:27,702 DEBUG: 5.24298688663e-05 proche de zero ?
+2016-08-24 16:35:27,702 DEBUG: 		Start:	 Iteration 628
+2016-08-24 16:35:27,724 DEBUG: 			View 0 : 0.563981042654
+2016-08-24 16:35:27,734 DEBUG: 			View 1 : 0.663507109005
+2016-08-24 16:35:27,869 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 16:35:27,881 DEBUG: 			View 3 : 0.521327014218
+2016-08-24 16:35:29,718 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:36:20,008 DEBUG: 5.23517505506e-05 proche de zero ?
+2016-08-24 16:36:20,008 DEBUG: 		Start:	 Iteration 629
+2016-08-24 16:36:20,030 DEBUG: 			View 0 : 0.654028436019
+2016-08-24 16:36:20,040 DEBUG: 			View 1 : 0.649289099526
+2016-08-24 16:36:20,164 DEBUG: 			View 2 : 0.497630331754
+2016-08-24 16:36:20,176 DEBUG: 			View 3 : 0.60663507109
+2016-08-24 16:36:22,019 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 16:37:13,881 DEBUG: 5.22737637527e-05 proche de zero ?
+2016-08-24 16:37:13,882 DEBUG: 		Start:	 Iteration 630
+2016-08-24 16:37:13,903 DEBUG: 			View 0 : 0.649289099526
+2016-08-24 16:37:13,913 DEBUG: 			View 1 : 0.672985781991
+2016-08-24 16:37:14,046 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 16:37:14,058 DEBUG: 			View 3 : 0.549763033175
+2016-08-24 16:37:16,082 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:38:06,920 DEBUG: 5.21959085947e-05 proche de zero ?
+2016-08-24 16:38:06,921 DEBUG: 		Start:	 Iteration 631
+2016-08-24 16:38:06,943 DEBUG: 			View 0 : 0.54028436019
+2016-08-24 16:38:06,953 DEBUG: 			View 1 : 0.57345971564
+2016-08-24 16:38:07,079 DEBUG: 			View 2 : 0.616113744076
+2016-08-24 16:38:07,090 DEBUG: 			View 3 : 0.563981042654
+2016-08-24 16:38:08,965 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 16:38:59,459 DEBUG: 5.21181851928e-05 proche de zero ?
+2016-08-24 16:38:59,459 DEBUG: 		Start:	 Iteration 632
+2016-08-24 16:38:59,481 DEBUG: 			View 0 : 0.42654028436
+2016-08-24 16:38:59,491 DEBUG: 			View 1 : 0.54028436019
+2016-08-24 16:38:59,622 DEBUG: 			View 2 : 0.601895734597
+2016-08-24 16:38:59,634 DEBUG: 			View 3 : 0.60663507109
+2016-08-24 16:39:01,506 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 16:39:52,607 DEBUG: 5.20405936574e-05 proche de zero ?
+2016-08-24 16:39:52,607 DEBUG: 		Start:	 Iteration 633
+2016-08-24 16:39:52,629 DEBUG: 			View 0 : 0.526066350711
+2016-08-24 16:39:52,639 DEBUG: 			View 1 : 0.559241706161
+2016-08-24 16:39:52,769 DEBUG: 			View 2 : 0.644549763033
+2016-08-24 16:39:52,780 DEBUG: 			View 3 : 0.54028436019
+2016-08-24 16:39:54,689 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 16:40:46,923 DEBUG: 5.19631340932e-05 proche de zero ?
+2016-08-24 16:40:46,924 DEBUG: 		Start:	 Iteration 634
+2016-08-24 16:40:46,945 DEBUG: 			View 0 : 0.620853080569
+2016-08-24 16:40:46,955 DEBUG: 			View 1 : 0.682464454976
+2016-08-24 16:40:47,087 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 16:40:47,098 DEBUG: 			View 3 : 0.611374407583
+2016-08-24 16:40:49,029 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:41:40,415 DEBUG: 5.18858065989e-05 proche de zero ?
+2016-08-24 16:41:40,415 DEBUG: 		Start:	 Iteration 635
+2016-08-24 16:41:40,439 DEBUG: 			View 0 : 0.710900473934
+2016-08-24 16:41:40,451 DEBUG: 			View 1 : 0.511848341232
+2016-08-24 16:41:40,618 DEBUG: 			View 2 : 0.616113744076
+2016-08-24 16:41:40,632 DEBUG: 			View 3 : 0.592417061611
+2016-08-24 16:41:42,629 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 16:42:35,543 DEBUG: 5.1808611268e-05 proche de zero ?
+2016-08-24 16:42:35,543 DEBUG: 		Start:	 Iteration 636
+2016-08-24 16:42:35,565 DEBUG: 			View 0 : 0.488151658768
+2016-08-24 16:42:35,575 DEBUG: 			View 1 : 0.559241706161
+2016-08-24 16:42:35,711 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 16:42:35,724 DEBUG: 			View 3 : 0.687203791469
+2016-08-24 16:42:37,626 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 16:43:31,235 DEBUG: 5.17315481882e-05 proche de zero ?
+2016-08-24 16:43:31,235 DEBUG: 		Start:	 Iteration 637
+2016-08-24 16:43:31,257 DEBUG: 			View 0 : 0.421800947867
+2016-08-24 16:43:31,267 DEBUG: 			View 1 : 0.597156398104
+2016-08-24 16:43:31,411 DEBUG: 			View 2 : 0.601895734597
+2016-08-24 16:43:31,420 DEBUG: 			View 3 : 0.687203791469
+2016-08-24 16:43:33,273 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 16:44:24,284 DEBUG: 5.16630764724e-05 proche de zero ?
+2016-08-24 16:44:24,284 DEBUG: 		Start:	 Iteration 638
+2016-08-24 16:44:24,306 DEBUG: 			View 0 : 0.578199052133
+2016-08-24 16:44:24,316 DEBUG: 			View 1 : 0.620853080569
+2016-08-24 16:44:24,441 DEBUG: 			View 2 : 0.563981042654
+2016-08-24 16:44:24,450 DEBUG: 			View 3 : 0.57345971564
+2016-08-24 16:44:26,329 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 16:45:17,253 DEBUG: 5.15946775578e-05 proche de zero ?
+2016-08-24 16:45:17,253 DEBUG: 		Start:	 Iteration 639
+2016-08-24 16:45:17,275 DEBUG: 			View 0 : 0.379146919431
+2016-08-24 16:45:17,285 DEBUG: 			View 1 : 0.454976303318
+2016-08-24 16:45:17,408 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 16:45:17,418 DEBUG: 			View 3 : 0.502369668246
+2016-08-24 16:45:19,271 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 16:46:10,385 DEBUG: 5.15263519555e-05 proche de zero ?
+2016-08-24 16:46:10,386 DEBUG: 		Start:	 Iteration 640
+2016-08-24 16:46:10,408 DEBUG: 			View 0 : 0.582938388626
+2016-08-24 16:46:10,418 DEBUG: 			View 1 : 0.597156398104
+2016-08-24 16:46:10,548 DEBUG: 			View 2 : 0.549763033175
+2016-08-24 16:46:10,559 DEBUG: 			View 3 : 0.559241706161
+2016-08-24 16:46:12,480 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 16:47:05,838 DEBUG: 5.14581001676e-05 proche de zero ?
+2016-08-24 16:47:05,839 DEBUG: 		Start:	 Iteration 641
+2016-08-24 16:47:05,860 DEBUG: 			View 0 : 0.497630331754
+2016-08-24 16:47:05,870 DEBUG: 			View 1 : 0.677725118483
+2016-08-24 16:47:05,990 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 16:47:06,000 DEBUG: 			View 3 : 0.445497630332
+2016-08-24 16:47:07,908 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:47:59,781 DEBUG: 5.13899226877e-05 proche de zero ?
+2016-08-24 16:47:59,781 DEBUG: 		Start:	 Iteration 642
+2016-08-24 16:47:59,802 DEBUG: 			View 0 : 0.682464454976
+2016-08-24 16:47:59,812 DEBUG: 			View 1 : 0.672985781991
+2016-08-24 16:47:59,933 DEBUG: 			View 2 : 0.554502369668
+2016-08-24 16:47:59,943 DEBUG: 			View 3 : 0.687203791469
+2016-08-24 16:48:01,831 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 16:48:54,427 DEBUG: 5.13218200004e-05 proche de zero ?
+2016-08-24 16:48:54,427 DEBUG: 		Start:	 Iteration 643
+2016-08-24 16:48:54,450 DEBUG: 			View 0 : 0.601895734597
+2016-08-24 16:48:54,462 DEBUG: 			View 1 : 0.630331753555
+2016-08-24 16:48:54,581 DEBUG: 			View 2 : 0.507109004739
+2016-08-24 16:48:54,590 DEBUG: 			View 3 : 0.649289099526
+2016-08-24 16:48:56,518 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 16:49:48,909 DEBUG: 5.12454719495e-05 proche de zero ?
+2016-08-24 16:49:48,909 DEBUG: 		Start:	 Iteration 644
+2016-08-24 16:49:48,931 DEBUG: 			View 0 : 0.492890995261
+2016-08-24 16:49:48,940 DEBUG: 			View 1 : 0.60663507109
+2016-08-24 16:49:49,056 DEBUG: 			View 2 : 0.483412322275
+2016-08-24 16:49:49,065 DEBUG: 			View 3 : 0.60663507109
+2016-08-24 16:49:50,963 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 16:50:43,820 DEBUG: 5.11692577604e-05 proche de zero ?
+2016-08-24 16:50:43,820 DEBUG: 		Start:	 Iteration 645
+2016-08-24 16:50:43,842 DEBUG: 			View 0 : 0.521327014218
+2016-08-24 16:50:43,852 DEBUG: 			View 1 : 0.725118483412
+2016-08-24 16:50:43,974 DEBUG: 			View 2 : 0.545023696682
+2016-08-24 16:50:43,983 DEBUG: 			View 3 : 0.625592417062
+2016-08-24 16:50:45,972 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:51:38,015 DEBUG: 5.10931774675e-05 proche de zero ?
+2016-08-24 16:51:38,015 DEBUG: 		Start:	 Iteration 646
+2016-08-24 16:51:38,036 DEBUG: 			View 0 : 0.431279620853
+2016-08-24 16:51:38,046 DEBUG: 			View 1 : 0.777251184834
+2016-08-24 16:51:38,158 DEBUG: 			View 2 : 0.60663507109
+2016-08-24 16:51:38,167 DEBUG: 			View 3 : 0.668246445498
+2016-08-24 16:51:40,048 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:52:32,446 DEBUG: 5.10172311008e-05 proche de zero ?
+2016-08-24 16:52:32,447 DEBUG: 		Start:	 Iteration 647
+2016-08-24 16:52:32,468 DEBUG: 			View 0 : 0.706161137441
+2016-08-24 16:52:32,478 DEBUG: 			View 1 : 0.654028436019
+2016-08-24 16:52:32,592 DEBUG: 			View 2 : 0.592417061611
+2016-08-24 16:52:32,601 DEBUG: 			View 3 : 0.54028436019
+2016-08-24 16:52:34,507 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 16:53:27,202 DEBUG: 5.09414186855e-05 proche de zero ?
+2016-08-24 16:53:27,202 DEBUG: 		Start:	 Iteration 648
+2016-08-24 16:53:27,223 DEBUG: 			View 0 : 0.635071090047
+2016-08-24 16:53:27,233 DEBUG: 			View 1 : 0.654028436019
+2016-08-24 16:53:27,354 DEBUG: 			View 2 : 0.507109004739
+2016-08-24 16:53:27,364 DEBUG: 			View 3 : 0.497630331754
+2016-08-24 16:53:29,269 DEBUG: 			 Best view : 		MiRNA__
+2016-08-24 16:54:21,571 DEBUG: 5.08657402423e-05 proche de zero ?
+2016-08-24 16:54:21,571 DEBUG: 		Start:	 Iteration 649
+2016-08-24 16:54:21,593 DEBUG: 			View 0 : 0.715639810427
+2016-08-24 16:54:21,605 DEBUG: 			View 1 : 0.630331753555
+2016-08-24 16:54:21,732 DEBUG: 			View 2 : 0.559241706161
+2016-08-24 16:54:21,741 DEBUG: 			View 3 : 0.54028436019
+2016-08-24 16:54:23,723 DEBUG: 			 Best view : 		Methyl_
+2016-08-24 16:55:16,895 DEBUG: 5.07901957873e-05 proche de zero ?
+2016-08-24 16:55:16,895 DEBUG: 		Start:	 Iteration 650
+2016-08-24 16:55:16,916 DEBUG: 			View 0 : 0.483412322275
+2016-08-24 16:55:16,927 DEBUG: 			View 1 : 0.549763033175
+2016-08-24 16:55:17,048 DEBUG: 			View 2 : 0.587677725118
+2016-08-24 16:55:17,057 DEBUG: 			View 3 : 0.578199052133
+2016-08-24 16:55:19,081 DEBUG: 			 Best view : 		RANSeq_
+2016-08-24 16:56:11,954 DEBUG: 5.07147853324e-05 proche de zero ?
+2016-08-24 16:56:11,954 DEBUG: 		Start:	 Iteration 651
+2016-08-24 16:56:11,976 DEBUG: 			View 0 : 0.568720379147
+2016-08-24 16:56:11,986 DEBUG: 			View 1 : 0.464454976303
+2016-08-24 16:56:12,106 DEBUG: 			View 2 : 0.582938388626
+2016-08-24 16:56:12,115 DEBUG: 			View 3 : 0.611374407583
+2016-08-24 16:56:14,038 DEBUG: 			 Best view : 		Clinic_
+2016-08-24 16:57:06,332 DEBUG: 5.0639508885e-05 proche de zero ?
+2016-08-24 16:57:06,332 DEBUG: 		Start:	 Iteration 652
+2016-08-24 16:57:06,355 DEBUG: 			View 0 : 0.521327014218
+2016-08-24 16:57:06,365 DEBUG: 			View 1 : 0.445497630332
+2016-08-24 16:57:06,476 DEBUG: 			View 2 : 0.578199052133
+2016-08-24 16:57:06,485 DEBUG: 			View 3 : 0.630331753555
+2016-08-24 16:57:08,488 DEBUG: 			 Best view : 		Clinic_
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-134900-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-134900-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..2eee6f4a93cc7cb0798b9e25df10e6af0e680add
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-134900-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,19 @@
+2016-08-24 13:49:00,493 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 13:49:00,493 INFO: Info:	 Labels used: No, Yes
+2016-08-24 13:49:00,494 INFO: Info:	 Length of dataset:347
+2016-08-24 13:49:00,507 INFO: ### Main Programm for Multiview Classification
+2016-08-24 13:49:00,507 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Fusion ; Cores : 4
+2016-08-24 13:49:00,508 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 13:49:00,508 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 13:49:00,509 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 13:49:00,509 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 13:49:00,509 INFO: Done:	 Read Database Files
+2016-08-24 13:49:00,509 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 13:49:00,513 INFO: Done:	 Determine validation split
+2016-08-24 13:49:00,513 INFO: Start:	 Determine 5 folds
+2016-08-24 13:49:00,522 INFO: Info:	 Length of Learning Sets: 196
+2016-08-24 13:49:00,522 INFO: Info:	 Length of Testing Sets: 48
+2016-08-24 13:49:00,522 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 13:49:00,522 INFO: Done:	 Determine folds
+2016-08-24 13:49:00,522 INFO: Start:	 Learning with Fusion and 5 folds
+2016-08-24 13:49:00,522 INFO: 	Start:	 Fold number 1
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-135019-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-135019-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..b60809d54d95b042f5111084b02092729cdf943a
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-135019-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,19 @@
+2016-08-24 13:50:19,043 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 13:50:19,043 INFO: Info:	 Labels used: No, Yes
+2016-08-24 13:50:19,044 INFO: Info:	 Length of dataset:347
+2016-08-24 13:50:19,045 INFO: ### Main Programm for Multiview Classification
+2016-08-24 13:50:19,045 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Fusion ; Cores : 4
+2016-08-24 13:50:19,046 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 13:50:19,046 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 13:50:19,047 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 13:50:19,047 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 13:50:19,047 INFO: Done:	 Read Database Files
+2016-08-24 13:50:19,047 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 13:50:19,051 INFO: Done:	 Determine validation split
+2016-08-24 13:50:19,051 INFO: Start:	 Determine 5 folds
+2016-08-24 13:50:19,059 INFO: Info:	 Length of Learning Sets: 196
+2016-08-24 13:50:19,059 INFO: Info:	 Length of Testing Sets: 48
+2016-08-24 13:50:19,059 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 13:50:19,059 INFO: Done:	 Determine folds
+2016-08-24 13:50:19,059 INFO: Start:	 Learning with Fusion and 5 folds
+2016-08-24 13:50:19,059 INFO: 	Start:	 Fold number 1
diff --git a/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-135102-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-135102-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..0e0edeb3c203310af4c7d9ab5524fa25fb8fc957
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Multiview/Results/20160824-135102-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log
@@ -0,0 +1,19 @@
+2016-08-24 13:51:02,963 INFO: Start:	 Read HDF5 Database Files for ModifiedMultiOmic
+2016-08-24 13:51:02,964 INFO: Info:	 Labels used: No, Yes
+2016-08-24 13:51:02,964 INFO: Info:	 Length of dataset:347
+2016-08-24 13:51:02,965 INFO: ### Main Programm for Multiview Classification
+2016-08-24 13:51:02,966 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Fusion ; Cores : 4
+2016-08-24 13:51:02,966 INFO: Info:	 Shape of Methyl_ :(347, 25978)
+2016-08-24 13:51:02,966 INFO: Info:	 Shape of MiRNA__ :(347, 1046)
+2016-08-24 13:51:02,967 INFO: Info:	 Shape of RANSeq_ :(347, 73599)
+2016-08-24 13:51:02,967 INFO: Info:	 Shape of Clinic_ :(347, 127)
+2016-08-24 13:51:02,967 INFO: Done:	 Read Database Files
+2016-08-24 13:51:02,968 INFO: Start:	 Determine validation split for ratio 0.7
+2016-08-24 13:51:02,971 INFO: Done:	 Determine validation split
+2016-08-24 13:51:02,971 INFO: Start:	 Determine 5 folds
+2016-08-24 13:51:02,981 INFO: Info:	 Length of Learning Sets: 196
+2016-08-24 13:51:02,981 INFO: Info:	 Length of Testing Sets: 48
+2016-08-24 13:51:02,981 INFO: Info:	 Length of Validation Set: 103
+2016-08-24 13:51:02,981 INFO: Done:	 Determine folds
+2016-08-24 13:51:02,981 INFO: Start:	 Learning with Fusion and 5 folds
+2016-08-24 13:51:02,982 INFO: 	Start:	 Fold number 1
diff --git a/Code/Multiview/Results/2016_04_26-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_04_26-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_04_26-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_04_26-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG
diff --git a/Code/Multiview/Results/2016_04_26-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_04_26-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_04_26-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_04_26-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG.log
diff --git a/Code/Multiview/Results/2016_04_26-CMultiV-Mumbo-phog-hist_decaf_cq-hist-Awa-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_04_26-CMultiV-Mumbo-phog-hist_decaf_cq-hist-Awa-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_04_26-CMultiV-Mumbo-phog-hist_decaf_cq-hist-Awa-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_04_26-CMultiV-Mumbo-phog-hist_decaf_cq-hist-Awa-LOG.log
diff --git a/Code/Multiview/Results/2016_06_16-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_16-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_06_16-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_16-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG
diff --git a/Code/Multiview/Results/2016_06_16-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_16-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_06_16-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_16-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG.log
diff --git a/Code/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_cq-hist_decaf-Awa-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_cq-hist_decaf-Awa-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_cq-hist_decaf-Awa-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_cq-hist_decaf-Awa-LOG.log
diff --git a/Code/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG
diff --git a/Code/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG.log
diff --git a/Code/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_decaf_cq-hist-Awa-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_decaf_cq-hist-Awa-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_decaf_cq-hist-Awa-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_decaf_cq-hist-Awa-LOG
diff --git a/Code/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_decaf_cq-hist-Awa-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_decaf_cq-hist-Awa-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_decaf_cq-hist-Awa-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_16-CMultiV-Mumbo-phog-hist_decaf_cq-hist-Awa-LOG.log
diff --git a/Code/Multiview/Results/2016_06_20-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_20-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_06_20-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_20-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG
diff --git a/Code/Multiview/Results/2016_06_20-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_20-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_06_20-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_20-CMultiV-Mumbo-phog-hist_cq-hist_surf-hist-Awa-LOG.log
diff --git a/Code/Multiview/Results/2016_06_23-CMultiV-Mumbo-Methylation_RNA-seq_miRNA-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_23-CMultiV-Mumbo-Methylation_RNA-seq_miRNA-MultiOmic-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_06_23-CMultiV-Mumbo-Methylation_RNA-seq_miRNA-MultiOmic-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_23-CMultiV-Mumbo-Methylation_RNA-seq_miRNA-MultiOmic-LOG
diff --git a/Code/Multiview/Results/2016_06_23-CMultiV-Mumbo-Methylation_RNA-seq_miRNA-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_23-CMultiV-Mumbo-Methylation_RNA-seq_miRNA-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_06_23-CMultiV-Mumbo-Methylation_RNA-seq_miRNA-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_23-CMultiV-Mumbo-Methylation_RNA-seq_miRNA-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/2016_06_23-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_23-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_06_23-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_23-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG
diff --git a/Code/Multiview/Results/2016_06_23-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_23-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_06_23-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_06_23-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/2016_07_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_07_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_07_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_07_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
diff --git a/Code/Multiview/Results/2016_07_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_07_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_07_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_07_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/2016_07_12-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_07_12-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_07_12-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_07_12-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG
diff --git a/Code/Multiview/Results/2016_07_12-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_07_12-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_07_12-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_07_12-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/2016_07_12-CMultiV-Mumbo-a_b_c_d-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_07_12-CMultiV-Mumbo-a_b_c_d-MultiOmic-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_07_12-CMultiV-Mumbo-a_b_c_d-MultiOmic-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_07_12-CMultiV-Mumbo-a_b_c_d-MultiOmic-LOG
diff --git a/Code/Multiview/Results/2016_07_12-CMultiV-Mumbo-a_b_c_d-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_07_12-CMultiV-Mumbo-a_b_c_d-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_07_12-CMultiV-Mumbo-a_b_c_d-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_07_12-CMultiV-Mumbo-a_b_c_d-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/2016_08_01-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_01-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_08_01-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_01-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
diff --git a/Code/Multiview/Results/2016_08_01-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_01-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_08_01-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_01-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/2016_08_01-CMultiV-Mumbo-RGB_HOG SIFT-Caltech-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_01-CMultiV-Mumbo-RGB_HOG SIFT-Caltech-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_08_01-CMultiV-Mumbo-RGB_HOG SIFT-Caltech-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_01-CMultiV-Mumbo-RGB_HOG SIFT-Caltech-LOG.log
diff --git a/Code/Multiview/Results/2016_08_02-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_02-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_08_02-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_02-CMultiV-Fusion-phog-hist_decaf_cq-hist-Awa-LOG.log
diff --git a/Code/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG
diff --git a/Code/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG.log
diff --git a/Code/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
diff --git a/Code/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_04-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG
diff --git a/Code/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-Fake-LOG.log
diff --git a/Code/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
diff --git a/Code/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_05-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/2016_08_10-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_10-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_08_10-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_10-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
diff --git a/Code/Multiview/Results/2016_08_10-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_10-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_08_10-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_10-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/2016_08_11-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_11-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_08_11-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_11-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
diff --git a/Code/Multiview/Results/2016_08_11-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_11-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_08_11-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_11-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/2016_08_11-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical_PseudoRNASeq-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_11-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical_PseudoRNASeq-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_08_11-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical_PseudoRNASeq-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_11-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical_PseudoRNASeq-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
diff --git a/Code/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical_PseudoRNASeq-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical_PseudoRNASeq-MultiOmic-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical_PseudoRNASeq-MultiOmic-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical_PseudoRNASeq-MultiOmic-LOG
diff --git a/Code/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical_PseudoRNASeq-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical_PseudoRNASeq-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical_PseudoRNASeq-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_12-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical_PseudoRNASeq-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/2016_08_15-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_15-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_08_15-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_15-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
diff --git a/Code/Multiview/Results/2016_08_15-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_15-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_08_15-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_15-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/2016_08_16-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_16-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_08_16-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_16-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
diff --git a/Code/Multiview/Results/2016_08_16-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_16-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_08_16-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_16-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/2016_08_17-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_17-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_08_17-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_17-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
diff --git a/Code/Multiview/Results/2016_08_17-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_17-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_08_17-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_17-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/2016_08_17-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_17-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_08_17-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_17-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
diff --git a/Code/Multiview/Results/2016_08_17-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_17-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_08_17-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_17-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/2016_08_18-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_18-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_08_18-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_18-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG
diff --git a/Code/Multiview/Results/2016_08_18-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_18-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_08_18-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_18-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-MultiOmic-LOG.log
diff --git a/Code/Multiview/Results/2016_08_19-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_19-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG
similarity index 100%
rename from Code/Multiview/Results/2016_08_19-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_19-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG
diff --git a/Code/Multiview/Results/2016_08_19-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log b/Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_19-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
similarity index 100%
rename from Code/Multiview/Results/2016_08_19-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
rename to Code/MonoMutliViewClassifiers/Multiview/Results/2016_08_19-CMultiV-Mumbo-Methyl_MiRNA_RNASEQ_Clinical-MultiOmicModified-LOG.log
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter1-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter1-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter1-MultiOmic.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter1-MultiOmicaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter1-MultiOmicaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter1-MultiOmicaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter1-MultiOmicaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter100-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter100-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter100-MultiOmic.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter100-MultiOmicaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter100-MultiOmicaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter100-MultiOmicaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate1.0-nbIter100-MultiOmicaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate0.8-nbIter30-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate0.8-nbIter30-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate0.8-nbIter30-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate0.8-nbIter30-MultiOmic.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate0.8-nbIter30-MultiOmicaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate0.8-nbIter30-MultiOmicaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate0.8-nbIter30-MultiOmicaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate0.8-nbIter30-MultiOmicaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate1.0-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate1.0-nbIter100-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate1.0-nbIter100-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate1.0-nbIter100-MultiOmic.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate1.0-nbIter100-MultiOmicaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate1.0-nbIter100-MultiOmicaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate1.0-nbIter100-MultiOmicaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-Methylation-RNA-seq-miRNA-No-Yes-learnRate1.0-nbIter100-MultiOmicaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate0.8-nbIter30-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate0.8-nbIter30-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate0.8-nbIter30-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate0.8-nbIter30-MultiOmic.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate0.8-nbIter30-MultiOmicaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate0.8-nbIter30-MultiOmicaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate0.8-nbIter30-MultiOmicaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate0.8-nbIter30-MultiOmicaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate1.0-nbIter10-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate1.0-nbIter10-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate1.0-nbIter10-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate1.0-nbIter10-MultiOmic.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate1.0-nbIter10-MultiOmicaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate1.0-nbIter10-MultiOmicaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate1.0-nbIter10-MultiOmicaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-RGB-HOG-SIFT-No-Yes-learnRate1.0-nbIter10-MultiOmicaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter1-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter1-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter1-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter1-MultiOmic.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter1-MultiOmicaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter1-MultiOmicaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter1-MultiOmicaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter1-MultiOmicaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter10-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter10-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter10-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter10-MultiOmic.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter10-MultiOmicaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter10-MultiOmicaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter10-MultiOmicaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-a-b-c-d-No-Yes-learnRate1.0-nbIter10-MultiOmicaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-bat-beaver-rat-rabbit-fox-pig-walrus-chihuahua-moose-squirrel-learnRate0.3-nbIter10-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-bat-beaver-rat-rabbit-fox-pig-walrus-chihuahua-moose-squirrel-learnRate0.3-nbIter10-Awa.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-bat-beaver-rat-rabbit-fox-pig-walrus-chihuahua-moose-squirrel-learnRate0.3-nbIter10-Awa.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-bat-beaver-rat-rabbit-fox-pig-walrus-chihuahua-moose-squirrel-learnRate0.3-nbIter10-Awa.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-bat-beaver-rat-rabbit-fox-pig-walrus-chihuahua-moose-squirrel-learnRate0.3-nbIter10-AwaaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-bat-beaver-rat-rabbit-fox-pig-walrus-chihuahua-moose-squirrel-learnRate0.3-nbIter10-AwaaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-bat-beaver-rat-rabbit-fox-pig-walrus-chihuahua-moose-squirrel-learnRate0.3-nbIter10-AwaaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-bat-beaver-rat-rabbit-fox-pig-walrus-chihuahua-moose-squirrel-learnRate0.3-nbIter10-AwaaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-deer-persian+cat-chihuahua-sheep-siamese+cat-antelope-german+shepherd-rat-moose-killer+whale-learnRate0.3-nbIter10-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-deer-persian+cat-chihuahua-sheep-siamese+cat-antelope-german+shepherd-rat-moose-killer+whale-learnRate0.3-nbIter10-Awa.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-deer-persian+cat-chihuahua-sheep-siamese+cat-antelope-german+shepherd-rat-moose-killer+whale-learnRate0.3-nbIter10-Awa.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-deer-persian+cat-chihuahua-sheep-siamese+cat-antelope-german+shepherd-rat-moose-killer+whale-learnRate0.3-nbIter10-Awa.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-deer-persian+cat-chihuahua-sheep-siamese+cat-antelope-german+shepherd-rat-moose-killer+whale-learnRate0.3-nbIter10-AwaaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-deer-persian+cat-chihuahua-sheep-siamese+cat-antelope-german+shepherd-rat-moose-killer+whale-learnRate0.3-nbIter10-AwaaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-deer-persian+cat-chihuahua-sheep-siamese+cat-antelope-german+shepherd-rat-moose-killer+whale-learnRate0.3-nbIter10-AwaaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-deer-persian+cat-chihuahua-sheep-siamese+cat-antelope-german+shepherd-rat-moose-killer+whale-learnRate0.3-nbIter10-AwaaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-german+shepherd-otter-blue+whale-antelope-rhinoceros-humpback+whale-elephant-grizzly+bear-dolphin-gorilla-learnRate0.3-nbIter50-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-german+shepherd-otter-blue+whale-antelope-rhinoceros-humpback+whale-elephant-grizzly+bear-dolphin-gorilla-learnRate0.3-nbIter50-Awa.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-german+shepherd-otter-blue+whale-antelope-rhinoceros-humpback+whale-elephant-grizzly+bear-dolphin-gorilla-learnRate0.3-nbIter50-Awa.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-german+shepherd-otter-blue+whale-antelope-rhinoceros-humpback+whale-elephant-grizzly+bear-dolphin-gorilla-learnRate0.3-nbIter50-Awa.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-german+shepherd-otter-blue+whale-antelope-rhinoceros-humpback+whale-elephant-grizzly+bear-dolphin-gorilla-learnRate0.3-nbIter50-AwaaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-german+shepherd-otter-blue+whale-antelope-rhinoceros-humpback+whale-elephant-grizzly+bear-dolphin-gorilla-learnRate0.3-nbIter50-AwaaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-german+shepherd-otter-blue+whale-antelope-rhinoceros-humpback+whale-elephant-grizzly+bear-dolphin-gorilla-learnRate0.3-nbIter50-AwaaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-german+shepherd-otter-blue+whale-antelope-rhinoceros-humpback+whale-elephant-grizzly+bear-dolphin-gorilla-learnRate0.3-nbIter50-AwaaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-giant+panda-chimpanzee-antelope-german+shepherd-seal-killer+whale-giraffe-rat-squirrel-mouse-learnRate0.3-nbIter10-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-giant+panda-chimpanzee-antelope-german+shepherd-seal-killer+whale-giraffe-rat-squirrel-mouse-learnRate0.3-nbIter10-Awa.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-giant+panda-chimpanzee-antelope-german+shepherd-seal-killer+whale-giraffe-rat-squirrel-mouse-learnRate0.3-nbIter10-Awa.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-giant+panda-chimpanzee-antelope-german+shepherd-seal-killer+whale-giraffe-rat-squirrel-mouse-learnRate0.3-nbIter10-Awa.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-giant+panda-chimpanzee-antelope-german+shepherd-seal-killer+whale-giraffe-rat-squirrel-mouse-learnRate0.3-nbIter10-AwaaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-giant+panda-chimpanzee-antelope-german+shepherd-seal-killer+whale-giraffe-rat-squirrel-mouse-learnRate0.3-nbIter10-AwaaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-giant+panda-chimpanzee-antelope-german+shepherd-seal-killer+whale-giraffe-rat-squirrel-mouse-learnRate0.3-nbIter10-AwaaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-giant+panda-chimpanzee-antelope-german+shepherd-seal-killer+whale-giraffe-rat-squirrel-mouse-learnRate0.3-nbIter10-AwaaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-antelope-moose-polar+bear-skunk-blue+whale-dalmatian-killer+whale-wolf-walrus-learnRate0.3-nbIter50-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-antelope-moose-polar+bear-skunk-blue+whale-dalmatian-killer+whale-wolf-walrus-learnRate0.3-nbIter50-Awa.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-antelope-moose-polar+bear-skunk-blue+whale-dalmatian-killer+whale-wolf-walrus-learnRate0.3-nbIter50-Awa.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-antelope-moose-polar+bear-skunk-blue+whale-dalmatian-killer+whale-wolf-walrus-learnRate0.3-nbIter50-Awa.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-antelope-moose-polar+bear-skunk-blue+whale-dalmatian-killer+whale-wolf-walrus-learnRate0.3-nbIter50-AwaaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-antelope-moose-polar+bear-skunk-blue+whale-dalmatian-killer+whale-wolf-walrus-learnRate0.3-nbIter50-AwaaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-antelope-moose-polar+bear-skunk-blue+whale-dalmatian-killer+whale-wolf-walrus-learnRate0.3-nbIter50-AwaaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-antelope-moose-polar+bear-skunk-blue+whale-dalmatian-killer+whale-wolf-walrus-learnRate0.3-nbIter50-AwaaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-german+shepherd-humpback+whale-rabbit-dalmatian-persian+cat-giraffe-weasel-blue+whale-killer+whale-learnRate0.5-nbIter50-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-german+shepherd-humpback+whale-rabbit-dalmatian-persian+cat-giraffe-weasel-blue+whale-killer+whale-learnRate0.5-nbIter50-Awa.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-german+shepherd-humpback+whale-rabbit-dalmatian-persian+cat-giraffe-weasel-blue+whale-killer+whale-learnRate0.5-nbIter50-Awa.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-german+shepherd-humpback+whale-rabbit-dalmatian-persian+cat-giraffe-weasel-blue+whale-killer+whale-learnRate0.5-nbIter50-Awa.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-german+shepherd-humpback+whale-rabbit-dalmatian-persian+cat-giraffe-weasel-blue+whale-killer+whale-learnRate0.5-nbIter50-AwaaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-german+shepherd-humpback+whale-rabbit-dalmatian-persian+cat-giraffe-weasel-blue+whale-killer+whale-learnRate0.5-nbIter50-AwaaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-german+shepherd-humpback+whale-rabbit-dalmatian-persian+cat-giraffe-weasel-blue+whale-killer+whale-learnRate0.5-nbIter50-AwaaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-mole-german+shepherd-humpback+whale-rabbit-dalmatian-persian+cat-giraffe-weasel-blue+whale-killer+whale-learnRate0.5-nbIter50-AwaaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-persian+cat-giraffe-beaver-hamster-deer-mole-grizzly+bear-mouse-otter-rhinoceros-learnRate0.3-nbIter50-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-persian+cat-giraffe-beaver-hamster-deer-mole-grizzly+bear-mouse-otter-rhinoceros-learnRate0.3-nbIter50-Awa.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-persian+cat-giraffe-beaver-hamster-deer-mole-grizzly+bear-mouse-otter-rhinoceros-learnRate0.3-nbIter50-Awa.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-persian+cat-giraffe-beaver-hamster-deer-mole-grizzly+bear-mouse-otter-rhinoceros-learnRate0.3-nbIter50-Awa.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-persian+cat-giraffe-beaver-hamster-deer-mole-grizzly+bear-mouse-otter-rhinoceros-learnRate0.3-nbIter50-AwaaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-persian+cat-giraffe-beaver-hamster-deer-mole-grizzly+bear-mouse-otter-rhinoceros-learnRate0.3-nbIter50-AwaaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-persian+cat-giraffe-beaver-hamster-deer-mole-grizzly+bear-mouse-otter-rhinoceros-learnRate0.3-nbIter50-AwaaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-persian+cat-giraffe-beaver-hamster-deer-mole-grizzly+bear-mouse-otter-rhinoceros-learnRate0.3-nbIter50-AwaaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-sheep-wolf-polar+bear-weasel-walrus-rhinoceros-leopard-cow-lion-learnRate0.3-nbIter5-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-sheep-wolf-polar+bear-weasel-walrus-rhinoceros-leopard-cow-lion-learnRate0.3-nbIter5-Awa.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-sheep-wolf-polar+bear-weasel-walrus-rhinoceros-leopard-cow-lion-learnRate0.3-nbIter5-Awa.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-sheep-wolf-polar+bear-weasel-walrus-rhinoceros-leopard-cow-lion-learnRate0.3-nbIter5-Awa.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-sheep-wolf-polar+bear-weasel-walrus-rhinoceros-leopard-cow-lion-learnRate0.3-nbIter5-AwaaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-sheep-wolf-polar+bear-weasel-walrus-rhinoceros-leopard-cow-lion-learnRate0.3-nbIter5-AwaaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-sheep-wolf-polar+bear-weasel-walrus-rhinoceros-leopard-cow-lion-learnRate0.3-nbIter5-AwaaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-sheep-wolf-polar+bear-weasel-walrus-rhinoceros-leopard-cow-lion-learnRate0.3-nbIter5-AwaaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-tiger-walrus-weasel-pig-sheep-dalmatian-spider+monkey-collie-mole-learnRate0.5-nbIter50-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-tiger-walrus-weasel-pig-sheep-dalmatian-spider+monkey-collie-mole-learnRate0.5-nbIter50-Awa.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-tiger-walrus-weasel-pig-sheep-dalmatian-spider+monkey-collie-mole-learnRate0.5-nbIter50-Awa.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-tiger-walrus-weasel-pig-sheep-dalmatian-spider+monkey-collie-mole-learnRate0.5-nbIter50-Awa.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-tiger-walrus-weasel-pig-sheep-dalmatian-spider+monkey-collie-mole-learnRate0.5-nbIter50-AwaaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-tiger-walrus-weasel-pig-sheep-dalmatian-spider+monkey-collie-mole-learnRate0.5-nbIter50-AwaaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-tiger-walrus-weasel-pig-sheep-dalmatian-spider+monkey-collie-mole-learnRate0.5-nbIter50-AwaaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-cq-hist-surf-hist-skunk-tiger-walrus-weasel-pig-sheep-dalmatian-spider+monkey-collie-mole-learnRate0.5-nbIter50-AwaaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-antelope-grizzly+bear-killer+whale-beaver-dalmatian-learnRate0.5-nbIter40-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-antelope-grizzly+bear-killer+whale-beaver-dalmatian-learnRate0.5-nbIter40-Awa.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-antelope-grizzly+bear-killer+whale-beaver-dalmatian-learnRate0.5-nbIter40-Awa.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-antelope-grizzly+bear-killer+whale-beaver-dalmatian-learnRate0.5-nbIter40-Awa.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-antelope-grizzly+bear-killer+whale-beaver-dalmatian-learnRate0.5-nbIter40-AwaaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-antelope-grizzly+bear-killer+whale-beaver-dalmatian-learnRate0.5-nbIter40-AwaaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-antelope-grizzly+bear-killer+whale-beaver-dalmatian-learnRate0.5-nbIter40-AwaaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-antelope-grizzly+bear-killer+whale-beaver-dalmatian-learnRate0.5-nbIter40-AwaaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-beaver-moose-squirrel-seal-cow-bobcat-rat-gorilla-elephant-walrus-learnRate0.3-nbIter50-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-beaver-moose-squirrel-seal-cow-bobcat-rat-gorilla-elephant-walrus-learnRate0.3-nbIter50-Awa.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-beaver-moose-squirrel-seal-cow-bobcat-rat-gorilla-elephant-walrus-learnRate0.3-nbIter50-Awa.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-beaver-moose-squirrel-seal-cow-bobcat-rat-gorilla-elephant-walrus-learnRate0.3-nbIter50-Awa.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-dalmatian-tiger-rhinoceros-bat-killer+whale-learnRate0.1-nbIter50-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-dalmatian-tiger-rhinoceros-bat-killer+whale-learnRate0.1-nbIter50-Awa.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-dalmatian-tiger-rhinoceros-bat-killer+whale-learnRate0.1-nbIter50-Awa.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-dalmatian-tiger-rhinoceros-bat-killer+whale-learnRate0.1-nbIter50-Awa.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-giraffe-squirrel-tiger-deer-chimpanzee-learnRate0.1-nbIter50-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-giraffe-squirrel-tiger-deer-chimpanzee-learnRate0.1-nbIter50-Awa.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-giraffe-squirrel-tiger-deer-chimpanzee-learnRate0.1-nbIter50-Awa.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-giraffe-squirrel-tiger-deer-chimpanzee-learnRate0.1-nbIter50-Awa.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-leopard-gorilla-elephant-zebra-wolf-learnRate0.5-nbIter100-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-leopard-gorilla-elephant-zebra-wolf-learnRate0.5-nbIter100-Awa.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-leopard-gorilla-elephant-zebra-wolf-learnRate0.5-nbIter100-Awa.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-leopard-gorilla-elephant-zebra-wolf-learnRate0.5-nbIter100-Awa.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-leopard-gorilla-elephant-zebra-wolf-learnRate0.5-nbIter100-AwaaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-leopard-gorilla-elephant-zebra-wolf-learnRate0.5-nbIter100-AwaaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-leopard-gorilla-elephant-zebra-wolf-learnRate0.5-nbIter100-AwaaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-leopard-gorilla-elephant-zebra-wolf-learnRate0.5-nbIter100-AwaaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-pig-fox-horse-rhinoceros-chimpanzee-learnRate0.5-nbIter50-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-pig-fox-horse-rhinoceros-chimpanzee-learnRate0.5-nbIter50-Awa.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-pig-fox-horse-rhinoceros-chimpanzee-learnRate0.5-nbIter50-Awa.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-pig-fox-horse-rhinoceros-chimpanzee-learnRate0.5-nbIter50-Awa.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-rabbit-giant+panda-rat-skunk-buffalo-learnRate0.5-nbIter200-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-rabbit-giant+panda-rat-skunk-buffalo-learnRate0.5-nbIter200-Awa.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-rabbit-giant+panda-rat-skunk-buffalo-learnRate0.5-nbIter200-Awa.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-rabbit-giant+panda-rat-skunk-buffalo-learnRate0.5-nbIter200-Awa.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-rabbit-giant+panda-rat-skunk-buffalo-learnRate0.5-nbIter200-AwaaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-rabbit-giant+panda-rat-skunk-buffalo-learnRate0.5-nbIter200-AwaaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-rabbit-giant+panda-rat-skunk-buffalo-learnRate0.5-nbIter200-AwaaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-rabbit-giant+panda-rat-skunk-buffalo-learnRate0.5-nbIter200-AwaaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-seal-rabbit-mouse-sheep-deer-bobcat-persian+cat-elephant-ox-otter-learnRate0.1-nbIter50-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-seal-rabbit-mouse-sheep-deer-bobcat-persian+cat-elephant-ox-otter-learnRate0.1-nbIter50-Awa.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-seal-rabbit-mouse-sheep-deer-bobcat-persian+cat-elephant-ox-otter-learnRate0.1-nbIter50-Awa.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-seal-rabbit-mouse-sheep-deer-bobcat-persian+cat-elephant-ox-otter-learnRate0.1-nbIter50-Awa.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-siamese+cat-hamster-tiger-collie-antelope-chihuahua-polar+bear-hippopotamus-elephant-skunk-learnRate0.3-nbIter50-Awa.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-siamese+cat-hamster-tiger-collie-antelope-chihuahua-polar+bear-hippopotamus-elephant-skunk-learnRate0.3-nbIter50-Awa.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-siamese+cat-hamster-tiger-collie-antelope-chihuahua-polar+bear-hippopotamus-elephant-skunk-learnRate0.3-nbIter50-Awa.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree-phog-hist-decaf-cq-hist-siamese+cat-hamster-tiger-collie-antelope-chihuahua-polar+bear-hippopotamus-elephant-skunk-learnRate0.3-nbIter50-Awa.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-Fake.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-FakeaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-FakeaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-FakeaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate2.0-nbIter10-FakeaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter10-Fake.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter10-Fake.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter10-Fake.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter10-Fake.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter10-FakeaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter10-FakeaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter10-FakeaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter10-FakeaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter2-Fake.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter2-Fake.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter2-Fake.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter2-Fake.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter2-FakeaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter2-FakeaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter2-FakeaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-Methyl-MiRNA-RNASEQ-Clinical-learnRate4.0-nbIter2-FakeaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate4.0-nbIter2-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate4.0-nbIter2-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate4.0-nbIter2-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate4.0-nbIter2-MultiOmic.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate4.0-nbIter2-MultiOmicaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate4.0-nbIter2-MultiOmicaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate4.0-nbIter2-MultiOmicaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate4.0-nbIter2-MultiOmicaccuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic-accuracyByIteration.png
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmic.txt
diff --git a/Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmicaccuracyByIteration.png b/Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmicaccuracyByIteration.png
similarity index 100%
rename from Code/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmicaccuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Multiview/Results/Results-Mumbo-DecisionTree:DecisionTree:DecisionTree:DecisionTree-Methyl-MiRNA-RNASEQ-Clinical-No-Yes-learnRate5.0-nbIter100-MultiOmicaccuracyByIteration.png
diff --git a/Code/Multiview/__init__.py b/Code/MonoMutliViewClassifiers/Multiview/__init__.py
similarity index 100%
rename from Code/Multiview/__init__.py
rename to Code/MonoMutliViewClassifiers/Multiview/__init__.py
diff --git a/Code/Multiview/profile b/Code/MonoMutliViewClassifiers/Multiview/profile
similarity index 100%
rename from Code/Multiview/profile
rename to Code/MonoMutliViewClassifiers/Multiview/profile
diff --git a/Code/Multiview/res b/Code/MonoMutliViewClassifiers/Multiview/res
similarity index 100%
rename from Code/Multiview/res
rename to Code/MonoMutliViewClassifiers/Multiview/res
diff --git a/Code/Multiview/run.py b/Code/MonoMutliViewClassifiers/Multiview/run.py
similarity index 60%
rename from Code/Multiview/run.py
rename to Code/MonoMutliViewClassifiers/Multiview/run.py
index 3c60436dbb6dcad9e53111d2fb6af820873f767f..7a3b56c14df4a47148331c8aa740f6417d2f9d9d 100644
--- a/Code/Multiview/run.py
+++ b/Code/MonoMutliViewClassifiers/Multiview/run.py
@@ -1,6 +1,6 @@
 # coding=utf-8
 import os
-os.system('python ExecMultiview.py -log --name ModifiedMultiOmic --type .csv --views Methyl:MiRNA:RNASEQ:Clinical --pathF /home/bbauvin/Documents/Data/Data_multi_omics/ --CL_split 0.7 --CL_nbFolds 2 --CL_nb_class 2 --CL_classes Positive:Negative --CL_type Fusion --CL_cores 4 --FU_type EarlyFusion --FU_method WeightedLinear')
+os.system('python ExecMultiview.py -log --name ModifiedMultiOmic --type .hdf5 --views Methyl:MiRNA:RNASEQ:Clinical --pathF /home/bbauvin/Documents/Data/Data_multi_omics/ --CL_split 0.7 --CL_nbFolds 5 --CL_nb_class 2 --CL_classes Positive:Negative --CL_type Fusion --CL_cores 4 --FU_type EarlyFusion --FU_method WeightedLinear')
 # /donnees/pj_bdd_bbauvin/Data_multi_omics/
 #
 # /home/bbauvin/Documents/Data/Data_multi_omics/
diff --git a/Code/ResultAnalysis.py b/Code/MonoMutliViewClassifiers/ResultAnalysis.py
similarity index 100%
rename from Code/ResultAnalysis.py
rename to Code/MonoMutliViewClassifiers/ResultAnalysis.py
diff --git a/Code/Results/20160822-132504-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-132214-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-132504-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-132214-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
diff --git a/Code/MonoMutliViewClassifiers/Results/20160822-132504-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-132504-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/Code/Results/20160822-132643-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-132643-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-132643-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-132643-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-133011-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-133011-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-133011-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-133011-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-133020-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-133020-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-133020-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-133020-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-133220-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-133220-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-133220-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-133220-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-133238-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-133238-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-133238-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-133238-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-133410-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-133410-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-133410-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-133410-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-133436-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-133436-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-133436-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-133436-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-133458-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-133458-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-133458-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-133458-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-133530-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-133530-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-133530-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-133530-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-133639-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-133639-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-133639-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-133639-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-133846-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-133846-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-133846-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-133846-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-134037-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-134037-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-134037-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-134037-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-134211-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-134211-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-134211-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-134211-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-134319Results-Mumbo-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.9-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Results/20160822-134319Results-Mumbo-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.9-MultiOmic-accuracyByIteration.png
similarity index 100%
rename from Code/Results/20160822-134319Results-Mumbo-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.9-MultiOmic-accuracyByIteration.png
rename to Code/MonoMutliViewClassifiers/Results/20160822-134319Results-Mumbo-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.9-MultiOmic-accuracyByIteration.png
diff --git a/Code/Results/20160822-134319Results-Mumbo-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.9-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Results/20160822-134319Results-Mumbo-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.9-MultiOmic.txt
similarity index 100%
rename from Code/Results/20160822-134319Results-Mumbo-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.9-MultiOmic.txt
rename to Code/MonoMutliViewClassifiers/Results/20160822-134319Results-Mumbo-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.9-MultiOmic.txt
diff --git a/Code/Results/20160822-140630-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-140630-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-140630-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-140630-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-140803-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-140803-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-140803-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-140803-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-140845-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-140845-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-140845-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-140845-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-140937-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-140937-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-140937-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-140937-CMultiV-Benchmark-RGB_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-141037-CMultiV-Benchmark-Methyl_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-141037-CMultiV-Benchmark-Methyl_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-141037-CMultiV-Benchmark-Methyl_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-141037-CMultiV-Benchmark-Methyl_HOG_SIFT_HOG_MHOG-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-141112-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-141112-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-141112-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-141112-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-141147-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-141147-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-141147-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-141147-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-141207-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-141207-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-141207-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-141207-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-141238-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-141238-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-141238-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-141238-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-141345-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-141345-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-141345-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-141345-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-141834-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-141834-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-141834-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-141834-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-142903-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-142903-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-142903-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-142903-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-142943-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-142943-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-142943-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-142943-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-143254-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-143254-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-143254-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-143254-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-143512-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-143512-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-143512-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-143512-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-143553-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-143553-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-143553-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-143553-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-150532-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-150532-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-150532-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-150532-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-150705-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-150705-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-150705-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-150705-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-150714-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-150714-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-150714-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-150714-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-152212-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-152212-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-152212-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-152212-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-153503-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-153503-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-153503-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-153503-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-154718-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-154718-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-154718-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-154718-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-155011-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-155011-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-155011-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-155011-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-155240-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-155240-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-155240-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-155240-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160822-155839-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160822-155839-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160822-155839-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160822-155839-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160823-105758-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160823-105758-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160823-105758-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160823-105758-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160823-110509-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160823-110509-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160823-110509-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160823-110509-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160823-110659-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160823-110659-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160823-110659-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160823-110659-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160823-110859-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160823-110859-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160823-110859-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160823-110859-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160823-111036-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160823-111036-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160823-111036-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160823-111036-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/Results/20160823-111124-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160823-111124-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
similarity index 100%
rename from Code/Results/20160823-111124-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
rename to Code/MonoMutliViewClassifiers/Results/20160823-111124-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
diff --git a/Code/MonoMutliViewClassifiers/Results/20160823-111945-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160823-111945-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..fd3749c7189ef9c1be055f1c47708747136ec41e
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160823-111945-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,32 @@
+2016-08-23 11:19:45,964 INFO: Begginging
+2016-08-23 11:19:45,968 INFO: ### Main Programm for Multiview Classification
+2016-08-23 11:19:45,968 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Mumbo ; Cores : 1
+2016-08-23 11:19:45,968 INFO: Info:	 Shape of Methyl :(347, 25978)
+2016-08-23 11:19:45,969 INFO: Info:	 Shape of MiRNA_ :(347, 1046)
+2016-08-23 11:19:45,969 INFO: Info:	 Shape of RANSeq :(347, 73599)
+2016-08-23 11:19:45,970 INFO: Info:	 Shape of Clinic :(347, 127)
+2016-08-23 11:19:45,970 INFO: Done:	 Read Database Files
+2016-08-23 11:19:45,970 INFO: Start:	 Determine validation split for ratio 0.9
+2016-08-23 11:19:45,973 INFO: Done:	 Determine validation split
+2016-08-23 11:19:45,973 INFO: Start:	 Determine 2 folds
+2016-08-23 11:19:45,998 INFO: Info:	 Length of Learning Sets: 157
+2016-08-23 11:19:45,999 INFO: Info:	 Length of Testing Sets: 156
+2016-08-23 11:19:45,999 INFO: Info:	 Length of Validation Set: 34
+2016-08-23 11:19:45,999 INFO: Done:	 Determine folds
+2016-08-23 11:19:45,999 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-23 11:19:45,999 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-23 11:20:15,162 INFO: Done:	 Gridsearching best settings for monoview classifiers
+2016-08-23 11:20:15,162 INFO: 	Start:	 Fold number 1
+2016-08-23 11:20:15,177 DEBUG: 		Start:	 Iteration 1
+2016-08-23 11:20:15,221 DEBUG: 			View 0 : 0.715083798883
+2016-08-23 11:20:15,235 DEBUG: 			View 1 : 0.720670391061
+2016-08-23 11:20:15,275 DEBUG: 			View 2 : 0.385474860335
+2016-08-23 11:20:15,285 DEBUG: 			View 3 : 0.54748603352
+2016-08-23 11:20:15,325 DEBUG: 			 Best view : 		RANSeq
+2016-08-23 11:20:15,334 DEBUG: 		Start:	 Iteration 2
+2016-08-23 11:20:15,355 DEBUG: 			View 0 : 0.357541899441
+2016-08-23 11:20:15,364 DEBUG: 			View 1 : 0.290502793296
+2016-08-23 11:20:15,405 DEBUG: 			View 2 : 0.614525139665
+2016-08-23 11:20:15,414 DEBUG: 			View 3 : 0.357541899441
+2016-08-23 11:20:15,460 DEBUG: 			 Best view : 		RANSeq
+2016-08-23 11:20:15,470 INFO: 	Start: 	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160823-112110-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160823-112110-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..dd4dfe9dcc71e9829fe151d380f53f5668d59174
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160823-112110-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,157 @@
+2016-08-23 11:21:10,029 INFO: Begginging
+2016-08-23 11:21:10,033 INFO: ### Main Programm for Multiview Classification
+2016-08-23 11:21:10,033 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Mumbo ; Cores : 1
+2016-08-23 11:21:10,034 INFO: Info:	 Shape of Methyl :(347, 25978)
+2016-08-23 11:21:10,034 INFO: Info:	 Shape of MiRNA_ :(347, 1046)
+2016-08-23 11:21:10,034 INFO: Info:	 Shape of RANSeq :(347, 73599)
+2016-08-23 11:21:10,035 INFO: Info:	 Shape of Clinic :(347, 127)
+2016-08-23 11:21:10,035 INFO: Done:	 Read Database Files
+2016-08-23 11:21:10,035 INFO: Start:	 Determine validation split for ratio 0.9
+2016-08-23 11:21:10,038 INFO: Done:	 Determine validation split
+2016-08-23 11:21:10,038 INFO: Start:	 Determine 2 folds
+2016-08-23 11:21:10,056 INFO: Info:	 Length of Learning Sets: 157
+2016-08-23 11:21:10,056 INFO: Info:	 Length of Testing Sets: 156
+2016-08-23 11:21:10,056 INFO: Info:	 Length of Validation Set: 34
+2016-08-23 11:21:10,056 INFO: Done:	 Determine folds
+2016-08-23 11:21:10,056 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-23 11:21:10,056 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-23 11:21:38,101 INFO: Done:	 Gridsearching best settings for monoview classifiers
+2016-08-23 11:21:38,101 INFO: 	Start:	 Fold number 1
+2016-08-23 11:21:38,116 DEBUG: 		Start:	 Iteration 1
+2016-08-23 11:21:38,135 DEBUG: 			View 0 : 0.619047619048
+2016-08-23 11:21:38,144 DEBUG: 			View 1 : 0.696428571429
+2016-08-23 11:21:38,178 DEBUG: 			View 2 : 0.303571428571
+2016-08-23 11:21:38,187 DEBUG: 			View 3 : 0.696428571429
+2016-08-23 11:21:38,223 DEBUG: 			 Best view : 		MiRNA_
+2016-08-23 11:21:38,231 DEBUG: 		Start:	 Iteration 2
+2016-08-23 11:21:38,249 DEBUG: 			View 0 : 0.315476190476
+2016-08-23 11:21:38,258 DEBUG: 			View 1 : 0.690476190476
+2016-08-23 11:21:38,302 DEBUG: 			View 2 : 0.589285714286
+2016-08-23 11:21:38,312 DEBUG: 			View 3 : 0.660714285714
+2016-08-23 11:21:38,353 DEBUG: 			 Best view : 		MiRNA_
+2016-08-23 11:21:38,361 INFO: 	Start: 	 Classification
+2016-08-23 11:21:38,625 INFO: 	Done: 	 Fold number 1
+2016-08-23 11:21:38,626 INFO: 	Start:	 Fold number 2
+2016-08-23 11:21:38,640 DEBUG: 		Start:	 Iteration 1
+2016-08-23 11:21:38,657 DEBUG: 			View 0 : 0.710227272727
+2016-08-23 11:21:38,666 DEBUG: 			View 1 : 0.477272727273
+2016-08-23 11:21:38,704 DEBUG: 			View 2 : 0.289772727273
+2016-08-23 11:21:38,714 DEBUG: 			View 3 : 0.289772727273
+2016-08-23 11:21:38,751 DEBUG: 			 Best view : 		Methyl
+2016-08-23 11:21:38,759 DEBUG: 		Start:	 Iteration 2
+2016-08-23 11:21:38,777 DEBUG: 			View 0 : 0.710227272727
+2016-08-23 11:21:38,787 DEBUG: 			View 1 : 0.625
+2016-08-23 11:21:38,832 DEBUG: 			View 2 : 0.392045454545
+2016-08-23 11:21:38,842 DEBUG: 			View 3 : 0.306818181818
+2016-08-23 11:21:38,885 DEBUG: 			 Best view : 		Methyl
+2016-08-23 11:21:38,894 INFO: 	Start: 	 Classification
+2016-08-23 11:21:39,183 INFO: 	Done: 	 Fold number 2
+2016-08-23 11:21:39,183 INFO: Done:	 Classification
+2016-08-23 11:21:39,183 INFO: Info:	 Time for Classification: 29[s]
+2016-08-23 11:21:39,183 INFO: Start:	 Result Analysis for Mumbo
+2016-08-23 11:21:39,918 INFO: 		Result for Multiview classification with Mumbo
+
+Average accuracy :
+	-On Train : 70.3327922078
+	-On Test : 73.0769230769
+	-On Validation : 73.5294117647
+
+Dataset info :
+	-Database name : MultiOmic
+	-Labels : No, Yes
+	-Views : Methyl, MiRNA_, RNASeq, Clinic
+	-2 folds
+	- Validation set length : 34 for learning rate : 0.9
+
+Classification configuration : 
+	-Algorithm used : Mumbo 
+	-Iterations : 2
+	-Weak Classifiers : DecisionTree with depth 1.0,  sub-sampled at 0.006 on Methyl
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on MiRNA_
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on RNASeq
+		-DecisionTree with depth 1.0,  sub-sampled at 0.0065 on Clinic
+
+ Mean average accuracies and stats for each fold : 
+	- Fold 0
+		- On Methyl : 
+			- Mean average Accuracy : 0.467261904762
+			- Percentage of time chosen : 0.0
+		- On MiRNA_ : 
+			- Mean average Accuracy : 0.693452380952
+			- Percentage of time chosen : 1.0
+		- On RANSeq : 
+			- Mean average Accuracy : 0.446428571429
+			- Percentage of time chosen : 0.0
+		- On Clinic : 
+			- Mean average Accuracy : 0.678571428571
+			- Percentage of time chosen : 0.0
+	- Fold 1
+		- On Methyl : 
+			- Mean average Accuracy : 0.710227272727
+			- Percentage of time chosen : 1.0
+		- On MiRNA_ : 
+			- Mean average Accuracy : 0.551136363636
+			- Percentage of time chosen : 0.0
+		- On RANSeq : 
+			- Mean average Accuracy : 0.340909090909
+			- Percentage of time chosen : 0.0
+		- On Clinic : 
+			- Mean average Accuracy : 0.298295454545
+			- Percentage of time chosen : 0.0
+
+ For each iteration : 
+	- Iteration 1
+		 Fold 1
+			Accuracy on train : 69.6428571429
+			Accuracy on test : 73.0769230769
+			Accuracy on validation : 73.5294117647
+			Selected View : MiRNA_
+		 Fold 2
+			Accuracy on train : 71.0227272727
+			Accuracy on test : 73.0769230769
+			Accuracy on validation : 73.5294117647
+			Selected View : Methyl
+		- Mean : 
+			 Accuracy on train : 70.3327922078
+			 Accuracy on test : 73.0769230769
+	- Iteration 2
+		 Fold 1
+			Accuracy on train : 69.6428571429
+			Accuracy on test : 73.0769230769
+			Accuracy on validation : 73.5294117647
+			Selected View : MiRNA_
+		 Fold 2
+			Accuracy on train : 71.0227272727
+			Accuracy on test : 73.0769230769
+			Accuracy on validation : 73.5294117647
+			Selected View : Methyl
+		- Mean : 
+			 Accuracy on train : 70.3327922078
+			 Accuracy on test : 73.0769230769
+
+Computation time on 1 cores : 
+	Database extraction time : 0:00:00
+	                         Learn     Prediction
+	         Fold 1        0:00:28        0:00:00
+	         Fold 2        0:00:28        0:00:00
+	          Total        0:00:57        0:00:00
+	So a total classification time of 0:00:29.
+
+
+2016-08-23 11:21:40,125 INFO: Done:	 Result Analysis
+2016-08-23 11:21:40,126 INFO: ### Main Programm for Multiview Classification
+2016-08-23 11:21:40,126 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Mumbo ; Cores : 1
+2016-08-23 11:21:40,127 INFO: Info:	 Shape of Methyl :(347, 25978)
+2016-08-23 11:21:40,127 INFO: Info:	 Shape of MiRNA_ :(347, 1046)
+2016-08-23 11:21:40,127 INFO: Info:	 Shape of RANSeq :(347, 73599)
+2016-08-23 11:21:40,128 INFO: Info:	 Shape of Clinic :(347, 127)
+2016-08-23 11:21:40,128 INFO: Done:	 Read Database Files
+2016-08-23 11:21:40,128 INFO: Start:	 Determine validation split for ratio 0.9
+2016-08-23 11:21:40,131 INFO: Done:	 Determine validation split
+2016-08-23 11:21:40,131 INFO: Start:	 Determine 2 folds
+2016-08-23 11:21:40,145 INFO: Info:	 Length of Learning Sets: 157
+2016-08-23 11:21:40,145 INFO: Info:	 Length of Testing Sets: 156
+2016-08-23 11:21:40,145 INFO: Info:	 Length of Validation Set: 34
+2016-08-23 11:21:40,145 INFO: Done:	 Determine folds
+2016-08-23 11:21:40,145 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-23 11:21:40,145 INFO: Start:	 Gridsearching best settings for monoview classifiers
diff --git a/Code/MonoMutliViewClassifiers/Results/20160823-112139Results-Mumbo-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.9-MultiOmic-accuracyByIteration.png b/Code/MonoMutliViewClassifiers/Results/20160823-112139Results-Mumbo-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.9-MultiOmic-accuracyByIteration.png
new file mode 100644
index 0000000000000000000000000000000000000000..532f595c4dfe64597162c05541121c52a3751a4c
Binary files /dev/null and b/Code/MonoMutliViewClassifiers/Results/20160823-112139Results-Mumbo-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.9-MultiOmic-accuracyByIteration.png differ
diff --git a/Code/MonoMutliViewClassifiers/Results/20160823-112139Results-Mumbo-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.9-MultiOmic.txt b/Code/MonoMutliViewClassifiers/Results/20160823-112139Results-Mumbo-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.9-MultiOmic.txt
new file mode 100644
index 0000000000000000000000000000000000000000..ad390878712c48eebe2f1c3ed5736226ff502dfd
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160823-112139Results-Mumbo-Methyl-MiRNA_-RNASeq-Clinic-Yes-No-learnRate0.9-MultiOmic.txt
@@ -0,0 +1,88 @@
+		Result for Multiview classification with Mumbo
+
+Average accuracy :
+	-On Train : 70.3327922078
+	-On Test : 73.0769230769
+	-On Validation : 73.5294117647
+
+Dataset info :
+	-Database name : MultiOmic
+	-Labels : No, Yes
+	-Views : Methyl, MiRNA_, RNASeq, Clinic
+	-2 folds
+	- Validation set length : 34 for learning rate : 0.9
+
+Classification configuration : 
+	-Algorithm used : Mumbo 
+	-Iterations : 2
+	-Weak Classifiers : DecisionTree with depth 1.0,  sub-sampled at 0.006 on Methyl
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on MiRNA_
+		-DecisionTree with depth 1.0,  sub-sampled at 0.006 on RNASeq
+		-DecisionTree with depth 1.0,  sub-sampled at 0.0065 on Clinic
+
+ Mean average accuracies and stats for each fold : 
+	- Fold 0
+		- On Methyl : 
+			- Mean average Accuracy : 0.467261904762
+			- Percentage of time chosen : 0.0
+		- On MiRNA_ : 
+			- Mean average Accuracy : 0.693452380952
+			- Percentage of time chosen : 1.0
+		- On RANSeq : 
+			- Mean average Accuracy : 0.446428571429
+			- Percentage of time chosen : 0.0
+		- On Clinic : 
+			- Mean average Accuracy : 0.678571428571
+			- Percentage of time chosen : 0.0
+	- Fold 1
+		- On Methyl : 
+			- Mean average Accuracy : 0.710227272727
+			- Percentage of time chosen : 1.0
+		- On MiRNA_ : 
+			- Mean average Accuracy : 0.551136363636
+			- Percentage of time chosen : 0.0
+		- On RANSeq : 
+			- Mean average Accuracy : 0.340909090909
+			- Percentage of time chosen : 0.0
+		- On Clinic : 
+			- Mean average Accuracy : 0.298295454545
+			- Percentage of time chosen : 0.0
+
+ For each iteration : 
+	- Iteration 1
+		 Fold 1
+			Accuracy on train : 69.6428571429
+			Accuracy on test : 73.0769230769
+			Accuracy on validation : 73.5294117647
+			Selected View : MiRNA_
+		 Fold 2
+			Accuracy on train : 71.0227272727
+			Accuracy on test : 73.0769230769
+			Accuracy on validation : 73.5294117647
+			Selected View : Methyl
+		- Mean : 
+			 Accuracy on train : 70.3327922078
+			 Accuracy on test : 73.0769230769
+	- Iteration 2
+		 Fold 1
+			Accuracy on train : 69.6428571429
+			Accuracy on test : 73.0769230769
+			Accuracy on validation : 73.5294117647
+			Selected View : MiRNA_
+		 Fold 2
+			Accuracy on train : 71.0227272727
+			Accuracy on test : 73.0769230769
+			Accuracy on validation : 73.5294117647
+			Selected View : Methyl
+		- Mean : 
+			 Accuracy on train : 70.3327922078
+			 Accuracy on test : 73.0769230769
+
+Computation time on 1 cores : 
+	Database extraction time : 0:00:00
+	                         Learn     Prediction
+	         Fold 1        0:00:28        0:00:00
+	         Fold 2        0:00:28        0:00:00
+	          Total        0:00:57        0:00:00
+	So a total classification time of 0:00:29.
+
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-150940-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-150940-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..78212b4eff0eabc3fa3fa8aa7ffc302cede0ee2f
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-150940-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,18 @@
+2016-08-24 15:09:40,867 INFO: Begginging
+2016-08-24 15:09:40,868 INFO: ### Main Programm for Multiview Classification
+2016-08-24 15:09:40,869 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 15:09:40,869 INFO: Info:	 Shape of Methyl :(347, 25978)
+2016-08-24 15:09:40,869 INFO: Info:	 Shape of MiRNA_ :(347, 1046)
+2016-08-24 15:09:40,870 INFO: Info:	 Shape of RANSeq :(347, 73599)
+2016-08-24 15:09:40,870 INFO: Info:	 Shape of Clinic :(347, 127)
+2016-08-24 15:09:40,870 INFO: Done:	 Read Database Files
+2016-08-24 15:09:40,870 INFO: Start:	 Determine validation split for ratio 0.9
+2016-08-24 15:09:40,873 INFO: Done:	 Determine validation split
+2016-08-24 15:09:40,873 INFO: Start:	 Determine 2 folds
+2016-08-24 15:09:40,885 INFO: Info:	 Length of Learning Sets: 157
+2016-08-24 15:09:40,885 INFO: Info:	 Length of Testing Sets: 156
+2016-08-24 15:09:40,886 INFO: Info:	 Length of Validation Set: 34
+2016-08-24 15:09:40,886 INFO: Done:	 Determine folds
+2016-08-24 15:09:40,886 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 15:09:40,886 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 15:09:40,886 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-151006-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-151006-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..12fc0bf7d4fbf27971166dc3e3eae44e0b555d5b
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-151006-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,24 @@
+2016-08-24 15:10:06,969 INFO: Begginging
+2016-08-24 15:10:06,971 INFO: ### Main Programm for Multiview Classification
+2016-08-24 15:10:06,971 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 15:10:06,971 INFO: Info:	 Shape of Methyl :(347, 25978)
+2016-08-24 15:10:06,972 INFO: Info:	 Shape of MiRNA_ :(347, 1046)
+2016-08-24 15:10:06,972 INFO: Info:	 Shape of RANSeq :(347, 73599)
+2016-08-24 15:10:06,973 INFO: Info:	 Shape of Clinic :(347, 127)
+2016-08-24 15:10:06,973 INFO: Done:	 Read Database Files
+2016-08-24 15:10:06,973 INFO: Start:	 Determine validation split for ratio 0.9
+2016-08-24 15:10:06,975 INFO: Done:	 Determine validation split
+2016-08-24 15:10:06,976 INFO: Start:	 Determine 2 folds
+2016-08-24 15:10:06,990 INFO: Info:	 Length of Learning Sets: 157
+2016-08-24 15:10:06,990 INFO: Info:	 Length of Testing Sets: 156
+2016-08-24 15:10:06,990 INFO: Info:	 Length of Validation Set: 34
+2016-08-24 15:10:06,990 INFO: Done:	 Determine folds
+2016-08-24 15:10:06,990 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 15:10:06,990 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 15:10:06,991 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl
+2016-08-24 15:10:14,842 DEBUG: 		Info:	 Best Reslut : 0.555043227666
+2016-08-24 15:10:14,843 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 15:10:14,843 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA_
+2016-08-24 15:10:17,017 DEBUG: 		Info:	 Best Reslut : 0.524956772334
+2016-08-24 15:10:17,017 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 15:10:17,018 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-151503-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-151503-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..6611dd3aa69f01dce00f27f4f49d0e0fe7c7c99a
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-151503-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-24 15:15:03,256 INFO: Begginging
+2016-08-24 15:15:03,268 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:15:03,268 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : DecisionTree
+2016-08-24 15:15:03,268 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:15:03,300 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 15:15:03,300 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 15:15:03,300 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:15:03,300 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-151604-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-151604-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..d08108a0ee9942b041d3b43f11b829e07301a08e
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-151604-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-24 15:16:04,064 INFO: Begginging
+2016-08-24 15:16:04,080 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:16:04,080 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : DecisionTree
+2016-08-24 15:16:04,080 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:16:04,136 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 15:16:04,136 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 15:16:04,136 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:16:04,136 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-151656-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-151656-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..f5754b56cd33c1fe66168606d1a6ee9d5024ec3e
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-151656-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-24 15:16:56,323 INFO: Begginging
+2016-08-24 15:16:56,345 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:16:56,345 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : DecisionTree
+2016-08-24 15:16:56,345 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:16:56,394 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 15:16:56,395 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 15:16:56,395 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:16:56,395 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-151836-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-151836-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..e05049d157c4d90566ab8ce49b45efffa1ea12da
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-151836-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,74 @@
+2016-08-24 15:18:36,539 INFO: Begginging
+2016-08-24 15:18:36,572 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:18:36,573 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : DecisionTree
+2016-08-24 15:18:36,573 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:18:36,682 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 15:18:36,682 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 15:18:36,682 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:18:36,682 DEBUG: Start:	 Classification
+2016-08-24 15:18:43,218 DEBUG: Info:	 Time for Classification: 6.44028186798[s]
+2016-08-24 15:18:43,218 DEBUG: Done:	 Classification
+2016-08-24 15:18:43,248 DEBUG: Start:	 Statistic Results
+2016-08-24 15:18:43,249 DEBUG: Info:	 Classification report:
+2016-08-24 15:18:43,255 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.91      0.87      0.89        23
+        Oui       0.77      0.83      0.80        12
+
+avg / total       0.86      0.86      0.86        35
+
+2016-08-24 15:18:43,277 DEBUG: Info:	 Statistics:
+2016-08-24 15:18:43,304 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.857142857143
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.844444
+5    Mean of F1-Score of top 20 classes by F1-Score        0.844444
+6    Mean of F1-Score of top 30 classes by F1-Score        0.844444
+2016-08-24 15:18:43,305 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 15:18:47,165 DEBUG: Done:	 Statistic Results
+2016-08-24 15:18:47,165 DEBUG: Start:	 Plot Result
+2016-08-24 15:18:47,389 DEBUG: Done:	 Plot Result
+2016-08-24 15:18:47,567 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:18:47,567 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : KNN
+2016-08-24 15:18:47,567 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:18:47,603 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 15:18:47,604 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 15:18:47,604 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:18:47,604 DEBUG: Start:	 Classification
+2016-08-24 15:18:57,893 DEBUG: Info:	 Time for Classification: 10.3103861809[s]
+2016-08-24 15:18:57,893 DEBUG: Done:	 Classification
+2016-08-24 15:18:58,420 DEBUG: Start:	 Statistic Results
+2016-08-24 15:18:58,421 DEBUG: Info:	 Classification report:
+2016-08-24 15:18:58,422 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.88      0.92      0.90        24
+        Oui       0.80      0.73      0.76        11
+
+avg / total       0.85      0.86      0.86        35
+
+2016-08-24 15:18:58,432 DEBUG: Info:	 Statistics:
+2016-08-24 15:18:58,440 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.857142857143
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.829932
+5    Mean of F1-Score of top 20 classes by F1-Score        0.829932
+6    Mean of F1-Score of top 30 classes by F1-Score        0.829932
+2016-08-24 15:18:58,440 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 15:18:58,814 DEBUG: Done:	 Statistic Results
+2016-08-24 15:18:58,814 DEBUG: Start:	 Plot Result
+2016-08-24 15:18:59,544 DEBUG: Done:	 Plot Result
+2016-08-24 15:18:59,780 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:18:59,780 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : RandomForest
+2016-08-24 15:18:59,780 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:18:59,793 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 15:18:59,793 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 15:18:59,793 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:18:59,793 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-152149-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-152149-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..113ec1faddf001e6ee7d7834149ced64de7d4e71
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-152149-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,74 @@
+2016-08-24 15:21:49,852 INFO: Begginging
+2016-08-24 15:21:49,900 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:21:49,900 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : DecisionTree
+2016-08-24 15:21:49,900 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:21:49,944 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 15:21:49,944 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 15:21:49,944 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:21:49,944 DEBUG: Start:	 Classification
+2016-08-24 15:21:56,634 DEBUG: Info:	 Time for Classification: 6.73074197769[s]
+2016-08-24 15:21:56,634 DEBUG: Done:	 Classification
+2016-08-24 15:21:56,641 DEBUG: Start:	 Statistic Results
+2016-08-24 15:21:56,642 DEBUG: Info:	 Classification report:
+2016-08-24 15:21:56,643 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       1.00      0.78      0.88        27
+        Oui       0.57      1.00      0.73         8
+
+avg / total       0.90      0.83      0.84        35
+
+2016-08-24 15:21:56,645 DEBUG: Info:	 Statistics:
+2016-08-24 15:21:56,659 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.828571428571
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.801136
+5    Mean of F1-Score of top 20 classes by F1-Score        0.801136
+6    Mean of F1-Score of top 30 classes by F1-Score        0.801136
+2016-08-24 15:21:56,659 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 15:21:58,311 DEBUG: Done:	 Statistic Results
+2016-08-24 15:21:58,311 DEBUG: Start:	 Plot Result
+2016-08-24 15:21:58,529 DEBUG: Done:	 Plot Result
+2016-08-24 15:21:58,545 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:21:58,546 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : KNN
+2016-08-24 15:21:58,546 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:21:58,567 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 15:21:58,567 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 15:21:58,567 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:21:58,567 DEBUG: Start:	 Classification
+2016-08-24 15:22:09,219 DEBUG: Info:	 Time for Classification: 10.6697540283[s]
+2016-08-24 15:22:09,219 DEBUG: Done:	 Classification
+2016-08-24 15:22:09,835 DEBUG: Start:	 Statistic Results
+2016-08-24 15:22:09,836 DEBUG: Info:	 Classification report:
+2016-08-24 15:22:09,837 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.88      0.84      0.86        25
+        Oui       0.64      0.70      0.67        10
+
+avg / total       0.81      0.80      0.80        35
+
+2016-08-24 15:22:09,839 DEBUG: Info:	 Statistics:
+2016-08-24 15:22:09,847 DEBUG: 
+                                          Statistic      Values
+0                            Accuracy score on test         0.8
+1                        Top 10 classes by F1-Score  [Non, Oui]
+2                      Worst 10 classes by F1-Score  [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes           0
+4    Mean of F1-Score of top 10 classes by F1-Score    0.761905
+5    Mean of F1-Score of top 20 classes by F1-Score    0.761905
+6    Mean of F1-Score of top 30 classes by F1-Score    0.761905
+2016-08-24 15:22:09,847 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 15:22:10,192 DEBUG: Done:	 Statistic Results
+2016-08-24 15:22:10,193 DEBUG: Start:	 Plot Result
+2016-08-24 15:22:11,137 DEBUG: Done:	 Plot Result
+2016-08-24 15:22:11,149 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:22:11,149 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : RandomForest
+2016-08-24 15:22:11,149 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:22:11,164 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 15:22:11,164 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 15:22:11,164 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:22:11,164 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-153240-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-153240-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..75472f2a548bf898da017ae173d51de0df658faa
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-153240-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,107 @@
+2016-08-24 15:32:40,924 INFO: Begginging
+2016-08-24 15:32:40,949 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:32:40,950 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : DecisionTree
+2016-08-24 15:32:40,950 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:32:41,016 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 15:32:41,016 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 15:32:41,016 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:32:41,016 DEBUG: Start:	 Classification
+2016-08-24 15:32:51,899 DEBUG: Info:	 Time for Classification: 10.9459741116[s]
+2016-08-24 15:32:51,899 DEBUG: Done:	 Classification
+2016-08-24 15:32:51,901 DEBUG: Start:	 Statistic Results
+2016-08-24 15:32:51,902 DEBUG: Info:	 Classification report:
+2016-08-24 15:32:51,903 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.95      0.87      0.91        23
+        Oui       0.79      0.92      0.85        12
+
+avg / total       0.90      0.89      0.89        35
+
+2016-08-24 15:32:51,916 DEBUG: Info:	 Statistics:
+2016-08-24 15:32:51,924 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.885714285714
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.877622
+5    Mean of F1-Score of top 20 classes by F1-Score        0.877622
+6    Mean of F1-Score of top 30 classes by F1-Score        0.877622
+2016-08-24 15:32:51,924 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 15:32:53,052 DEBUG: Done:	 Statistic Results
+2016-08-24 15:32:53,052 DEBUG: Start:	 Plot Result
+2016-08-24 15:32:53,269 DEBUG: Done:	 Plot Result
+2016-08-24 15:32:53,283 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:32:53,283 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : KNN
+2016-08-24 15:32:53,283 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:32:53,298 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 15:32:53,298 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 15:32:53,298 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:32:53,298 DEBUG: Start:	 Classification
+2016-08-24 15:33:03,233 DEBUG: Info:	 Time for Classification: 9.94683003426[s]
+2016-08-24 15:33:03,233 DEBUG: Done:	 Classification
+2016-08-24 15:33:03,754 DEBUG: Start:	 Statistic Results
+2016-08-24 15:33:03,754 DEBUG: Info:	 Classification report:
+2016-08-24 15:33:03,755 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.97      0.97      0.97        29
+        Oui       0.83      0.83      0.83         6
+
+avg / total       0.94      0.94      0.94        35
+
+2016-08-24 15:33:03,757 DEBUG: Info:	 Statistics:
+2016-08-24 15:33:03,764 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.942857142857
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.899425
+5    Mean of F1-Score of top 20 classes by F1-Score        0.899425
+6    Mean of F1-Score of top 30 classes by F1-Score        0.899425
+2016-08-24 15:33:03,764 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 15:33:04,063 DEBUG: Done:	 Statistic Results
+2016-08-24 15:33:04,064 DEBUG: Start:	 Plot Result
+2016-08-24 15:33:04,789 DEBUG: Done:	 Plot Result
+2016-08-24 15:33:04,798 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:33:04,799 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : RandomForest
+2016-08-24 15:33:04,799 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:33:04,812 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 15:33:04,812 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 15:33:04,813 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:33:04,813 DEBUG: Start:	 Classification
+2016-08-24 15:33:13,668 DEBUG: Info:	 Time for Classification: 8.86640405655[s]
+2016-08-24 15:33:13,668 DEBUG: Done:	 Classification
+2016-08-24 15:33:13,686 DEBUG: Start:	 Statistic Results
+2016-08-24 15:33:13,687 DEBUG: Info:	 Classification report:
+2016-08-24 15:33:13,688 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.96      0.92      0.94        26
+        Oui       0.80      0.89      0.84         9
+
+avg / total       0.92      0.91      0.92        35
+
+2016-08-24 15:33:13,689 DEBUG: Info:	 Statistics:
+2016-08-24 15:33:13,697 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.914285714286
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.891641
+5    Mean of F1-Score of top 20 classes by F1-Score        0.891641
+6    Mean of F1-Score of top 30 classes by F1-Score        0.891641
+2016-08-24 15:33:13,697 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 15:33:14,000 DEBUG: Done:	 Statistic Results
+2016-08-24 15:33:14,000 DEBUG: Start:	 Plot Result
+2016-08-24 15:33:14,230 DEBUG: Done:	 Plot Result
+2016-08-24 15:33:14,239 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:33:14,240 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SGD
+2016-08-24 15:33:14,240 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:33:14,254 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 15:33:14,254 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 15:33:14,254 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:33:14,254 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-153513-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-153513-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..647aeee4c93fabac98536cb39057319e90b46f8c
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-153513-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,463 @@
+2016-08-24 15:35:13,860 INFO: Begginging
+2016-08-24 15:35:13,873 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:35:13,873 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : DecisionTree
+2016-08-24 15:35:13,873 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:35:13,888 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 15:35:13,888 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 15:35:13,888 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:35:13,888 DEBUG: Start:	 Classification
+2016-08-24 15:35:20,736 DEBUG: Info:	 Time for Classification: 6.85920500755[s]
+2016-08-24 15:35:20,736 DEBUG: Done:	 Classification
+2016-08-24 15:35:20,739 DEBUG: Start:	 Statistic Results
+2016-08-24 15:35:20,740 DEBUG: Info:	 Classification report:
+2016-08-24 15:35:20,740 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.92      0.79      0.85        28
+        Oui       0.45      0.71      0.56         7
+
+avg / total       0.82      0.77      0.79        35
+
+2016-08-24 15:35:20,743 DEBUG: Info:	 Statistics:
+2016-08-24 15:35:20,750 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.771428571429
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.700855
+5    Mean of F1-Score of top 20 classes by F1-Score        0.700855
+6    Mean of F1-Score of top 30 classes by F1-Score        0.700855
+2016-08-24 15:35:20,750 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 15:35:21,134 DEBUG: Done:	 Statistic Results
+2016-08-24 15:35:21,134 DEBUG: Start:	 Plot Result
+2016-08-24 15:35:21,349 DEBUG: Done:	 Plot Result
+2016-08-24 15:35:21,361 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:35:21,362 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : KNN
+2016-08-24 15:35:21,362 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:35:21,376 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 15:35:21,376 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 15:35:21,376 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:35:21,376 DEBUG: Start:	 Classification
+2016-08-24 15:35:31,289 DEBUG: Info:	 Time for Classification: 9.92338085175[s]
+2016-08-24 15:35:31,289 DEBUG: Done:	 Classification
+2016-08-24 15:35:31,806 DEBUG: Start:	 Statistic Results
+2016-08-24 15:35:31,806 DEBUG: Info:	 Classification report:
+2016-08-24 15:35:31,807 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.90      0.79      0.84        24
+        Oui       0.64      0.82      0.72        11
+
+avg / total       0.82      0.80      0.81        35
+
+2016-08-24 15:35:31,809 DEBUG: Info:	 Statistics:
+2016-08-24 15:35:31,816 DEBUG: 
+                                          Statistic      Values
+0                            Accuracy score on test         0.8
+1                        Top 10 classes by F1-Score  [Non, Oui]
+2                      Worst 10 classes by F1-Score  [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes           0
+4    Mean of F1-Score of top 10 classes by F1-Score    0.782222
+5    Mean of F1-Score of top 20 classes by F1-Score    0.782222
+6    Mean of F1-Score of top 30 classes by F1-Score    0.782222
+2016-08-24 15:35:31,816 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 15:35:32,102 DEBUG: Done:	 Statistic Results
+2016-08-24 15:35:32,102 DEBUG: Start:	 Plot Result
+2016-08-24 15:35:32,829 DEBUG: Done:	 Plot Result
+2016-08-24 15:35:32,839 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:35:32,839 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : RandomForest
+2016-08-24 15:35:32,839 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:35:32,853 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 15:35:32,853 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 15:35:32,853 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:35:32,853 DEBUG: Start:	 Classification
+2016-08-24 15:35:40,098 DEBUG: Info:	 Time for Classification: 7.25602412224[s]
+2016-08-24 15:35:40,099 DEBUG: Done:	 Classification
+2016-08-24 15:35:40,107 DEBUG: Start:	 Statistic Results
+2016-08-24 15:35:40,108 DEBUG: Info:	 Classification report:
+2016-08-24 15:35:40,108 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       1.00      0.93      0.97        30
+        Oui       0.71      1.00      0.83         5
+
+avg / total       0.96      0.94      0.95        35
+
+2016-08-24 15:35:40,110 DEBUG: Info:	 Statistics:
+2016-08-24 15:35:40,118 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.942857142857
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.899425
+5    Mean of F1-Score of top 20 classes by F1-Score        0.899425
+6    Mean of F1-Score of top 30 classes by F1-Score        0.899425
+2016-08-24 15:35:40,118 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 15:35:40,419 DEBUG: Done:	 Statistic Results
+2016-08-24 15:35:40,419 DEBUG: Start:	 Plot Result
+2016-08-24 15:35:40,641 DEBUG: Done:	 Plot Result
+2016-08-24 15:35:40,650 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:35:40,650 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SGD
+2016-08-24 15:35:40,651 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:35:40,664 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 15:35:40,664 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 15:35:40,665 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:35:40,665 DEBUG: Start:	 Classification
+2016-08-24 15:35:42,133 DEBUG: Info:	 Time for Classification: 1.47857999802[s]
+2016-08-24 15:35:42,133 DEBUG: Done:	 Classification
+2016-08-24 15:35:42,157 DEBUG: Start:	 Statistic Results
+2016-08-24 15:35:42,157 DEBUG: Info:	 Classification report:
+2016-08-24 15:35:42,159 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.96      0.86      0.91        29
+        Oui       0.56      0.83      0.67         6
+
+avg / total       0.89      0.86      0.87        35
+
+2016-08-24 15:35:42,162 DEBUG: Info:	 Statistics:
+2016-08-24 15:35:42,176 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.857142857143
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.787879
+5    Mean of F1-Score of top 20 classes by F1-Score        0.787879
+6    Mean of F1-Score of top 30 classes by F1-Score        0.787879
+2016-08-24 15:35:42,176 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 15:35:42,575 DEBUG: Done:	 Statistic Results
+2016-08-24 15:35:42,576 DEBUG: Start:	 Plot Result
+2016-08-24 15:35:42,919 DEBUG: Done:	 Plot Result
+2016-08-24 15:35:42,931 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:35:42,932 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMLinear
+2016-08-24 15:35:42,932 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:35:42,952 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 15:35:42,952 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 15:35:42,952 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:35:42,952 DEBUG: Start:	 Classification
+2016-08-24 15:35:50,958 DEBUG: Info:	 Time for Classification: 8.02294683456[s]
+2016-08-24 15:35:50,958 DEBUG: Done:	 Classification
+2016-08-24 15:35:51,120 DEBUG: Start:	 Statistic Results
+2016-08-24 15:35:51,120 DEBUG: Info:	 Classification report:
+2016-08-24 15:35:51,121 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.97      0.90      0.93        31
+        Oui       0.50      0.75      0.60         4
+
+avg / total       0.91      0.89      0.90        35
+
+2016-08-24 15:35:51,123 DEBUG: Info:	 Statistics:
+2016-08-24 15:35:51,130 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.885714285714
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.766667
+5    Mean of F1-Score of top 20 classes by F1-Score        0.766667
+6    Mean of F1-Score of top 30 classes by F1-Score        0.766667
+2016-08-24 15:35:51,130 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 15:35:51,433 DEBUG: Done:	 Statistic Results
+2016-08-24 15:35:51,433 DEBUG: Start:	 Plot Result
+2016-08-24 15:35:51,806 DEBUG: Done:	 Plot Result
+2016-08-24 15:35:51,816 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:35:51,816 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMRBF
+2016-08-24 15:35:51,816 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:35:51,830 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 15:35:51,830 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 15:35:51,830 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:35:51,830 DEBUG: Start:	 Classification
+2016-08-24 15:35:59,691 DEBUG: Info:	 Time for Classification: 7.87138581276[s]
+2016-08-24 15:35:59,691 DEBUG: Done:	 Classification
+2016-08-24 15:35:59,853 DEBUG: Start:	 Statistic Results
+2016-08-24 15:35:59,853 DEBUG: Info:	 Classification report:
+2016-08-24 15:35:59,854 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.87      0.91      0.89        22
+        Oui       0.83      0.77      0.80        13
+
+avg / total       0.86      0.86      0.86        35
+
+2016-08-24 15:35:59,856 DEBUG: Info:	 Statistics:
+2016-08-24 15:35:59,863 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.857142857143
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.844444
+5    Mean of F1-Score of top 20 classes by F1-Score        0.844444
+6    Mean of F1-Score of top 30 classes by F1-Score        0.844444
+2016-08-24 15:35:59,863 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 15:36:00,167 DEBUG: Done:	 Statistic Results
+2016-08-24 15:36:00,167 DEBUG: Start:	 Plot Result
+2016-08-24 15:36:00,556 DEBUG: Done:	 Plot Result
+2016-08-24 15:36:00,590 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:36:00,590 DEBUG: ### Classification - Database:MultiOmic Feature:RNASeq train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : DecisionTree
+2016-08-24 15:36:00,590 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:36:00,591 DEBUG: Info:	 Shape X_train:(312, 1046), Length of y_train:312
+2016-08-24 15:36:00,591 DEBUG: Info:	 Shape X_test:(35, 1046), Length of y_test:35
+2016-08-24 15:36:00,591 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:36:00,591 DEBUG: Start:	 Classification
+2016-08-24 15:36:00,792 DEBUG: Info:	 Time for Classification: 0.19925403595[s]
+2016-08-24 15:36:00,792 DEBUG: Done:	 Classification
+2016-08-24 15:36:00,794 DEBUG: Start:	 Statistic Results
+2016-08-24 15:36:00,794 DEBUG: Info:	 Classification report:
+2016-08-24 15:36:00,795 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.81      0.92      0.86        24
+        Oui       0.75      0.55      0.63        11
+
+avg / total       0.79      0.80      0.79        35
+
+2016-08-24 15:36:00,797 DEBUG: Info:	 Statistics:
+2016-08-24 15:36:00,804 DEBUG: 
+                                          Statistic      Values
+0                            Accuracy score on test         0.8
+1                        Top 10 classes by F1-Score  [Non, Oui]
+2                      Worst 10 classes by F1-Score  [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes           0
+4    Mean of F1-Score of top 10 classes by F1-Score    0.747162
+5    Mean of F1-Score of top 20 classes by F1-Score    0.747162
+6    Mean of F1-Score of top 30 classes by F1-Score    0.747162
+2016-08-24 15:36:00,804 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 15:36:01,103 DEBUG: Done:	 Statistic Results
+2016-08-24 15:36:01,103 DEBUG: Start:	 Plot Result
+2016-08-24 15:36:01,325 DEBUG: Done:	 Plot Result
+2016-08-24 15:36:01,326 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:36:01,326 DEBUG: ### Classification - Database:MultiOmic Feature:RNASeq train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : KNN
+2016-08-24 15:36:01,327 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:36:01,327 DEBUG: Info:	 Shape X_train:(312, 1046), Length of y_train:312
+2016-08-24 15:36:01,327 DEBUG: Info:	 Shape X_test:(35, 1046), Length of y_test:35
+2016-08-24 15:36:01,327 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:36:01,328 DEBUG: Start:	 Classification
+2016-08-24 15:36:01,694 DEBUG: Info:	 Time for Classification: 0.363206863403[s]
+2016-08-24 15:36:01,694 DEBUG: Done:	 Classification
+2016-08-24 15:36:01,714 DEBUG: Start:	 Statistic Results
+2016-08-24 15:36:01,715 DEBUG: Info:	 Classification report:
+2016-08-24 15:36:01,716 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.96      0.96      0.96        27
+        Oui       0.88      0.88      0.88         8
+
+avg / total       0.94      0.94      0.94        35
+
+2016-08-24 15:36:01,720 DEBUG: Info:	 Statistics:
+2016-08-24 15:36:01,731 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.942857142857
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.918981
+5    Mean of F1-Score of top 20 classes by F1-Score        0.918981
+6    Mean of F1-Score of top 30 classes by F1-Score        0.918981
+2016-08-24 15:36:01,732 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 15:36:02,044 DEBUG: Done:	 Statistic Results
+2016-08-24 15:36:02,044 DEBUG: Start:	 Plot Result
+2016-08-24 15:36:02,331 DEBUG: Done:	 Plot Result
+2016-08-24 15:36:02,332 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:36:02,332 DEBUG: ### Classification - Database:MultiOmic Feature:RNASeq train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : RandomForest
+2016-08-24 15:36:02,333 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:36:02,333 DEBUG: Info:	 Shape X_train:(312, 1046), Length of y_train:312
+2016-08-24 15:36:02,333 DEBUG: Info:	 Shape X_test:(35, 1046), Length of y_test:35
+2016-08-24 15:36:02,333 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:36:02,334 DEBUG: Start:	 Classification
+2016-08-24 15:36:04,885 DEBUG: Info:	 Time for Classification: 2.54951691628[s]
+2016-08-24 15:36:04,885 DEBUG: Done:	 Classification
+2016-08-24 15:36:04,889 DEBUG: Start:	 Statistic Results
+2016-08-24 15:36:04,889 DEBUG: Info:	 Classification report:
+2016-08-24 15:36:04,890 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.93      0.97      0.95        29
+        Oui       0.80      0.67      0.73         6
+
+avg / total       0.91      0.91      0.91        35
+
+2016-08-24 15:36:04,892 DEBUG: Info:	 Statistics:
+2016-08-24 15:36:04,900 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.914285714286
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.838213
+5    Mean of F1-Score of top 20 classes by F1-Score        0.838213
+6    Mean of F1-Score of top 30 classes by F1-Score        0.838213
+2016-08-24 15:36:04,900 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 15:36:05,213 DEBUG: Done:	 Statistic Results
+2016-08-24 15:36:05,213 DEBUG: Start:	 Plot Result
+2016-08-24 15:36:05,434 DEBUG: Done:	 Plot Result
+2016-08-24 15:36:05,435 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:36:05,435 DEBUG: ### Classification - Database:MultiOmic Feature:RNASeq train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SGD
+2016-08-24 15:36:05,435 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:36:05,436 DEBUG: Info:	 Shape X_train:(312, 1046), Length of y_train:312
+2016-08-24 15:36:05,436 DEBUG: Info:	 Shape X_test:(35, 1046), Length of y_test:35
+2016-08-24 15:36:05,436 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:36:05,436 DEBUG: Start:	 Classification
+2016-08-24 15:36:05,523 DEBUG: Info:	 Time for Classification: 0.0844321250916[s]
+2016-08-24 15:36:05,523 DEBUG: Done:	 Classification
+2016-08-24 15:36:05,525 DEBUG: Start:	 Statistic Results
+2016-08-24 15:36:05,525 DEBUG: Info:	 Classification report:
+2016-08-24 15:36:05,526 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       1.00      0.60      0.75        25
+        Oui       0.50      1.00      0.67        10
+
+avg / total       0.86      0.71      0.73        35
+
+2016-08-24 15:36:05,528 DEBUG: Info:	 Statistics:
+2016-08-24 15:36:05,536 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.714285714286
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.708333
+5    Mean of F1-Score of top 20 classes by F1-Score        0.708333
+6    Mean of F1-Score of top 30 classes by F1-Score        0.708333
+2016-08-24 15:36:05,536 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 15:36:05,859 DEBUG: Done:	 Statistic Results
+2016-08-24 15:36:05,859 DEBUG: Start:	 Plot Result
+2016-08-24 15:36:06,199 DEBUG: Done:	 Plot Result
+2016-08-24 15:36:06,200 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:36:06,201 DEBUG: ### Classification - Database:MultiOmic Feature:RNASeq train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMLinear
+2016-08-24 15:36:06,201 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:36:06,201 DEBUG: Info:	 Shape X_train:(312, 1046), Length of y_train:312
+2016-08-24 15:36:06,201 DEBUG: Info:	 Shape X_test:(35, 1046), Length of y_test:35
+2016-08-24 15:36:06,202 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:36:06,202 DEBUG: Start:	 Classification
+2016-08-24 15:36:11,831 DEBUG: Info:	 Time for Classification: 5.62734603882[s]
+2016-08-24 15:36:11,831 DEBUG: Done:	 Classification
+2016-08-24 15:36:11,836 DEBUG: Start:	 Statistic Results
+2016-08-24 15:36:11,836 DEBUG: Info:	 Classification report:
+2016-08-24 15:36:11,837 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.92      0.73      0.81        30
+        Oui       0.27      0.60      0.37         5
+
+avg / total       0.82      0.71      0.75        35
+
+2016-08-24 15:36:11,839 DEBUG: Info:	 Statistics:
+2016-08-24 15:36:11,846 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.714285714286
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.594907
+5    Mean of F1-Score of top 20 classes by F1-Score        0.594907
+6    Mean of F1-Score of top 30 classes by F1-Score        0.594907
+2016-08-24 15:36:11,846 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 15:36:12,215 DEBUG: Done:	 Statistic Results
+2016-08-24 15:36:12,215 DEBUG: Start:	 Plot Result
+2016-08-24 15:36:12,479 DEBUG: Done:	 Plot Result
+2016-08-24 15:36:12,480 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:36:12,480 DEBUG: ### Classification - Database:MultiOmic Feature:RNASeq train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMRBF
+2016-08-24 15:36:12,480 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:36:12,481 DEBUG: Info:	 Shape X_train:(312, 1046), Length of y_train:312
+2016-08-24 15:36:12,481 DEBUG: Info:	 Shape X_test:(35, 1046), Length of y_test:35
+2016-08-24 15:36:12,481 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:36:12,481 DEBUG: Start:	 Classification
+2016-08-24 15:36:13,146 DEBUG: Info:	 Time for Classification: 0.662354946136[s]
+2016-08-24 15:36:13,146 DEBUG: Done:	 Classification
+2016-08-24 15:36:13,161 DEBUG: Start:	 Statistic Results
+2016-08-24 15:36:13,162 DEBUG: Info:	 Classification report:
+2016-08-24 15:36:13,185 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.71      1.00      0.83        25
+        Oui       0.00      0.00      0.00        10
+
+avg / total       0.51      0.71      0.60        35
+
+2016-08-24 15:36:13,187 DEBUG: Info:	 Statistics:
+2016-08-24 15:36:13,195 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.714285714286
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes             0.5
+4    Mean of F1-Score of top 10 classes by F1-Score        0.416667
+5    Mean of F1-Score of top 20 classes by F1-Score        0.416667
+6    Mean of F1-Score of top 30 classes by F1-Score        0.416667
+2016-08-24 15:36:13,195 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 15:36:13,572 DEBUG: Done:	 Statistic Results
+2016-08-24 15:36:13,572 DEBUG: Start:	 Plot Result
+2016-08-24 15:36:13,826 DEBUG: Done:	 Plot Result
+2016-08-24 15:36:14,979 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:36:14,979 DEBUG: ### Classification - Database:MultiOmic Feature:Clinic train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : DecisionTree
+2016-08-24 15:36:14,979 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:36:15,063 DEBUG: Info:	 Shape X_train:(312, 73599), Length of y_train:312
+2016-08-24 15:36:15,063 DEBUG: Info:	 Shape X_test:(35, 73599), Length of y_test:35
+2016-08-24 15:36:15,063 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:36:15,063 DEBUG: Start:	 Classification
+2016-08-24 15:36:36,485 DEBUG: Info:	 Time for Classification: 21.5033020973[s]
+2016-08-24 15:36:36,485 DEBUG: Done:	 Classification
+2016-08-24 15:36:36,489 DEBUG: Start:	 Statistic Results
+2016-08-24 15:36:36,489 DEBUG: Info:	 Classification report:
+2016-08-24 15:36:36,490 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.66      1.00      0.79        23
+        Oui       0.00      0.00      0.00        12
+
+avg / total       0.43      0.66      0.52        35
+
+2016-08-24 15:36:36,492 DEBUG: Info:	 Statistics:
+2016-08-24 15:36:36,499 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.657142857143
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes             0.5
+4    Mean of F1-Score of top 10 classes by F1-Score        0.396552
+5    Mean of F1-Score of top 20 classes by F1-Score        0.396552
+6    Mean of F1-Score of top 30 classes by F1-Score        0.396552
+2016-08-24 15:36:36,500 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 15:36:36,817 DEBUG: Done:	 Statistic Results
+2016-08-24 15:36:36,818 DEBUG: Start:	 Plot Result
+2016-08-24 15:36:37,036 DEBUG: Done:	 Plot Result
+2016-08-24 15:36:38,028 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 15:36:38,028 DEBUG: ### Classification - Database:MultiOmic Feature:Clinic train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : KNN
+2016-08-24 15:36:38,028 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 15:36:38,080 DEBUG: Info:	 Shape X_train:(312, 73599), Length of y_train:312
+2016-08-24 15:36:38,080 DEBUG: Info:	 Shape X_test:(35, 73599), Length of y_test:35
+2016-08-24 15:36:38,080 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 15:36:38,080 DEBUG: Start:	 Classification
+2016-08-24 15:37:07,285 DEBUG: Info:	 Time for Classification: 28.5032260418[s]
+2016-08-24 15:37:07,285 DEBUG: Done:	 Classification
+2016-08-24 15:37:08,833 DEBUG: Start:	 Statistic Results
+2016-08-24 15:37:08,834 DEBUG: Info:	 Classification report:
+2016-08-24 15:37:08,920 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.74      0.96      0.83        26
+        Oui       0.00      0.00      0.00         9
+
+avg / total       0.55      0.71      0.62        35
+
+2016-08-24 15:37:08,954 DEBUG: Info:	 Statistics:
+2016-08-24 15:37:09,007 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.714285714286
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes             0.5
+4    Mean of F1-Score of top 10 classes by F1-Score        0.416667
+5    Mean of F1-Score of top 20 classes by F1-Score        0.416667
+6    Mean of F1-Score of top 30 classes by F1-Score        0.416667
+2016-08-24 15:37:09,007 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 15:37:12,867 DEBUG: Done:	 Statistic Results
+2016-08-24 15:37:12,867 DEBUG: Start:	 Plot Result
+2016-08-24 15:37:14,530 DEBUG: Done:	 Plot Result
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-165838-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-165838-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..b4b31aa895c5e3a10bab4af9755f3b73a41b39db
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-165838-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1 @@
+2016-08-24 16:58:38,944 INFO: Begginging
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-170101-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-170101-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..ab433508bd0d420b7d299e3cbc03dfa74afe0703
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-170101-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1 @@
+2016-08-24 17:01:01,205 INFO: Begginging
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-170131-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-170131-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..132c798c184f22e6ce1c5ecd293090c2bbae525f
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-170131-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1 @@
+2016-08-24 17:01:31,670 INFO: Begginging
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-170148-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-170148-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..aa4df084e6c3db2a516aff2d1668b3dda351b1b2
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-170148-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,24 @@
+2016-08-24 17:01:48,282 INFO: Begginging
+2016-08-24 17:01:48,285 INFO: ### Main Programm for Multiview Classification
+2016-08-24 17:01:48,285 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 17:01:48,285 INFO: Info:	 Shape of Methyl :(347, 25978)
+2016-08-24 17:01:48,285 INFO: Info:	 Shape of MiRNA_ :(347, 1046)
+2016-08-24 17:01:48,286 INFO: Info:	 Shape of RANSeq :(347, 73599)
+2016-08-24 17:01:48,286 INFO: Info:	 Shape of Clinic :(347, 127)
+2016-08-24 17:01:48,286 INFO: Done:	 Read Database Files
+2016-08-24 17:01:48,287 INFO: Start:	 Determine validation split for ratio 0.9
+2016-08-24 17:01:48,309 INFO: Done:	 Determine validation split
+2016-08-24 17:01:48,310 INFO: Start:	 Determine 2 folds
+2016-08-24 17:01:48,328 INFO: Info:	 Length of Learning Sets: 157
+2016-08-24 17:01:48,328 INFO: Info:	 Length of Testing Sets: 156
+2016-08-24 17:01:48,328 INFO: Info:	 Length of Validation Set: 34
+2016-08-24 17:01:48,328 INFO: Done:	 Determine folds
+2016-08-24 17:01:48,328 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 17:01:48,328 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 17:01:48,329 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl
+2016-08-24 17:01:56,163 DEBUG: 		Info:	 Best Reslut : 0.542708933718
+2016-08-24 17:01:56,163 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 17:01:56,164 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA_
+2016-08-24 17:01:58,267 DEBUG: 		Info:	 Best Reslut : 0.553948126801
+2016-08-24 17:01:58,267 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 17:01:58,267 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-170204-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-170204-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..3ad1a6bd81d6127939b2305b2508421cd46b89bf
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-170204-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,31 @@
+2016-08-24 17:02:04,433 INFO: Begginging
+2016-08-24 17:02:04,435 INFO: ### Main Programm for Multiview Classification
+2016-08-24 17:02:04,435 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 17:02:04,435 INFO: Info:	 Shape of Methyl :(347, 25978)
+2016-08-24 17:02:04,436 INFO: Info:	 Shape of MiRNA_ :(347, 1046)
+2016-08-24 17:02:04,436 INFO: Info:	 Shape of RANSeq :(347, 73599)
+2016-08-24 17:02:04,437 INFO: Info:	 Shape of Clinic :(347, 127)
+2016-08-24 17:02:04,437 INFO: Done:	 Read Database Files
+2016-08-24 17:02:04,437 INFO: Start:	 Determine validation split for ratio 0.9
+2016-08-24 17:02:04,440 INFO: Done:	 Determine validation split
+2016-08-24 17:02:04,440 INFO: Start:	 Determine 2 folds
+2016-08-24 17:02:04,452 INFO: Info:	 Length of Learning Sets: 157
+2016-08-24 17:02:04,452 INFO: Info:	 Length of Testing Sets: 156
+2016-08-24 17:02:04,452 INFO: Info:	 Length of Validation Set: 34
+2016-08-24 17:02:04,452 INFO: Done:	 Determine folds
+2016-08-24 17:02:04,452 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 17:02:04,452 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 17:02:04,453 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl
+2016-08-24 17:02:11,934 DEBUG: 		Info:	 Best Reslut : 0.550489913545
+2016-08-24 17:02:11,934 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 17:02:11,935 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA_
+2016-08-24 17:02:13,994 DEBUG: 		Info:	 Best Reslut : 0.560345821326
+2016-08-24 17:02:13,994 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 17:02:13,994 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq
+2016-08-24 17:02:30,869 DEBUG: 		Info:	 Best Reslut : 0.512507204611
+2016-08-24 17:02:30,869 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 17:02:30,870 DEBUG: 	Start:	 Gridsearch for DecisionTree on Clinic
+2016-08-24 17:02:32,818 DEBUG: 		Info:	 Best Reslut : 0.506109510086
+2016-08-24 17:02:32,819 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 17:02:32,819 INFO: Done:	 Gridsearching best settings for monoview classifiers
+2016-08-24 17:02:32,819 INFO: 	Start:	 Fold number 1
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-170346-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-170346-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..e95f7dd37b0173564895d137b8480cc96a582e33
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-170346-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,150 @@
+2016-08-24 17:03:46,119 INFO: Begginging
+2016-08-24 17:03:46,120 INFO: ### Main Programm for Multiview Classification
+2016-08-24 17:03:46,121 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 17:03:46,121 INFO: Info:	 Shape of Methyl :(347, 25978)
+2016-08-24 17:03:46,121 INFO: Info:	 Shape of MiRNA_ :(347, 1046)
+2016-08-24 17:03:46,122 INFO: Info:	 Shape of RANSeq :(347, 73599)
+2016-08-24 17:03:46,122 INFO: Info:	 Shape of Clinic :(347, 127)
+2016-08-24 17:03:46,122 INFO: Done:	 Read Database Files
+2016-08-24 17:03:46,122 INFO: Start:	 Determine validation split for ratio 0.9
+2016-08-24 17:03:46,125 INFO: Done:	 Determine validation split
+2016-08-24 17:03:46,125 INFO: Start:	 Determine 2 folds
+2016-08-24 17:03:46,142 INFO: Info:	 Length of Learning Sets: 157
+2016-08-24 17:03:46,142 INFO: Info:	 Length of Testing Sets: 156
+2016-08-24 17:03:46,142 INFO: Info:	 Length of Validation Set: 34
+2016-08-24 17:03:46,142 INFO: Done:	 Determine folds
+2016-08-24 17:03:46,142 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 17:03:46,142 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 17:03:46,143 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl
+2016-08-24 17:03:53,600 DEBUG: 		Info:	 Best Reslut : 0.531123919308
+2016-08-24 17:03:53,600 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 17:03:53,601 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA_
+2016-08-24 17:03:55,659 DEBUG: 		Info:	 Best Reslut : 0.501613832853
+2016-08-24 17:03:55,659 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 17:03:55,660 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq
+2016-08-24 17:04:13,538 DEBUG: 		Info:	 Best Reslut : 0.502363112392
+2016-08-24 17:04:13,538 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 17:04:13,539 DEBUG: 	Start:	 Gridsearch for DecisionTree on Clinic
+2016-08-24 17:04:15,465 DEBUG: 		Info:	 Best Reslut : 0.58144092219
+2016-08-24 17:04:15,465 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 17:04:15,465 INFO: Done:	 Gridsearching best settings for monoview classifiers
+2016-08-24 17:04:15,466 INFO: 	Start:	 Fold number 1
+2016-08-24 17:04:17,304 DEBUG: 		Start:	 Iteration 1
+2016-08-24 17:04:17,324 DEBUG: 			View 0 : 0.563953488372
+2016-08-24 17:04:17,333 DEBUG: 			View 1 : 0.703488372093
+2016-08-24 17:04:17,372 DEBUG: 			View 2 : 0.68023255814
+2016-08-24 17:04:17,381 DEBUG: 			View 3 : 0.546511627907
+2016-08-24 17:04:17,428 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:04:17,511 DEBUG: 		Start:	 Iteration 2
+2016-08-24 17:04:17,529 DEBUG: 			View 0 : 0.546511627907
+2016-08-24 17:04:17,539 DEBUG: 			View 1 : 0.703488372093
+2016-08-24 17:04:17,578 DEBUG: 			View 2 : 0.46511627907
+2016-08-24 17:04:17,587 DEBUG: 			View 3 : 0.308139534884
+2016-08-24 17:04:17,645 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:04:17,802 DEBUG: 		Start:	 Iteration 3
+2016-08-24 17:04:17,820 DEBUG: 			View 0 : 0.529069767442
+2016-08-24 17:04:17,829 DEBUG: 			View 1 : 0.43023255814
+2016-08-24 17:04:17,869 DEBUG: 			View 2 : 0.377906976744
+2016-08-24 17:04:17,878 DEBUG: 			View 3 : 0.389534883721
+2016-08-24 17:04:17,937 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:04:18,161 DEBUG: 		Start:	 Iteration 4
+2016-08-24 17:04:18,180 DEBUG: 			View 0 : 0.697674418605
+2016-08-24 17:04:18,189 DEBUG: 			View 1 : 0.337209302326
+2016-08-24 17:04:18,228 DEBUG: 			View 2 : 0.604651162791
+2016-08-24 17:04:18,237 DEBUG: 			View 3 : 0.604651162791
+2016-08-24 17:04:18,300 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:04:18,594 DEBUG: 		Start:	 Iteration 5
+2016-08-24 17:04:18,612 DEBUG: 			View 0 : 0.656976744186
+2016-08-24 17:04:18,621 DEBUG: 			View 1 : 0.424418604651
+2016-08-24 17:04:18,660 DEBUG: 			View 2 : 0.43023255814
+2016-08-24 17:04:18,669 DEBUG: 			View 3 : 0.674418604651
+2016-08-24 17:04:18,734 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:04:19,088 DEBUG: 		Start:	 Iteration 6
+2016-08-24 17:04:19,106 DEBUG: 			View 0 : 0.593023255814
+2016-08-24 17:04:19,114 DEBUG: 			View 1 : 0.610465116279
+2016-08-24 17:04:19,153 DEBUG: 			View 2 : 0.360465116279
+2016-08-24 17:04:19,162 DEBUG: 			View 3 : 0.372093023256
+2016-08-24 17:04:19,231 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:04:19,648 DEBUG: 		Start:	 Iteration 7
+2016-08-24 17:04:19,666 DEBUG: 			View 0 : 0.523255813953
+2016-08-24 17:04:19,675 DEBUG: 			View 1 : 0.709302325581
+2016-08-24 17:04:19,714 DEBUG: 			View 2 : 0.418604651163
+2016-08-24 17:04:19,723 DEBUG: 			View 3 : 0.406976744186
+2016-08-24 17:04:19,795 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:04:20,275 DEBUG: 		Start:	 Iteration 8
+2016-08-24 17:04:20,293 DEBUG: 			View 0 : 0.78488372093
+2016-08-24 17:04:20,302 DEBUG: 			View 1 : 0.593023255814
+2016-08-24 17:04:20,342 DEBUG: 			View 2 : 0.540697674419
+2016-08-24 17:04:20,350 DEBUG: 			View 3 : 0.639534883721
+2016-08-24 17:04:20,425 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:04:20,980 DEBUG: 		Start:	 Iteration 9
+2016-08-24 17:04:20,998 DEBUG: 			View 0 : 0.31976744186
+2016-08-24 17:04:21,007 DEBUG: 			View 1 : 0.796511627907
+2016-08-24 17:04:21,046 DEBUG: 			View 2 : 0.610465116279
+2016-08-24 17:04:21,055 DEBUG: 			View 3 : 0.656976744186
+2016-08-24 17:04:21,131 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:04:21,741 DEBUG: 		Start:	 Iteration 10
+2016-08-24 17:04:21,758 DEBUG: 			View 0 : 0.476744186047
+2016-08-24 17:04:21,767 DEBUG: 			View 1 : 0.354651162791
+2016-08-24 17:04:21,807 DEBUG: 			View 2 : 0.505813953488
+2016-08-24 17:04:21,816 DEBUG: 			View 3 : 0.5
+2016-08-24 17:04:21,894 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:04:22,579 DEBUG: 		Start:	 Iteration 11
+2016-08-24 17:04:22,597 DEBUG: 			View 0 : 0.575581395349
+2016-08-24 17:04:22,606 DEBUG: 			View 1 : 0.354651162791
+2016-08-24 17:04:22,645 DEBUG: 			View 2 : 0.552325581395
+2016-08-24 17:04:22,653 DEBUG: 			View 3 : 0.418604651163
+2016-08-24 17:04:22,736 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:04:23,491 DEBUG: 		Start:	 Iteration 12
+2016-08-24 17:04:23,509 DEBUG: 			View 0 : 0.488372093023
+2016-08-24 17:04:23,518 DEBUG: 			View 1 : 0.633720930233
+2016-08-24 17:04:23,556 DEBUG: 			View 2 : 0.616279069767
+2016-08-24 17:04:23,565 DEBUG: 			View 3 : 0.395348837209
+2016-08-24 17:04:23,650 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:04:24,460 DEBUG: 		Start:	 Iteration 13
+2016-08-24 17:04:24,478 DEBUG: 			View 0 : 0.436046511628
+2016-08-24 17:04:24,487 DEBUG: 			View 1 : 0.627906976744
+2016-08-24 17:04:24,525 DEBUG: 			View 2 : 0.581395348837
+2016-08-24 17:04:24,534 DEBUG: 			View 3 : 0.488372093023
+2016-08-24 17:04:24,621 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:04:25,498 DEBUG: 		Start:	 Iteration 14
+2016-08-24 17:04:25,516 DEBUG: 			View 0 : 0.738372093023
+2016-08-24 17:04:25,525 DEBUG: 			View 1 : 0.662790697674
+2016-08-24 17:04:25,564 DEBUG: 			View 2 : 0.46511627907
+2016-08-24 17:04:25,572 DEBUG: 			View 3 : 0.412790697674
+2016-08-24 17:04:25,662 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:04:26,603 DEBUG: 		Start:	 Iteration 15
+2016-08-24 17:04:26,621 DEBUG: 			View 0 : 0.56976744186
+2016-08-24 17:04:26,629 DEBUG: 			View 1 : 0.308139534884
+2016-08-24 17:04:26,668 DEBUG: 			View 2 : 0.453488372093
+2016-08-24 17:04:26,676 DEBUG: 			View 3 : 0.418604651163
+2016-08-24 17:04:26,769 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:04:27,796 DEBUG: 		Start:	 Iteration 16
+2016-08-24 17:04:27,816 DEBUG: 			View 0 : 0.436046511628
+2016-08-24 17:04:27,826 DEBUG: 			View 1 : 0.761627906977
+2016-08-24 17:04:27,866 DEBUG: 			View 2 : 0.668604651163
+2016-08-24 17:04:27,875 DEBUG: 			View 3 : 0.505813953488
+2016-08-24 17:04:27,978 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:04:29,101 DEBUG: 		Start:	 Iteration 17
+2016-08-24 17:04:29,120 DEBUG: 			View 0 : 0.31976744186
+2016-08-24 17:04:29,130 DEBUG: 			View 1 : 0.31976744186
+2016-08-24 17:04:29,173 DEBUG: 			View 2 : 0.517441860465
+2016-08-24 17:04:29,183 DEBUG: 			View 3 : 0.505813953488
+2016-08-24 17:04:29,333 DEBUG: 			 Best view : 		RANSeq
+2016-08-24 17:04:30,588 DEBUG: 		Start:	 Iteration 18
+2016-08-24 17:04:30,607 DEBUG: 			View 0 : 0.616279069767
+2016-08-24 17:04:30,616 DEBUG: 			View 1 : 0.366279069767
+2016-08-24 17:04:30,656 DEBUG: 			View 2 : 0.372093023256
+2016-08-24 17:04:30,666 DEBUG: 			View 3 : 0.651162790698
+2016-08-24 17:04:30,786 DEBUG: 			 Best view : 		Clinic
+2016-08-24 17:04:32,048 DEBUG: 		Start:	 Iteration 19
+2016-08-24 17:04:32,066 DEBUG: 			View 0 : 0.523255813953
+2016-08-24 17:04:32,075 DEBUG: 			View 1 : 0.441860465116
+2016-08-24 17:04:32,114 DEBUG: 			View 2 : 0.436046511628
+2016-08-24 17:04:32,123 DEBUG: 			View 3 : 0.470930232558
+2016-08-24 17:04:32,233 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:04:33,641 DEBUG: 		Start:	 Iteration 20
+2016-08-24 17:04:33,666 DEBUG: 			View 0 : 0.406976744186
+2016-08-24 17:04:33,676 DEBUG: 			View 1 : 0.563953488372
+2016-08-24 17:04:33,723 DEBUG: 			View 2 : 0.46511627907
+2016-08-24 17:04:33,733 DEBUG: 			View 3 : 0.43023255814
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-170435-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-170435-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..4766a8dfc8c6d9f7ef8e4b329f6c1cb0ff3dbad5
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-170435-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,18 @@
+2016-08-24 17:04:35,603 INFO: Begginging
+2016-08-24 17:04:35,606 INFO: ### Main Programm for Multiview Classification
+2016-08-24 17:04:35,606 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 17:04:35,607 INFO: Info:	 Shape of Methyl :(347, 25978)
+2016-08-24 17:04:35,607 INFO: Info:	 Shape of MiRNA_ :(347, 1046)
+2016-08-24 17:04:35,607 INFO: Info:	 Shape of RANSeq :(347, 73599)
+2016-08-24 17:04:35,608 INFO: Info:	 Shape of Clinic :(347, 127)
+2016-08-24 17:04:35,608 INFO: Done:	 Read Database Files
+2016-08-24 17:04:35,608 INFO: Start:	 Determine validation split for ratio 0.9
+2016-08-24 17:04:35,611 INFO: Done:	 Determine validation split
+2016-08-24 17:04:35,611 INFO: Start:	 Determine 2 folds
+2016-08-24 17:04:35,627 INFO: Info:	 Length of Learning Sets: 157
+2016-08-24 17:04:35,627 INFO: Info:	 Length of Testing Sets: 156
+2016-08-24 17:04:35,627 INFO: Info:	 Length of Validation Set: 34
+2016-08-24 17:04:35,627 INFO: Done:	 Determine folds
+2016-08-24 17:04:35,627 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 17:04:35,627 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 17:04:35,627 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-170504-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-170504-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..f2e8de61dd36dab70d9c6499109aa4b04e29a7f4
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-170504-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1 @@
+2016-08-24 17:05:04,538 INFO: Begginging
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-170547-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-170547-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..ed318790f510ea26b86a25cc01bf930c309d88d1
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-170547-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1 @@
+2016-08-24 17:05:47,733 INFO: Begginging
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-170609-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-170609-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..2fd16d8239ccf91ea127fa59c977ccf9079b49bf
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-170609-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-24 17:06:09,716 INFO: Begginging
+2016-08-24 17:06:09,729 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:06:09,729 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : Adaboost
+2016-08-24 17:06:09,729 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:06:09,742 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 17:06:09,743 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 17:06:09,743 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:06:09,743 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-170651-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-170651-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..921f51754fb249d0dfc7ac96c2c599a5250e1d44
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-170651-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-24 17:06:51,976 INFO: Begginging
+2016-08-24 17:06:51,987 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:06:51,988 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : Adaboost
+2016-08-24 17:06:51,988 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:06:52,001 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 17:06:52,001 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 17:06:52,002 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:06:52,002 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-170714-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-170714-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..7659913c847106f6cd87c44b69a9af90736b5fec
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-170714-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-24 17:07:14,669 INFO: Begginging
+2016-08-24 17:07:14,681 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:07:14,682 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : Adaboost
+2016-08-24 17:07:14,682 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:07:14,695 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 17:07:14,695 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 17:07:14,696 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:07:14,696 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-170830-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-170830-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..c8f73426559662169f1096b253c9b99c5120ec3c
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-170830-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-24 17:08:30,663 INFO: Begginging
+2016-08-24 17:08:30,675 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:08:30,675 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : Adaboost
+2016-08-24 17:08:30,675 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:08:30,689 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 17:08:30,690 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 17:08:30,690 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:08:30,690 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-171109-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-171109-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..796f2ca889acd7ca90f642b8a3bb78e9f8969cd0
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-171109-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-24 17:11:09,644 INFO: Begginging
+2016-08-24 17:11:09,657 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:11:09,657 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : Adaboost
+2016-08-24 17:11:09,657 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:11:09,674 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 17:11:09,674 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 17:11:09,674 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:11:09,674 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-171228-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-171228-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..d1279bafe2afbb9f65af8ff8f00dd70f6880140d
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-171228-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,8 @@
+2016-08-24 17:12:28,726 INFO: Begginging
+2016-08-24 17:12:28,738 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:12:28,738 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : Adaboost
+2016-08-24 17:12:28,739 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:12:28,752 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 17:12:28,752 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 17:12:28,752 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:12:28,752 DEBUG: Start:	 Classification
diff --git a/Code/MonoMutliViewClassifiers/Results/20160824-171252-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/MonoMutliViewClassifiers/Results/20160824-171252-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
new file mode 100644
index 0000000000000000000000000000000000000000..f3d65d39040a83b2c1a7364b86e08066b3331b6c
--- /dev/null
+++ b/Code/MonoMutliViewClassifiers/Results/20160824-171252-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log
@@ -0,0 +1,1526 @@
+2016-08-24 17:12:52,347 INFO: Begginging
+2016-08-24 17:12:52,365 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:12:52,365 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : Adaboost
+2016-08-24 17:12:52,365 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:12:52,379 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 17:12:52,379 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 17:12:52,379 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:12:52,379 DEBUG: Start:	 Classification
+2016-08-24 17:13:02,249 DEBUG: Info:	 Time for Classification: 9.84349799156[s]
+2016-08-24 17:13:02,249 DEBUG: Done:	 Classification
+2016-08-24 17:13:02,283 DEBUG: Start:	 Statistic Results
+2016-08-24 17:13:02,284 DEBUG: Info:	 Classification report:
+2016-08-24 17:13:02,285 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.97      0.93      0.95        30
+        Oui       0.67      0.80      0.73         5
+
+avg / total       0.92      0.91      0.92        35
+
+2016-08-24 17:13:02,322 DEBUG: Info:	 Statistics:
+2016-08-24 17:13:02,330 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.914285714286
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.838213
+5    Mean of F1-Score of top 20 classes by F1-Score        0.838213
+6    Mean of F1-Score of top 30 classes by F1-Score        0.838213
+2016-08-24 17:13:02,330 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:13:04,158 DEBUG: Done:	 Statistic Results
+2016-08-24 17:13:04,158 DEBUG: Start:	 Plot Result
+2016-08-24 17:13:04,385 DEBUG: Done:	 Plot Result
+2016-08-24 17:13:04,396 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:13:04,396 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : DecisionTree
+2016-08-24 17:13:04,397 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:13:04,409 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 17:13:04,409 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 17:13:04,409 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:13:04,409 DEBUG: Start:	 Classification
+2016-08-24 17:13:11,488 DEBUG: Info:	 Time for Classification: 7.08845591545[s]
+2016-08-24 17:13:11,488 DEBUG: Done:	 Classification
+2016-08-24 17:13:11,490 DEBUG: Start:	 Statistic Results
+2016-08-24 17:13:11,490 DEBUG: Info:	 Classification report:
+2016-08-24 17:13:11,491 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       1.00      0.82      0.90        28
+        Oui       0.58      1.00      0.74         7
+
+avg / total       0.92      0.86      0.87        35
+
+2016-08-24 17:13:11,498 DEBUG: Info:	 Statistics:
+2016-08-24 17:13:11,505 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.857142857143
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.819401
+5    Mean of F1-Score of top 20 classes by F1-Score        0.819401
+6    Mean of F1-Score of top 30 classes by F1-Score        0.819401
+2016-08-24 17:13:11,505 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:13:11,798 DEBUG: Done:	 Statistic Results
+2016-08-24 17:13:11,798 DEBUG: Start:	 Plot Result
+2016-08-24 17:13:12,021 DEBUG: Done:	 Plot Result
+2016-08-24 17:13:12,033 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:13:12,033 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : KNN
+2016-08-24 17:13:12,033 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:13:12,046 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 17:13:12,046 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 17:13:12,046 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:13:12,046 DEBUG: Start:	 Classification
+2016-08-24 17:13:21,419 DEBUG: Info:	 Time for Classification: 9.38218188286[s]
+2016-08-24 17:13:21,419 DEBUG: Done:	 Classification
+2016-08-24 17:13:21,905 DEBUG: Start:	 Statistic Results
+2016-08-24 17:13:21,905 DEBUG: Info:	 Classification report:
+2016-08-24 17:13:21,906 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.92      0.86      0.89        28
+        Oui       0.56      0.71      0.63         7
+
+avg / total       0.85      0.83      0.84        35
+
+2016-08-24 17:13:21,908 DEBUG: Info:	 Statistics:
+2016-08-24 17:13:21,915 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.828571428571
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.756944
+5    Mean of F1-Score of top 20 classes by F1-Score        0.756944
+6    Mean of F1-Score of top 30 classes by F1-Score        0.756944
+2016-08-24 17:13:21,915 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:13:22,195 DEBUG: Done:	 Statistic Results
+2016-08-24 17:13:22,195 DEBUG: Start:	 Plot Result
+2016-08-24 17:13:22,884 DEBUG: Done:	 Plot Result
+2016-08-24 17:13:22,892 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:13:22,892 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : RandomForest
+2016-08-24 17:13:22,892 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:13:22,905 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 17:13:22,905 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 17:13:22,905 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:13:22,905 DEBUG: Start:	 Classification
+2016-08-24 17:13:30,919 DEBUG: Info:	 Time for Classification: 8.02398109436[s]
+2016-08-24 17:13:30,920 DEBUG: Done:	 Classification
+2016-08-24 17:13:30,937 DEBUG: Start:	 Statistic Results
+2016-08-24 17:13:30,937 DEBUG: Info:	 Classification report:
+2016-08-24 17:13:30,938 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.91      0.80      0.85        25
+        Oui       0.62      0.80      0.70        10
+
+avg / total       0.83      0.80      0.81        35
+
+2016-08-24 17:13:30,940 DEBUG: Info:	 Statistics:
+2016-08-24 17:13:30,947 DEBUG: 
+                                          Statistic      Values
+0                            Accuracy score on test         0.8
+1                        Top 10 classes by F1-Score  [Non, Oui]
+2                      Worst 10 classes by F1-Score  [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes           0
+4    Mean of F1-Score of top 10 classes by F1-Score    0.773358
+5    Mean of F1-Score of top 20 classes by F1-Score    0.773358
+6    Mean of F1-Score of top 30 classes by F1-Score    0.773358
+2016-08-24 17:13:30,947 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:13:31,246 DEBUG: Done:	 Statistic Results
+2016-08-24 17:13:31,246 DEBUG: Start:	 Plot Result
+2016-08-24 17:13:31,467 DEBUG: Done:	 Plot Result
+2016-08-24 17:13:31,475 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:13:31,475 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SGD
+2016-08-24 17:13:31,475 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:13:31,488 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 17:13:31,488 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 17:13:31,488 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:13:31,488 DEBUG: Start:	 Classification
+2016-08-24 17:13:32,881 DEBUG: Info:	 Time for Classification: 1.40213799477[s]
+2016-08-24 17:13:32,881 DEBUG: Done:	 Classification
+2016-08-24 17:13:32,898 DEBUG: Start:	 Statistic Results
+2016-08-24 17:13:32,899 DEBUG: Info:	 Classification report:
+2016-08-24 17:13:32,900 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       1.00      0.67      0.80        27
+        Oui       0.47      1.00      0.64         8
+
+avg / total       0.88      0.74      0.76        35
+
+2016-08-24 17:13:32,902 DEBUG: Info:	 Statistics:
+2016-08-24 17:13:32,911 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.742857142857
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score            0.72
+5    Mean of F1-Score of top 20 classes by F1-Score            0.72
+6    Mean of F1-Score of top 30 classes by F1-Score            0.72
+2016-08-24 17:13:32,912 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:13:33,221 DEBUG: Done:	 Statistic Results
+2016-08-24 17:13:33,221 DEBUG: Start:	 Plot Result
+2016-08-24 17:13:33,508 DEBUG: Done:	 Plot Result
+2016-08-24 17:13:33,518 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:13:33,518 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMLinear
+2016-08-24 17:13:33,518 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:13:33,532 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 17:13:33,532 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 17:13:33,532 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:13:33,533 DEBUG: Start:	 Classification
+2016-08-24 17:13:40,859 DEBUG: Info:	 Time for Classification: 7.33764505386[s]
+2016-08-24 17:13:40,859 DEBUG: Done:	 Classification
+2016-08-24 17:13:40,998 DEBUG: Start:	 Statistic Results
+2016-08-24 17:13:40,998 DEBUG: Info:	 Classification report:
+2016-08-24 17:13:40,999 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.80      1.00      0.89        24
+        Oui       1.00      0.45      0.62        11
+
+avg / total       0.86      0.83      0.81        35
+
+2016-08-24 17:13:41,001 DEBUG: Info:	 Statistics:
+2016-08-24 17:13:41,008 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.828571428571
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.756944
+5    Mean of F1-Score of top 20 classes by F1-Score        0.756944
+6    Mean of F1-Score of top 30 classes by F1-Score        0.756944
+2016-08-24 17:13:41,008 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:13:41,289 DEBUG: Done:	 Statistic Results
+2016-08-24 17:13:41,289 DEBUG: Start:	 Plot Result
+2016-08-24 17:13:41,642 DEBUG: Done:	 Plot Result
+2016-08-24 17:13:41,650 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:13:41,650 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMPoly
+2016-08-24 17:13:41,650 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:13:41,663 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 17:13:41,663 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 17:13:41,663 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:13:41,663 DEBUG: Start:	 Classification
+2016-08-24 17:14:06,809 DEBUG: Info:	 Time for Classification: 25.1557309628[s]
+2016-08-24 17:14:06,809 DEBUG: Done:	 Classification
+2016-08-24 17:14:06,949 DEBUG: Start:	 Statistic Results
+2016-08-24 17:14:06,949 DEBUG: Info:	 Classification report:
+2016-08-24 17:14:06,950 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.88      0.92      0.90        25
+        Oui       0.78      0.70      0.74        10
+
+avg / total       0.85      0.86      0.85        35
+
+2016-08-24 17:14:06,952 DEBUG: Info:	 Statistics:
+2016-08-24 17:14:06,959 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.857142857143
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.819401
+5    Mean of F1-Score of top 20 classes by F1-Score        0.819401
+6    Mean of F1-Score of top 30 classes by F1-Score        0.819401
+2016-08-24 17:14:06,959 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:14:07,241 DEBUG: Done:	 Statistic Results
+2016-08-24 17:14:07,241 DEBUG: Start:	 Plot Result
+2016-08-24 17:14:07,583 DEBUG: Done:	 Plot Result
+2016-08-24 17:14:07,591 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:14:07,592 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMRBF
+2016-08-24 17:14:07,592 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:14:07,605 DEBUG: Info:	 Shape X_train:(312, 25978), Length of y_train:312
+2016-08-24 17:14:07,605 DEBUG: Info:	 Shape X_test:(35, 25978), Length of y_test:35
+2016-08-24 17:14:07,605 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:14:07,605 DEBUG: Start:	 Classification
+2016-08-24 17:14:15,024 DEBUG: Info:	 Time for Classification: 7.42890310287[s]
+2016-08-24 17:14:15,024 DEBUG: Done:	 Classification
+2016-08-24 17:14:15,163 DEBUG: Start:	 Statistic Results
+2016-08-24 17:14:15,163 DEBUG: Info:	 Classification report:
+2016-08-24 17:14:15,164 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       1.00      0.97      0.98        29
+        Oui       0.86      1.00      0.92         6
+
+avg / total       0.98      0.97      0.97        35
+
+2016-08-24 17:14:15,165 DEBUG: Info:	 Statistics:
+2016-08-24 17:14:15,172 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.971428571429
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.952767
+5    Mean of F1-Score of top 20 classes by F1-Score        0.952767
+6    Mean of F1-Score of top 30 classes by F1-Score        0.952767
+2016-08-24 17:14:15,172 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:14:15,325 DEBUG: Done:	 Statistic Results
+2016-08-24 17:14:15,325 DEBUG: Start:	 Plot Result
+2016-08-24 17:14:15,573 DEBUG: Done:	 Plot Result
+2016-08-24 17:14:15,575 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:14:15,575 DEBUG: ### Classification - Database:MultiOmic Feature:RNASeq train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : Adaboost
+2016-08-24 17:14:15,575 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:14:15,576 DEBUG: Info:	 Shape X_train:(312, 1046), Length of y_train:312
+2016-08-24 17:14:15,576 DEBUG: Info:	 Shape X_test:(35, 1046), Length of y_test:35
+2016-08-24 17:14:15,576 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:14:15,576 DEBUG: Start:	 Classification
+2016-08-24 17:14:15,863 DEBUG: Info:	 Time for Classification: 0.284190177917[s]
+2016-08-24 17:14:15,863 DEBUG: Done:	 Classification
+2016-08-24 17:14:15,864 DEBUG: Start:	 Statistic Results
+2016-08-24 17:14:15,865 DEBUG: Info:	 Classification report:
+2016-08-24 17:14:15,865 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.84      0.88      0.86        24
+        Oui       0.70      0.64      0.67        11
+
+avg / total       0.80      0.80      0.80        35
+
+2016-08-24 17:14:15,876 DEBUG: Info:	 Statistics:
+2016-08-24 17:14:15,883 DEBUG: 
+                                          Statistic      Values
+0                            Accuracy score on test         0.8
+1                        Top 10 classes by F1-Score  [Non, Oui]
+2                      Worst 10 classes by F1-Score  [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes           0
+4    Mean of F1-Score of top 10 classes by F1-Score    0.761905
+5    Mean of F1-Score of top 20 classes by F1-Score    0.761905
+6    Mean of F1-Score of top 30 classes by F1-Score    0.761905
+2016-08-24 17:14:15,883 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:14:16,173 DEBUG: Done:	 Statistic Results
+2016-08-24 17:14:16,173 DEBUG: Start:	 Plot Result
+2016-08-24 17:14:16,378 DEBUG: Done:	 Plot Result
+2016-08-24 17:14:16,379 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:14:16,379 DEBUG: ### Classification - Database:MultiOmic Feature:RNASeq train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : DecisionTree
+2016-08-24 17:14:16,379 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:14:16,380 DEBUG: Info:	 Shape X_train:(312, 1046), Length of y_train:312
+2016-08-24 17:14:16,380 DEBUG: Info:	 Shape X_test:(35, 1046), Length of y_test:35
+2016-08-24 17:14:16,380 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:14:16,380 DEBUG: Start:	 Classification
+2016-08-24 17:14:16,590 DEBUG: Info:	 Time for Classification: 0.207895994186[s]
+2016-08-24 17:14:16,590 DEBUG: Done:	 Classification
+2016-08-24 17:14:16,592 DEBUG: Start:	 Statistic Results
+2016-08-24 17:14:16,592 DEBUG: Info:	 Classification report:
+2016-08-24 17:14:16,593 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.85      0.92      0.88        25
+        Oui       0.75      0.60      0.67        10
+
+avg / total       0.82      0.83      0.82        35
+
+2016-08-24 17:14:16,594 DEBUG: Info:	 Statistics:
+2016-08-24 17:14:16,601 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.828571428571
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.775641
+5    Mean of F1-Score of top 20 classes by F1-Score        0.775641
+6    Mean of F1-Score of top 30 classes by F1-Score        0.775641
+2016-08-24 17:14:16,602 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:14:16,883 DEBUG: Done:	 Statistic Results
+2016-08-24 17:14:16,884 DEBUG: Start:	 Plot Result
+2016-08-24 17:14:17,095 DEBUG: Done:	 Plot Result
+2016-08-24 17:14:17,097 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:14:17,097 DEBUG: ### Classification - Database:MultiOmic Feature:RNASeq train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : KNN
+2016-08-24 17:14:17,097 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:14:17,097 DEBUG: Info:	 Shape X_train:(312, 1046), Length of y_train:312
+2016-08-24 17:14:17,097 DEBUG: Info:	 Shape X_test:(35, 1046), Length of y_test:35
+2016-08-24 17:14:17,098 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:14:17,098 DEBUG: Start:	 Classification
+2016-08-24 17:14:17,430 DEBUG: Info:	 Time for Classification: 0.33030295372[s]
+2016-08-24 17:14:17,430 DEBUG: Done:	 Classification
+2016-08-24 17:14:17,447 DEBUG: Start:	 Statistic Results
+2016-08-24 17:14:17,447 DEBUG: Info:	 Classification report:
+2016-08-24 17:14:17,448 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.83      0.93      0.88        27
+        Oui       0.60      0.38      0.46         8
+
+avg / total       0.78      0.80      0.78        35
+
+2016-08-24 17:14:17,450 DEBUG: Info:	 Statistics:
+2016-08-24 17:14:17,457 DEBUG: 
+                                          Statistic      Values
+0                            Accuracy score on test         0.8
+1                        Top 10 classes by F1-Score  [Non, Oui]
+2                      Worst 10 classes by F1-Score  [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes           0
+4    Mean of F1-Score of top 10 classes by F1-Score    0.669366
+5    Mean of F1-Score of top 20 classes by F1-Score    0.669366
+6    Mean of F1-Score of top 30 classes by F1-Score    0.669366
+2016-08-24 17:14:17,457 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:14:17,736 DEBUG: Done:	 Statistic Results
+2016-08-24 17:14:17,736 DEBUG: Start:	 Plot Result
+2016-08-24 17:14:17,957 DEBUG: Done:	 Plot Result
+2016-08-24 17:14:17,958 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:14:17,958 DEBUG: ### Classification - Database:MultiOmic Feature:RNASeq train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : RandomForest
+2016-08-24 17:14:17,958 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:14:17,959 DEBUG: Info:	 Shape X_train:(312, 1046), Length of y_train:312
+2016-08-24 17:14:17,959 DEBUG: Info:	 Shape X_test:(35, 1046), Length of y_test:35
+2016-08-24 17:14:17,959 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:14:17,959 DEBUG: Start:	 Classification
+2016-08-24 17:14:20,605 DEBUG: Info:	 Time for Classification: 2.64367699623[s]
+2016-08-24 17:14:20,605 DEBUG: Done:	 Classification
+2016-08-24 17:14:20,613 DEBUG: Start:	 Statistic Results
+2016-08-24 17:14:20,613 DEBUG: Info:	 Classification report:
+2016-08-24 17:14:20,614 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.93      0.96      0.94        26
+        Oui       0.88      0.78      0.82         9
+
+avg / total       0.91      0.91      0.91        35
+
+2016-08-24 17:14:20,616 DEBUG: Info:	 Statistics:
+2016-08-24 17:14:20,623 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.914285714286
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.883463
+5    Mean of F1-Score of top 20 classes by F1-Score        0.883463
+6    Mean of F1-Score of top 30 classes by F1-Score        0.883463
+2016-08-24 17:14:20,623 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:14:20,917 DEBUG: Done:	 Statistic Results
+2016-08-24 17:14:20,917 DEBUG: Start:	 Plot Result
+2016-08-24 17:14:21,129 DEBUG: Done:	 Plot Result
+2016-08-24 17:14:21,130 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:14:21,130 DEBUG: ### Classification - Database:MultiOmic Feature:RNASeq train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SGD
+2016-08-24 17:14:21,131 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:14:21,131 DEBUG: Info:	 Shape X_train:(312, 1046), Length of y_train:312
+2016-08-24 17:14:21,131 DEBUG: Info:	 Shape X_test:(35, 1046), Length of y_test:35
+2016-08-24 17:14:21,131 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:14:21,131 DEBUG: Start:	 Classification
+2016-08-24 17:14:21,217 DEBUG: Info:	 Time for Classification: 0.082671880722[s]
+2016-08-24 17:14:21,217 DEBUG: Done:	 Classification
+2016-08-24 17:14:21,218 DEBUG: Start:	 Statistic Results
+2016-08-24 17:14:21,219 DEBUG: Info:	 Classification report:
+2016-08-24 17:14:21,219 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.73      0.90      0.81        21
+        Oui       0.78      0.50      0.61        14
+
+avg / total       0.75      0.74      0.73        35
+
+2016-08-24 17:14:21,222 DEBUG: Info:	 Statistics:
+2016-08-24 17:14:21,229 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.742857142857
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.708603
+5    Mean of F1-Score of top 20 classes by F1-Score        0.708603
+6    Mean of F1-Score of top 30 classes by F1-Score        0.708603
+2016-08-24 17:14:21,229 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:14:21,554 DEBUG: Done:	 Statistic Results
+2016-08-24 17:14:21,554 DEBUG: Start:	 Plot Result
+2016-08-24 17:14:21,788 DEBUG: Done:	 Plot Result
+2016-08-24 17:14:21,790 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:14:21,790 DEBUG: ### Classification - Database:MultiOmic Feature:RNASeq train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMLinear
+2016-08-24 17:14:21,790 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:14:21,790 DEBUG: Info:	 Shape X_train:(312, 1046), Length of y_train:312
+2016-08-24 17:14:21,790 DEBUG: Info:	 Shape X_test:(35, 1046), Length of y_test:35
+2016-08-24 17:14:21,791 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:14:21,791 DEBUG: Start:	 Classification
+2016-08-24 17:14:33,705 DEBUG: Info:	 Time for Classification: 11.9117758274[s]
+2016-08-24 17:14:33,705 DEBUG: Done:	 Classification
+2016-08-24 17:14:33,709 DEBUG: Start:	 Statistic Results
+2016-08-24 17:14:33,709 DEBUG: Info:	 Classification report:
+2016-08-24 17:14:33,710 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.86      0.90      0.88        21
+        Oui       0.85      0.79      0.81        14
+
+avg / total       0.86      0.86      0.86        35
+
+2016-08-24 17:14:33,712 DEBUG: Info:	 Statistics:
+2016-08-24 17:14:33,719 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.857142857143
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.849268
+5    Mean of F1-Score of top 20 classes by F1-Score        0.849268
+6    Mean of F1-Score of top 30 classes by F1-Score        0.849268
+2016-08-24 17:14:33,720 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:14:34,006 DEBUG: Done:	 Statistic Results
+2016-08-24 17:14:34,006 DEBUG: Start:	 Plot Result
+2016-08-24 17:14:34,214 DEBUG: Done:	 Plot Result
+2016-08-24 17:14:34,215 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:14:34,215 DEBUG: ### Classification - Database:MultiOmic Feature:RNASeq train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMPoly
+2016-08-24 17:14:34,216 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:14:34,216 DEBUG: Info:	 Shape X_train:(312, 1046), Length of y_train:312
+2016-08-24 17:14:34,216 DEBUG: Info:	 Shape X_test:(35, 1046), Length of y_test:35
+2016-08-24 17:14:34,216 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:14:34,216 DEBUG: Start:	 Classification
+2016-08-24 17:14:50,392 DEBUG: Info:	 Time for Classification: 16.1731550694[s]
+2016-08-24 17:14:50,392 DEBUG: Done:	 Classification
+2016-08-24 17:14:50,396 DEBUG: Start:	 Statistic Results
+2016-08-24 17:14:50,397 DEBUG: Info:	 Classification report:
+2016-08-24 17:14:50,398 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.92      0.83      0.87        29
+        Oui       0.44      0.67      0.53         6
+
+avg / total       0.84      0.80      0.81        35
+
+2016-08-24 17:14:50,400 DEBUG: Info:	 Statistics:
+2016-08-24 17:14:50,407 DEBUG: 
+                                          Statistic      Values
+0                            Accuracy score on test         0.8
+1                        Top 10 classes by F1-Score  [Non, Oui]
+2                      Worst 10 classes by F1-Score  [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes           0
+4    Mean of F1-Score of top 10 classes by F1-Score     0.70303
+5    Mean of F1-Score of top 20 classes by F1-Score     0.70303
+6    Mean of F1-Score of top 30 classes by F1-Score     0.70303
+2016-08-24 17:14:50,407 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:14:50,693 DEBUG: Done:	 Statistic Results
+2016-08-24 17:14:50,694 DEBUG: Start:	 Plot Result
+2016-08-24 17:14:50,901 DEBUG: Done:	 Plot Result
+2016-08-24 17:14:50,902 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:14:50,902 DEBUG: ### Classification - Database:MultiOmic Feature:RNASeq train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMRBF
+2016-08-24 17:14:50,902 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:14:50,903 DEBUG: Info:	 Shape X_train:(312, 1046), Length of y_train:312
+2016-08-24 17:14:50,903 DEBUG: Info:	 Shape X_test:(35, 1046), Length of y_test:35
+2016-08-24 17:14:50,903 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:14:50,903 DEBUG: Start:	 Classification
+2016-08-24 17:14:51,458 DEBUG: Info:	 Time for Classification: 0.552815914154[s]
+2016-08-24 17:14:51,458 DEBUG: Done:	 Classification
+2016-08-24 17:14:51,471 DEBUG: Start:	 Statistic Results
+2016-08-24 17:14:51,471 DEBUG: Info:	 Classification report:
+2016-08-24 17:14:51,482 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.80      1.00      0.89        28
+        Oui       0.00      0.00      0.00         7
+
+avg / total       0.64      0.80      0.71        35
+
+2016-08-24 17:14:51,484 DEBUG: Info:	 Statistics:
+2016-08-24 17:14:51,492 DEBUG: 
+                                          Statistic      Values
+0                            Accuracy score on test         0.8
+1                        Top 10 classes by F1-Score  [Non, Oui]
+2                      Worst 10 classes by F1-Score  [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes         0.5
+4    Mean of F1-Score of top 10 classes by F1-Score    0.444444
+5    Mean of F1-Score of top 20 classes by F1-Score    0.444444
+6    Mean of F1-Score of top 30 classes by F1-Score    0.444444
+2016-08-24 17:14:51,492 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:14:51,798 DEBUG: Done:	 Statistic Results
+2016-08-24 17:14:51,799 DEBUG: Start:	 Plot Result
+2016-08-24 17:14:52,015 DEBUG: Done:	 Plot Result
+2016-08-24 17:14:52,044 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:14:52,044 DEBUG: ### Classification - Database:MultiOmic Feature:Clinic train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : Adaboost
+2016-08-24 17:14:52,044 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:14:52,105 DEBUG: Info:	 Shape X_train:(312, 73599), Length of y_train:312
+2016-08-24 17:14:52,105 DEBUG: Info:	 Shape X_test:(35, 73599), Length of y_test:35
+2016-08-24 17:14:52,105 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:14:52,105 DEBUG: Start:	 Classification
+2016-08-24 17:15:33,379 DEBUG: Info:	 Time for Classification: 41.3318929672[s]
+2016-08-24 17:15:33,379 DEBUG: Done:	 Classification
+2016-08-24 17:15:33,384 DEBUG: Start:	 Statistic Results
+2016-08-24 17:15:33,384 DEBUG: Info:	 Classification report:
+2016-08-24 17:15:33,385 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.67      0.64      0.65        25
+        Oui       0.18      0.20      0.19        10
+
+avg / total       0.53      0.51      0.52        35
+
+2016-08-24 17:15:33,387 DEBUG: Info:	 Statistics:
+2016-08-24 17:15:33,394 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.514285714286
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.421769
+5    Mean of F1-Score of top 20 classes by F1-Score        0.421769
+6    Mean of F1-Score of top 30 classes by F1-Score        0.421769
+2016-08-24 17:15:33,394 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:15:33,680 DEBUG: Done:	 Statistic Results
+2016-08-24 17:15:33,680 DEBUG: Start:	 Plot Result
+2016-08-24 17:15:33,894 DEBUG: Done:	 Plot Result
+2016-08-24 17:15:33,924 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:15:33,924 DEBUG: ### Classification - Database:MultiOmic Feature:Clinic train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : DecisionTree
+2016-08-24 17:15:33,924 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:15:33,960 DEBUG: Info:	 Shape X_train:(312, 73599), Length of y_train:312
+2016-08-24 17:15:33,960 DEBUG: Info:	 Shape X_test:(35, 73599), Length of y_test:35
+2016-08-24 17:15:33,960 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:15:33,960 DEBUG: Start:	 Classification
+2016-08-24 17:15:53,507 DEBUG: Info:	 Time for Classification: 19.5791618824[s]
+2016-08-24 17:15:53,507 DEBUG: Done:	 Classification
+2016-08-24 17:15:53,510 DEBUG: Start:	 Statistic Results
+2016-08-24 17:15:53,510 DEBUG: Info:	 Classification report:
+2016-08-24 17:15:53,511 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.80      0.71      0.75        28
+        Oui       0.20      0.29      0.24         7
+
+avg / total       0.68      0.63      0.65        35
+
+2016-08-24 17:15:53,513 DEBUG: Info:	 Statistics:
+2016-08-24 17:15:53,535 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.628571428571
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.495006
+5    Mean of F1-Score of top 20 classes by F1-Score        0.495006
+6    Mean of F1-Score of top 30 classes by F1-Score        0.495006
+2016-08-24 17:15:53,535 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:15:53,808 DEBUG: Done:	 Statistic Results
+2016-08-24 17:15:53,809 DEBUG: Start:	 Plot Result
+2016-08-24 17:15:54,018 DEBUG: Done:	 Plot Result
+2016-08-24 17:15:54,047 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:15:54,047 DEBUG: ### Classification - Database:MultiOmic Feature:Clinic train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : KNN
+2016-08-24 17:15:54,047 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:15:54,082 DEBUG: Info:	 Shape X_train:(312, 73599), Length of y_train:312
+2016-08-24 17:15:54,082 DEBUG: Info:	 Shape X_test:(35, 73599), Length of y_test:35
+2016-08-24 17:15:54,082 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:15:54,083 DEBUG: Start:	 Classification
+2016-08-24 17:16:20,926 DEBUG: Info:	 Time for Classification: 26.8760640621[s]
+2016-08-24 17:16:20,926 DEBUG: Done:	 Classification
+2016-08-24 17:16:22,296 DEBUG: Start:	 Statistic Results
+2016-08-24 17:16:22,296 DEBUG: Info:	 Classification report:
+2016-08-24 17:16:22,297 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.74      0.96      0.83        26
+        Oui       0.00      0.00      0.00         9
+
+avg / total       0.55      0.71      0.62        35
+
+2016-08-24 17:16:22,299 DEBUG: Info:	 Statistics:
+2016-08-24 17:16:22,306 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.714285714286
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes             0.5
+4    Mean of F1-Score of top 10 classes by F1-Score        0.416667
+5    Mean of F1-Score of top 20 classes by F1-Score        0.416667
+6    Mean of F1-Score of top 30 classes by F1-Score        0.416667
+2016-08-24 17:16:22,306 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:16:22,613 DEBUG: Done:	 Statistic Results
+2016-08-24 17:16:22,613 DEBUG: Start:	 Plot Result
+2016-08-24 17:16:24,168 DEBUG: Done:	 Plot Result
+2016-08-24 17:16:24,275 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:16:24,275 DEBUG: ### Classification - Database:MultiOmic Feature:Clinic train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : RandomForest
+2016-08-24 17:16:24,275 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:16:24,311 DEBUG: Info:	 Shape X_train:(312, 73599), Length of y_train:312
+2016-08-24 17:16:24,311 DEBUG: Info:	 Shape X_test:(35, 73599), Length of y_test:35
+2016-08-24 17:16:24,311 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:16:24,311 DEBUG: Start:	 Classification
+2016-08-24 17:16:35,981 DEBUG: Info:	 Time for Classification: 11.7026500702[s]
+2016-08-24 17:16:35,981 DEBUG: Done:	 Classification
+2016-08-24 17:16:35,991 DEBUG: Start:	 Statistic Results
+2016-08-24 17:16:35,991 DEBUG: Info:	 Classification report:
+2016-08-24 17:16:35,992 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.71      1.00      0.83        24
+        Oui       1.00      0.09      0.17        11
+
+avg / total       0.80      0.71      0.62        35
+
+2016-08-24 17:16:35,994 DEBUG: Info:	 Statistics:
+2016-08-24 17:16:36,001 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.714285714286
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.497126
+5    Mean of F1-Score of top 20 classes by F1-Score        0.497126
+6    Mean of F1-Score of top 30 classes by F1-Score        0.497126
+2016-08-24 17:16:36,001 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:16:36,287 DEBUG: Done:	 Statistic Results
+2016-08-24 17:16:36,287 DEBUG: Start:	 Plot Result
+2016-08-24 17:16:36,501 DEBUG: Done:	 Plot Result
+2016-08-24 17:16:36,530 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:16:36,530 DEBUG: ### Classification - Database:MultiOmic Feature:Clinic train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SGD
+2016-08-24 17:16:36,530 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:16:36,566 DEBUG: Info:	 Shape X_train:(312, 73599), Length of y_train:312
+2016-08-24 17:16:36,566 DEBUG: Info:	 Shape X_test:(35, 73599), Length of y_test:35
+2016-08-24 17:16:36,566 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:16:36,566 DEBUG: Start:	 Classification
+2016-08-24 17:16:39,126 DEBUG: Info:	 Time for Classification: 2.59249281883[s]
+2016-08-24 17:16:39,126 DEBUG: Done:	 Classification
+2016-08-24 17:16:39,135 DEBUG: Start:	 Statistic Results
+2016-08-24 17:16:39,135 DEBUG: Info:	 Classification report:
+2016-08-24 17:16:39,136 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.67      0.75      0.71        24
+        Oui       0.25      0.18      0.21        11
+
+avg / total       0.54      0.57      0.55        35
+
+2016-08-24 17:16:39,138 DEBUG: Info:	 Statistics:
+2016-08-24 17:16:39,146 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.571428571429
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.458204
+5    Mean of F1-Score of top 20 classes by F1-Score        0.458204
+6    Mean of F1-Score of top 30 classes by F1-Score        0.458204
+2016-08-24 17:16:39,146 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:16:39,466 DEBUG: Done:	 Statistic Results
+2016-08-24 17:16:39,466 DEBUG: Start:	 Plot Result
+2016-08-24 17:16:39,708 DEBUG: Done:	 Plot Result
+2016-08-24 17:16:39,740 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:16:39,740 DEBUG: ### Classification - Database:MultiOmic Feature:Clinic train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMLinear
+2016-08-24 17:16:39,740 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:16:39,780 DEBUG: Info:	 Shape X_train:(312, 73599), Length of y_train:312
+2016-08-24 17:16:39,780 DEBUG: Info:	 Shape X_test:(35, 73599), Length of y_test:35
+2016-08-24 17:16:39,780 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:16:39,780 DEBUG: Start:	 Classification
+2016-08-24 17:17:12,799 DEBUG: Info:	 Time for Classification: 33.0559568405[s]
+2016-08-24 17:17:12,800 DEBUG: Done:	 Classification
+2016-08-24 17:17:13,409 DEBUG: Start:	 Statistic Results
+2016-08-24 17:17:13,409 DEBUG: Info:	 Classification report:
+2016-08-24 17:17:13,410 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.74      0.68      0.71        25
+        Oui       0.33      0.40      0.36        10
+
+avg / total       0.62      0.60      0.61        35
+
+2016-08-24 17:17:13,412 DEBUG: Info:	 Statistics:
+2016-08-24 17:17:13,419 DEBUG: 
+                                          Statistic      Values
+0                            Accuracy score on test         0.6
+1                        Top 10 classes by F1-Score  [Non, Oui]
+2                      Worst 10 classes by F1-Score  [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes           0
+4    Mean of F1-Score of top 10 classes by F1-Score    0.535985
+5    Mean of F1-Score of top 20 classes by F1-Score    0.535985
+6    Mean of F1-Score of top 30 classes by F1-Score    0.535985
+2016-08-24 17:17:13,419 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:17:13,707 DEBUG: Done:	 Statistic Results
+2016-08-24 17:17:13,707 DEBUG: Start:	 Plot Result
+2016-08-24 17:17:14,521 DEBUG: Done:	 Plot Result
+2016-08-24 17:17:14,557 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:17:14,557 DEBUG: ### Classification - Database:MultiOmic Feature:Clinic train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMPoly
+2016-08-24 17:17:14,557 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:17:14,593 DEBUG: Info:	 Shape X_train:(312, 73599), Length of y_train:312
+2016-08-24 17:17:14,593 DEBUG: Info:	 Shape X_test:(35, 73599), Length of y_test:35
+2016-08-24 17:17:14,594 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:17:14,594 DEBUG: Start:	 Classification
+2016-08-24 17:19:04,671 DEBUG: Info:	 Time for Classification: 110.109973192[s]
+2016-08-24 17:19:04,671 DEBUG: Done:	 Classification
+2016-08-24 17:19:05,281 DEBUG: Start:	 Statistic Results
+2016-08-24 17:19:05,281 DEBUG: Info:	 Classification report:
+2016-08-24 17:19:05,282 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.77      0.92      0.84        25
+        Oui       0.60      0.30      0.40        10
+
+avg / total       0.72      0.74      0.71        35
+
+2016-08-24 17:19:05,284 DEBUG: Info:	 Statistics:
+2016-08-24 17:19:05,291 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.742857142857
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.618182
+5    Mean of F1-Score of top 20 classes by F1-Score        0.618182
+6    Mean of F1-Score of top 30 classes by F1-Score        0.618182
+2016-08-24 17:19:05,291 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:19:05,584 DEBUG: Done:	 Statistic Results
+2016-08-24 17:19:05,584 DEBUG: Start:	 Plot Result
+2016-08-24 17:19:06,399 DEBUG: Done:	 Plot Result
+2016-08-24 17:19:06,435 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:19:06,435 DEBUG: ### Classification - Database:MultiOmic Feature:Clinic train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMRBF
+2016-08-24 17:19:06,435 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:19:06,471 DEBUG: Info:	 Shape X_train:(312, 73599), Length of y_train:312
+2016-08-24 17:19:06,471 DEBUG: Info:	 Shape X_test:(35, 73599), Length of y_test:35
+2016-08-24 17:19:06,471 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:19:06,471 DEBUG: Start:	 Classification
+2016-08-24 17:19:44,657 DEBUG: Info:	 Time for Classification: 38.2183771133[s]
+2016-08-24 17:19:44,657 DEBUG: Done:	 Classification
+2016-08-24 17:19:45,518 DEBUG: Start:	 Statistic Results
+2016-08-24 17:19:45,518 DEBUG: Info:	 Classification report:
+2016-08-24 17:19:45,519 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.77      1.00      0.87        27
+        Oui       0.00      0.00      0.00         8
+
+avg / total       0.60      0.77      0.67        35
+
+2016-08-24 17:19:45,521 DEBUG: Info:	 Statistics:
+2016-08-24 17:19:45,528 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.771428571429
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes             0.5
+4    Mean of F1-Score of top 10 classes by F1-Score        0.435484
+5    Mean of F1-Score of top 20 classes by F1-Score        0.435484
+6    Mean of F1-Score of top 30 classes by F1-Score        0.435484
+2016-08-24 17:19:45,528 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:19:45,835 DEBUG: Done:	 Statistic Results
+2016-08-24 17:19:45,835 DEBUG: Start:	 Plot Result
+2016-08-24 17:19:46,893 DEBUG: Done:	 Plot Result
+2016-08-24 17:19:46,931 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:19:46,931 DEBUG: ### Classification - Database:MultiOmic Feature:Methyl train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : Adaboost
+2016-08-24 17:19:46,931 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:19:46,931 DEBUG: Info:	 Shape X_train:(312, 127), Length of y_train:312
+2016-08-24 17:19:46,932 DEBUG: Info:	 Shape X_test:(35, 127), Length of y_test:35
+2016-08-24 17:19:46,932 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:19:46,932 DEBUG: Start:	 Classification
+2016-08-24 17:19:47,048 DEBUG: Info:	 Time for Classification: 0.114088058472[s]
+2016-08-24 17:19:47,048 DEBUG: Done:	 Classification
+2016-08-24 17:19:47,050 DEBUG: Start:	 Statistic Results
+2016-08-24 17:19:47,050 DEBUG: Info:	 Classification report:
+2016-08-24 17:19:47,051 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.91      1.00      0.95        21
+        Oui       1.00      0.86      0.92        14
+
+avg / total       0.95      0.94      0.94        35
+
+2016-08-24 17:19:47,053 DEBUG: Info:	 Statistics:
+2016-08-24 17:19:47,060 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.942857142857
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.938811
+5    Mean of F1-Score of top 20 classes by F1-Score        0.938811
+6    Mean of F1-Score of top 30 classes by F1-Score        0.938811
+2016-08-24 17:19:47,060 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:19:47,348 DEBUG: Done:	 Statistic Results
+2016-08-24 17:19:47,349 DEBUG: Start:	 Plot Result
+2016-08-24 17:19:47,573 DEBUG: Done:	 Plot Result
+2016-08-24 17:19:47,574 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:19:47,574 DEBUG: ### Classification - Database:MultiOmic Feature:Methyl train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : DecisionTree
+2016-08-24 17:19:47,575 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:19:47,575 DEBUG: Info:	 Shape X_train:(312, 127), Length of y_train:312
+2016-08-24 17:19:47,575 DEBUG: Info:	 Shape X_test:(35, 127), Length of y_test:35
+2016-08-24 17:19:47,575 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:19:47,575 DEBUG: Start:	 Classification
+2016-08-24 17:19:47,616 DEBUG: Info:	 Time for Classification: 0.038232088089[s]
+2016-08-24 17:19:47,616 DEBUG: Done:	 Classification
+2016-08-24 17:19:47,617 DEBUG: Start:	 Statistic Results
+2016-08-24 17:19:47,618 DEBUG: Info:	 Classification report:
+2016-08-24 17:19:47,618 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.71      1.00      0.83        25
+        Oui       0.00      0.00      0.00        10
+
+avg / total       0.51      0.71      0.60        35
+
+2016-08-24 17:19:47,620 DEBUG: Info:	 Statistics:
+2016-08-24 17:19:47,637 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.714285714286
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes             0.5
+4    Mean of F1-Score of top 10 classes by F1-Score        0.416667
+5    Mean of F1-Score of top 20 classes by F1-Score        0.416667
+6    Mean of F1-Score of top 30 classes by F1-Score        0.416667
+2016-08-24 17:19:47,637 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:19:47,922 DEBUG: Done:	 Statistic Results
+2016-08-24 17:19:47,922 DEBUG: Start:	 Plot Result
+2016-08-24 17:19:48,128 DEBUG: Done:	 Plot Result
+2016-08-24 17:19:48,129 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:19:48,129 DEBUG: ### Classification - Database:MultiOmic Feature:Methyl train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : KNN
+2016-08-24 17:19:48,129 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:19:48,129 DEBUG: Info:	 Shape X_train:(312, 127), Length of y_train:312
+2016-08-24 17:19:48,130 DEBUG: Info:	 Shape X_test:(35, 127), Length of y_test:35
+2016-08-24 17:19:48,130 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:19:48,130 DEBUG: Start:	 Classification
+2016-08-24 17:19:48,211 DEBUG: Info:	 Time for Classification: 0.0789890289307[s]
+2016-08-24 17:19:48,211 DEBUG: Done:	 Classification
+2016-08-24 17:19:48,214 DEBUG: Start:	 Statistic Results
+2016-08-24 17:19:48,215 DEBUG: Info:	 Classification report:
+2016-08-24 17:19:48,215 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.69      1.00      0.81        24
+        Oui       0.00      0.00      0.00        11
+
+avg / total       0.47      0.69      0.56        35
+
+2016-08-24 17:19:48,217 DEBUG: Info:	 Statistics:
+2016-08-24 17:19:48,224 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.685714285714
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes             0.5
+4    Mean of F1-Score of top 10 classes by F1-Score         0.40678
+5    Mean of F1-Score of top 20 classes by F1-Score         0.40678
+6    Mean of F1-Score of top 30 classes by F1-Score         0.40678
+2016-08-24 17:19:48,225 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:19:48,505 DEBUG: Done:	 Statistic Results
+2016-08-24 17:19:48,505 DEBUG: Start:	 Plot Result
+2016-08-24 17:19:48,713 DEBUG: Done:	 Plot Result
+2016-08-24 17:19:48,714 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:19:48,714 DEBUG: ### Classification - Database:MultiOmic Feature:Methyl train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : RandomForest
+2016-08-24 17:19:48,714 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:19:48,714 DEBUG: Info:	 Shape X_train:(312, 127), Length of y_train:312
+2016-08-24 17:19:48,715 DEBUG: Info:	 Shape X_test:(35, 127), Length of y_test:35
+2016-08-24 17:19:48,715 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:19:48,715 DEBUG: Start:	 Classification
+2016-08-24 17:19:51,055 DEBUG: Info:	 Time for Classification: 2.3381061554[s]
+2016-08-24 17:19:51,055 DEBUG: Done:	 Classification
+2016-08-24 17:19:51,067 DEBUG: Start:	 Statistic Results
+2016-08-24 17:19:51,068 DEBUG: Info:	 Classification report:
+2016-08-24 17:19:51,069 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.88      1.00      0.93        28
+        Oui       1.00      0.43      0.60         7
+
+avg / total       0.90      0.89      0.87        35
+
+2016-08-24 17:19:51,070 DEBUG: Info:	 Statistics:
+2016-08-24 17:19:51,077 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.885714285714
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.766667
+5    Mean of F1-Score of top 20 classes by F1-Score        0.766667
+6    Mean of F1-Score of top 30 classes by F1-Score        0.766667
+2016-08-24 17:19:51,077 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:19:51,369 DEBUG: Done:	 Statistic Results
+2016-08-24 17:19:51,370 DEBUG: Start:	 Plot Result
+2016-08-24 17:19:51,587 DEBUG: Done:	 Plot Result
+2016-08-24 17:19:51,589 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:19:51,589 DEBUG: ### Classification - Database:MultiOmic Feature:Methyl train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SGD
+2016-08-24 17:19:51,589 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:19:51,589 DEBUG: Info:	 Shape X_train:(312, 127), Length of y_train:312
+2016-08-24 17:19:51,589 DEBUG: Info:	 Shape X_test:(35, 127), Length of y_test:35
+2016-08-24 17:19:51,589 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:19:51,589 DEBUG: Start:	 Classification
+2016-08-24 17:19:51,655 DEBUG: Info:	 Time for Classification: 0.0632700920105[s]
+2016-08-24 17:19:51,656 DEBUG: Done:	 Classification
+2016-08-24 17:19:51,657 DEBUG: Start:	 Statistic Results
+2016-08-24 17:19:51,657 DEBUG: Info:	 Classification report:
+2016-08-24 17:19:51,658 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       1.00      0.14      0.25        28
+        Oui       0.23      1.00      0.37         7
+
+avg / total       0.85      0.31      0.27        35
+
+2016-08-24 17:19:51,660 DEBUG: Info:	 Statistics:
+2016-08-24 17:19:51,668 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.314285714286
+1                        Top 10 classes by F1-Score      [Oui, Non]
+2                      Worst 10 classes by F1-Score      [Non, Oui]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.309211
+5    Mean of F1-Score of top 20 classes by F1-Score        0.309211
+6    Mean of F1-Score of top 30 classes by F1-Score        0.309211
+2016-08-24 17:19:51,668 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:19:51,992 DEBUG: Done:	 Statistic Results
+2016-08-24 17:19:51,993 DEBUG: Start:	 Plot Result
+2016-08-24 17:19:52,241 DEBUG: Done:	 Plot Result
+2016-08-24 17:19:52,242 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:19:52,242 DEBUG: ### Classification - Database:MultiOmic Feature:Methyl train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMLinear
+2016-08-24 17:19:52,242 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:19:52,242 DEBUG: Info:	 Shape X_train:(312, 127), Length of y_train:312
+2016-08-24 17:19:52,242 DEBUG: Info:	 Shape X_test:(35, 127), Length of y_test:35
+2016-08-24 17:19:52,242 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:19:52,242 DEBUG: Start:	 Classification
+2016-08-24 17:21:47,120 DEBUG: Info:	 Time for Classification: 114.874765158[s]
+2016-08-24 17:21:47,120 DEBUG: Done:	 Classification
+2016-08-24 17:21:47,122 DEBUG: Start:	 Statistic Results
+2016-08-24 17:21:47,122 DEBUG: Info:	 Classification report:
+2016-08-24 17:21:47,123 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.93      0.87      0.90        30
+        Oui       0.43      0.60      0.50         5
+
+avg / total       0.86      0.83      0.84        35
+
+2016-08-24 17:21:47,125 DEBUG: Info:	 Statistics:
+2016-08-24 17:21:47,132 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.828571428571
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.698276
+5    Mean of F1-Score of top 20 classes by F1-Score        0.698276
+6    Mean of F1-Score of top 30 classes by F1-Score        0.698276
+2016-08-24 17:21:47,132 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:21:47,411 DEBUG: Done:	 Statistic Results
+2016-08-24 17:21:47,411 DEBUG: Start:	 Plot Result
+2016-08-24 17:21:47,619 DEBUG: Done:	 Plot Result
+2016-08-24 17:21:47,620 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:21:47,620 DEBUG: ### Classification - Database:MultiOmic Feature:Methyl train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMPoly
+2016-08-24 17:21:47,620 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:21:47,620 DEBUG: Info:	 Shape X_train:(312, 127), Length of y_train:312
+2016-08-24 17:21:47,620 DEBUG: Info:	 Shape X_test:(35, 127), Length of y_test:35
+2016-08-24 17:21:47,620 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:21:47,621 DEBUG: Start:	 Classification
+2016-08-24 17:26:12,253 DEBUG: Info:	 Time for Classification: 264.629760981[s]
+2016-08-24 17:26:12,253 DEBUG: Done:	 Classification
+2016-08-24 17:26:12,255 DEBUG: Start:	 Statistic Results
+2016-08-24 17:26:12,255 DEBUG: Info:	 Classification report:
+2016-08-24 17:26:12,256 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.81      0.81      0.81        27
+        Oui       0.38      0.38      0.38         8
+
+avg / total       0.71      0.71      0.71        35
+
+2016-08-24 17:26:12,258 DEBUG: Info:	 Statistics:
+2016-08-24 17:26:12,265 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.714285714286
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes               0
+4    Mean of F1-Score of top 10 classes by F1-Score        0.594907
+5    Mean of F1-Score of top 20 classes by F1-Score        0.594907
+6    Mean of F1-Score of top 30 classes by F1-Score        0.594907
+2016-08-24 17:26:12,266 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:26:12,563 DEBUG: Done:	 Statistic Results
+2016-08-24 17:26:12,564 DEBUG: Start:	 Plot Result
+2016-08-24 17:26:12,784 DEBUG: Done:	 Plot Result
+2016-08-24 17:26:12,785 DEBUG: ### Main Programm for Classification MonoView
+2016-08-24 17:26:12,785 DEBUG: ### Classification - Database:MultiOmic Feature:Methyl train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVMRBF
+2016-08-24 17:26:12,785 DEBUG: Start:	 Determine Train/Test split
+2016-08-24 17:26:12,786 DEBUG: Info:	 Shape X_train:(312, 127), Length of y_train:312
+2016-08-24 17:26:12,786 DEBUG: Info:	 Shape X_test:(35, 127), Length of y_test:35
+2016-08-24 17:26:12,786 DEBUG: Done:	 Determine Train/Test split
+2016-08-24 17:26:12,786 DEBUG: Start:	 Classification
+2016-08-24 17:26:12,940 DEBUG: Info:	 Time for Classification: 0.151942014694[s]
+2016-08-24 17:26:12,941 DEBUG: Done:	 Classification
+2016-08-24 17:26:12,944 DEBUG: Start:	 Statistic Results
+2016-08-24 17:26:12,944 DEBUG: Info:	 Classification report:
+2016-08-24 17:26:12,945 DEBUG: 
+             precision    recall  f1-score   support
+
+        Non       0.66      1.00      0.79        23
+        Oui       0.00      0.00      0.00        12
+
+avg / total       0.43      0.66      0.52        35
+
+2016-08-24 17:26:12,947 DEBUG: Info:	 Statistics:
+2016-08-24 17:26:12,954 DEBUG: 
+                                          Statistic          Values
+0                            Accuracy score on test  0.657142857143
+1                        Top 10 classes by F1-Score      [Non, Oui]
+2                      Worst 10 classes by F1-Score      [Oui, Non]
+3  Ratio of classes with F1-Score==0 of all classes             0.5
+4    Mean of F1-Score of top 10 classes by F1-Score        0.396552
+5    Mean of F1-Score of top 20 classes by F1-Score        0.396552
+6    Mean of F1-Score of top 30 classes by F1-Score        0.396552
+2016-08-24 17:26:12,954 DEBUG: Info:	 Calculate Confusionmatrix
+2016-08-24 17:26:13,253 DEBUG: Done:	 Statistic Results
+2016-08-24 17:26:13,253 DEBUG: Start:	 Plot Result
+2016-08-24 17:26:13,526 DEBUG: Done:	 Plot Result
+2016-08-24 17:26:13,630 INFO: ### Main Programm for Multiview Classification
+2016-08-24 17:26:13,630 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Mumbo ; Cores : 1
+2016-08-24 17:26:13,631 INFO: Info:	 Shape of Methyl :(347, 25978)
+2016-08-24 17:26:13,631 INFO: Info:	 Shape of MiRNA_ :(347, 1046)
+2016-08-24 17:26:13,632 INFO: Info:	 Shape of RANSeq :(347, 73599)
+2016-08-24 17:26:13,632 INFO: Info:	 Shape of Clinic :(347, 127)
+2016-08-24 17:26:13,632 INFO: Done:	 Read Database Files
+2016-08-24 17:26:13,632 INFO: Start:	 Determine validation split for ratio 0.9
+2016-08-24 17:26:13,635 INFO: Done:	 Determine validation split
+2016-08-24 17:26:13,635 INFO: Start:	 Determine 2 folds
+2016-08-24 17:26:13,649 INFO: Info:	 Length of Learning Sets: 157
+2016-08-24 17:26:13,649 INFO: Info:	 Length of Testing Sets: 156
+2016-08-24 17:26:13,650 INFO: Info:	 Length of Validation Set: 34
+2016-08-24 17:26:13,650 INFO: Done:	 Determine folds
+2016-08-24 17:26:13,650 INFO: Start:	 Learning with Mumbo and 2 folds
+2016-08-24 17:26:13,650 INFO: Start:	 Gridsearching best settings for monoview classifiers
+2016-08-24 17:26:13,650 DEBUG: 	Start:	 Gridsearch for DecisionTree on Methyl
+2016-08-24 17:26:21,801 DEBUG: 		Info:	 Best Reslut : 0.516253602305
+2016-08-24 17:26:21,801 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 17:26:21,801 DEBUG: 	Start:	 Gridsearch for DecisionTree on MiRNA_
+2016-08-24 17:26:23,966 DEBUG: 		Info:	 Best Reslut : 0.565129682997
+2016-08-24 17:26:23,967 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 17:26:23,967 DEBUG: 	Start:	 Gridsearch for DecisionTree on RANSeq
+2016-08-24 17:26:42,003 DEBUG: 		Info:	 Best Reslut : 0.51204610951
+2016-08-24 17:26:42,004 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 17:26:42,004 DEBUG: 	Start:	 Gridsearch for DecisionTree on Clinic
+2016-08-24 17:26:43,930 DEBUG: 		Info:	 Best Reslut : 0.514236311239
+2016-08-24 17:26:43,931 DEBUG: 	Done:	 Gridsearch for DecisionTree
+2016-08-24 17:26:43,931 INFO: Done:	 Gridsearching best settings for monoview classifiers
+2016-08-24 17:26:43,931 INFO: 	Start:	 Fold number 1
+2016-08-24 17:26:45,766 DEBUG: 		Start:	 Iteration 1
+2016-08-24 17:26:45,796 DEBUG: 			View 0 : 0.706896551724
+2016-08-24 17:26:45,805 DEBUG: 			View 1 : 0.706896551724
+2016-08-24 17:26:45,836 DEBUG: 			View 2 : 0.706896551724
+2016-08-24 17:26:45,845 DEBUG: 			View 3 : 0.706896551724
+2016-08-24 17:26:45,892 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:26:45,977 DEBUG: 		Start:	 Iteration 2
+2016-08-24 17:26:45,995 DEBUG: 			View 0 : 0.551724137931
+2016-08-24 17:26:46,004 DEBUG: 			View 1 : 0.442528735632
+2016-08-24 17:26:46,043 DEBUG: 			View 2 : 0.683908045977
+2016-08-24 17:26:46,052 DEBUG: 			View 3 : 0.614942528736
+2016-08-24 17:26:46,105 DEBUG: 			 Best view : 		RANSeq
+2016-08-24 17:26:46,271 DEBUG: 		Start:	 Iteration 3
+2016-08-24 17:26:46,289 DEBUG: 			View 0 : 0.431034482759
+2016-08-24 17:26:46,297 DEBUG: 			View 1 : 0.310344827586
+2016-08-24 17:26:46,337 DEBUG: 			View 2 : 0.522988505747
+2016-08-24 17:26:46,345 DEBUG: 			View 3 : 0.695402298851
+2016-08-24 17:26:46,406 DEBUG: 			 Best view : 		Clinic
+2016-08-24 17:26:46,638 DEBUG: 		Start:	 Iteration 4
+2016-08-24 17:26:46,656 DEBUG: 			View 0 : 0.465517241379
+2016-08-24 17:26:46,666 DEBUG: 			View 1 : 0.729885057471
+2016-08-24 17:26:46,706 DEBUG: 			View 2 : 0.522988505747
+2016-08-24 17:26:46,715 DEBUG: 			View 3 : 0.471264367816
+2016-08-24 17:26:46,780 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:26:47,078 DEBUG: 		Start:	 Iteration 5
+2016-08-24 17:26:47,099 DEBUG: 			View 0 : 0.557471264368
+2016-08-24 17:26:47,108 DEBUG: 			View 1 : 0.729885057471
+2016-08-24 17:26:47,148 DEBUG: 			View 2 : 0.465517241379
+2016-08-24 17:26:47,156 DEBUG: 			View 3 : 0.442528735632
+2016-08-24 17:26:47,222 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:26:47,581 DEBUG: 		Start:	 Iteration 6
+2016-08-24 17:26:47,599 DEBUG: 			View 0 : 0.580459770115
+2016-08-24 17:26:47,607 DEBUG: 			View 1 : 0.718390804598
+2016-08-24 17:26:47,647 DEBUG: 			View 2 : 0.436781609195
+2016-08-24 17:26:47,655 DEBUG: 			View 3 : 0.350574712644
+2016-08-24 17:26:47,724 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:26:48,163 DEBUG: 		Start:	 Iteration 7
+2016-08-24 17:26:48,181 DEBUG: 			View 0 : 0.367816091954
+2016-08-24 17:26:48,191 DEBUG: 			View 1 : 0.614942528736
+2016-08-24 17:26:48,230 DEBUG: 			View 2 : 0.66091954023
+2016-08-24 17:26:48,239 DEBUG: 			View 3 : 0.413793103448
+2016-08-24 17:26:48,310 DEBUG: 			 Best view : 		RANSeq
+2016-08-24 17:26:48,811 DEBUG: 		Start:	 Iteration 8
+2016-08-24 17:26:48,829 DEBUG: 			View 0 : 0.488505747126
+2016-08-24 17:26:48,838 DEBUG: 			View 1 : 0.706896551724
+2016-08-24 17:26:48,878 DEBUG: 			View 2 : 0.591954022989
+2016-08-24 17:26:48,887 DEBUG: 			View 3 : 0.522988505747
+2016-08-24 17:26:48,961 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:26:49,526 DEBUG: 		Start:	 Iteration 9
+2016-08-24 17:26:49,545 DEBUG: 			View 0 : 0.413793103448
+2016-08-24 17:26:49,554 DEBUG: 			View 1 : 0.436781609195
+2016-08-24 17:26:49,593 DEBUG: 			View 2 : 0.522988505747
+2016-08-24 17:26:49,602 DEBUG: 			View 3 : 0.614942528736
+2016-08-24 17:26:49,681 DEBUG: 			 Best view : 		Clinic
+2016-08-24 17:26:50,309 DEBUG: 		Start:	 Iteration 10
+2016-08-24 17:26:50,327 DEBUG: 			View 0 : 0.637931034483
+2016-08-24 17:26:50,336 DEBUG: 			View 1 : 0.494252873563
+2016-08-24 17:26:50,376 DEBUG: 			View 2 : 0.488505747126
+2016-08-24 17:26:50,384 DEBUG: 			View 3 : 0.66091954023
+2016-08-24 17:26:50,465 DEBUG: 			 Best view : 		Clinic
+2016-08-24 17:26:51,156 DEBUG: 		Start:	 Iteration 11
+2016-08-24 17:26:51,174 DEBUG: 			View 0 : 0.689655172414
+2016-08-24 17:26:51,184 DEBUG: 			View 1 : 0.655172413793
+2016-08-24 17:26:51,223 DEBUG: 			View 2 : 0.701149425287
+2016-08-24 17:26:51,232 DEBUG: 			View 3 : 0.488505747126
+2016-08-24 17:26:51,316 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:26:52,083 DEBUG: 		Start:	 Iteration 12
+2016-08-24 17:26:52,101 DEBUG: 			View 0 : 0.540229885057
+2016-08-24 17:26:52,110 DEBUG: 			View 1 : 0.591954022989
+2016-08-24 17:26:52,149 DEBUG: 			View 2 : 0.367816091954
+2016-08-24 17:26:52,158 DEBUG: 			View 3 : 0.48275862069
+2016-08-24 17:26:52,244 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:26:53,068 DEBUG: 		Start:	 Iteration 13
+2016-08-24 17:26:53,087 DEBUG: 			View 0 : 0.459770114943
+2016-08-24 17:26:53,095 DEBUG: 			View 1 : 0.591954022989
+2016-08-24 17:26:53,135 DEBUG: 			View 2 : 0.350574712644
+2016-08-24 17:26:53,144 DEBUG: 			View 3 : 0.350574712644
+2016-08-24 17:26:53,234 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:26:54,133 DEBUG: 		Start:	 Iteration 14
+2016-08-24 17:26:54,152 DEBUG: 			View 0 : 0.362068965517
+2016-08-24 17:26:54,162 DEBUG: 			View 1 : 0.51724137931
+2016-08-24 17:26:54,202 DEBUG: 			View 2 : 0.695402298851
+2016-08-24 17:26:54,211 DEBUG: 			View 3 : 0.304597701149
+2016-08-24 17:26:54,305 DEBUG: 			 Best view : 		RANSeq
+2016-08-24 17:26:55,286 DEBUG: 		Start:	 Iteration 15
+2016-08-24 17:26:55,305 DEBUG: 			View 0 : 0.436781609195
+2016-08-24 17:26:55,314 DEBUG: 			View 1 : 0.494252873563
+2016-08-24 17:26:55,354 DEBUG: 			View 2 : 0.459770114943
+2016-08-24 17:26:55,362 DEBUG: 			View 3 : 0.367816091954
+2016-08-24 17:26:55,363 WARNING: WARNING:	All bad for iteration 14
+2016-08-24 17:26:55,458 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:26:56,490 DEBUG: 		Start:	 Iteration 16
+2016-08-24 17:26:56,509 DEBUG: 			View 0 : 0.396551724138
+2016-08-24 17:26:56,518 DEBUG: 			View 1 : 0.735632183908
+2016-08-24 17:26:56,562 DEBUG: 			View 2 : 0.706896551724
+2016-08-24 17:26:56,571 DEBUG: 			View 3 : 0.522988505747
+2016-08-24 17:26:56,670 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:26:57,816 DEBUG: 		Start:	 Iteration 17
+2016-08-24 17:26:57,836 DEBUG: 			View 0 : 0.649425287356
+2016-08-24 17:26:57,846 DEBUG: 			View 1 : 0.465517241379
+2016-08-24 17:26:57,901 DEBUG: 			View 2 : 0.649425287356
+2016-08-24 17:26:57,915 DEBUG: 			View 3 : 0.672413793103
+2016-08-24 17:26:58,024 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:26:59,247 DEBUG: 		Start:	 Iteration 18
+2016-08-24 17:26:59,266 DEBUG: 			View 0 : 0.551724137931
+2016-08-24 17:26:59,275 DEBUG: 			View 1 : 0.712643678161
+2016-08-24 17:26:59,315 DEBUG: 			View 2 : 0.551724137931
+2016-08-24 17:26:59,324 DEBUG: 			View 3 : 0.620689655172
+2016-08-24 17:26:59,430 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:27:00,676 DEBUG: 		Start:	 Iteration 19
+2016-08-24 17:27:00,696 DEBUG: 			View 0 : 0.689655172414
+2016-08-24 17:27:00,706 DEBUG: 			View 1 : 0.701149425287
+2016-08-24 17:27:00,748 DEBUG: 			View 2 : 0.655172413793
+2016-08-24 17:27:00,756 DEBUG: 			View 3 : 0.419540229885
+2016-08-24 17:27:00,869 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:27:02,190 DEBUG: 		Start:	 Iteration 20
+2016-08-24 17:27:02,209 DEBUG: 			View 0 : 0.477011494253
+2016-08-24 17:27:02,219 DEBUG: 			View 1 : 0.67816091954
+2016-08-24 17:27:02,262 DEBUG: 			View 2 : 0.649425287356
+2016-08-24 17:27:02,271 DEBUG: 			View 3 : 0.333333333333
+2016-08-24 17:27:02,388 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:27:03,782 DEBUG: 		Start:	 Iteration 21
+2016-08-24 17:27:03,800 DEBUG: 			View 0 : 0.67816091954
+2016-08-24 17:27:03,809 DEBUG: 			View 1 : 0.511494252874
+2016-08-24 17:27:03,848 DEBUG: 			View 2 : 0.48275862069
+2016-08-24 17:27:03,857 DEBUG: 			View 3 : 0.655172413793
+2016-08-24 17:27:03,969 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:27:05,395 DEBUG: 		Start:	 Iteration 22
+2016-08-24 17:27:05,414 DEBUG: 			View 0 : 0.672413793103
+2016-08-24 17:27:05,423 DEBUG: 			View 1 : 0.465517241379
+2016-08-24 17:27:05,463 DEBUG: 			View 2 : 0.327586206897
+2016-08-24 17:27:05,471 DEBUG: 			View 3 : 0.459770114943
+2016-08-24 17:27:05,588 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:27:07,113 DEBUG: 		Start:	 Iteration 23
+2016-08-24 17:27:07,131 DEBUG: 			View 0 : 0.344827586207
+2016-08-24 17:27:07,140 DEBUG: 			View 1 : 0.666666666667
+2016-08-24 17:27:07,179 DEBUG: 			View 2 : 0.655172413793
+2016-08-24 17:27:07,188 DEBUG: 			View 3 : 0.672413793103
+2016-08-24 17:27:07,305 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:27:08,889 DEBUG: 		Start:	 Iteration 24
+2016-08-24 17:27:08,907 DEBUG: 			View 0 : 0.66091954023
+2016-08-24 17:27:08,916 DEBUG: 			View 1 : 0.275862068966
+2016-08-24 17:27:08,956 DEBUG: 			View 2 : 0.471264367816
+2016-08-24 17:27:08,965 DEBUG: 			View 3 : 0.465517241379
+2016-08-24 17:27:09,088 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:27:10,750 DEBUG: 		Start:	 Iteration 25
+2016-08-24 17:27:10,769 DEBUG: 			View 0 : 0.33908045977
+2016-08-24 17:27:10,778 DEBUG: 			View 1 : 0.545977011494
+2016-08-24 17:27:10,819 DEBUG: 			View 2 : 0.568965517241
+2016-08-24 17:27:10,827 DEBUG: 			View 3 : 0.33908045977
+2016-08-24 17:27:10,955 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:27:12,704 DEBUG: 		Start:	 Iteration 26
+2016-08-24 17:27:12,724 DEBUG: 			View 0 : 0.540229885057
+2016-08-24 17:27:12,733 DEBUG: 			View 1 : 0.724137931034
+2016-08-24 17:27:12,775 DEBUG: 			View 2 : 0.557471264368
+2016-08-24 17:27:12,784 DEBUG: 			View 3 : 0.586206896552
+2016-08-24 17:27:12,910 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:27:14,655 DEBUG: 		Start:	 Iteration 27
+2016-08-24 17:27:14,674 DEBUG: 			View 0 : 0.67816091954
+2016-08-24 17:27:14,683 DEBUG: 			View 1 : 0.626436781609
+2016-08-24 17:27:14,722 DEBUG: 			View 2 : 0.580459770115
+2016-08-24 17:27:14,730 DEBUG: 			View 3 : 0.408045977011
+2016-08-24 17:27:14,859 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:27:16,745 DEBUG: 		Start:	 Iteration 28
+2016-08-24 17:27:16,764 DEBUG: 			View 0 : 0.442528735632
+2016-08-24 17:27:16,773 DEBUG: 			View 1 : 0.494252873563
+2016-08-24 17:27:16,813 DEBUG: 			View 2 : 0.666666666667
+2016-08-24 17:27:16,822 DEBUG: 			View 3 : 0.534482758621
+2016-08-24 17:27:16,954 DEBUG: 			 Best view : 		RANSeq
+2016-08-24 17:27:18,894 DEBUG: 		Start:	 Iteration 29
+2016-08-24 17:27:18,912 DEBUG: 			View 0 : 0.465517241379
+2016-08-24 17:27:18,921 DEBUG: 			View 1 : 0.408045977011
+2016-08-24 17:27:18,961 DEBUG: 			View 2 : 0.586206896552
+2016-08-24 17:27:18,969 DEBUG: 			View 3 : 0.48275862069
+2016-08-24 17:27:19,109 DEBUG: 			 Best view : 		RANSeq
+2016-08-24 17:27:21,141 DEBUG: 		Start:	 Iteration 30
+2016-08-24 17:27:21,162 DEBUG: 			View 0 : 0.770114942529
+2016-08-24 17:27:21,172 DEBUG: 			View 1 : 0.522988505747
+2016-08-24 17:27:21,212 DEBUG: 			View 2 : 0.442528735632
+2016-08-24 17:27:21,221 DEBUG: 			View 3 : 0.67816091954
+2016-08-24 17:27:21,365 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:27:23,483 DEBUG: 		Start:	 Iteration 31
+2016-08-24 17:27:23,502 DEBUG: 			View 0 : 0.540229885057
+2016-08-24 17:27:23,512 DEBUG: 			View 1 : 0.522988505747
+2016-08-24 17:27:23,552 DEBUG: 			View 2 : 0.425287356322
+2016-08-24 17:27:23,561 DEBUG: 			View 3 : 0.5
+2016-08-24 17:27:23,700 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:27:25,832 DEBUG: 		Start:	 Iteration 32
+2016-08-24 17:27:25,851 DEBUG: 			View 0 : 0.33908045977
+2016-08-24 17:27:25,859 DEBUG: 			View 1 : 0.695402298851
+2016-08-24 17:27:25,899 DEBUG: 			View 2 : 0.540229885057
+2016-08-24 17:27:25,907 DEBUG: 			View 3 : 0.557471264368
+2016-08-24 17:27:26,056 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:27:28,321 DEBUG: 		Start:	 Iteration 33
+2016-08-24 17:27:28,339 DEBUG: 			View 0 : 0.390804597701
+2016-08-24 17:27:28,348 DEBUG: 			View 1 : 0.333333333333
+2016-08-24 17:27:28,388 DEBUG: 			View 2 : 0.672413793103
+2016-08-24 17:27:28,397 DEBUG: 			View 3 : 0.35632183908
+2016-08-24 17:27:28,544 DEBUG: 			 Best view : 		RANSeq
+2016-08-24 17:27:30,848 DEBUG: 		Start:	 Iteration 34
+2016-08-24 17:27:30,867 DEBUG: 			View 0 : 0.350574712644
+2016-08-24 17:27:30,876 DEBUG: 			View 1 : 0.545977011494
+2016-08-24 17:27:30,915 DEBUG: 			View 2 : 0.689655172414
+2016-08-24 17:27:30,924 DEBUG: 			View 3 : 0.614942528736
+2016-08-24 17:27:31,075 DEBUG: 			 Best view : 		RANSeq
+2016-08-24 17:27:33,490 DEBUG: 		Start:	 Iteration 35
+2016-08-24 17:27:33,509 DEBUG: 			View 0 : 0.597701149425
+2016-08-24 17:27:33,518 DEBUG: 			View 1 : 0.390804597701
+2016-08-24 17:27:33,559 DEBUG: 			View 2 : 0.413793103448
+2016-08-24 17:27:33,568 DEBUG: 			View 3 : 0.689655172414
+2016-08-24 17:27:33,727 DEBUG: 			 Best view : 		Clinic
+2016-08-24 17:27:36,221 DEBUG: 		Start:	 Iteration 36
+2016-08-24 17:27:36,240 DEBUG: 			View 0 : 0.67816091954
+2016-08-24 17:27:36,250 DEBUG: 			View 1 : 0.270114942529
+2016-08-24 17:27:36,290 DEBUG: 			View 2 : 0.408045977011
+2016-08-24 17:27:36,299 DEBUG: 			View 3 : 0.580459770115
+2016-08-24 17:27:36,460 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:27:39,010 DEBUG: 		Start:	 Iteration 37
+2016-08-24 17:27:39,029 DEBUG: 			View 0 : 0.390804597701
+2016-08-24 17:27:39,038 DEBUG: 			View 1 : 0.666666666667
+2016-08-24 17:27:39,077 DEBUG: 			View 2 : 0.385057471264
+2016-08-24 17:27:39,086 DEBUG: 			View 3 : 0.511494252874
+2016-08-24 17:27:39,243 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:27:41,886 DEBUG: 		Start:	 Iteration 38
+2016-08-24 17:27:41,904 DEBUG: 			View 0 : 0.683908045977
+2016-08-24 17:27:41,914 DEBUG: 			View 1 : 0.67816091954
+2016-08-24 17:27:41,956 DEBUG: 			View 2 : 0.304597701149
+2016-08-24 17:27:41,965 DEBUG: 			View 3 : 0.557471264368
+2016-08-24 17:27:42,128 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:27:44,780 DEBUG: 		Start:	 Iteration 39
+2016-08-24 17:27:44,800 DEBUG: 			View 0 : 0.488505747126
+2016-08-24 17:27:44,809 DEBUG: 			View 1 : 0.551724137931
+2016-08-24 17:27:44,849 DEBUG: 			View 2 : 0.563218390805
+2016-08-24 17:27:44,858 DEBUG: 			View 3 : 0.408045977011
+2016-08-24 17:27:45,028 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:27:47,765 DEBUG: 		Start:	 Iteration 40
+2016-08-24 17:27:47,783 DEBUG: 			View 0 : 0.534482758621
+2016-08-24 17:27:47,792 DEBUG: 			View 1 : 0.729885057471
+2016-08-24 17:27:47,832 DEBUG: 			View 2 : 0.540229885057
+2016-08-24 17:27:47,840 DEBUG: 			View 3 : 0.540229885057
+2016-08-24 17:27:48,005 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:27:50,795 DEBUG: 		Start:	 Iteration 41
+2016-08-24 17:27:50,813 DEBUG: 			View 0 : 0.551724137931
+2016-08-24 17:27:50,822 DEBUG: 			View 1 : 0.465517241379
+2016-08-24 17:27:50,862 DEBUG: 			View 2 : 0.695402298851
+2016-08-24 17:27:50,870 DEBUG: 			View 3 : 0.511494252874
+2016-08-24 17:27:51,044 DEBUG: 			 Best view : 		RANSeq
+2016-08-24 17:27:53,933 DEBUG: 		Start:	 Iteration 42
+2016-08-24 17:27:53,952 DEBUG: 			View 0 : 0.419540229885
+2016-08-24 17:27:53,961 DEBUG: 			View 1 : 0.287356321839
+2016-08-24 17:27:54,000 DEBUG: 			View 2 : 0.557471264368
+2016-08-24 17:27:54,008 DEBUG: 			View 3 : 0.51724137931
+2016-08-24 17:27:54,180 DEBUG: 			 Best view : 		RANSeq
+2016-08-24 17:27:57,122 DEBUG: 		Start:	 Iteration 43
+2016-08-24 17:27:57,140 DEBUG: 			View 0 : 0.494252873563
+2016-08-24 17:27:57,149 DEBUG: 			View 1 : 0.689655172414
+2016-08-24 17:27:57,189 DEBUG: 			View 2 : 0.672413793103
+2016-08-24 17:27:57,197 DEBUG: 			View 3 : 0.586206896552
+2016-08-24 17:27:57,372 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:28:00,355 DEBUG: 		Start:	 Iteration 44
+2016-08-24 17:28:00,373 DEBUG: 			View 0 : 0.316091954023
+2016-08-24 17:28:00,382 DEBUG: 			View 1 : 0.66091954023
+2016-08-24 17:28:00,422 DEBUG: 			View 2 : 0.632183908046
+2016-08-24 17:28:00,431 DEBUG: 			View 3 : 0.522988505747
+2016-08-24 17:28:00,608 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:28:03,684 DEBUG: 		Start:	 Iteration 45
+2016-08-24 17:28:03,702 DEBUG: 			View 0 : 0.362068965517
+2016-08-24 17:28:03,711 DEBUG: 			View 1 : 0.649425287356
+2016-08-24 17:28:03,751 DEBUG: 			View 2 : 0.293103448276
+2016-08-24 17:28:03,760 DEBUG: 			View 3 : 0.454022988506
+2016-08-24 17:28:03,939 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:28:07,014 DEBUG: 		Start:	 Iteration 46
+2016-08-24 17:28:07,032 DEBUG: 			View 0 : 0.465517241379
+2016-08-24 17:28:07,041 DEBUG: 			View 1 : 0.385057471264
+2016-08-24 17:28:07,081 DEBUG: 			View 2 : 0.626436781609
+2016-08-24 17:28:07,089 DEBUG: 			View 3 : 0.67816091954
+2016-08-24 17:28:07,271 DEBUG: 			 Best view : 		Clinic
+2016-08-24 17:28:10,416 DEBUG: 		Start:	 Iteration 47
+2016-08-24 17:28:10,435 DEBUG: 			View 0 : 0.488505747126
+2016-08-24 17:28:10,444 DEBUG: 			View 1 : 0.557471264368
+2016-08-24 17:28:10,483 DEBUG: 			View 2 : 0.586206896552
+2016-08-24 17:28:10,491 DEBUG: 			View 3 : 0.390804597701
+2016-08-24 17:28:10,675 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:28:13,877 DEBUG: 		Start:	 Iteration 48
+2016-08-24 17:28:13,896 DEBUG: 			View 0 : 0.551724137931
+2016-08-24 17:28:13,905 DEBUG: 			View 1 : 0.66091954023
+2016-08-24 17:28:13,944 DEBUG: 			View 2 : 0.689655172414
+2016-08-24 17:28:13,952 DEBUG: 			View 3 : 0.413793103448
+2016-08-24 17:28:14,140 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:28:17,471 DEBUG: 		Start:	 Iteration 49
+2016-08-24 17:28:17,489 DEBUG: 			View 0 : 0.5
+2016-08-24 17:28:17,498 DEBUG: 			View 1 : 0.701149425287
+2016-08-24 17:28:17,537 DEBUG: 			View 2 : 0.379310344828
+2016-08-24 17:28:17,546 DEBUG: 			View 3 : 0.367816091954
+2016-08-24 17:28:17,737 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:28:21,092 DEBUG: 		Start:	 Iteration 50
+2016-08-24 17:28:21,111 DEBUG: 			View 0 : 0.454022988506
+2016-08-24 17:28:21,120 DEBUG: 			View 1 : 0.706896551724
+2016-08-24 17:28:21,159 DEBUG: 			View 2 : 0.5
+2016-08-24 17:28:21,168 DEBUG: 			View 3 : 0.586206896552
+2016-08-24 17:28:21,365 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:28:24,779 DEBUG: 		Start:	 Iteration 51
+2016-08-24 17:28:24,798 DEBUG: 			View 0 : 0.51724137931
+2016-08-24 17:28:24,808 DEBUG: 			View 1 : 0.724137931034
+2016-08-24 17:28:24,848 DEBUG: 			View 2 : 0.706896551724
+2016-08-24 17:28:24,857 DEBUG: 			View 3 : 0.712643678161
+2016-08-24 17:28:25,055 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:28:28,594 DEBUG: 		Start:	 Iteration 52
+2016-08-24 17:28:28,613 DEBUG: 			View 0 : 0.563218390805
+2016-08-24 17:28:28,622 DEBUG: 			View 1 : 0.373563218391
+2016-08-24 17:28:28,661 DEBUG: 			View 2 : 0.568965517241
+2016-08-24 17:28:28,670 DEBUG: 			View 3 : 0.413793103448
+2016-08-24 17:28:28,872 DEBUG: 			 Best view : 		RANSeq
+2016-08-24 17:28:32,461 DEBUG: 		Start:	 Iteration 53
+2016-08-24 17:28:32,479 DEBUG: 			View 0 : 0.741379310345
+2016-08-24 17:28:32,488 DEBUG: 			View 1 : 0.327586206897
+2016-08-24 17:28:32,527 DEBUG: 			View 2 : 0.557471264368
+2016-08-24 17:28:32,536 DEBUG: 			View 3 : 0.436781609195
+2016-08-24 17:28:32,740 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:28:36,368 DEBUG: 		Start:	 Iteration 54
+2016-08-24 17:28:36,386 DEBUG: 			View 0 : 0.459770114943
+2016-08-24 17:28:36,395 DEBUG: 			View 1 : 0.373563218391
+2016-08-24 17:28:36,435 DEBUG: 			View 2 : 0.488505747126
+2016-08-24 17:28:36,444 DEBUG: 			View 3 : 0.586206896552
+2016-08-24 17:28:36,646 DEBUG: 			 Best view : 		Clinic
+2016-08-24 17:28:40,331 DEBUG: 		Start:	 Iteration 55
+2016-08-24 17:28:40,349 DEBUG: 			View 0 : 0.522988505747
+2016-08-24 17:28:40,358 DEBUG: 			View 1 : 0.287356321839
+2016-08-24 17:28:40,397 DEBUG: 			View 2 : 0.48275862069
+2016-08-24 17:28:40,406 DEBUG: 			View 3 : 0.304597701149
+2016-08-24 17:28:40,613 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:28:44,382 DEBUG: 		Start:	 Iteration 56
+2016-08-24 17:28:44,401 DEBUG: 			View 0 : 0.362068965517
+2016-08-24 17:28:44,410 DEBUG: 			View 1 : 0.747126436782
+2016-08-24 17:28:44,450 DEBUG: 			View 2 : 0.534482758621
+2016-08-24 17:28:44,459 DEBUG: 			View 3 : 0.540229885057
+2016-08-24 17:28:44,672 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:28:48,498 DEBUG: 		Start:	 Iteration 57
+2016-08-24 17:28:48,517 DEBUG: 			View 0 : 0.695402298851
+2016-08-24 17:28:48,526 DEBUG: 			View 1 : 0.672413793103
+2016-08-24 17:28:48,564 DEBUG: 			View 2 : 0.362068965517
+2016-08-24 17:28:48,573 DEBUG: 			View 3 : 0.390804597701
+2016-08-24 17:28:48,787 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:28:52,684 DEBUG: 		Start:	 Iteration 58
+2016-08-24 17:28:52,702 DEBUG: 			View 0 : 0.293103448276
+2016-08-24 17:28:52,711 DEBUG: 			View 1 : 0.649425287356
+2016-08-24 17:28:52,750 DEBUG: 			View 2 : 0.390804597701
+2016-08-24 17:28:52,759 DEBUG: 			View 3 : 0.367816091954
+2016-08-24 17:28:52,975 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:28:56,925 DEBUG: 		Start:	 Iteration 59
+2016-08-24 17:28:56,943 DEBUG: 			View 0 : 0.471264367816
+2016-08-24 17:28:56,952 DEBUG: 			View 1 : 0.5
+2016-08-24 17:28:56,992 DEBUG: 			View 2 : 0.51724137931
+2016-08-24 17:28:57,000 DEBUG: 			View 3 : 0.350574712644
+2016-08-24 17:28:57,219 DEBUG: 			 Best view : 		RANSeq
+2016-08-24 17:29:01,240 DEBUG: 		Start:	 Iteration 60
+2016-08-24 17:29:01,258 DEBUG: 			View 0 : 0.494252873563
+2016-08-24 17:29:01,267 DEBUG: 			View 1 : 0.402298850575
+2016-08-24 17:29:01,306 DEBUG: 			View 2 : 0.471264367816
+2016-08-24 17:29:01,315 DEBUG: 			View 3 : 0.614942528736
+2016-08-24 17:29:01,537 DEBUG: 			 Best view : 		Clinic
+2016-08-24 17:29:05,631 DEBUG: 		Start:	 Iteration 61
+2016-08-24 17:29:05,649 DEBUG: 			View 0 : 0.632183908046
+2016-08-24 17:29:05,658 DEBUG: 			View 1 : 0.580459770115
+2016-08-24 17:29:05,697 DEBUG: 			View 2 : 0.419540229885
+2016-08-24 17:29:05,705 DEBUG: 			View 3 : 0.591954022989
+2016-08-24 17:29:05,931 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:29:10,109 DEBUG: 		Start:	 Iteration 62
+2016-08-24 17:29:10,128 DEBUG: 			View 0 : 0.333333333333
+2016-08-24 17:29:10,137 DEBUG: 			View 1 : 0.591954022989
+2016-08-24 17:29:10,177 DEBUG: 			View 2 : 0.586206896552
+2016-08-24 17:29:10,186 DEBUG: 			View 3 : 0.706896551724
+2016-08-24 17:29:10,415 DEBUG: 			 Best view : 		Clinic
+2016-08-24 17:29:14,649 DEBUG: 		Start:	 Iteration 63
+2016-08-24 17:29:14,667 DEBUG: 			View 0 : 0.419540229885
+2016-08-24 17:29:14,677 DEBUG: 			View 1 : 0.287356321839
+2016-08-24 17:29:14,716 DEBUG: 			View 2 : 0.67816091954
+2016-08-24 17:29:14,726 DEBUG: 			View 3 : 0.586206896552
+2016-08-24 17:29:14,957 DEBUG: 			 Best view : 		RANSeq
+2016-08-24 17:29:19,251 DEBUG: 		Start:	 Iteration 64
+2016-08-24 17:29:19,270 DEBUG: 			View 0 : 0.408045977011
+2016-08-24 17:29:19,279 DEBUG: 			View 1 : 0.67816091954
+2016-08-24 17:29:19,318 DEBUG: 			View 2 : 0.505747126437
+2016-08-24 17:29:19,327 DEBUG: 			View 3 : 0.551724137931
+2016-08-24 17:29:19,560 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:29:23,920 DEBUG: 		Start:	 Iteration 65
+2016-08-24 17:29:23,939 DEBUG: 			View 0 : 0.505747126437
+2016-08-24 17:29:23,948 DEBUG: 			View 1 : 0.557471264368
+2016-08-24 17:29:23,986 DEBUG: 			View 2 : 0.545977011494
+2016-08-24 17:29:23,995 DEBUG: 			View 3 : 0.477011494253
+2016-08-24 17:29:24,230 DEBUG: 			 Best view : 		RANSeq
+2016-08-24 17:29:28,683 DEBUG: 		Start:	 Iteration 66
+2016-08-24 17:29:28,702 DEBUG: 			View 0 : 0.534482758621
+2016-08-24 17:29:28,711 DEBUG: 			View 1 : 0.626436781609
+2016-08-24 17:29:28,750 DEBUG: 			View 2 : 0.454022988506
+2016-08-24 17:29:28,759 DEBUG: 			View 3 : 0.316091954023
+2016-08-24 17:29:29,004 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:29:33,525 DEBUG: 		Start:	 Iteration 67
+2016-08-24 17:29:33,543 DEBUG: 			View 0 : 0.683908045977
+2016-08-24 17:29:33,552 DEBUG: 			View 1 : 0.32183908046
+2016-08-24 17:29:33,592 DEBUG: 			View 2 : 0.563218390805
+2016-08-24 17:29:33,601 DEBUG: 			View 3 : 0.344827586207
+2016-08-24 17:29:33,845 DEBUG: 			 Best view : 		Methyl
+2016-08-24 17:29:38,422 DEBUG: 		Start:	 Iteration 68
+2016-08-24 17:29:38,440 DEBUG: 			View 0 : 0.442528735632
+2016-08-24 17:29:38,449 DEBUG: 			View 1 : 0.419540229885
+2016-08-24 17:29:38,488 DEBUG: 			View 2 : 0.528735632184
+2016-08-24 17:29:38,497 DEBUG: 			View 3 : 0.67816091954
+2016-08-24 17:29:38,740 DEBUG: 			 Best view : 		Clinic
+2016-08-24 17:29:43,435 DEBUG: 		Start:	 Iteration 69
+2016-08-24 17:29:43,453 DEBUG: 			View 0 : 0.459770114943
+2016-08-24 17:29:43,462 DEBUG: 			View 1 : 0.67816091954
+2016-08-24 17:29:43,501 DEBUG: 			View 2 : 0.574712643678
+2016-08-24 17:29:43,510 DEBUG: 			View 3 : 0.655172413793
+2016-08-24 17:29:43,759 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:29:48,463 DEBUG: 		Start:	 Iteration 70
+2016-08-24 17:29:48,481 DEBUG: 			View 0 : 0.333333333333
+2016-08-24 17:29:48,490 DEBUG: 			View 1 : 0.66091954023
+2016-08-24 17:29:48,529 DEBUG: 			View 2 : 0.545977011494
+2016-08-24 17:29:48,538 DEBUG: 			View 3 : 0.568965517241
+2016-08-24 17:29:48,789 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:29:53,582 DEBUG: 		Start:	 Iteration 71
+2016-08-24 17:29:53,601 DEBUG: 			View 0 : 0.436781609195
+2016-08-24 17:29:53,610 DEBUG: 			View 1 : 0.603448275862
+2016-08-24 17:29:53,649 DEBUG: 			View 2 : 0.448275862069
+2016-08-24 17:29:53,658 DEBUG: 			View 3 : 0.66091954023
+2016-08-24 17:29:53,910 DEBUG: 			 Best view : 		Clinic
+2016-08-24 17:29:58,731 DEBUG: 		Start:	 Iteration 72
+2016-08-24 17:29:58,750 DEBUG: 			View 0 : 0.327586206897
+2016-08-24 17:29:58,759 DEBUG: 			View 1 : 0.706896551724
+2016-08-24 17:29:58,797 DEBUG: 			View 2 : 0.620689655172
+2016-08-24 17:29:58,806 DEBUG: 			View 3 : 0.568965517241
+2016-08-24 17:29:59,062 DEBUG: 			 Best view : 		MiRNA_
+2016-08-24 17:30:03,975 DEBUG: 		Start:	 Iteration 73
+2016-08-24 17:30:03,993 DEBUG: 			View 0 : 0.494252873563
+2016-08-24 17:30:04,002 DEBUG: 			View 1 : 0.5
+2016-08-24 17:30:04,041 DEBUG: 			View 2 : 0.310344827586
+2016-08-24 17:30:04,050 DEBUG: 			View 3 : 0.477011494253
+2016-08-24 17:30:04,310 DEBUG: 			 Best view : 		MiRNA_
diff --git a/Code/Versions.py b/Code/MonoMutliViewClassifiers/Versions.py
similarity index 100%
rename from Code/Versions.py
rename to Code/MonoMutliViewClassifiers/Versions.py
diff --git a/Code/MonoMutliViewClassifiers/__init__.py b/Code/MonoMutliViewClassifiers/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/Code/Multiview/Fusion/Methods/MonoviewClassifiers/DecisionTree.py b/Code/Multiview/Fusion/Methods/MonoviewClassifiers/DecisionTree.py
deleted file mode 100644
index ce91729ff7b44ae7cf57c08ff4fae9134568685a..0000000000000000000000000000000000000000
--- a/Code/Multiview/Fusion/Methods/MonoviewClassifiers/DecisionTree.py
+++ /dev/null
@@ -1,11 +0,0 @@
-from sklearn.tree import DecisionTreeClassifier
-
-
-def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs):
-    maxDepth = int(kwargs['0'])
-    classifier = DecisionTreeClassifier(max_depth=maxDepth)
-    classifier.fit(DATASET, CLASS_LABELS)
-    return classifier
-
-def getConfig(config):
-    return "\n\t\t- Decision Tree with max_depth : "+config[0]
\ No newline at end of file
diff --git a/Code/Multiview/Fusion/Methods/MonoviewClassifiers/KNN.py b/Code/Multiview/Fusion/Methods/MonoviewClassifiers/KNN.py
deleted file mode 100644
index d8a59153cc66a6b85b6e7101c865880ff2661c85..0000000000000000000000000000000000000000
--- a/Code/Multiview/Fusion/Methods/MonoviewClassifiers/KNN.py
+++ /dev/null
@@ -1,11 +0,0 @@
-from sklearn.neighbors import KNeighborsClassifier
-
-
-def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs):
-    nNeighbors = int(kwargs['0'])
-    classifier = KNeighborsClassifier(n_neighbors=nNeighbors)
-    classifier.fit(DATASET, CLASS_LABELS)
-    return classifier
-
-def getConfig(config):
-    return "\n\t\t- K nearest Neighbors with  n_neighbors: "+config[0]
\ No newline at end of file
diff --git a/Code/Multiview/Fusion/Methods/MonoviewClassifiers/RandomForest.py b/Code/Multiview/Fusion/Methods/MonoviewClassifiers/RandomForest.py
deleted file mode 100644
index 7ba9b06683d33228420d4eb98344d694603b074c..0000000000000000000000000000000000000000
--- a/Code/Multiview/Fusion/Methods/MonoviewClassifiers/RandomForest.py
+++ /dev/null
@@ -1,12 +0,0 @@
-from sklearn.ensemble import RandomForestClassifier
-
-
-def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs):
-    num_estimators = int(kwargs['0'])
-    maxDepth = int(kwargs['1'])
-    classifier = RandomForestClassifier(n_estimators=num_estimators, max_depth=maxDepth, n_jobs=NB_CORES)
-    classifier.fit(DATASET, CLASS_LABELS)
-    return classifier
-
-def getConfig(config):
-    return "\n\t\t- Random Forest with num_esimators : "+config[0]+", max_depth : "+config[1]
\ No newline at end of file
diff --git a/Code/Multiview/Fusion/Methods/MonoviewClassifiers/SGD.py b/Code/Multiview/Fusion/Methods/MonoviewClassifiers/SGD.py
deleted file mode 100644
index 072a7a32634fe15ca1d8550b89cea1f03830d089..0000000000000000000000000000000000000000
--- a/Code/Multiview/Fusion/Methods/MonoviewClassifiers/SGD.py
+++ /dev/null
@@ -1,16 +0,0 @@
-from sklearn.linear_model import SGDClassifier
-
-
-def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs):
-    loss = kwargs['0']
-    penalty = kwargs['1']
-    try:
-        alpha = int(kwargs['2'])
-    except:
-        alpha = 0.15
-    classifier = SGDClassifier(loss=loss, penalty=penalty, alpha=alpha)
-    classifier.fit(DATASET, CLASS_LABELS)
-    return classifier
-
-def getConfig(config):
-    return "\n\t\t- SGDClassifier with loss : "+config[0]+", penalty : "+config[1]
\ No newline at end of file
diff --git a/Code/Multiview/Fusion/Methods/MonoviewClassifiers/SVC.py b/Code/Multiview/Fusion/Methods/MonoviewClassifiers/SVC.py
deleted file mode 100644
index 34c4679d7f5bb1a7b09a19f77ee77c8848dcbcb6..0000000000000000000000000000000000000000
--- a/Code/Multiview/Fusion/Methods/MonoviewClassifiers/SVC.py
+++ /dev/null
@@ -1,13 +0,0 @@
-from sklearn.svm import SVC
-
-
-def fit(DATASET, CLASS_LABELS, NB_CORES=1,**kwargs):
-    C = int(kwargs['0'])
-    kernel = kwargs['1']
-    classifier = SVC(C=C, kernel=kernel, probability=True)
-    classifier.fit(DATASET, CLASS_LABELS)
-    return classifier
-
-
-def getConfig(config):
-    return "\n\t\t- SVM with C : "+config[0]+", kernel : "+config[1]
\ No newline at end of file
diff --git a/Code/__init__.py b/Code/__init__.py
index b07b92a447c02ebc85003d45b395665e6f7f5399..7ccf8824aeffdbfda0483e30758ef7d6d81e4132 100644
--- a/Code/__init__.py
+++ b/Code/__init__.py
@@ -1 +1,2 @@
-__all__ = ['FeatExtraction', 'Monoview', 'Multiview']
\ No newline at end of file
+__all__ = ['FeatExtraction', 'Monoview', 'Multiview', 'MonoviewClassifiers']
+from . import FeatExtraction, Monoview, Multiview, MonoviewClassifiers
\ No newline at end of file